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A GENERAL METHOD TO CONSTRUCT INVARIANT PDES ON HOMOGENEOUS

MANIFOLDS

DMITRI V. ALEKSEEVSKY, JAN GUTT, GIANNI MANNO, AND GIOVANNI MORENO

Abstract. Let M = G/H be an (n + 1)-dimensional homogeneous manifold and Jk(n,M) =: Jk be the
manifold of k-jets of hypersurfaces of M . The Lie group G acts naturally on each Jk. A G–invariant partial
differential equation of order k for hypersurfaces of M (i.e., with n independent variables and 1 dependent
one) is defined as a G–invariant hypersurface E ⊂ Jk. We describe a general method for constructing such
invariant partial differential equations for k ≥ 2. The problem reduces to the description of hypersurfaces,
in a certain vector space, which are invariant with respect to the linear action of the stability subgroup
H(k−1) of the (k−1)–prolonged action of G. We apply this approach to describe invariant partial differential
equations for hypersurfaces in the Euclidean space En+1 and in the conformal space Sn+1. Our method works
under some mild assumptions on the action of G, namely: A1) the group G must have an open orbit in

Jk−1, and A2) the stabilizer H(k−1) ⊂ G of the fibre Jk → Jk−1 must factorize via the group of translations
of the fibre itself.
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1. Introduction

1.1. Starting point. In this paper we continue a research program started by us in [1] and, from a slightly
different point of view, by D. The in [8], that is developing tailor–made geometric and algebraic methods to
explicitly construct partial differential equations (PDEs, for short) that admit a given group of symmetries.
The problem itself is rather old and classical: its origins date back to the works of Lie, Darboux, Cartan
and others. In what follows, we consider the global problem of describing G–invariant PDEs, where G is
a Lie group acting transitively on an (n + 1)–dimensional homogeneous manifold J0 = M = G/H: such
manifold is interpreted as the space of n independent variables and a dependent one. We propose a method
to construct such invariant PDEs: our approach admits also a local reformulation in terms of the Lie algebra
g of the group G and, as such, it can be regarded as a method to construct g–invariant PDEs. One of the
key tool of our analysis is going to be the affine structure of the bundles π`,`−1 : J `(n,M) −→ J `−1(n,M)
of the spaces of `–jets of n–dimensional embedded submanifolds of M (that is, hypersurfaces of M), for
` ≥ 2. By contrast, in the aforementioned paper [1], the authors started from a homogeneous (2n + 1)–
dimensional contact manifold for a complex simple Lie group and looked for invariant hypersurfaces, in the
corresponding Lagrangian Grassmanian, whose algebraic degree (measured via the Plücker embedding) is
minimal: only in some special cases such a minimal degree is attained by the so–called Lagrangian Chow
transform of the sub–adjoint varieties, which, in general, display a very high degree; the same output of the
Lagrangian Chow transform can be obtained by the original techniques, based on Jordan algebras instead,
developed by D. The in [8].

In the classical language of symmetries of PDEs, when a group G acts on M we say that it acts
by point transformations, whereas when G acts on the contact manifold J1(n,M) we speak of contact
transformations instead (see, e.g., [2]); it is well known that not all contact manifolds are the projectivized
cotangent bundle of a manifold and, even when they are, not all contact transformations can be obtained
by lifting point ones. More precisely, in [1] the departing point is a homogeneous contact manifold with
respect to a complex simple Lie group of contact transformations, whereas in the present work we deal
with real Lie groups acting on M = J0(n,M) and satisfying some mild assumptions, see Section 1.3 below.

1.2. Preliminary definitions. Throughout this paper M = G/H will be an (n+ 1)–dimensional homo-
geneous manifold and S ⊂ M an embedded hypersurface of M , unless otherwise specified. Locally, in an
appropriate local chart

(1) (u,x) = (u, x1, . . . , xn)

of M , the hypersurface S can be described by an equation u = f(x) = f(x1, . . . , xn), where f is a smooth
function of the variables x1, . . . , xn, that we refer to as the independent variables, to distinguish them from

Date: September 16, 2020.

1

ar
X

iv
:2

00
4.

04
02

1v
2 

 [
m

at
h.

D
G

] 
 1

5 
Se

p 
20

20



2 DMITRI V. ALEKSEEVSKY, JAN GUTT, GIANNI MANNO, AND GIOVANNI MORENO

the remaining coordinate u, that is the dependent one.1 We say that such a chart is admissible for S or,
equivalently, that the hypersurface S is (locally) admissible for the chart (u,x). We denote by Sf = S the
graph of f :

Sf := {
(
f(x) ,x

)
} = {u = f(x)} .

Given two hypersurfaces S1 and S2 through a common point p, one can always choose a chart (u,x)
near p that is admissible for both: S1 = Sf1 , S2 = Sf2 . This paves the ground for the following definition:
even if it is intrinsically geometric, we rather give it in a coordinate–wise form to better fit the general
approach of the paper; standard techniques allow to show its independence of the choice of coordinates.

Definition 1.1. Two hypersurfaces Sf1 , Sf2 through a common point p = (u,x) are called `–equivalent at
p if the Taylor expansions of f1 and f2 coincide at x up to order `. The class of `–equivalent hypersurfaces
to a given hypersurface S at the point p is denoted by [S]`p. The union

J `(n,M) :=
⋃
p∈M
{[S]`p | S is a hypersurface of M passing through p}

of all these equivalence classes is the space of `–jets of hypersurfaces J `(n,M) of M .

Note that J1(n,M) = Grn(TM) = PT ∗M . From now on, when there is no risk of confusion, we let

J ` := J `(n,M) .

The natural projections
π`,m : J ` −→ Jm , [S]`p 7−→ [S]mp , ` > m ,

define a tower of bundles

· · · −→ J ` −→ J `−1 −→ · · · −→ J1 = PT ∗M −→ J0 = M ,

that turn out to be affine for ` ≥ 2. For any am ∈ Jm, the fiber of π`,m over am will be indicated by the
symbol

J `am := π−1
`,m(am) .

1.3. Assumptions on the Lie group G. In what follows, unless otherwise specified, o is a fixed point
of M = G/H (an “origin”) and o` a point of J `, so that M = G · o. This allows us to consider the fibre
J `
o`−1 as a vector space with the origin o` playing the role of zero vector. The group G acts naturally on

each `–jet space J `:
G 3 g : o` = [S]`o ∈ J ` → [g(S)]`g(o) ∈ J

`, o ∈ S .
We observe that such an action preserves the affine structure of the fibres of π`,`−1 for ` ≥ 2. We denote

by H(`) the stability subgroup Go` in G of the point o`:

H(`) := Go` .

In this context, G–invariant PDEs (of order k) are submanifolds of Jk such that G · E = E .
In order to formulate our method for constructing these G–invariant PDEs, we have to slightly restrict

the class of groups G under consideration; more precisely, we are going to assume that there exists a point
ok ∈ Jk, with k ≥ 2, projecting to ok−1 ∈ Jk−1 such that:

(A1) the orbit

J̌k−1 := G · ok−1 = G/H(k−1) ⊂ Jk−1

through ok−1 is open;

(A2) the orbit

(2) W k := τ(H(k−1)) · ok ⊂ Jkok−1

through ok, where

(3) τ : H(k−1) → Aff(Jkok−1)

is the natural affine action of the stability subgroup H(k−1) = Gok−1 on the fibre Jk
ok−1 , is a vector space

and the group of translation of W k, that we denote by TWk , is contained in τ(H(k−1)).

Remark 1.1. Assumption (A2) implies that there is a point ok ∈ Jk over the point ok−1 such that the
restriction of the affine bundle πk,k−1 : Jk → Jk−1 to the orbit G · ok is an affine subbundle of πk,k−1 (over

the base J̌k−1).

1A reader who is familiar with the standard literature about jet spaces may have noticed that we reversed the order of x
and u: this choice will be more convenient for us as the coordinate u will play the role of the “0th coordinate”.
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1.4. A method for obtaining G–invariant PDEs. Our main concern is the problem of finding G–
invariant PDEs E ⊂ Jk: if G satisfies the mild assumptions explained in Section 1.3 above, the affine
structure of the natural bundle πk,k−1 : Jk → Jk−1, for k ≥ 2, will allow us to recast it as the problem

of describing submanifolds of the fibre Jk
ok−1 that are invariant under the affine action of the stability

subgroup H(k−1) in G of ok−1. Moreover, in our main Theorem 3.1, we reduce this last problem to describe
G–invariant submanifolds of the quotient vector space

(4) V k := Jkok−1/W
k .

Since the action of G on V k is linear, the above problem becomes a standard problem in the theory
of invariants of a linear Lie group, which is much simpler than the initial one—that is, the problem of
describing the invariants for a non–linear action of the Lie group G on the manifold Jk. As an application
of the main Theorem 3.1, we solve this problem in the case when the homogeneous manifold M = G/H
defines either the Euclidean or the conformal geometry (in the sense of F. Klein). We stress that the
approach we propose does not rely on machine–aided computations and at the same time sheds light on
some geometric properties of the G–invariant PDEs.

1.5. Structure of the paper. In Section 2 we recall some basic definitions concerning the geometry of
the spaces J ` = J `(n,M) of `–order jets of hypersurfaces of an (n + 1)–dimensional manifold M , as well
as of their subbundles, that are systems of PDEs in one unknown variable.

In Section 3, under the assumptions (A1) and (A2) of Section 1.3, we prove the main Theorem 3.1,
which reduces the construction of G–invariant PDEs E ⊂ Jk to the description of hypersurfaces of V k that
are invariant with respect to the linear action of the stability group H(k−1).

In Section 4 we carefully examine the case when M = En+1 is the (n+ 1)–dimensional Euclidean space,
considered as the homogeneous space En+1 = SE(n+ 1)/SO(n+ 1) of the group of orientation–preserving
motions. It would be sensible to stress that the main purpose of discussing here the Euclidean case is that
of testing the results of Section 3 on a particularly simple and well–known ground.

In Section 5 we pass to the case when M is the conformal sphere Sn+1, that is a homogeneous space of
the special orthogonal group SO(1, n+2), called also the Möbius group: we obtain the conformally invariant
PDEs in terms of invariants of a certain space of traceless quadratic forms. For instance, in Section 5.4.1,
in the case of two independent variables, we see that the unique SO(1, 4)–invariant PDE is expressed in
terms of the Fubini’s conformally invariant first fundamental form.

We would like to underline that the invariant PDEs we found are expressed as the zero set of a function
of the invariants (of a certain order) of the considered group. This, of course, does not guarantee that the
so–obtained PDE is a scalar one, as the zero set of a real–valued function is not always a codimension–one
submanifold. In fact, this happens for the conformal group, as described in .

A key clarification is in order. The main output of the applicative Sections 4 and 5 are invariant polyno-
mials: their zero sets will then provide us with the G–invariant PDEs, understood as hypersurfaces, that
were predicted by the main theoretical result, Theorem 3.1, but only in the case when the aforementioned
zero set is a submanifold of codimension one (see on this concern the example treated in Section 5.4.1).
In this perspective, in Sections 4 and 5 we produce more invariant objects than those given by Theorem
3.1, and indeed the corresponding Theorem 4.1 and Theorem 5.1 state that among the zero sets there are
the PDEs anticipated by Theorem 3.1—they do not claim that these zero sets account for all such PDEs.
Such a discrepancy disappears in the complex case, and this is the main reason why in the already cited
work [1] the authors worked with complex Lie groups form the outset.

2. The affine structure of the bundles of jet spaces

2.1. Jets of hypersurfaces of M . The space J ` has a natural structure of smooth manifold: one way to
see this is to extend the local coordinate system (1) on M to a coordinate system

(5) (u,x, . . . , ui, . . . , uij , . . . , ui1···il , . . .) = (u, x1, . . . , xn, . . . , ui, . . . , uij , . . . , ui1···il , . . .)

on J `, where each coordinate function2 ui1···ik , with k ≤ `, is unambiguously defined by the rule

(6) ui1···ik

(
[Sf ]`p

)
= ∂ki1···ikf(x) , p = (u,x) , k ≤ ` .

In formula (6) above the symbol ∂i denotes the partial derivative ∂xi , for i = 1, . . . , n; we recall that the
hypersurface S = Sf is the graph of the function u = f(x) and, as such, it is admissible for the chart
(u,x).

2The ui1···ik ’s are symmetric in the lower indices.
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The `–lift of S is defined by

(7) S(`) := {[S]`p | p ∈ S} .

It is an n–dimensional submanifold of J `. If S = Sf is the graph of u = f(x), then S
(`)
f can be naturally

parametrized as follows:3

(8)

(
u = f(x),x, . . . ui =

∂f

∂xi
(x), . . . uij =

∂2f

∂xi∂xj
(x), . . .

)
.

Remark 2.1. In the case M is a fibre bundle π : M → B with n–dimensional fibres, one can define the
space of `–jets J lπ of π as the space of `–jets of the graphs of local sections of π. The space J `π is an open
dense subset of J ` = J `(n,M). In the case that π : R×N → N is the trivial bundle, dimN = n, then J `π
coincides with the space of `–jets of functions on N .

2.2. The tautological bundle and the higher order contact distribution on J `. In this section, to
not overload the notation, we denote a point [S]`p ∈ J ` by a`. The next lemma is well known.

Lemma 2.1. Any point a` = [S]`p ∈ J ` canonically defines the n–dimensional subspace

(9) Ta`−1S(`−1) ⊂ Ta`−1J `−1 , a`−1 = π`,`−1(a`) .

Definition 2.1. The tautological rank–n vector bundle T ` ⊂ π∗`,`−1(TJ `−1) is the bundle over J ` whose

fiber over the point a` is given by (9), i.e.,

T ` =
{

(a`, v) ∈ J ` × TJ `−1 | v ∈ Ta`−1S(`−1)
}
.

The (truncated) total derivatives

(10) D
(`)
i := ∂xi +

∑̀
k=1

∑
j1≤···≤jk−1

uj1...jk−1 i ∂uj1...jk−1
, i = 1 . . . n ,

constitute a local basis of the bundle T `.
By considering the preimage of the tautological bundle on J ` via the differential dπ`,`−1 of the canonical

projection π`,`−1, we get a distribution on J `, denoted by C`:

C` := (dπ`,`−1)−1T ` .

Definition 2.2. C` is called the `th order contact structure or Cartan distribution (on J `).

Above formula, applied to a particular point a` of J ` that projects on a`−1 ∈ J `−1, reads

(11) C`a` = (dπ`,`−1)−1(Ta`−1S(`−1)) = T `a` ⊕ T
v
a`J

` ,

where T vJ ` := ker(dπ`,`−1) is the vertical subbundle of TJ `.

Distribution C` can be considered as a “higher order contact structure” [5, 6] since, for ` = 1, if (u, xi, ui)
is a chart on J1, then

(12) C := C1 = ker(θ) , where θ = du− uidxi

is a contact form. For ` > 1, the planes of the `th order contact structure C` are the kernels of the following
system of 1–forms (Pfaff system):

θ = du− uidxi , θi1...ik = dui1...ik − ui1...ikhdx
h, k < `, i = 1, . . . , n .

2.3. The affine structure of the bundles J ` → J `−1 for ` ≥ 2. In this section we describe the affine
structure of the bundles π`,`−1 : J ` → J `−1, ` ≥ 2. In order to state Proposition 2.1 below, we need to
introduce yet another bundle over J1, tightly related with the tautological bundle defined before: according
to Definition 2.1, the tautological bundle T := T 1 is the vector bundle over J1 defined by

T[S]1p
:= T 1

[S]1p
= TpS .

Definition 2.3. The normal bundle N is the following line bundle over J1:

N[S]1p
:= NpS := TpM

/
TpS .

3We stress once again that a switch has occurred between the first and the second entry, with respect to a more standard
literature.
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To simplify notations, we denote by ∂u the equivalence class ∂u mod T .
Next Lemma is well known (see for instance [5, 7]): it describes the vertical subbundle T vJ ` of J ` in

terms of the bundles T and N .

Lemma 2.2. We have that

T vJ ` ' π∗`,1(S`T ∗ ⊗N ) .

In local coordinates (5), the above isomorphism gives (up to a constant) the bijection

(13)
∂

∂ui1···i`
←→ dxi1 � · · · � dxi` ⊗ ∂u ,

where � is the symmetric product.

The next proposition is also well known ([5, 7]) and it is crucial for our purposes.

Proposition 2.1. For ` ≥ 2 the bundles J ` → J `−1 are affine bundles modeled by the vector bundles
π∗`−1,1(S`T ∗ ⊗N ). In particular, once a chart (u,x) has been fixed, the choice of a point [S]`p (the origin)

defines the identification J `
[S]`−1

p
with S`T ∗pS.

Below we give a sketch of the proof based on the action of a generic element v of
(
π∗`−1,1(S`T ∗⊗N )

)
[S]`−1

p

on the fibre J `
[S]`−1

p
(for more details see for instance [7]). Without loss of generality, we can choose

p = o = (0,0) and a chart (u,x) admissible by S, so that S = {u = f(x)} = Sf . The aforementioned
element can be written as

v = vi1···i` dx
i1 � · · · � dxi` ⊗ ∂u ∈ S`(T ∗pS)⊗N[S]1p

(see Lemma 2.2); its action on [S]`p = [Sf ]`p is given by v : [Sf ]`p → [Sg]
`
p where

g(x) = f(x) +
1

`!
vi1···i`x

i1 · · · · · xi` ,

i.e., the `–order derivatives fi1···i` are sent to gi1···i` = fi1···i` + vi1···i` .

Warning 2.1. From now on, the symmetric product dxi � dxj (resp. ∂xi � ∂xj ) will be denoted simply
by dxidxj (resp. ∂xi∂xj ).

3. A general construction of G–invariant PDEs on a homogeneous manifold M = G/H

As above, let M = G/H = G · o, o ∈M , be an (n+ 1)–dimensional homogeneous manifold. Recall (see
Section 1.3) that G acts on each jet space J ` = J `(n,M). We recall the following definitions.

Definition 3.1. A system of m PDEs of order k is an m–codimensional submanifold E ⊂ Jk. A solution of
the system E is a hypersurface S ⊂M such that [S]kp ∈ E for all p ∈ S. The system E is called G–invariant
if G · E = E .

The aim of this section is to reduce the problem of describing G–invariant scalar PDEs (i.e., when m = 1)
of order k, that is, G–invariant hypersurfaces in Jk, to the problem of describing hypersurfaces in a certain
vector space, invariant under the linear action of the stability subgroup H(k−1) of the point ok−1 ∈ Jk−1.

Below we give some definitions together with some preliminary lemmas that are important to state the
main Theorem 3.1.

Definition 3.2. A homogeneous manifold M = G/H is called k–admissible for k ≥ 2 if assumptions (A1)
and (A2) of Section 1.3 are satisfied.

Definition 3.3. A hypersurface S ⊂ M through the point o that is homogeneous with respect to a
subgroup of G for which ok−1 = [S]k−1

o and ok = [S]ko satisfy (A1) and (A2) of Section 1.3 is called a
fiducial hypersurface.

Remark 3.1. It is worth stressing that the main theoretical result, Theorem 3.1 below, does not require
the existence of a fiducial hypersurface, whereas its applications to the particular cases discussed later
in Sections 4 and 5, become geometrically more trasparent thanks to an obvious choice of a fiducial
hypersurface; in particular, the latter allows constructing a preferred coordinate system in which the so–
obtained invariant PDEs look particularly simple. The authors did not deepen the problem of existence of
a fiducial hypersurface for all k–admissible homogeneous manifolds M = G/H.
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Below we state an elementary lemma concerning affine subgroups that are semidirect product of their
linear (canonically associated) group and a translational one.

Let V be a vector space, treated as an affine space with origin o. Let H be a subgroup of Aff(V ) =
V o GL(V ). Assume that W := H · o is a vector subspace of V and that the corresponding group of
translations TW is a subgroup of H. Then

(14) H = TW o LH ,

where LH is the linear subgroup of the stabilizer of the origin o. Since TW is a normal subgroup, we have
that LH ·W = W . Denote by U a subspace complementary to W , that is

(15) V = W ⊕ U ,

so that the natural projection p : V → V/W defines an identification p|U : U → V/W . In view of (14), an
element h ∈ H can be uniquely presented as

(16) h = Tw(h) · Lh ∈ H ,

so that its induced action on V/W corresponds to the linear action given by h : u → Lh · u, where Lh, in
terms of decomposition (15), is

(17) Lh =

(
∗ ∗
0 Lh

)
.

Lemma 3.1. Let H as in (14) and V as in (15). Then there exists a 1–1 correspondence between LH–
invariant hypersurfaces Σ ⊂ U = V/W and (cylindrical) H–invariant hypersurfaces Σ = W + Σ in V .

Proof. Let Σ ⊂ U be a LH–invariant hypersurface. Then Σ = W + Σ is a H–invariant hypersurface of V
since, for each w + u ∈ Σ = W + Σ, in view of (16) and (17),

h(w + u) = Lh(Tw(h)(w + u)) = Lh(w + w(h) + u) = Lh(w + w(h)) + Lh(u) ∈W + Σ .

Conversely, if Σ ⊂ V = W ⊕ U is an H–invariant hypersurface, then TW · Σ = W + Σ ⊂ Σ, i.e., Σ is a
cylindrical hypersurface and the quotient Σ = Σ ∩ U is an LH–invariant hypersurface in U = V/W . �

Recall now that, if S is a fiducial hypersurface in the sense of Definition 3.3, then

o` := [S]`o ∈ J `

plays the role of the origin in J `. Furthermore, we have the following identification (see Proposition 2.1):

J `o`−1 = S`(T ∗o S)⊗NoS .

If we represent the fiducial hypersurface S as a graph Sf , then we can write (see again Proposition 2.1):

(18) J `o`−1 = S`(T ∗o Sf ) .

From now on, we will use this identification.
For any h ∈ H(`−1) we may decompose the affine transformation τ(h) ∈ Aff(J `

o`−1) (see (3)) into the

product of its linear part Ah ∈ GL(S`(T ∗o Sf )), which is the stabilizer of the point o`, and the translation

Th along the vector τ(h)(o`), i.e.,

τ(h) = Th ·Ah .
Now we assume that the homogeneous manifold M = G/H is k–admissible. Thus, condition (A2) shows
that

W k = τ(H(k−1)) · ok = {Th · ok, h ∈ H(k−1)}
is a vector subspace of Jk

ok−1 and, furthermore, that any element τ(h) ∈ τ(H(k−1)) can be decomposed as
follows (see (16)):

τ(h) = Tw(h) · Lh , Tw(h) , Lh ∈ τ(H(k−1)) .

Hence,

(19) τ(H(k−1)) = TWk o LH(k−1) ,

where LH(k−1) is the stabilizer of ok. Applying Lemma 3.1 to the affine subgroup τ(H(k−1)) ⊂ Aff(Jk
ok−1)

we get the following corollary.
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Corollary 3.1. Let M = G/H be a k–admissible homogeneous manifold. Then there exists a 1–1 corre-

spondence between LH(k−1)–invariant hypersurfaces Σ ⊂ Jk
ok−1/W

k and (cylindrical) τ(H(k−1))–invariant

hypersurfaces Σ = p−1(Σ) ⊂ Jk
ok−1, where

(20) p : Jkok−1 → Jkok−1/W
k

is the natural projection.

Lemma 3.2. Let π : P −→ B be a bundle. Assume that a Lie group G of automorphisms of π, such that
B = G/H, acts transitively on B, where H is the stabilizer of a point o ∈ B. Then:

i) any H–invariant function F on Po := π−1(o) extends to a G–invariant function F̂ on P (where

F̂ (gy) = F (y) for y ∈ Po and g ∈ G), and this is a 1–1 correspondence;
ii) any H–invariant hypersurface Σ of the fiber Po extends to a G–invariant hypersurface EΣ := G · Σ

of P , and this is a 1–1 correspondence.

Proof. The stabilizer H acts on Po and we may identify π with the homogeneous bundle π : G ×H Po →
B = G/H associated with the principal bundle G→ G/H and the action of H on Po. Recall that G×H Po
is the orbit space of the manifold G× Po with respect to the action of H, given by

H 3 h : (g, y) 7→ (gh−1, hy) .

i) The restriction to Po of a G–invariant function F on G×H Po is identified with a left–invariant function
on G×Po , which is also H–invariant, that is a function F (g, y) such that F (g′g, y) = F (gh−1, hy) = F (g, y)
for all g, g′ ∈ G, h ∈ H, y ∈ Po. Such a function is identified with an H–invariant function on Po.
ii) An H–invariant hypersurface Σ ⊂ Po defines a (G × H)–invariant hypersurface G × Σ ⊂ G × Po. It
projects onto the G–invariant hypersurface EΣ = G · Σ in P = G×H Po. �

Corollary 3.1, together with Lemma 3.2, applied to the bundle πk,k−1, implies the following theorem,
which is the main result of this section.

Theorem 3.1. Let M = G/H be a k–admissible homogeneous manifold (see Definition 3.2). Then there is
a natural 1–1 correspondence between LH(k−1)– invariant hypersurfaces Σ (see also (19)) of Jk

ok−1/W
k and

G–invariant hypersurfaces EΣ := Ep−1(Σ) = G · p−1(Σ) of Jk = Jk(n,M), where p is the natural projection

(20).

In view of the discussions we did so far, taking into account Theorem 3.1, we get the following strategy
for constructing G–invariant PDEs imposed on the hypersurfaces of a k–admissible homogeneous manifold
M = G/H:

(1) calculate the orbit W k = τ(H(k−1)) · ok and decompose τ(H(k−1)) accordingly to (19);
(2) describe LH(k−1)–invariant hypersurfaces Σ ⊂ V k = Jk

ok−1/W
k;

(3) write down the G–invariant equations EΣ = G · p−1(Σ) in coordinates (5).

In the next sections we implement this strategy for the Euclidean and the conformal space.

Remark 3.2. It may be worth noticing that, in order to have the above strategy work, only the assumptions
(A1) and (A2) on the origins ok and ok−1 are strictly necessary. The fiducial hypersurface (see Definition
3.3) is just a way to introduce the aforementioned origins in a more tangible geometric way: indeed, they
reflect the presence of a “reference object” to which we compare the jet of a generic hypersurface. The
hypothesis of existence of such a fiducial hypersurface, which we even require to be homogeneous with
respect to a subgroup of G, is by no means restrictive: we will see below that in both the Euclidean and
the conformal case, such a hypersurface clearly exists.

4. Invariant PDEs for hypersurfaces of En+1

In this section we assume that M = En+1 = G/H = SE(n + 1)/ SO(n + 1) is the Euclidean (n + 1)–
dimensional space, considered as homogeneous space of the group

G = SE(n+ 1) = Rn+1 o SO(n+ 1)

of orientation–preserving motions. We will find SE(n+1)–invariant PDEs following the approach described
in the previous section.
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4.1. Geometry of the jet spaces J `(n,En+1) for ` = 1, 2 in terms of G = SE(n+ 1). In this section
we give a description of the jet spaces J ` = J `(n,En+1) in terms of the Lie group action of SE(n+ 1) and
prove that the Euclidean homogeneous space En+1 = G/H is a 2–admissible manifold.

Denote by (u,x) = (u, x1, . . . , xn) the Euclidean coordinates associated to an orthonormal frame
{e0, e1, . . . , en} at a point o ∈ En+1 and identify En+1 with the arithmetic vector space Rn+1 of coor-
dinates. In particular, o = (0, 0, . . . , 0) ∈ Rn+1. Using the standard euclidean metric, we identify covectors
with vectors. We fix the hyperplane

S0 = 〈e1, . . . , en〉
through the origin o. In the coordinates (u,x), S0 is defined by the function u = f(x) = 0 and all the

coordinates ui1···i` of its lift S
(l)
0 (see (7)–(8)) are identically zero. Below we will show that S0 is a fiducial

hypersurface according to Definition 3.3: to this end we denote by ok = [S0]ko the distinguished point of Jk

over the origin o ∈ En+1. In particular o1 ∈ J1, considered as a tangent vector space, will be denoted by

(21) V := ToS0 = 〈e1, . . . , en〉 .

Proposition 4.1. The homogeneous space En+1 = G/H is 2–admissible. More precisely, J1 = G · o1 =

G/H(1), where H(1) = O(n) is the subgroup of H = SO(n+ 1) which preserves the vector e0 up to the sign.
The hyperplane S0 is a fiducial hypersurface.

Proof. The stability subgroup of the origin o ∈ En+1 is SO(n+1). It acts transitively on the Grassmannian
Grn(ToEn+1) ' PT ∗oEn+1, which is the fiber of the bundle J1 = PT ∗En+1 → J0 = En+1 over the point o.

The stability subgroup of the point o1 = [S0]1o is the subgroup H(1) = O(n) of H = SO(n+ 1): it preserves

e0 ∈ V ⊥ up to the sign. Hence J1 = G/H(1) and the condition (A1) of Section 1.3 is satisfied.
Let Sf = {u = f(x)} be a hypersurface through the origin o with unit normal vector e0 at o, so that

[Sf ]1o = V . Then the second jet [Sf ]20 has coordinates x = 0, u = 0, ui = ∂f
∂xi

(0) = 0, uij = ∂2f
∂xi∂xj

(0) (see

also the notation (6)) and it is identified with the second fundamental form β = uijdx
idxj ∈ S2V ∗ of the

hypersurface Sf at o. Recalling that the fiber J2
o1 with the origin o2 is identified with the space S2V ∗ (see

(18)), the natural action τ of O(n) on J2
o1 ' S

2V ∗ is:

τ(B) : β ∈ S2V ∗ 7→ BtβB ∈ S2V ∗ , B ∈ H(1) = O(n) .

In particular, this shows that G has no open orbits in J2. Furthermore, since τ(H(1)) is a linear group,
its translational part W 2 is trivial and the condition (A2) of Section 1.3 is satisfied, so that En+1 is a
2–admissible homogeneous space and S0 a fiducial hypersurface. �

Note that, in this case,

(22) V 2 = J2
o1
/
W 2 = J2

o1 = S2V ∗ .

Corollary 4.1. The stability subgroup H(2) of the point o2 = [Sf ]2o of a hypersurface Sf through the point

o with [Sf ]1o = o1 is the subgroup of H(1) = O(n) that preserves the second fundamental form β of Sf , that
is

H(2) = {B ∈ O(n) | τ(B)(β) = β} .

4.2. Construction of SE(n+1)–invariant PDEs. In the considered case, the construction of SE(n+1)–
invariant PDEs, in view of Theorem 3.1, reduces to the description of τ(O(n)) ' O(n)–invariant hypersur-
faces in J2

o1 = S2V ∗ ' S2Rn (see (21) and the identification (18)).

Denote by k1, . . . , kn the eigenvalues of the shape operator A = g−1 ◦ β (principal curvatures), where
g is the restriction to (21) of the euclidean metric of En+1. Any O(n)–invariant polynomial on S2V ∗ is a
polynomial F (σ1, . . . , σn) where σi, i = 1, . . . , n, are the elementary symmetric functions of the principal
curvatures k1, . . . , kn or, equivalently, of the symmetric functions

τm = trace (Am) .

An invariant polynomial F = F (τ1, . . . , τn) defines the O(n)–invariant algebraic hypersurface

(23) Σ = Σ = {F = 0} ⊂ S2V ∗

(see also (22)). The associated hypersurface E = EΣ = SE(n + 1) · Σ ⊂ J2 is an SE(n + 1)–invariant
hypersurface, that defines a second order PDEs polynomial in the second derivatives. Solutions to PDE
EΣ are hypersurface S ⊂M whose shape operator Ap satisfies, ∀p ∈ S, the equation

(24) F (τ1p, . . . , τnp) = F
(
trace(Ap), trace(A2

p), . . . , trace(Anp)
)

= 0 .

Remark 4.1. More generally, any function F (τ1, . . . , τn) defines the SE(n+ 1)–invariant PDE F = 0.
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Finally, Theorem 3.1 implies the following one.

Theorem 4.1. Any second order SE(n + 1)–invariant PDE for hypersurfaces Sf = {u = f(x)} in En+1

which is a polynomial in the second order derivatives of f is of the form (24), where F is a polynomial of
n variables.

4.2.1. Description of SE(n+ 1)–invariant PDEs in local coordinates. Below we write down, in coordinates
(5), SE(n + 1)–invariant PDEs E ⊂ J2 = J2(n,En+1) for a hypersurface Sf = {u = f(x)}. The first
fundamental form g of Sf is given by

g = gijdx
idxj =

(
δij + uiuj

)
dxidxj ,

so that

g−1 = gij∂xi∂xj =

(
det(g)δij − uiuj

det(g)

)
∂xi∂xj , det(g) = 1 +

n∑
h=1

u2
i .

The second fundamental form β of Sf is given by

β = βijdx
idxj =

uij√
det(g)

dxidxj .

Thus, the trace of the shape operator A = g−1 ◦ β of the hypersurface Sf is given by

(25) trace(A) = trace(g−1 ◦ β) =
n∑

i,j=1

(
det(g)δij − uiuj

)
uij

det(g)
3
2

,

so that one can easily obtain the local expression of a SE(n + 1)–invariant PDE in view of Theorem 4.1.
For instance, in the case of n = 2, i.e., of 2 independent variables, τ1 = trace(A) and the equation τ1 = 0,
in view of (25), gives the classical equation for minimal hypersurfaces:

(1 + u2
2)u11 − 2u1u2u12 + (1 + u2

1)u22 = 0 .

Also, note that the classical Monge-Ampère equation is obtained as follows:

1

2

((
trace(A)

)2 − trace(A2)

)
=
u11u22 − u2

12

1 + u2
1 + u2

2

= 0 .

5. Invariant PDEs for hypersurfaces of Sn+1

In this section, we describe second order G–invariant PDEs in the case when M = G/H := Sn+1 =
SO(1, n+ 2)/Sim(En+1) is the conformal sphere, that is the sphere Sn+1 endowed with the conformal class
[g] of the standard metric g, considered as a homogeneous manifold of the conformal group G = SO(1, n+2),
called also the Möbius (or Lorentz) group. We use the standard model of the conformal sphere as the
projectivisation of the light cone in the Minkowski vector space R1,n+2. The stabilizer of the point o = Rp,
where p is an isotropic line, is isomorphic to the group Sim(En+1) of similarities of the Euclidean space
En+1.

5.1. Geometry of the conformal sphere.

5.1.1. The standard decomposition of the Minkowski space W = R1,n+2 and of the Möbius group G =
SO(W ). Let W = R1,n+2 be the pseudo–Euclidean vector space with an orthonormal basis

(26) {p, e0, e1, . . . , en, q} ,
where p and q are isotropic vectors. With respect to the basis (26), we have the decomposition

(27) W = Rp⊕ E ⊕ Rq = Rp⊕ (Re0 ⊕ Ee0)⊕ Rq ,
where

E0 := 〈e1, . . . , en〉 .
We shall denote by gW the Minkowski metric on W .

Remark 5.1. The Euclidean subspace E is the orthogonal complement of the hyperbolic plane Rp⊕ Rq:
therefore, it is not determined by the isotropic vector p, but the canonical projection π : E → E := p⊥/Rp
is an isometry of E onto the factor space E, equipped with the induced Euclidean metric. We denote by

E = Re0 ⊕ E
e0

the orthogonal decomposition of E: it is the projection through π of the orthogonal decomposition E =
Re0 ⊕ Ee0 .
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Decomposition (27) can be regarded as a depth–one gradation of the linear space W , which induces the

following gradation of the Lie algebra g = so(W ) =
∧2W of the Möbius group G = SO(W ):

(28) g = g−1 ⊕ g0 ⊕ g+1 = (Rq ∧ E)︸ ︷︷ ︸
deg=−1

⊕ (R(p ∧ q)⊕ so(E))︸ ︷︷ ︸
deg=0

⊕ (Rp ∧ E)︸ ︷︷ ︸
deg=+1

.

The Lie algebra gradation (28) integrates to a (local, i.e., defined in some open dense domain) decomposition
of the Möbius group

(29) SO(W )
loc.
= G−1 ·G0 ·G+1,

where

G0 = CO(E) ,

G−1 =


 1 0 0

−ξ id 0
−1

2‖ξ‖
2 ξt 1

 | ξ ∈ E
 ' E ,

G+1 =


 1 ξt −1

2‖ξ‖
2

0 id −ξ
0 0 1

 | ξ ∈ E
 ' E .

Note that the groups G±1 are isomorphic to the vector group E = Rn+1 and that we always consider
vectors as column–matrices . One can check directly that SO(E) ·G+1 (resp., SO(E) ·G−1) is the stabilizer
Gp (resp., Gq) of the point p (resp., q) in G.

5.1.2. The conformal sphere as projectivised light cone PW0 in W . The isotropic cone

W0 = {0 6= w ∈W | w2 = 0}
(the set of non–zero isotropic vectors in W ) is a homogeneous manifold of the Möbius group G = SO(W ):
W0 = G/Gp. The conformal sphere Sn+1 is defined as the projectivization of the isotropic cone:

Sn+1 := PW0 .

The Möbius group G acts transitively on Sn+1. We consider the isotropic line

o := `0 := [p] ,

where p is as in (27). Then Sn+1 is identified with the homogeneous space

Sn+1 = G/H = G/G[p] ,

where H = G[p] = G0 ·G+1 is the stabilizer of the origin o = [p]:

G[p] =


 a ηt −a

2‖η‖
2

0 B −aη
0 0 1

a

 , B ∈ SO(E) , η ∈ E , a ∈ R

 .

In other words,

(30) H = G[p] = Sim(E) = G+1 o CO(E) = E o CO(E)

is isomorphic to the group of similarities Sim(E) of the Euclidean space E.
The Lie algebra h = g[p] of G[p] is the stability (parabolic) subalgebra

h = g[p] = g0 ⊕ g+1 = (R(p ∧ q)⊕ so(E))⊕ (Rp ∧ E) ,

given by the non–negative part of (28).

5.1.3. The isotropy group j(H), the tangent bundle TSn+1 and the bundle J1 = J1(n,Sn+1) of the conformal
sphere. The tangent space to Sn+1 at o = Rp is given by

(31) ToSn+1 = E = p⊥/Rp ' g/g[p] = g−1 = Rq ∧ E .
The isotropy representation

(32) j : H = G+1 o CO(E)→ GL(E)

in the tangent space (31) has kernel G+1 and it reduces to the standard action of the linear conformal
group j(H) = CO(E) = R+ × SO(E) on E = 〈e0, e1, . . . , en〉. We have the natural identification

TSn+1 = G×j(H) E −→ Sn+1 = G/H
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of the tangent bundle TSn+1 with the homogeneous vector bundle G ×j(H) E over G/H, defined by the
isotropy action (32).

Denote by [go] the CO(E)–invariant conformal metric on the tangent space (31); it defines a G–invariant
conformal metric g on the sphere Sn+1.

To simplify notation, we set

V = E
e0 ,

so that it is possible to identify V with Ee0 (see above Remark 5.1). The hyperplane V ⊂ E = ToSn+1 is
a point of the space J1 = J1(n, Sn+1). We shall denote such point also by o1.

Recall that the fiber J1
o of the bundle J1 at the point o = [p] is identified with the Grassmannian

Grn(E) of hyperplanes of E = ToSn+1 and then with the projective space PE∗. The isotropy group j(H)
acts transitively on this space and the stability subgroup j(H)o1 of o1 = V is CO(V ) = R+ ×O(V ). Thus,
we get the following proposition.

Proposition 5.1. The Möbius group G acts transitively on J1 = J1(n,Sn+1) with the stabilizer of the

point o1 = V given by H(1) = G+1 o CO(V ). In particular, J1 = G/H(1).

Corollary 5.1. In terms of Lie algebras, the isotropy action of h = g0 ⊕ g+1 on ToSn+1 = E = Re0 ⊕ V
satisfies

ker j = g+1 = Rp ∧ E , j(h) = j(g0) = co(E) .

The stability subalgebra of the point o1 = V in h is

(33) h(1) = Rp ∧ E ⊕ Rp ∧ q ⊕ so(V ) = (so(V )⊕ V )⊕ (Rp ∧ q ⊕ Re0 ∧ p)

and, moreover,

j(h(1)) = j(p ∧ q)⊕ j(so(V )) ,

where

j(p ∧ q) = − id

and

j(so(V ))e0 = 0, j
(
so(Ee0)

)
|V = so(V ).

5.2. Standard coordinates of the conformal sphere Sn+1. To describe the fiber J2
o1 , we define an

appropriate coordinate system in Sn+1. Let us consider the system of coordinates

(34) (λ, u,x, s) := (λ, u, x1, . . . , xn, s)

in W associated to the basis (26), such that W 3 w = λp+ ue0 +
∑
xiei + sq. We set

x =
n∑
i=1

xiei , ‖x‖2 =
n∑
i=1

(xi)2 .

Coordinates (34) are homogeneous coordinates of the projective space PW . Taking λ = 1, we consider
(u, xi, s) as associated local affine coordinates in PW . Then the conformal sphere Sn+1 = PW0 has local
coordinates (u, xi) such that

w = p+ ue0 + x+ s(x)q ∈ Sn+1 ,

where

(35) s(u, x) = −1

2
(u2 + ‖x‖2) .

We call such coordinates the standard coordinates of the conformal sphere. They depend on an isotropic
vector p ∈ Rp = o, on the lift E ⊂W of the tangent space E = p⊥/Rp and on an orthogonal decomposition
E = Re0 ⊕ Ee0 . Then the isotropic vector q is defined as the vector q ∈ E⊥ with p · q = 1.

5.3. Hyperspheres in Sn+1 with fixed 1–jet o1 = V . Below we prove that the set of the hyperspheres
S of Sn+1 through the point o and with given tangent space ToS = o1 = V forms a 1–parametric family
which is an orbit of the stability group H(1) of the point o1. To see this we calculate the second jet [S]2o of
a hypersphere S in local coordinates.

Let e ∈W be a unit spacelike vector, i.e., e · e = 1, and let W e = e⊥ be the orthogonal hyperplane to e.

Definition 5.1. The projectivization Se = PW e
0 of the isotropic cone W e

0 is a hypersurface of the conformal
sphere Sn+1 = PW0, which is called a hypersphere.
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The vector e defines an orientation of Se. Two hyperspheres (respectively, oriented hyperspheres) Se, Se
′

coincides if and only e and e′ coincides up to sign (respectively, e = e′). Hence, the set of oriented
hyperspheres is identified with the anti de Sitter space W1 = {e ∈W, e ·e = 1} of unit vectors, which is the
homogeneous space W1 = G/Ge = SO(1, n + 2)/ SO(1, n + 1) of the Möbius group G. An element g ∈ G
acts on a hypersphere Se by

gSe = Sge, g ∈ G.

Remark 5.2. Let us consider the basis (26). Let

W = Rp⊕ E ⊕ Rq = Rp⊕ (Re0 ⊕ Ee0)⊕ Rq
be the associated decomposition, and recall that

ToSn+1 = E := p⊥/Rp = (Rp⊕ E)/Rp ' E .
Note that Se0 is an oriented hypersphere through the point o = [p] with the tangent space

ToS
e0 = o1 := V = (Rp⊕ Ee0)/Rp .

Lemma 5.1. The set of the oriented hyperspheres Se through the point o with a given tangent space
ToS

e = V forms the 1–parametric family Se0−tp, t ∈ R, which is an orbit of the action τ of the stability
subgroup H(1) = G+1 oCO(E

e0) of the point o1 on the fiber J2
o1. More precisely, the 1–parametric subgroup

Ae0t := exp t(e0 ∧ p)
of G+1 = ker j acts transitively on the set of the hyperspheres of Sn+1 through the point o and with fixed
tangent space o1 = V and transforms Se0 into Se0−tp.

Proof. Let Se be an oriented hypersphere through the point o = [p]. Then ToS
e is a hyperplane in

ToSn+1 = E = (Rp ⊕ Re0 ⊕ Ee0)/Rp, orthogonal to e. If ToS
e = V = (Rp ⊕ Ee0)/Rp, then the unit

vector e = ±e0 + µp, for some µ ∈ R. If the hyperspheres Se and Se0 have the same orientation, then
e = e0 + µp. Since the group G acts transitively both on the set of hyperspheres (which is isomorphic

to the anti de Sitter space of unit space–like vectors) and on J1, the stability group H(1) of the point
o1 acts transitively on the set of hyperspheres with fixed 1–jet o1. We describe the action of the 1–
parametric subgroup Ae0t = exp t(e0 ∧ p) on Se0 . Since e0 ∧ p acts by q → e0 → −p→ 0 , Ee0 → 0, we get
Ae0t = id +te0 ∧ p+ 1

2 t
2(e0 ∧ p)2. Thus, we obtain the following formula for the action of Ae0t :

(36) Ae0t :


p→ p
e0 → e0 − tp
x→ x
q → q + te0 − 1

2 t
2p

This shows that Ae0t (Se0) = Se0−tp. �

5.3.1. The affine action τ of the stability subgroup H(1) on the fiber J2
o1 and SO(1, n+ 2)–invariant PDEs.

In view of (33), we write the group H(1) as the direct product of the conformal group V oCO(V ) of V and
a 1–dimensional central subgroup Ae0 generated by the Lie algebra Re0 ∧ p:
(37) H(1) = (V o CO(V ))×Ae0 ,
where

Ae0 = expRe0 ∧ p = {Ae0t , t ∈ R} .
We will see that the conformal group V o CO(V ) acts in the natural way on the space S2V ∗ as a linear
group while the central subgroup Ae0 acts via parallel translations in the direction of g ∈ S2V ∗, where g
the restriction of the Minkowski metric gW to Ee0 = V :

(38) g := (gW )
∣∣
V
.

In order to show that Se0 is a fiducial hypersurface, we set

o` := [Se0 ]`o

and we compute the 2–jet [Se0+µp]2o at o of the hypersphere Se0+µp. The action of each element of the

stability subgroup H(1) = G+1 o CO(V ) ⊂ SO(W ) on a hypersurface

(39) Sf = {w = p+ f(x)e0 + x+ s(x)q , x ∈ Ee0} , [Sf ]1o = o1 ,

where s(x) := s(f(x), x) is given by (35), can be easily described. Actually, we only need to know the
action of the elements B ∈ CO(V ) and Ae0t ∈ G+1 = ker j. Since each element B ∈ CO(V ) is a linear
transformation which acts trivially on p and q, we have the following Lemma.
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Lemma 5.2. Let Sf as in (39) be a hypersurface such that f(0) = 0, ui = ∂f
∂xi

(0) = 0, so that [Sf ]1o =

o1 = V . Let

(40) [Sf ]2o = uijdx
idxj =: β ∈ S2T ∗o Sf = S2V ∗ , uij = ∂2f

∂xi∂xj
(0) .

Then an element B ∈ CO(V ) transforms the hypersurface Sf into B(Sf ) = SB∗f , where (B∗f)(x) =
f(B(x)). In particular, B acts on the 2–jet β in the standard way

(B∗β)(x, x) = β(B(x), B(x)) , x ∈ V .

Lemma 5.3. The element Avt := exp tv ∧ p acts trivially on the fiber J2
o1 = S2V ∗, for any v ∈ V .

Proof. It is a straightforward computation based on the formula

Avt = id + tv ∧ p− 1

2
t2‖v‖2p⊗ p ,

where p⊗ p is meant as an endomorphism via the metric (38).
�

In view of (36) and (39), we have the following description of the action of Ae0t on the hypersurface Sf
with parametric equation u = f(x).

Lemma 5.4. In the hypotheses of Lemma 5.2, there exists a f̃t such that

Ae0t (Sf ) = S
f̃t

=

{(
1− f(x)t− 1

2
s(x)t2

)
p+ (f(x) + ts(x))e0 + x+ s(x)q

}
.

In particular, the action of Ae0t on [Sf ]2o = β is

Ae0t ([Sf ]2o) = [S
f̃t

]2o = [Sf ]2o −
1

2
tg = β − 1

2
tg ,

where g is given by (38).

Proof. It is a straightforward computation based on the construction of the desired f̃t:

f̃t(x̃) =
f(x) + ts(x)

1− f(x)t− 1
2s(x)t2

, x̃ =
x

1− f(x)t− 1
2s(x)t2

.

�

In view of the above lemmas and recalling that J2
o1 = S2V ∗, we see that the action τ : H(1) → Aff(S2V ∗)

is given by:

τ(V ) = Id ,

τ(B)(β) = β(B(·), B(·)) , B ∈ CO(V ) ,

τ(Ae0t )(β) = β − 1

2
tg .

The next corollary follows from the fact that the hypersphere Se0 = {p + x + s(x)q} is defined by the
equation u(x) = 0.

Corollary 5.2. The 1–parametric family St := Se0−tp = Ae0t (Se0) of hyperspheres of Sn+1 with tangent

space o1 = V has 2–jets [St]
2
o = −1

2 tg. Hence, the orbit H(1) · o2 = {Ae0t (o2) = −1
2 tg , t ∈ R} and the

hypersphere Se0 is a fiducial hypersurface.

Corollary 5.3. The central subgroup Ae0 of the group H(1) (see (37)) acts on the fiber J2
o1 = S2V ∗ as

parallel translation along the line Rg and the normal subgroup V o CO(V ) acts by linear transformation
ker(τ) = V in a natural way. In particular the conformal sphere Sn+1 is a 2–admissible homogeneous
manifold.

5.4. Construction of SO(1, n + 2)–invariant PDEs. Now we are ready to give a construction of all
SO(1, n+ 2)–invariant second order PDEs for hypersurfaces in Sn+1.

Like in the Euclidean case, Theorem 3.1 reduces the description of such PDEs to the description of
CO(V )–invariant hypersurfaces Σ ⊂ S2

0(V ∗), where S2
0(V ∗) is the space of trace–free quadratic forms on

the tangent space V = ToS
e0 = o1. According to our strategy, we have to construct a quotient of the

affine space J2
o1 where the action of the group H(1) becomes linear. Recall that the second jet [Sf ]2o of a

hypersurface Sf with [Sf ]1o = o1 is represented by the quadratic form β, see (40).

Definition 5.2. The traceless part A◦ of the shape operator A = g−1 ◦ β, where g is as in (38) and β as
in (40) is called the conformal shape operator of Sf at the point o.
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Let us observe that the conformal shape operator A◦a of a hypersurface Sf of M is well defined at any
point a ∈ Sf and it depends only upon [Sf ]2a. Moreover, the action of the group Ga1 on A◦a reduces to
the standard action of the group CO(V ) on the space of traceless forms S2

0V
∗ (see also [4]). Finally, let us

recall that the relative invariants of S2
0V
∗ with respect to the group CO(V ) are homogeneous polynomials

F = F (σ◦2, . . . , σ
◦
n) , deg(σ◦h) = h ,

where the σ◦i = σ◦i (k1, . . . , kn)’s are the elementary symmetric functions of the eigenvalues of the conformal
shape operator A◦, or, equivalently,

F = F (τ◦2 , . . . , τ
◦
n) , τ◦h := trace(Ah◦) .

Such an invariant polynomial defines the CO(V )–invariant algebraic hypersurface

(41) Σ = {F = 0} ⊂ S2
0V
∗ .

The associated hypersurface E = EΣ = SO(1, n+ 2) ·Σ ⊂ J2 is an SO(1, n+ 2)–invariant hypersurface, that
defines a second order PDEs polynomial in the second derivatives. Solutions to PDE EΣ are hypersurface
S ⊂M whose conformal shape operator A◦p satisfies, ∀p ∈ S, the equation

(42) F (τ◦2 p, . . . , τ
◦
np) = F

(
trace(A2

◦p), . . . , trace(An◦p)
)

= 0 .

In analogy with the Euclidean case, we can once again conclude that Theorem 3.1 implies the following
one.

Theorem 5.1. Any second order SO(1, n+ 2)–invariant PDE for hypersurfaces of Sn+1 which is a polyno-
mial in the second–order derivatives is of the form (42), where F is a homogeneous polynomial, deg(τ◦h) = h.

5.4.1. Description of SO(1, n+ 2)–invariant PDEs in local coordinates. In the present section one can use
the local description of g−1 and β contained in Section 4.2.1

Let A = g−1 ◦ β the shape operator of a hypersurface Sf = {u = f(x)}, where g and β are, respectively,
its first and the second fundamental form. The traceless second fundamental form β◦ and the conformal
shape operator of a hypersurface Sf = {u = f(x)} is

β◦ = β − 1

n
trace(A)g = β −Hg , A◦ = g−1 ◦ β◦ = A− trace(A)

n
Id = A−H Id ,

where H is the mean curvature.

For n = 2 the only relative conformal invariant is

det(A◦)

(
= −1

2
trace(A2

◦)

)
= det(A)− 1

4
trace(A)2 = K −H2 ,

where K is the Gaussian curvature. We underline that the quantity H2 − K is the coefficient of the
Fubini first conformally invariant fundamental form.4 Also, H2 −K = 1

4(k1 − k2)2, ki being the principal

curvatures, so that E := {H2−K = 0} describes points having the same principal curvatures, i.e., umbilical
ones. A deeper analysis shows that E is a system of two PDEs. Indeed, examining E over the point o1,
i.e., with u1 = u2 = 0, one obtains a sum of squares. To see this it is enough to recall that

H =
1

2

(u2
2 + 1)u11 − 2u1u2 + (u2

1 + 1)u22

(u2
1 + u2

2 + 1)
3
2

,

K =
u11u11 − u2

12

(u2
1 + u2

2 + 1)2
,

and then to replace the values u1 = 0, u2 = 0 in

H2 −K =
1

4

((u2
2 + 1)u11 − 2u1u2 + (u2

1 + 1)u22)2

(u2
1 + u2

2 + 1)3
− u11u22 − u2

12

(u2
1 + u2

2 + 1)2
,

which yelds immediately

(H2 −K)o1 =

(
1

2
u11 −

1

2
u22

)2

+ u2
12 .

By invariance, it follows that also the whole PDE E is a subset of codimension 2.

4In the work [3] three of us (JG, GM and GM) have clarified the role of the conformally invariant fundamental form in the
theory of PDEs of Monge–Ampère type.
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For n = 3, taking also into account that the characteristic polynomial of A◦ is
∑n

i=0 σ
◦
n−iλ

i and that of

A is
∑n

i=0 σn−iλ
i, we have that

σ◦3 = det(A◦) =
1

3
trace(A3

◦) =
2

27
(trace(A))3 +

1

3
trace(A)σ2 + det(A) =

= 2H3 +Hσ2 +K ,

σ◦2 =
1

2
trace(A2

◦) =
1

3
(trace(A))2 + σ2 = 3H2 + σ2 .

Thus, for instance,

2H3 +Hσ2 +K = 0 , 3H2 + σ2 = 0 , (2H3 +Hσ2 +K)2 + (3H2 + σ2)3 = 0

are SO(1, 5)–invariant PDEs.
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