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Resume
This paper presents a method based on Artificial Neural Networks for 
estimation of the vehicle speed. The technique exploits the combination 
of two tasks: a) speed estimation by means of regression neural networks 
dedicated to different road conditions (dry, wet and icy); b) identification of 
the road condition with a pattern recognition neural network. The training 
of the networks is conducted with experimental datasets recorded during 
the driving sessions performed with a vehicle on different tracks. The 
effectiveness of the proposed approach is validated experimentally on the 
same car by deploying the algorithm on a dSPACE computing platform. The 
estimation accuracy is evaluated by comparing the obtained results to the 
measurement of an optical sensor installed on the vehicle and to the output 
of another estimation method, based on the mean value of velocity of the 
four wheels.
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of the speed is commonly obtained using optical or 
GPS-based sensors [9]. However, these solutions may 
present some limitations according to the operating 
conditions. Optical sensors suffer problems of costs, 
size and sensitivity to dirt and environment conditions. 
On the other hand, the GPS-based sensors may be not 
sufficiently robust and reliable in specific atmospheric 
conditions as well as in situations with limited sky 
visibility, such as tunnels and urban environments with 
tall buildings. These problems can be partially overcome 
by analyzing signals coming from more satellites, using 
the Differential GPS technique or by exploiting two 
GPS antennas [10]. However, these approaches are still 
characterized by high signal latency time during the 
broadcasting of corrections. Typically, this latency is 
in the range of seconds, which might be far from the 
requirements of the active solutions implemented on 
board of a vehicle [11-12]. 

Alternative solutions are based on extraction of 
the speed information from vehicle analytical models 
[13]. A solution presented in [14] is based on e 
measurements of an Inertial Measurement Unit (IMU) 
using a slip detection estimator. This technique is 
typically implemented considering the unknown road 
condition as a bounded uncertainty and employing 
the estimated friction-independent tire forces for 
correcting the estimate. Nevertheless, the need for an 
accurate assessment of the road friction coefficient and 
of parameters related to the tires, which are highly 
time-varying, represents a relevant limitation of this 

1 Introduction

Automotive industry technologies witnessed a rapid 
evolution in the recent period, supported by the constant 
developments in the fields of electronics, actuation, 
automation and connectivity. Nowadays, commercial 
cars are highly performing and, at the same time, 
intelligent and sustainable [1]. Many benefits of the 
latest advancements are already tangible in terms of 
improved safety and comfort, reduction of the emissions 
and traffic congestions, lower stress for the car occupants 
and more confidence of the driver in a vehicle [2-3]. In 
this context, active strategies, relying on the real-time 
assessment of the vehicle dynamics assumes a crucial 
importance and the knowledge of the car states is 
a fundamental task, that is typically performed by 
direct measurement or, alternatively, by estimation 
and other indirect approaches [4]. However, some of the 
vehicle parameters (e.g. speed and sideslip angle) can 
be directly measured only with expensive, bulky and 
low robust devices, whose adoption in large production 
vehicles is not a viable solution. This motivates the 
considerable research effort that is recently being 
dedicated to investigation of alternative methods, 
such as the application of artificial intelligence to the 
assessment of vehicle dynamics [5-6]. In this paper, the 
attention is focused on estimation of the vehicle speed, 
a parameter that plays a key role in several active 
systems dedicated to control of the wheel slip, yaw 
rate and sideslip angle [7-8]. The direct measurement 
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is a single set of features extracted from the measured 
vehicle parameters and including all the road conditions. 
The validation of the method has been conducted 
experimentally on the same vehicle by deploying the 
designed algorithm on an auxiliary electronic control 
unit. The effectiveness of the approach is demonstrated 
by comparing the output of the estimator to the direct 
optical measurement and with another estimation 
computed as the average of the velocity of the four 
wheels. This estimation is extracted from an algorithm 
that was already deployed on the vehicle control unit.

The main contribution of this paper is the proposal of 
a data-driven method to estimate the vehicle speed. This 
approach has not been investigated yet in the literature 
and allows obtaining accurate results, if the training 
datasets effectively include all the significant behaviors 
of the vehicle in the widest possible set of handling 
manoeuvres and driving conditions. The good level of 
accuracy is quantified with the evidence obtained during 
the experimental validations. The results obtained 
on a high-performance vehicle allow highlighting the 
estimation behavior in extreme driving conditions.

The paper is structured as follows. The first section 
is dedicated to description of the vehicle setup and of 
the regression and classification tasks. Afterwards, 
the design of the neural networks for the speed 
estimation and for the road condition identification is 
illustrated. The last section presents the discussion of 
the experimental results obtained on the real vehicle 
in different driving conditions and in correspondence of 
road condition transients.

2 Estimation method and vehicle setup

The architecture of the proposed method is illustrated 
in Figure 1 and consists of two interconnected stages 
dedicated to the speed estimation and identification of 
the road condition. The former exploits three parallel 
Non-linear Autoregressive with Exogenous Input neural 
networks (NARX) and provides three outputs, one per 
each road condition: dry ( vxDt ), wet ( vxWt ) and icy ( vxIt ).

The regression networks are fed with eight 
measurements listed in Table 1 (parameters 1 to 8) and 
trained with a supervised learning procedure using the 
speed measured by the optical sensor (vx) as the target 
output.

Inputs from 5 to 8 are computed as

.v 3 6
1
60
2

ij ij i$ $ $
r ~ t= ^ h , (1)

where i is F or R, in the case of front or rear wheels, 
respectively, j is L or R, in the case of left or right wheels, 
respectively, ij~  is the angular speed of the ij-wheel, 
expressed in round per minutes and it is the wheel 
radius of the wheels, measured in meters. The total 
steering angle  TS (input 4) is computed as the sum of 
the steering wheel angle (defined as the angle between 

technique. Further approaches exploit the Kalman 
Filter (KF) [15], Adaptive Kalman Filter (AKF) [16] and 
its nonlinear versions, Extended Kalman Filter (EKF) 
[17] and Unscented Kalman Filter (UKF) [18]. Other 
methods rely on similar filter/observer-based techniques 
[19-20]. However, these model-based techniques may 
suffer accuracy problems if the reference model is 
inaccurate or unable to reproduce the vehicle dynamics 
in all the driving conditions. An alternative class of 
techniques is based on Fuzzy Logic (FL) [21-24], which 
is strongly dependent on the designer experience and 
requires a highly refined definition of the rules and 
membership functions [25]. Finally, a common solution 
computes the speed as the average of the velocity of the 
four wheels. Although simple and cheap, this method 
may result as inaccurate when one or more wheels 
are locking during a sudden braking or start spinning 
and skidding, i.e. while driving on wet or icy roads and 
during the extreme manoeuvres. 

This paper proposes a method to estimate the 
vehicle speed by using artificial intelligence to mitigate 
the limitations of model-based techniques and have an 
effective solution also in conditions that are difficult 
to represent in the models. Specifically, the presented 
method exploits a combination of regression and 
classification Artificial Neural Networks (ANNs). As 
well known, ANN-based approaches do not rely on any 
model and, if the networks are appropriately trained, 
may guarantee good levels of accuracy and robustness, 
as demonstrated by the growing attention that these 
methods are gaining in several engineering fields [26-
28]. To the author’s knowledge, although the ANNs 
are widely documented as effective in executing system 
modeling and timeseries estimation, few research 
studies using the ANNs for the vehicle speed estimation 
are reported in the literature so far, since most of them 
rely on other techniques [29]. In this work, the proposed 
architecture includes two tasks: a) speed estimation 
computed by three parallel regression ANNs, dedicated 
to three different road conditions (dry, wet and icy road) 
and b) identification of the road condition with a pattern 
recognition neural classifier. The classifier output is used 
to select the correct estimation among the three outputs 
of the regression networks. Typically, the problem of 
the road condition detection is tackled with estimation 
of the friction coefficient with model-based approaches 
[30], regression ANNs [31-33], or exploiting the radar 
measurement [34-35]. In this study, on the contrary, the 
aim is not to provide the value of the friction coefficient, 
but the information of the class of the road condition: 
dry, wet or icy. 

The ANNs’ training datasets have been collected 
on a real vehicle, equipped with an optical sensor for 
acquisition of the reference speed, which is the target 
adopted during the supervised learning phase of the 
regression networks. Each regression network is trained 
with the dataset relative to the corresponding road 
condition. On the other hand, the input of the classifier 
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which is exploited for the measurement of the speed 
and features a precision of ±0.5 km/h, declared by the 
manufacturer. A dSPACE MicroAutoBox is interfaced 
with the CAN-bus of the vehicle to allow collecting the 
training datasets in the design phase and deploying the 
designed algorithm for the experimental validation. The 
sampling rate of the data acquisition is 100 Hz.

The training dataset collection and experimental 
validation have been conducted in all the possible 
combinations of the different conditions that are 
reported in Table 2. 

The following driving conditions have been explored 
in three different adherence conditions (dry, wet 
and icy road): different tire-road friction coefficients; 
summer and winter tires; new and used tires; tests 
performed with and without the active safety system; 
tests performed by selecting different car driving modes; 

the vehicle’s direction of motion and the steered wheel 
direction) and the active front steering input which is 
obtained from the electronic control unit of the vehicle. 

The second stage allows identifying the road 
condition exploiting a classifier based on a pattern 
recognition feed-forward ANN. The classification process 
generates an output (s) allowing to select the correct 
estimation among the outputs of the three regression 
networks above described.

The datasets adopted for the training of the 
regression and classification networks are collected on 
an instrumented vehicle in different test tracks and 
road conditions. The vehicle is a four-wheel drive (4WD) 
sport car with a power-to-weight ratio of around 0.35 
kW/Kg and a weight of about 1700 kg. The vehicle is 
equipped with standard inertial sensors and a two-
axis optical sensor Correvit S-Motion from Kistler, 

Figure 1 Layout of the estimation algorithm. Based on the actual road condition, the correct  
output is selected by a switch driven by the  road condition identification classifier (output S)

Table 1 Inputs of the estimation algorithm. R: parameters used for the three regression networks; C: parameters used for 
the classifier

# type task parameters name unit

1 input R&C long. acceleration ax (m/s2)

2 input R&C lat. acceleration ay (m/s2)

3 input R&C yaw rate ]o (deg/s)

4 input R total steering angle TS (deg)

5 input R&C front left wheel speed vFL (km/h)

6 input R&C front right wheel speed vFR (km/h)

7 input R&C rear left wheel speed vRL (km/h)

8 input R&C rear right wheel speed vRR (km/h)

9 target R vehicle speed vx (km/h)

10 target C class of the road D, W, I (-)
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Output Activation Function (OAF) is a linear function. 
Table 3 reports the training parameters of the three 
networks, the number of neurons in the hidden layer and 
the input and feedback buffer size. 

The networks are trained with the Levenberg-
Marquardt backpropagation algorithm. These 
characteristics are the result of a trial and error 
procedure, since the design and training of a neural 
network does not follow a standard procedure, as 
discussed in detail in [36] and [37].

3.2 Classification task for the road condition 
identification

The road condition identification is performed by 
the two-layered (one hidden and one output layer) feed 
forward pattern recognition ANN. This architecture 
connects an input feature space to an output space 
of multiple pattern classes and it has been already 
presented in the literature to solve classification problems 
in different engineering fields [38-39]. After a trial and 
error procedure, the hidden layer has been designed with 
a size of 50 neurons. The HAF is a hyperbolic tangent 
sigmoid and the OAF is a normalized exponential 
function. The adopted training procedure is based on the 
Levenberg-Marquardt backpropagation algorithm.

The input of the classifier is a set of 64 predictors, 
extracted from seven of the acquired signals, namely 
longitudinal and lateral accelerations (ax and ay), yaw 
rate ]o  and longitudinal speed of the four wheels 
(vFL,vFR,vRL,vRR) [6]. Features from 1 to 22 have 
a straightforward definition (mean, standard deviation, 
peak to RMS value and variance for the acquired 
signals). Features from 23 to 64 result from a spectral 
analysis performed on the input signals, where PSD 
stands for Power Spectral Density, computed using the 

tests performed with different driving styles and by 
professional and common drivers.

3 Design of the estimator

This section describes the design of the regression 
neural networks for the estimation of the speed and of 
the classifier for identification of the road condition.

3.1  Regression task for the vehicle speed 
estimation
 
A NARX ANN architecture is adopted for the 

regression task. This network allows modelling a discrete 
non-linear system. The output of the network is defined 
as:

, , , ;

, , , ,

y n

x n

y n y n y n d

x n x n d2

1 2

1

y

x

f

f

{= - - -

- - -

^
^ ^

^ ^
^

^h
h h

h h
h

h6
@  (2)

where x n R!^ h  and ny R!^ h  are the inputs and 
outputs of the network at the discrete timestep n, 
respectively, dx and dy are the input and output buffer 
memory, respectively and {  is the non-linear model 
represented by the network.

During the regression procedure, the value of the 
dependent output signal y(n) is regressed on the previous 
dy values of the output signal considering previous dx 
values of the independent (exogenous) input signal. In 
the proposed solution, the NARX is adopted in open-loop 
during the training process and in closed-loop during 
the estimation phase, i.e. when the network is deployed 
on the electronic unit in the real application. The target 
input is y*(n), which is provided to the ANN during 
the supervised training phase. The Hidden Activation 
Function (HAF) is a hyperbolic tangent sigmoid and the 

Table 2 Possibilities of driving conditions, vehicle setup and manoeuvres used for the training dataset collection and 
experimental validation. (ESC: Electronic Stability Control)

road condition maneuver esc status driving setup

dry handling ON normal

wet double lane change OFF sport

icy sine-sweep racing

sine steer

step steer

acceleration/braking

steady-state cornering

Table 3 Training parameters of the three regression neural networks. The networks have a single hidden layer

road condition dry wet icy

input buffer size dx 2 3 2

feedback buffer size dy 2 3 2

hidden layer size 40 neurons 60 neurons 40 neurons

training algorithm Levenberg-Marquardt backpropagation
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validation cases are summarized in Table 4, where MSE 
and MSEAVG are the mean square error of the proposed 
method and of the method based on the average of the 
four wheels’ velocity, respectively.

They are computed as follows:

MSE n v i v i1
xi

n
x1

2= -
=

t^ ^ ^h hh| , (3)

MSE n v i v i1
AVG xi

n
xAVG1

2= -
=

t^ ^ ^h hh| . (4)

Figure 2 shows results obtained on a dry asphalt 
with the Electronic Stability Control (ESC) system off 
and the car set in the racing driving mode. At 20 s, 
a sine-sweep manoeuvre is performed with a frequency 
of TS increasing from 0.5 Hz to 1.5 Hz and the speed vx 
equal to around 50 km/h. Three additional sine-sweep 
manoeuvres are performed at 40, 60 and 90 s and a step-
steer manoeuvre is performed at 130 s, when the vehicle 
longitudinal speed goes to zero, while TS reaches -550 
deg. 

The speed is estimated accurately by the ANN-
based algorithm. On the other hand, vxAVGt is affected 
by a relevant error at 155 s during a sudden braking, 
whereas the estimation of the proposed ANN-based 
method remains accurate. The error 2f  (dashed line) 
presents high peaks confirming that the estimate 
provided by the wheels’ velocity average may be not 
completely reliable during some extreme manoeuvres.

Figure 3 represents results obtained on a wet 
asphalt with the ESC system switched off and the car 
set in sport driving mode, during a lap on a handling 
circuit. During this acquisition, the driver has performed 
successive demanding manoeuvres, reaching 160 km/h 
and steering from -150 deg to 150 deg. The speed is 
estimated accurately by the proposed method, whereas 
the error 2f reaches peaks of 7 km/h.

Figure 4 shows results obtained on an icy asphalt 
with the ESC system enabled and the car set in normal 
driving mode. At the beginning of this acquisition, the 
driver performed a sine-sweep manoeuvre at an almost 
constant speed equal to about 40 km/h, while steering 
from -80 deg to 100 deg for about 30 s. The frequency of 
TS increases from 0.5 Hz to about 2 Hz during the sine-
sweep manoeuvre. Afterwards, the driver performed 
a step-steer manoeuvre with TS equal to -200 deg, once 
the vehicle has reached a maximum speed equal to about 
90 km/h. The speed is estimated accurately by the ANN-
based investigated method. 

periodogram technique [40] by dividing the considered 
signal into multiple overlapping blocks and computing 
the average of their squared magnitude Fast Fourier 
Transforms (FFT) [41]. The average spectral power 
(features from 51 to 64) is computed as the integral 
of the PSD over the two adjacent frequency bands:  
0.5' 1.5 Hz (frequency band 1) and 1.5' 5 Hz (frequency 
band 2). The predictors are collected in buffers with 
a time length of 2s and refilled with a frequency of 10 
Hz, which is the output rate of the classifier and hence 
of the overall estimation output vxt . 

The set of predictors was selected by a trial and 
error procedure, performed to maximize the accuracy of 
the classification task. A more refined selection phase 
could be performed after a quantification of the influence 
of each predictor. This aspect is currently a hot research 
topic [42-43], nevertheless, this analysis is beyond the 
scope of the present study and would require a dedicated 
work.

4 Results and discussion

The results are presented in different driving and 
road conditions. This section is dedicated to the analysis 
of the estimation behavior in correspondence of road 
condition transients.

4.1  Speed estimation

The accuracy of the proposed method is evaluated 
by comparing the estimation ( vxt ) to the measurement 
of the optical sensor mounted onboard the vehicle (vx) 
and with a further estimation computed as the average 
of the velocity of the four wheels ( vxAVGt ). The latter is 
an algorithm that was already deployed in the electronic 
control unit of the vehicle.

The more relevant experimental results are reported 
in the following figures. The graphs illustrate the 
comparison between vx, vxt  and vxAVGt  in the subplot 
a, the absolute error of the two estimation methods 
with respect to the measured value in the subplot b (

,v v v vx x xAVG x1 2f f= - = -t t .) and behavior of the 
ANN input signals, specifically the longitudinal ax and 
lateral ay accelerations (subplot c), the total steering 
angle (subplot d), the wheels’ speed (subplot e) and the 
yaw rate (subplot f). The main characteristics of the 

Table 4 Summary of the conditions and estimation accuracy of the presented experimental cases. (ESC: Electronic 
Stability Control. MSE: mean square error of the proposed method, MSEAVG: mean square error of the method based on the 
average of the four wheels’ velocities)

validation 
case

road 
condition

driving 
setup esc 

axMAX 
(m/s2)

ayMAX 
(m/s2) 

vxMAX

(km/h)
TSMAX 
(deg)

]o MAX

(deg/s)

MSE
(km/h)

MSEAVG

(km/h)

Figure 4 dry racing OFF 7.4 12.4 107.9 553.5 97.5 0.217 15.721

Figure 5 wet sport OFF 6.7 10.1 172.2 153.1 40.1 0.003 4.172

Figure 6 icy normal ON 3.5 4.1 88.7 201.3 32.8 0.763 26.142
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absolute error 2f  reaches 70 km/h in Figure 4.b during 
the last manoeuvre, while the error 1f  is limited to 
less than 5 km/h in correspondence of demanding 
manoeuvres.

On the contrary, the estimation vxAVGt   
is not accurate during the last manoeuvre, since 
the four wheels start skidding and blocking on the  
icy road surface, as represented in Figure 4.d. The 

Figure 2 Test 1. Dry road. a) Vehicle speed b) Absolute estimation errors. c) Longitudinal and lateral acceleration.  
d) Wheels’ longitudinal speed. e) Total steering angle. f) Yaw rate. The commanded manoeuvres  

are highlighted in light blue areas
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Figure 3 Test 1. Wet road. a) Vehicle speed b) Absolute estimation errors. 
c) Longitudinal and lateral acceleration. d) Wheels longitudinal speed. 

e) Total steering angle. f) Yaw rate
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Figure 4 Test 1. Icy road. a) Vehicle speed b) Absolute estimation errors. c) Longitudinal and lateral 
acceleration. d) Wheels longitudinal speed. e) Total steering angle. f) Yaw rate. The commanded 

manoeuvres are highlighted in light blue areas
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from icy to wet. 
Figure 6 reports the acquisition recorded with 

the car in normal driving mode and the ESC system 
disabled. During the initial part of the acquisition, 
the road is dry. Then, the road condition becomes wet 
at about 40 s. At around 80 s, the road is dry again. 
The output of the classifier S is reported in Figure 
6 where the zoomed regions report the buffers along 
with the classification outputs. The second zoomed 
area is reported because it represents the occurrence of 
a misclassification. In this case, S indicates a wet road 
condition, although the asphalt is dry. However, this 
misclassification does not affect the longitudinal speed 
estimation, as represented in Figure 6.

In Figure 7, the results obtained during the road 
condition transient from wet to icy and from icy to wet 
are represented. The car has the ESC system enabled 
and is set in racing driving mode. The classification 
output S is reported in the zoomed portions. All the 
buffers are correctly classified and the final value of the 
estimation is accurate, as represented in Figure 7.

The number of misclassifications in correspondence 
of the road conditions change is very limited. This result 
has been achieved by reducing the length of the buffers 
considered for the feature extraction in the classification 
task. As a matter of fact, the larger the buffer, the higher 
is the possibility to incur in misclassifications. The 
high rate of classification output is also advantageous 
to limit the effect of estimation inaccuracies due to 
misclassifications. The estimation error is indeed 
recovered within the period of 0.1 s, corresponding to the 
output rate of the classifier. This motivates the absence 
of major estimation inaccuracies in correspondence of 
the misclassifications.

5  Conclusions

In this paper, a data-driven method for the vehicle 
speed estimation has been presented. The proposed 
technique exploits a combination of regression and 

4.2 Road condition identification

The performance of the road condition identification 
is evaluated with a Confusion Matrix (CM) reported 
in Figure 5. The classified and actual road conditions 
instances are reported in the rows and columns, 
respectively. The values contained in the main diagonal 
cells indicate the correct classifications, whereas the off-
diagonal cells report the number of the misclassifications. 
The data provided as input to the classifier are buffers 
with a duration of 2 seconds containing the features 
extracted in the classification process. These buffered 
data are overlapped with a time-shift of 0.1 s, thus the 
total number of input buffers (NTOT) is 106944, equal 
to the sum of 38023 in dry (ND), 25246 in wet (NW) and 
43675 in icy (NI) acquisitions, corresponding to a total 
acquisition time of 10694.4 s.

For each cell, a classification rate CL is computed as 
the ratio between the number of cell instances Ni,j and 
the total number of instances NTOT:

CL N
N

,
,

i j
TOT

i j
= . (5)

The classification accuracy for each road condition is 
computed as follows:

, , ,N
N

N
N

N
N, , ,

C
D

C
W

C
I

1 1 2 2 3 3
D W Ia a a= = =  (6)

for dry, wet and icy asphalt, respectively. The total 
classification accuracy is equal to 99.5 %, computed as

N
N N N, , ,

C
TOT

1 1 2 2 3 3
TOTa =

+ + . (7)

4.3  Validation during the road condition 
transients

Accuracy of the road conditions identification has 
been validated also in correspondence of the transient 
between the two different conditions: a) from dry to 
wet and from wet to dry and b) from wet to icy and 

Figure 5 Confusion matrix of the classifier for the road condition identification
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is presented as a reliable alternative to existing 
methods to mitigate the limitations due to the model 

classification neural networks task to estimate the 
speed and identify the road condition. The solution 

Figure 6 Test performed in transient road conditions (dry-wet-dry). a) measured vx (dashed) vs.  
estimated by the  ANN-based algorithm vxt  (solid) longitudinal speed. In the zoomed regions:  

ANN-based classifier’s output S

Figure 7 Test performed in transient road conditions (wet-dry-wet). a) measured vx (dashed) vs.  
estimated by the ANN-based algorithm vxt  (solid) longitudinal speed. In the zoomed regions:  

ANN-based classifier’s output S
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