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Abstract: Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered
launchers owing to their self-adapting capability, which can lead to better performance compared
to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. a simple
solution consists of applying differential throttling when multiple combustion chambers are used.
An alternative solution is represented by fluidic thrust vectoring, which requires the injection
of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was
investigated numerically and both differential throttling and fluidic thrust vectoring were studied.
The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust
vectoring performance was evaluated in terms of side force generation and axial force reduction.
The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of
secondary flow and injection location. The results show that the response of the system can be
non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential
throttling provides a linear behaviour but it can only be applied to configurations with multiple
combustion chambers. Finally, the effects of different plug truncation levels are discussed.

Keywords: aerospike; shock vectoring; differential throttling

1. Introduction

Rocket engines that are used in space launchers are usually equipped with a conven-
tional fixed geometry bell-shaped nozzle which provide good performance and are quite
reliable. In serially staged launchers, the area expansion ratio of the nozzles used in the
different stages increases significantly from the first stage to the last stage: this allows opera-
tion with nearly optimum expansion ratios in the different phases of the mission. However,
there are clustered launchers in which there is a core engine which works from sea-level to
almost vacuum conditions, such as the Vulcain 2 engine in the Ariane 5 launcher or the
Main Engine in the Space Shuttle launching system. Furthermore, Single-Stage-to-Orbit
(SSTO) configurations have been also proposed. In all these configurations, a significant per-
formance gain could be obtained by reducing the non-adaptation losses: several advanced
nozzle concepts have been investigated for this purpose [1].

The aerospike nozzle represents an effective self-adapting nozzle which allows the
nozzle exit pressure to be adapted according to the environment pressure without the use of
any moving component. Several configurations of aerospike engines have been proposed
and investigated, with both circular and linear designs [2–7]. In the 1960s, Rocketdyne
developed the J-2T-200K and J-2T-250K annular engines which were based on a toroidal
combustion chamber and a truncated plug [8]. These engines, which were derived from
the J-2 engine used in the Saturn-family launchers, were evaluated with both cold and
hot tests.

The linear aerospike engine XRS-2200 was selected as a candidate propulsion system
for the Venture Star/X33 SSTO spaceplane in the 1990s [9]. The engine was based on
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a cluster of 20 independent combustion chambers and was successfully tested on the
ground.

After these pioneering contributions, the research effort on aerospikes slowed because
of the cancellation of several programs. More recently, research in the field has been
led by universities and private companies. An example is the California Launch Vehicle
Education Initiative (CALVEIN) as a collaboration between the California State University
and Garvey Spacecraft Corporation. In the framework of the CALVEIN project, several
tests on a truncated plug nozzle were performed [10].

Other attempts were performed by private companies which proposed aerospikes
for the propulsion of both SSTO and Two-Stage-Two-Orbit (TSTO) configurations: Firefly
Aerospace and RocketStar Space proposed a TSTO vehicle, while ARCA Space Corporation
proposed a SSTO design [11]. Furthermore, the use of linear aerospike nozzles has also
been investigated for high-speed aircrafts [12].

The development of aerospike engines is characterised by the need to solve several
challenging aspects, from cooling issues to structural problems [1]. Furthermore, the use
of an aerospike nozzle limits the possibility to perform thrust vectoring by introducing
a gimballed joint, as it is done in conventional bell nozzles. This is due to the large
diameter/extension of the aerospike nozzle which prevents the possibility of moving the
entire nozzle. However, thrust vectoring is a key requirement for the use of aerospike
nozzle in space launchers. For these reasons, several alternative thrust vectoring strategies
have been investigated [11].

Among them, some possible strategies are represented by movable plugs, flaps on
the plug, differential throttling and fluidic thrust vectoring [13–22]. Differential throttling
is a simple control strategy which can be applied in the presence of clustered aerospike
engines with multiple independent combustion chambers. Since the mass flow rate and
the pressure can be controlled independently in each chamber, it is possible to generate
a lateral thrust component which can be used for manoeuvring.

However, there are both annular and linear aerospike configurations in which a com-
mon combustion chamber is considered. This is particularly true for small-scale engines
in which the use of multiple chambers is not convenient [16]. In this case, differential
throttling is no longer an option. a possible solution is represented by fluidic thrust vec-
toring, which consists in injecting a secondary flow from the plug wall in order to create
an obstacle for the primary flow coming from the throat. This generates a shock followed
by a separation downstream to the injection point. As a consequence, an asymmetric
pressure distribution is obtained on the plug wall and this generates the required lateral
thrust component.

The effectiveness of the fluidic thrust vectoring is influenced by several parame-
ters: injection location, injection mass flow rate, and nozzle pressure ratio. These effects
have been widely investigated experimentally [15,23,24] and numerically [15–17,23,25–29].
Furthermore, fluidic thrust vectoring allows to avoid or reduce the size of aerodynamic
control surfaces for vehicles moving in the atmosphere [30–32]: this possibility has been
investigated for the development of low observable aircrafts [33]. Finally, fluidic thrust
vectoring has been investigated for the development of high-performance Unmanned
Aerial Vehicles [34,35].

In the present work, differential throttling and fluidic thrust vectoring are discussed
and compared as possible strategies for thrust control in a linear aerospike. The goal of
the present work is to provide a cost–benefit analysis: the performance of the different
strategies is evaluated in terms of lateral and axial force components while the requirements
are estimated in terms of mass flow rate unbalance or secondary mass flow rate. The results
were obtained by means of numerical simulations based on the Reynolds-averaged Navier–
Stokes (RANS) equations. The paper is organised as follows. In Section 2, the equations
used to evaluate the thrust components in an aerospike engine are provided. In Section 3,
the physical model and the numerical schemes adopted for the simulations are described.
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In Section 4, the numerical results are reported for two different geometries. Finally, in
Section , conclusions and future perspectives are discussed.

2. Thrust Evaluation in Aerospikes

Consider the generic rocket nozzle represented in Figure 1a. The area of the exit
section of the nozzle is Ae. The thrust F generated by the rocket can be computed as
follows:

F = (Fx, Fy)
T =

∫
Ae
(ρ(u · n)u + (p − p0)n)dA (1)

where ρ, u, p, p0 and n represent density, velocity vector, pressure, ambient pressure and
normal unit vector, respectively. According to the scheme in Figure 1a, the axis of the
nozzle is assumed to be inclined with respect to the global reference system (x, y).

Consider now a linear aerospike nozzle as represented in Figure 1b: the scheme shows
only the upper half because of symmetry considerations. The previous expression can be
updated in order to compute the force in the new configuration:

F =
∫

Ae
(ρ(u · n)u + (p − p0)n)dA +

∫
w
((p − p0)I+ τ) · ndA (2)

where I represents the identity matrix and τ is the viscous stress tensor at wall. The first
integral in Equation (2) represents the thrust of a rocket with a nozzle truncated at section
Ae. This term is augmented by the force that the fluid applies to the plug which contains
both pressure and viscous contributions: the second integral quantifies this contribution.
The integrals which appear in Equation (2) must be extended to both the nozzle exits and
to the full plug surface.

Plug wall

Figure 1. Scheme for the computation of the thrust component in a inclined bell nozzle (a) and in an
aerospike represented by an inclined bell nozzle followed by a plug (b).

The terms in Equation (2) put in evidence the different mechanisms which can be
exploited in an aerospike engine to produce a lateral thrust component Fy. When shock vec-
toring is applied a fluid is injected from a slot located on one side of the plug. The injected
fluid represents an obstacle for the primary supersonic flows: this generates a shock wave
which alters the pressure distribution. As a result, an asymmetric pressure distribution on
the two sides of the plug is obtained and the second integral in Equation (2) leads to a net
lateral force component. However, the first integral in Equation (2) does contribute to this
thrust vectoring strategy because the perturbations induced by the injected fluid influence
only the plug region and do not affect the flow field upstream to the section Ae.

An alternative strategy is exploited when differential throttling is applied. In this case,
a different total pressure is imposed in the combustion chambers which feed the two sides
of the plug. As a consequence, both the integrals which appear in Equation (2) contribute
to the generation of the lateral thrust component: the first integral takes into account the
force contributions generated by the region upstream to the section Ae while the second
integral quantifies the pressure imbalance on the two sides of the plug. In the following,
the mass flow rate provided by the top and bottom chambers will be referred to as ṁT and
ṁB, respectively. When fluidic thrust vectoring is performed, then ṁT = ṁB and the mass
flow rate of the secondary injection will be referred to as ṁi.
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3. Mathematical Model and Numerical Setup

The purpose of this work is to compare two different solutions for thrust vectoring
in aerospike nozzles. A preliminary validation of the model and a grid convergence
analysis was performed [21] on the results of a cold flow experimental test [1]. Since a cold
flow is considered, the fluid is assumed to be air with a frozen chemical composition.
This assumption is kept for all the simulations presented in this work. The flow field
is described by means of the compressible Reynolds-averaged Navier–Stokes (RANS)
equations with the Spalart–Allmaras closure model [36]. An ideal gas that follows the ideal
gas equation of state is assumed. The specific heat ratio is assumed to be constant and set
to γ = 1.4. The dynamic viscosity is evaluated by means of the Sutherland’s law. All of the
simulations reported in the following were performed by assuming a nozzle pressure ratio
(chamber total pressure over ambient static pressure) equal to 56.7. An investigation into
the effectiveness of fluidic thrust vectoring for different values of nozzle pressure ratio is
reported in [21].

The governing equations are solved by means of a second-order accurate finite volume
discretisation implemented in the Fluent solver. Convective fluxes are evaluated by means
of the Roe approximate Riemann solver [37]. The governing equations are integrated
in time by an implicit scheme until a steady solution is reached. The spatial domain is
discretised by means of a block structured mesh, which is refined in the boundary layer
region and in the injection point. Two linear aerospikes are considered in this work: the first
is truncated at 40% of the full plug length (LP40) and the second at 75% of the full plug
length (75%), as shown in Figure 2. The flow field in these nozzles is bidimensional for most
the extension; the three-dimensional effects are confined to the extremities. For this reason,
bidimensional simulations were performed in this work. The computational domain and
the enforced boundary conditions for both the LP40 and LP75 geometries are reported
in Figure 3. In particular, total temperature, total pressure and angle are imposed at the
nozzle inlet. At the outlet, the static pressure is imposed where the local Mach number is
subsonic and the solution is extrapolated from inside the domain where the local Mach
number is supersonic. The mesh used for simulating the effects of differential throttling
contains approximately 110,000 cells, while the mesh used for the fluidic thrust vectoring
simulations contains more cells (250,000) since it is necessary to refine the grid in the
injection region. This resolution level was chosen using the results from a grid convergence
analysis carried out in a previous numerical study [21]. In particular, the dimensionless
wall distance y+ for the first layer of cells was chosen in order to guarantee the condition
y+ < 5, which is recommended for the Spalart–Allmaras model. Details of the mesh in the
region near the plug are reported in Figure 4 where it is possible to observe the refinements
close to the injection slots. An adiabatic wall boundary condition is applied to the plug
wall while the injection slots are simulated by setting a sonic inlet boundary conditions.

(a) LP40 (b) LP75

Figure 2. Linear aerospike truncated at 40% (a) and 75% (b) of the spike length.
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(a) (b)

Figure 3. 2D computational domain for LP40 (a) and LP75 (b).

(a)

(b)

Figure 4. Detail of the mesh used for the LP40 (a) and LP75 (b).

4. Numerical Results

In this section, the numerical results obtained for the LP40 and LP75 geometries are
reported for both differential throttling and shock vectoring. The performance of the two
control systems is evaluated in terms of lateral thrust generation and axial thrust reduction.
a parametric study is performed in order to quantify the mass flow rate imbalance or the
secondary flow mass flow rate required to obtain an effective control.

4.1. Linear Aerospike Nozzle Truncated at 40% (LP40)

A first set of simulations was performed on the LP40 geometry. This configuration
is characterised by a very short plug, which is representative of a real-world application:
the truncation of the spike significantly reduces the cooling problems and the axial length
of the nozzle.

Figure 5 shows the Mach field obtained on the LP40 plug using different control strate-
gies. In Figure 5a, the results obtained by differential throttling are reported: this solution
is obtained by reducing the total pressure in the top chamber while keeping the same total
temperature in both chambers. As a result, the mass flow rate from the top chamber is
reduced, while the mass flow rate from the bottom chamber remains constant. In particular,
the plot refers to the condition ṁT/ṁB = 0.9.
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(a) DF, ṁT/ṁB = 0.9

(b) SVC, ṁi/mT = 0.1

(c) SVC, ṁi/mT = 0.1

Figure 5. Mach field for LP40 with differential throttling with ṁT/ṁB = 0.9 (a), SVC at x/L = 0.6
with ṁi/mT = 0.1 (b) and SVC at x/L = 0.9 with ṁi/mT = 0.1 (c).

In Figure 5b, the flow field obtained by shock vector control is reported. It is pos-
sible to clearly identify the location of the secondary injection on the upper side of the
plug: the secondary flow acts as an obstacle which induces a shock wave as a separation.
The separation moves upstream with respect to the injection slot and generates a sort of
fluidic ramp on the wall. The Mach field shows that the flow accelerates just downstream
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of the injection slot and then another shock wave is generated at the end of the separation
region. These results refer to the condition ṁi/mT = 0.1 and the injection slot is located at
60% of the plug length.

The results in Figure 5c for an injection slot located at 90% of the plug length are
qualitatively similar to those observed in Figure 5b. The influence of the injection location
can be seen more clearly by comparing the wall pressure distributions, which are reported
in Figure 6. The results show that the secondary injection generates a shock wave in
front of the injection slot. The shock wave is not exactly located on the injection slot but
it is placed upstream because of the boundary layer separation. An expansion region
can be observed downstream of the injection slot. The magnitude of the lateral force
component is determined by the integral of the wall pressure distribution on the full plug:
the compression and the expansion regions lead to opposite contributions which tend to
cancel each other out. This effect is particularly evident when the injection is located at
60% of the plug length (see Figure 6a). In contrast, when the injection is performed at 90 %
of the plug length, the surface affected by the expansion is reduced, as shown by Figure 6b.

(a)

(b)

Figure 6. Wall pressure distribution on LP40 with ṁi/mT = 0.1 with injection slot at x/L = 0.6 (a)
and x/L = 0.9 (b).

These qualitative considerations are confirmed by the computations of the thrust
components reported in the plot of Figure 7. In particular, the lateral thrust component nor-
malised with respect to the magnitude of the unperturbed thrust F0

x is shown as a function
of ṁi/mT in Figure 7b. When the injection is performed at 90% of the plug length, the be-
haviour is monotone and the lateral thrust component is always higher with respect to the
results obtained when the injection is performed at 60% of the plug length. This seems to
be related to the fact that, when the injection is performed close to the end, the expansion
acts on a small region and is not able to significantly reduce the effects generated by the
compression. This behaviour is in line with the experimental findings of [23]. Furthermore,
when the injection is performed at 60% of the plug length, the results are non-monotone
with respect to ṁi/mT : this could again be related to the absence of a clear net effect since
both compression and expansion influence a significant portion of the plug.
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0 2 4 6 8 10
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1.001

1.002

1.003

1.004

1.005

1.006

Shock vect. LP40, Inject. at 60%

Shock vect. LP40, Inject. at 90%

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Shock vect. LP40, Inject. at 60%

Shock vect. LP40, Inject. at 90%

(b)

Figure 7. Axial (a) and lateral (b) thrust components obtained by shock vector control on
LP40 geometry.

The plot in Figure 7a shows the axial thrust component: its value is slightly in-
creased when the secondary injection is introduced. This is due to the fact that the sec-
ondary injection has a small axial component and this leads to a weak increase in the axial
thrust component.

Finally, the results for differential throttling are reported in Figure 8: the trend in this
case is very clear. The lateral thrust component, which is reported in Figure 8b, grows
linearly with respect to (ṁB − ṁT)/ṁB. In this case, the axial thrust component decreases
significantly when (ṁB − ṁT)/ṁB is increased. This linear behaviour can be partially
predicted by consideration of the terms that appear in the first integral of Equation (2).
The throat of the nozzles is assumed to be sonic and the total temperature is kept fixed
in the two chambers. In such a condition, the mass flow rate through each nozzle is
directly proportional to the total pressure of the chamber. Furthermore, the speed at the
section Ae is fixed because the Mach number is determined by the geometric expansion
ratio and the speed of sound remains constant. Finally, the static pressure at section Ae is
directly proportional to the total pressure of the chamber because of the constant Mach
number. As a result, all of the terms that appear in the first integral of Equation (2) are
directly proportional to the total pressure of the chamber or constants. It is not possible to
perform similar analytical considerations for the second integral in Equation (2). However,
the results reported in Figure 8 suggest that the linear behaviour of the terms in the first
integral dominates the response of the system.

0 2 4 6 8 10

0.94

0.95

0.96

0.97

0.98

0.99

1

Diff. thrott. LP40

(a)

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Diff. thrott. LP40

(b)

Figure 8. Axial (a) and lateral (b) thrust components obtained by differential throttling on
LP40 geometry.

4.2. Aerospike Nozzle Truncated at 75% (LP75)

A second set of simulations was performed on the aerospike nozzle truncated at
75% of the original spike length (LP75). The Mach field obtained by adopting differential
throttling, secondary injection at 60% of the plug length and secondary injection at 90% of
the plug length is reported in Figure 9. The results are qualitatively similar to the fields
obtained for the LP40 but now the injection-induced separation is even more intense and
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it covers a larger region with respect to that for the LP40: this could be related to the fact
that the injection in the LP75 is applied in a region where the wall slope is smaller with
respect to the corresponding points in the LP40. a smaller wall slope is related to a smaller
pressure gradient: this can influence the extension of the separation.

(a) DF, ṁT/ṁB = 0.9

(b) SVC, ṁi/mT = 0.1

(c) SVC, ṁi/mT = 0.1

Figure 9. Mach field for LP75 with differential throttling with ṁT/ṁB = 0.9 (a), SVC at x/L = 0.6
with ṁi/mT (b) and SVC at x/L = 0.9 with ṁi/mT = 0.1 (c).

The wall pressure distribution obtained by using shock vector control on the LP75
is reported in Figure 10. The plot confirms that the extension of the separation region
is significantly larger with respect to the LP40 since the shock is positioned significantly
upstream of the injection slot. This suggests that thrust vector control on the LP75 should
be more effective with respect to the LP40 configuration. This is confirmed by the plot in
Figure 11b, which shows the lateral thrust component as a function of ṁi/mT . The values
observed in this configuration are larger with respect to the values obtained for the LP40:
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in particular, the maximum lateral thrust component is 0.02F0
x for the LP75 and 0.016F0

x for
the LP40, where F0

x is the uncontrolled axial thrust.

(a)

(b)

Figure 10. Wall pressure distribution on LP75 with ṁi/mT = 0.1 with injection slot at x/L = 0.6 (a)
and x/L = 0.9 (b).
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(b)

Figure 11. Axial (a) and lateral (b) thrust components obtained by shock vector control on
LP75 geometry.

Even for the LP75, the location of the injection slot represents a key parameter:
the closer the slot to the end, the larger the lateral thrust component becomes. Further-
more, while the use of an injection slot at 60% of the plug length leads to a non-monotone
behaviour with the LP40, a monotone behaviour is preserved with the LP75. In this config-
uration, the axial thrust component is slightly increased by the activation of the secondary
injection.

As far as differential throttling is concerned, the results show that the lateral thrust
component grows linearly with the difference between the mass flow rates. However,
differential throttling seems less effective on the LP75 nozzle with respect to the LP40
nozzle: this can be deduced by comparing the plots in Figures 8b and 12b, which show that
the lateral thrust component is larger on the shorter nozzle. Differential throttling influences
both the integrals which appear on the right-hand side of Equation (2). The term related to
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the momentum flux through the surface Ae is not affected by the plug geometry. However,
the term related to the pressure integral on the plug wall is influenced by the choice of the
truncation length and the effects on the lateral force are not negligible, as shown by the
comparison between Figures 8b and 12b. For this geometry, the axial thrust component
decreases monotonically as (ṁB − ṁT)/ṁB is increased.

0 2 4 6 8 10

0.94

0.95

0.96

0.97

0.98

0.99

1

Diff. thrott. LP75

(a)

0 2 4 6 8 10
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0.03

0.04

0.05

0.06

0.07

0.08

Diff. thrott. LP75

(b)

Figure 12. Axial (a) and lateral (b) thrust components obtained by differential throttling on
LP75 geometry.

5. Conclusions

Differential throttling and shock vectoring are investigated as possible solutions for
providing thrust vectoring in a linear aerospike nozzle. The results show that differential
throttling is a highly effective strategy: the obtained lateral thrust component varies linearly
with respect to the difference between the mass flow rates from the two feeding chambers.
This linear behaviour makes differential throttling very attractive from a control engineer-
ing perspective. The numerical tests show that differential throttling is more effective on
shorter nozzles: this is a further advantage since aerospike nozzles are usually truncated to
a small percentage of the full length in order to limit weight and cooling problems.

Fluidic thrust vectoring, and in particular, shock vectoring, represent a valid alter-
native that could be considered when differential throttling cannot be applied because
a common combustion chamber is adopted; for example, in small-scale engines. The sim-
ulations show that the location of the injection slot is a key parameter for two reasons.
The first reason is that the injection induces a compression upstream of the injection slot
and an expansion downstream of the injection slot: if the slot is located far from the end of
the plug, then the two effects tend to cancel each other out and this reduces the magnitude
of the lateral thrust component. This numerical result is in line with the experimental
findings of Eilers et al. [23], who underlined the importance of placing the injection slot
close to the end of the plug.

The second reason that the injection location is critical is the relation between the
lateral thrust component and the secondary mass flow rate. The results presented in this
paper show that if the plug is truncated to a sufficiently large percentage of the original
full spike (75% in this work), then this relation remains monotone for both the tested
locations of the injection slot. However, if a shorter plug is considered (LP40), then the use
of an injection slot located far from the plug end can lead to a non-monotone behaviour:
the lateral thrust component grows with the secondary mass flow rate up to a certain
limit and then starts to decrease. This non-monotone behaviour was observed only in
one of the configurations investigated in this work. However, the possibility of having
a non-monotone response requires particular attention in the implementation of this control
strategy. From this perspective, the results suggest that slot positioning becomes more
important when short plugs are considered.

The present study is based on RANS equations which provide only the average field
and which can lead to significant modelling uncertainty in the regions characterised by
separations. Future work will be devoted to the study of the same problems by means of
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scale-resolving simulations which allow the direct capture of the evolution of the largest
turbulence scales in order to evaluate the temporal fluctuations in the thrust components.
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