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THE ACM PROPERTY FOR UNIONS OF LINES IN P1 × P2

GIUSEPPE FAVACCHIO AND JUAN MIGLIORE

Abstract. This paper examines the Arithmetically Cohen-Macaulay (ACM) property for cer-
tain codimension 2 varieties in P1 × P2 called sets of lines in P1 × P2 (not necessarily reduced).
We discuss some obstacles to finding a general characterization. We then consider certain classes
of such curves, and we address two questions. First, when are they themselves ACM? Second, in
a non-ACM reduced configuration, is it possible to replace one component of a primary (prime)
decomposition by a suitable power (i.e. to “fatten” one line) to make the resulting scheme ACM?
Finally, for our classes of such curves, we characterize the locally Cohen-Macaulay property in
combinatorial terms by introducing the definition of a fully v-connected configuration. We apply
some of our results to give analogous ACM results for sets of lines in P3.

1. Introduction

It is still an open problem to determine a geometric characterization of the arithmetically
Cohen-Macaulay (ACM) property for varieties in a multiprojective space. While this problem
has strong connections to the analogous problem for varieties in a projective space, there are also
striking differences. To give just two simple illustrations, any finite set of points in a projective
space is automatically ACM, while this is not true in any multiprojective space. Indeed, a whole
book has been devoted to this topic [14] just for the case of P1 × P1. Secondly, the structure of
a multihomogeneous ideal differs from that of a homogeneous ideal in important ways, and this
contributes to the difficulty.

In both the projective and the multiprojective settings, the problem can have a strong combi-
natorial component in addition to geometric and algebraic ones. One specific problem that has
been studied in the projective setting in many different ways is the question of when a union of
lines is ACM. This is still wide open in projective spaces, in general. In this paper we begin the
study of this problem in a specific multiprojective space, namely P1 × P2.

Included in this problem (in either setting) is the question of what can be added to a non-
ACM variety to make it become ACM, hopefully adding as little as possible. We propose a new
variation of this question (and solve it in our special setting): given a reduced configuration
of lines that is not ACM, can one “fatten” one of the components and make the new scheme
ACM? Here, by “fatten” we mean that in a primary decomposition we replace a prime ideal p,
corresponding to one of the lines, by a power pk for suitable k. (Notice that p is a complete
intersection, so pk is unmixed.) After solving this problem in the situation of this paper, we give
as a corollary the analogous result for unions of lines in P3. (See Theorem 4.15 for P1 × P2 and
Corollary 4.16 for P3.) We also explore the property of being locally Cohen-Macaulay, giving a
characterization for our curves in P1 × P2.

Many papers in the literature have studied the ACM property for different kinds of subvarieties
of multiprojective spaces, especially for sets of points. Despite the fact that in P1×P1 there are
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2 G. FAVACCHIO AND J. MIGLIORE

several characterizations of the ACM property (again, see [14] for a detailed discussion of the
topic) only a few other results are known in general. In particular, a characterization was given
in [7] of the ACM property for sets of points in (P1)r = P1 × · · · × P1, and in [9] the authors
described, under certain conditions, the ACM property for sets of points in Pm × Pn and, with
more details, in P1 × Pn. See also [15] for some other results in this direction.

A crucial difference in the study of the ACM property of a set of points in P1 × P1 and a set
of points in any other multiprojective space is given by the codimension. A set of points has
codimension two in P1 × P1, and strictly larger than two in a different multiprojective space.
So, it is interesting to approach the study of the ACM property by looking at the codimension
two varieties more generally. The paper [8] investigates the ACM property for 2-codimensional
varieties in P1×P1×P1. Such varieties have a different nature and meaning from sets of points
in (P1)r, r ≥ 2, but the characterization of the ACM property deeply uses a common fact. All
of them are defined by ideals generated by particular products of linear forms. In this case, this
peculiarity makes the description of the ACM property merely combinatorial.

The vast nature of the problem draws in many standard tools and techniques from the ho-
mogeneous setting. These include, just to cite some of them, hyperplane sections, basic double
G-linkage, liaison addition, and liaison. On the other hand, the study of varieties in multipro-
jective spaces plays an important role in several branches of mathematics, and it finds an appli-
cation in different contexts; these include the study of monomial ideals (see for instance [2, 20]),
scrolls ([6]), symbolic powers ([5, 12, 13]), tensor analysis ([4]) and virtual resolutions ([3, 10]),
just to give a partial list.

In this paper we call sets of lines of P1×P2 certain codimension two varieties in P1×P2. We
will also look at these varieties as unions of planes in P4. This is possible since a bihomogeneous
linear form of k[P1 × P2] also defines a hyperplane in P4. Thus, a line in P1 × P2 can be viewed
as a plane (the intersection of two hyperplanes) of P4. This correspondence allows us to move
the study of several properties, including the Cohen-Macaulay property, from P1×P2 to P4. The
converse is not always possible for two reasons due to the nature of the problem. First, a linear
form in k[P4] is not necessarily an element of k[P1×P2](1,0) or k[P1×P2](0,1). Moreover, a plane

in P4 could be defined by an ideal that is, even if bihomogeneous, not saturated in P1 × P2. See
Remark 3.1 for more detail about this connection.

From what has been observed above, we only have lines of two different types in P1×P2. The
horizontal lines, given by the intersection of a hyperplane of degree (1, 0) with one of degree (0, 1),
and the vertical lines, that are intersections of two hyperplanes of degree (0, 1). The latter gives
an immediate relation with P2 since a set of vertical lines in P1×P2 corresponds, in a way made
precise in Remark 3.3, to a cone over a set of points in P2.

The main result in Section 2, Proposition 2.1, concerns sets of points in P2, which will be
used later in the paper. Given a set of (fat) points Y and a curve V(F ) passing through some
of them, we give a characterization, in terms of the h-vector of a certain subscheme of Y , to
guarantee that IY +(F ) is a saturated ideal. In Section 3 we introduce the notation and examine
some obstacles to the characterization of the ACM property; see Remark 3.5 and Example 3.6.
In Section 4 we apply Proposition 2.1 to study the ACM property for sets of lines in P1 × P2

satisfying a particular condition introduced in Notation 4.1. Precisely, we assume that in the
sets under consideration the horizontal lines are reduced and two different horizontal lines of Z
are not contained in a hyperplane defined by a form of degree (0, 1).

We begin with an additional assumption (see Theorem 4.5 and Remark 4.6) and then show
that this can be extended (Proposition 4.7, Proposition 4.8 and Corollary 4.9). We then apply
these results to a class of configurations of lines in P1×P2 where only one is non-reduced. In this
situation we give a necessary and sufficient condition for ACMness in terms of the multiplicity
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of the non-reduced component. As a corollary we give a result for P3, as mentioned above.
Our most general result (still with some assumptions) gives a characterization for when the
configuration is locally Cohen-Macaulay (see Theorem 4.18).

Acknowledgments. Many of the results in this paper were inspired through computer exper-
iments using CoCoA [1] and Macaulay2 [11]. This work was done while the first author was
partially supported by Università degli studi di Catania, piano della ricerca PIACERI 2020/22
linea intervento 2 and by the National Group for Algebraic and Geometrical Structures and their
Applications (GNSAGA-INdAM) and the second author was partially supported by a Simons
Foundation grant (#309556). We thank the referees for the useful comments and suggestions.

2. A preliminary result about saturation in P2

In this section we give a criterion, in terms of the h-vector, to establish if an ideal of fat points
plus a form is saturated or not. In the next sections, we will relate it to the ACM property for
some sets of lines in P1 × P2; see Remark 4.6. There is an immediate connection with points in
P2 since a set of vertical lines in P1 × P2 is the cone over a set of points in P2.

We start the section by recalling some standard notation. Given a finite set of n distinct points
W = {P1, . . . , Pn} in PN , and m1, . . . ,mn positive integers, we write Y = m1P1 + · · · + mnPn

for the set of fat points defined by the saturated homogeneous ideal

IY =
⋂

Pi∈W
(IPi)

mi ⊆ S = k[PN ].

The degree of Y is deg(Y ) =
∑(

mi+N−1
N−1

)
. Recall that for a zero-dimensional scheme Y ⊂ PN

the Hilbert function of Y is defined as the numerical function HY : N→ N such that

HY (i) = dimk(S/IY )i = dimk Si − dimk(IY )i.

Since HY (τ) = deg(Y ) for τ large enough, the first difference of the Hilbert function ∆HY (i) =
HY (i)−HY (i− 1) is eventually zero. The h-vector of Y is

hY = h = (1, h1, . . . , hd)

where hi = ∆HY (i) and d is the last index such that ∆HY (i) > 0.

Proposition 2.1. Let Y = m1P1 + m2P2 + · · ·mnPn be a set of (fat) points in P2. Let C =
V(F ) ⊆ P2 be a curve defined by a form F of degree deg(F ) = d. For any i, assume that if F
vanishes at Pi ∈ Y , then the vanishing order is at least mi, so F ∈ [ImiPi ]d. Let Y1 and Y2 be the
two zero-dimensional schemes such that IY1 = (IY + F )sat and IY2 = IY : F. Then Y = Y1 ∪ Y2,
where Y1 ∩ Y2 = ∅, and IY + (F ) ⊆ k[P2] is saturated if and only if, for each τ ≥ 0, we have

hY (τ) = hY1(τ) + hY2(τ − d).

Proof. With these hypotheses we have Y1 = Y ∩ C and Y2 = Y \ C, and Y1 ∩ Y2 = ∅ (the
latter is because the multiplicity of F at each point is big enough). Note that IY2 = IY : F
is automatically saturated since IY is saturated. On the other hand, IY1 = (IY + (F ))sat but
IY + (F ) is not necessarily already saturated. Consider the short exact sequence

0→ R

IY : F
(−d)

·F−→ R

IY
→ R

IY + (F )
→ 0.

In any degree τ , the first vector space in the sequence has dimension hY2(τ − d) and the second
has dimension hY (τ) since the corresponding ideals are saturated. Then the third ideal, IY +(F )
is saturated if and only if the third vector space has dimension hY1(τ), since the latter Hilbert
function uses the saturated ideal of Y1, which is (IY + (F ))sat. �
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Remark 2.2. In Proposition 2.1, if Y is a reduced set of points then the condition about the
vanishing order of F is automatically satisfied.

In the next example we show different ways to add points, in a “non-saturated ideal case”, in
order to construct a saturated ideal.

Example 2.3. Denote by `i the line of P2 defined by the linear form x+ iy, 1 ≤ i ≤ 4. Let C
be the curve given by the union of the lines `1, `2, `3, `4, and let F be a form defining C. Let Y
be a set of five distinct points (no three on a line) such that only four of them belong to C. Say
for instance P1 = (1,−1, 1), P2 = (2,−1, 1), P3 = (6,−2, 1), P4 = (8,−2, 1) and P5 = (1, 1, 1).

`1
`2
`3
`4

•
P1

•
P2 •

P3
•
P4

•
P5

Figure 1. Five points, four of them on a quartic.

Using the notation in Proposition 2.1, we set Y1 = {P1, P2, P3, P4} and Y2 = {P5}. So we have

hY 1 2 2 0 0
hY1 1 2 1 0 0
hY2 0 0 0 0 1

where the third line in the table is the h-vector of Y2 shifted by 4 (the degree of F ). By
Proposition 2.1, we note that (F ) + IY is not a saturated ideal. Now, by adding points to Y1,
we show three different ways to make the resulting ideal (F ) + IY saturated.

i) We add to Y six points lying on C, consisting of two general points in `1 and `2 and one
general point in `3 and `4. (Note that we have a similar situation occurs by adding a
total of 7, 8, 9 or 10 general points on `1, . . . , `4. )

`1
`2
`3
`4

•
P1

•
P2 •

P3
•
P4

•
P5•

•• •
••

So, we have
hY 1 2 3 4 1
hY1 1 2 3 4 0
hY2 0 0 0 0 1

ii) We add to Y the triple point defined by the ideal (x, y)3. The vanishing order of F at
this point is 4.
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`1
`2
`3
`4

•
P1

•
P2 •

P3
•
P4

•
P5

• So, we get
hY 1 2 3 4 1
hY1 1 2 3 4 0
hY2 0 0 0 0 1

iii) Let ` be a line containing P5, say for instance ` defined by the linear form y − z, and
add to Y the four intersection points of ` and C i.e. P6 = (−1, 1, 1), P7 = (−2, 1, 1),
P8 = (−3, 1, 1), P9 = (−4, 1, 1).

`1
`2
`3
`4

•
P1

•
P2 •

P3
•
P4

•
P5

••••
So, we have

hY 1 2 3 2 1
hY1 1 2 3 2 0
hY2 0 0 0 0 1

Remark 2.4. • If IY + F is saturated then F is a “separator” for Y2, i.e. the form F
vanishes at Y \ Y2 and it doesn’t vanish at any point of Y2; see for instance the paper
[21] where it first appears. So, the ideal defining Y1 is obtained just adding F to IY .
• Let Y be a reduced complete intersection of two planar curves of degrees d1 ≥ 1 and
d2 ≥ 1. Assume that Y2 is a single point, and that F vanishes on Y1 but not Y2. If
IY + (F ) is saturated then F cannot have degree d1 + d2 − 3, because by the Cayley-
Bacharach theorem, any F vanishing on Y1 must also vanish on Y2.
• Using liaison, this kind of remark can be strengthened. For example, let Y be a reduced

complete intersection in linear general position and Y2 consists of three points, if IY +(F )
is saturated then F cannot have degree d1 + d2 − 4, by a similar analysis.

3. Notation, terminology and examples

We work over a field of characteristic zero. For a product of two projective spaces we define
V = Pa1 × Pa2 and

πi : V → Pai

to be the projection to the i-th component (i = 1, 2).
Let {e1, e2} be the standard basis of N2. Let xi,j , with 1 ≤ i ≤ 2 and 0 ≤ j ≤ ai for all i, j,

be the variables for Pa1 and Pa2 . Let

R = k[x1,0, . . . , x1,a1 , x2,0, . . . , x2,an ] = k[V ],

where the degree of xi,j is ei.

Remark 3.1. A subscheme, X, of V is defined by a bihomogeneous ideal IX that is saturated
with respect to (x1,0, . . . , x1,a1) and to (x2,0, . . . , x2,an). The ideal IX is generated by a system
of multihomogeneous polynomials in R.

Given a scheme X ⊆ V , its defining ideal, IX , is also saturated with respect to the ideal
(x1,0, . . . , x1,a1 , x2,0, . . . , x2,an). Thus, the ideal IX defines a different scheme X ′ in Pa1+a2+1.
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The converse is, of course, not true: consider for instance the ideal (x1,0, . . . , x1,a1), which
defines a subscheme of Pa1+a2−1 but not of Pa1 × Pa2 .

Moreover, the maps in a minimal free resolution of R/IX can be seen as those of a minimal
free resolution of k[x1,0, . . . , x1,a1 , x2,0, . . . , x2,an ]/IX′ . In fact, the only difference consists in
the degree of the forms appearing as entries of the matrices and not in the forms themselves –
they have bidegree (a, b) in the first case and degree a+ b in the second. So, many homological
invariants of X and X ′ are strictly connected and some of them, such as the projective dimension,
agree. This idea has often been exploited in the literature, for example in [5, 7, 9, 12]. See also
[14], Remark 3.3, where they say (in the context of P1×P1) that “our study of points in P1×P1

can be seen as an investigation of these special unions of lines in P3.”

We say that X is arithmetically Cohen-Macaulay (ACM) if R/IX is a Cohen-Macaulay ring.
Let N = a1 + a2 + 2. Given a subscheme X of V together with its homogeneous ideal IX , we

can also consider the subscheme X̄ of PN−1 defined by IX . Notice that if X is a zero-dimensional
subscheme of V , then IX almost never defines a zero-dimensional subscheme of PN−1.

In the following, to shorten the notation, we write R = k[s, t, x, y, z] = k[P1 × P2]. We will
use the letters “A,A′, Ai, . . .” to denote the elements in R(1,0), and the letters “B,B′, Bj , . . .”

for elements in R(0,1). These bihomogeneous linear forms define hyperplanes in P1 × P2.

Definition 3.2. We call a line in P1 × P2 the intersection of two hyperplanes defined by a
saturated ideal. More precisely, we only have two different kind of lines, depending on the
bidegree of the hyperplanes defining it: we call a horizontal line a line of type V(A,B) and a
vertical line a line of type V(B,B′).

Remark 3.3. Note that two different vertical lines are disjoint in P1 × P2. However, there is
a useful geometric connection to P4. A vertical line is defined by two linear forms in x, y, z.
Thus the ideal defines, in P4, a 2-dimensional linear space that contains the line λ defined by
x = y = z = 0. Let X be a union of vertical lines in P1 × P2. The projection of X to P2 (i.e.
to the second component) is a finite set of points in P2. In P4 the same ideal IX (viewed only
with the standard grading) defines a finite union of 2-planes whose intersection with the 2-plane
defined by s = t = 0 is also a finite set of points, a copy of the projection of X. In this sense
we can view IX as defining a cone in P4 over a finite set of points in P2, whose vertex is the
line λ (as opposed to being a point) and whose components are 2-planes (as opposed to lines).
So the cone notion is not useful in P1 × P2, but is useful if we are viewing the corresponding
subschemes of P4. As a result we sometimes refer to an ideal like IX as a “cone ideal.”

Note that the ideal generated by two different forms A,A′ is not saturated in P1 × P2. (For
instance, V(s, t) = ∅.) Whenever it is not necessary to make the type of line explicit, we
just use the letter L. A set of lines X is a finite collection of lines. We will write either
X = L1 + L2 + · · ·+ Ln ⊆ P1 × P2 or X = {L1, L2, . . . , Ln} ⊆ P1 × P2.

There is a natural partition on a set of lines X: we will write X = X1 ∪ X2 to denote the
partition of X into horizontal and vertical lines respectively.

Example 3.4. Let X be the set of lines in P1 × P2

X = V(s, x) ∪ V(t, y) ∪ V(x, y).

Then X consists of two horizontal lines, that are V(s, x) and V(t, y), and one vertical line V(x, y).
In Figure 2 a representation of such set.
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V(t, y)

V(s, x)

V(x, y)

Figure 2. The above set X.

Given a set of n lines X and positive integers m1, . . . ,mn, we let Z denote the subscheme
of P1 × P2 defined by the saturated bihomogeneous ideal

IZ =
⋂

Li∈X
(ILi)

mi ⊆ R.

We call Z a set of fat lines in P1 × P2 whose support is X = L1 +L2 + · · ·+Ln ⊆ P1 × P2. The
scheme Z will be denoted by Z = m1L1 +m2L2 + · · ·+mnLn.

Remark 3.5. The aim of this paper is to investigate which properties make a set of (fat) lines
ACM. In [7] and [9] the ACM property (or its failure) was studied for sets of points. Although
the ambient spaces in these two papers are different, and the descriptions of the ACM sets
of points are certainly different, they have a property in common. Given a set of points in a
multiprojective space, there is a complete intersection of points containing it. So its residual
is again a set of points. An ACM set of lines in P1 × P2 is a codimension 2 scheme, hence
viewed in P4 it is in the same liaison class as a complete intersection. One can hope that liaison
tricks will continue to work here. One powerful trick is the result of Gaeta that says that if
X ⊂ PN is ACM of codimension two then one can link in a finite number of steps, always using
complete intersections that are generated by minimal generators of the ideal, in such a way that
at each step the number of minimal generators drops by one, and the end result is a complete
intersection. Conversely, if such a sequence of links exists then X is ACM. If X ⊂ P1 × P2 is
viewed in P4, this can still be done using homogeneous complete intersections. However, if we
want to insist that our complete intersections are generated by bihomogeneous polynomials (so
all varieties in the sequence of links lie in P1 × P2), it might not be possible. (See for instance
[18, 19].) This is illustrated in the following example.

Example 3.6. Let

X = {V(x, y),V(s, x),V(s, y),V(t, x),V(t, y),V(t, z),V(t, x+ y + z),V(s+ t, y)}.
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V(s + t)

V(t)

V(s)

V(x, y)

Figure 3. A representation of the above set X.

Then one can check using Macaulay2 or CoCoA that X is ACM, with four minimal generators:

txy, sty, x2yz + xy2z + xyz2, and s2tx+ st2x.

These have bidegree, respectively, (1,2), (2,1), (0,4) and (3,1). In P4 it is clear that one can
link X using a complete intersection consisting of homogeneous polynomials of degrees 3 and 4
that are part of a minimal generating set. However, if we want to link using bihomogeneous
polynomials that are minimal generators, we claim that no such link exists. Indeed, note first
that the given generators have pairwise common factors. A bihomogeneous minimal generator
of degree 3 has to be one of the two given generators, since any linear combination is no longer
bihomogeneous. To get a bihomogeneous minimal generator of degree 4, the only possibility is
a polynomial L · sty + (s2tx + st2x) for some linear form L of type (1,0). Note that st would
be a factor of any such bihomogeneous form. Thus any such bihomogeneous polynomial has a
factor in common with both txy and sty, so no such link is possible.

One could envision an approach wherein we begin with a set of lines in P1 × P2 and we
somehow link in P4 without regard to having the residual be viewable as a subvariety of P1×P2,
looking only to whether or not we can arrive at a complete intersection (hence X is ACM). We
have not seen how to make such an approach work.

4. ACM sets of lines in P1 × P2: the starting case

In this section we focus on the ACM property for a set of fat lines Z in P1 × P2 satisfying
extra conditions. From now on we will work under the following hypothesis.

Notation 4.1. Let Z = Z1∪Z2 be the partition of a set Z of fat lines in P1×P2 into horizontal
and vertical lines respectively. Throughout this section we will assume that

(a) Z1 is a non-empty set of horizontal reduced lines;
(b) two different horizontal lines of Z are not contained in a hyperplane defined by a form

of degree (0, 1), i.e., if V(A,B),V(A′, B) ∈ Z, then (A) = (A′).

Remark 4.2. Note that a set of minimal generators of IZ2 is only in the variables x, y, z so IZ2

is the cone ideal of a set of (fat) points Y2 in P2.
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Remark 4.3. In this section we will use the connection between sheafification of a graded
module and the direct sum over all twists of the cohomology of the sheaf. This has a version
from local cohomology, but we will use the sheaf version. We refer to Hartshorne [16] for
sheafification, and to [18, Section 1.1] for the rest, but we recall the basic facts here that we will
use in this section.

If M is a graded R-module then M̃ denotes its sheafification. If F is a sheaf on Pn and i ≥ 0
is an integer then

H i
∗(F) =

⊕
t∈Z

H i(Pn,F(t)).

This is a graded R-module. In particular, if I is a homogeneous ideal and I = Ĩ then I = H0
∗ (I)

if and only if I is already saturated; in general, the module on the right is the saturation of I.
If

0→M1 →M2 →M3 → 0

is a short exact sequence of graded modules then

0→ M̃1 → M̃2 → M̃3 → 0

is a short exact sequence of sheaves, but this is only left exact on global sections in general, and
we get a long exact on cohomology.

Remark 4.4. Let Z be as in Notation 4.1. If |π1(Z1)| = 1 then all the horizontal lines of Z are
contained in the same plane, say V(A). Hence Z1 is a complete intersection of codimension 2.
Indeed, say Z1 = V(A,B1) ∪ · · · ∪V(A,BN ), we note that the ideal defining Z1 is IZ1 = (A,F ),
where F = B1B2 · · ·BN . Since degA = (1, 0) and degF = (0, N) the ideal (A,F ) is generated
by a regular sequence.

The next result make evident what connection there is between the saturation problem studied
in Section 2 and the ACM property of Z.

Theorem 4.5. Let Z be as in Notation 4.1 and assume |π1(Z1)| = 1. Let F be of the form in
Remark 4.4. Then Z is ACM if and only if IZ2 + (F ) is saturated in k[x, y, z].

Proof. Notice that if IZ2 + (F ) is artinian then it is not saturated, so the last condition includes
the statement that IZ2 + (F ) has height 2 in k[x, y, z].

We look at Z, Z1 and Z2 as unions of planes in P4. Consider the short exact sequence

(4.1) 0→ IZ → IZ1 ⊕ IZ2 → IZ1 + IZ2 → 0.

Since |π1(Z1)| = 1, we have IZ1 = (A,F ), a complete intersection (see Remark 4.4). In particular,
note that Z1 and Z2 are ACM unions of planes in P4 (see Remark 4.2).

Sheafifyng the exact sequence (4.1) and taking cohomology, we obtain the following exact
diagrams:

(4.2)

0→ IZ → IZ1 ⊕ IZ2 −→ [IZ1 + IZ2 ]sat → H1
∗ (IZ)→ 0

↘ ↗
IZ1 + IZ2

↗ ↘
0 0

and

(4.3) 0→ H1
∗ (IZ1 + IZ2)→ H2

∗ (IZ)→ 0.



10 G. FAVACCHIO AND J. MIGLIORE

Recall that F ∈ k[x, y, z]. Recall also that Z is ACM if and only if H1
∗ (IZ) = H2

∗ (IZ) = 0. Note

that the form A is a regular element in
R

IZ2 + (F )
and recall that

IZ1 + IZ2 = (A,F ) + IZ2 .

Suppose first that F does not vanish on any component of Z2. Then F + IZ2 is an unmixed (in
particular saturated) height 3 ideal in R, and (A,F ) + IZ2 = IZ1 + IZ2 is a saturated ideal of
height 4 in R. From (4.3) we know that

H2
∗ (IZ) = 0 if and only if H1

∗ (IZ1 + IZ2) = 0.

Since in the current situation IZ1 + IZ2 defines a zero-dimensional scheme, the first cohomology
module H1

∗ (IZ1 + IZ2) does not vanish. Thus Z has no hope of being ACM.
What we have just shown is that if H2

∗ (IZ) = 0 then IZ2 + (F ) has height 2 (either in R or in
k[x, y, z]). We claim that the converse is also true. Indeed, if IZ2+(F ) has height 2 in k[x, y, z], its
saturation defines a zero-dimensional scheme in P2, which is automatically ACM. Thus viewed
in R, this saturation defines an ACM surface in P4, so the (not necessarily saturated) ideal
IZ1 + IZ2 defines the hyperplane section, which is also ACM. But the first cohomology of the
ideal sheaf does not depend on whether the original ideal was saturated or not, so it vanishes
and hence H2

∗ (IZ) = 0 by (4.3).
Thus we can assume without loss of generality that IZ2 + (F ) has height 2 (either in R or

in k[x, y, z]) and that H2
∗ (IZ) = 0, and we focus on H1

∗ (IZ). From (4.2) we obtain

H1
∗ (IZ) = 0 if and only if IZ1 + IZ2 is saturated in R

if and only if IZ2 + (F ) is saturated in k[x, y, z].

(As before, an ideal in k[x, y, z] of height 2 is Cohen-Macaulay if and only if it is saturated if
and only if it is unmixed.) �

Remark 4.6. Theorem 4.5 shows that the ACM property of a set of (fat) lines Z = Z1 ∪ Z2

where |π1(Z1)| = 1 only depends on the saturation of the ideal (F ) + IZ2 ⊆ k[P2]. In P2, the
set Z2 can be viewed as a set of points and the form F defines a curve, C, that is a union of
lines. So, if the hypotheses of Proposition 2.1 are satisfied, the ACM property only depends on
the h-vectors of IZ2 , IY1 = (F ) + IZ2 and IY2 = IZ2 : IC . More precisely, Z is ACM if and only
if hZ2(τ) = hY1(τ) + hY2(τ − d) where d is the degree of F ∈ k[P2].

We introduce the following definition. Recall that s and t are the variables of degree (1, 0) in
the coordinate ring of P1 × P2, R = k[s, t, x, y, z].

Definition 4.7. Let Z be a set of lines in P1 × P2 as in Notation 4.1. We define

Ẑ = {V(s,B) | V(A,B) ∈ Z1 for some A} ∪ Z2.

The set Ẑ consists of all the vertical lines in Z, together with the projections of all the horizontal
lines in Z down to the hyperplane defined by V(s). See Figure 4 and Figure 5 for two examples.

Note that in Definition 4.7 the set Ẑ satisfies the hypotheses of Theorem 4.5; indeed we have
|π1(Ẑ1)| = 1.

Proposition 4.8. Let Z be as in Notation 4.1. If Z is ACM then Ẑ is ACM, and Z and Ẑ
share the same multigraded homological invariants.

Proof. Without loss of generality we can assume that the linear form t (one of the indeterminates)

is a regular element in R/IZ . If we look at Z and Ẑ as unions of planes in P4, the hyperplane

defined by t does not contain any component either of Z or of Ẑ, and so meets each such
component in a line.
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Let us examine the effect on both kinds of components of Z. A “horizontal” component is
defined by an ideal of the form (`i,mi) with `i ∈ k[s, t] and mi ∈ k[x, y, z], so the hyperplane
section defined by the linear form t is an ideal of the form (`i,mi, t) = (s, t,mi). A “vertical”
component is defined by an ideal of the form (Lj ,Mj), with Lj ,Mj ∈ k[x, y, z], so the hyperplane
section by t is defined by (Lj ,Mj , t).

Since Z is ACM (viewed in P4), we have that IZ + (t) is the saturated ideal of the hyperplane
section (a union of lines), which is ACM. The entire hyperplane section by t then has the
saturated ideal

IZ + (t) =
⋂
i

(s,mi, t) ∩
⋂
j

(Lj ,Mj , t),

since Z is ACM, and defines an ACM curve in P4.
On the other hand, up to saturation the latter is also the hyperplane section by t of Ẑ. Since

the curve is ACM, the union of planes Ẑ must also be ACM by [17, Proposition 2.1]. Thus

IẐ + (t) =
(⋂

i

(s,mi) ∩
⋂
j

(Lj ,Mj)
)

+ (t).

Finally, since Z and Ẑ are both ACM with the same hyperplane section, they must in fact have
the same homological invariants.

Up to this point we have only shown that Z and Ẑ have the same graded homological invari-
ants, by viewing Z and Ẑ as subschemes of P4. But in fact they began in P1×P2, so IZ and IẐ
have multigraded Betti numbers and in particular multigraded minimal generators. When we
reduce by the non-zerodivisor t, this preserves the multigrading. Hence we have the result. �

The following is an immediate consequence of Proposition 4.8. It gives us a necessary condition
for the Cohen-Macaulayness of Z. We denote by β0,(a,b)(IZ) the minimal number of generators
of IZ of degree (a, b).

Corollary 4.9. Let Z be a set of lines in P1 × P2 as in Notation 4.1. If Z is ACM, then
β0,(a,b)(IZ) = 0 for each a > 1.

Proof. Indeed this is true for Ẑ. �

Remark 4.10. Corollary 4.9 seems very surprising, at first glance. But it assumes from the
beginning that Z is ACM, and then that it satisfies condition (b) of Notation 4.1. Neither of
these is particularly restrictive by itself, but the point is that the combination is restrictive.
Still, having both conditions does not by any means imply that Z = Ẑ. For instance, consider
Example 3.4. One might think at first that there is a minimal generator of type (2, 1) (e.g. stx),
but in fact one can check that the ideal has two minimal generators of bidegree (1, 1) and one
of bidegree (0, 2).

Furthermore, starting with a Z that is ACM and satisfies Notation 4.1, it is easy to use
basic double linkage to produce a new Z ′ that is ACM and does not satisfy β0,(a,b)(IZ) = 0
for each a > 1, but we lose the property given in Notation 4.1 (b). For instance, returning to
Example 3.4, one could form (s+ t) · IZ + (xy), which is ACM and has a minimal generator of
bidegree (2,1); but now it does not satisfy Notation 4.1.

We do not know if the converse of Corollary 4.9 is true. So we pose the following question:

Let Z be as in Notation 4.1. Assume Ẑ is ACM and β0,(a,b)(IZ) = 0 for each
a > 1. Is Z ACM?

However, the next example shows that, without the condition on β0,(a,b)(IZ), Ẑ ACM does not
imply Z ACM.
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Example 4.11. Let Z the set of lines in P1 × P2 defined by the ideal IZ = (t, x) ∩ (s, y). The

set Z is clearly not ACM. However, Ẑ, defined by IẐ = (s, x) ∩ (s, y), is ACM.

V(s, y)

V(t, x)

(a) The set Z.

V(s, y) V(s, x)

(b) The set Ẑ.

Figure 4. Example 4.11.

From Proposition 4.8 we know that the ACM property of Ẑ is a necessary condition for the
ACM property of Z. Example 4.11 shows that it is not sufficient. The following lemma will give
us another necessary condition.

Lemma 4.12. Let Z be an ACM set of lines as in Notation 4.1. Let V(A,B),V(A′, B′) ∈ Z be
two horizontal lines and A 6= A′. Then V(B,B′) ∈ Z.

Proof. Look at Z as a set of planes in P4. If V(B,B′) /∈ Z then Z is not locally Cohen-Macaulay
at the point defined by the ideal p = (A,A′, B,B′), hence Z is not ACM. Contradiction. �

Then it is natural to give the next definition.

Definition 4.13. Let Z be as in Notation 4.1. We say that Z is v-connected if, for each
V(A,B),V(A′, B′) ∈ Z1 where A 6= A′ and B 6= B′, we have V(B,B′) ∈ Z2.

In the next example we show that this property is still not enough to ensure the ACM property.

Example 4.14. Let X be the set of lines in P1 × P2 defined by the ideal

IX = (s, x) ∩ (s, y) ∩ (t, x+ y) ∩ (x, y).

Note that X is v-connected. Moreover, from Theorem 4.5, the set X̂ defined by

IX̂ = (s, x) ∩ (s, y) ∩ (s, x+ y) ∩ (x, y)

is ACM.
According to CoCoA, X is not ACM. A computer experiment shows that the set of fat lines,

Z, whose ideal is
IZ = (s, x) ∩ (s, y) ∩ (t, x+ y) ∩ (x, y)2

is ACM. Thus that Z is a (non-reduced) ACM set of lines whose support X is not ACM. The
next result explores this idea further.

Theorem 4.15. Let Z = V(A1, B1)+ · · ·+V(An, Bn)+m ·V(B1, B2) be a set of lines of P1×P2

such that

(1) V(An−1) 6= V(An) (i.e. not all the horizontal lines are in the same plane);
(2) V(Bi) 6= V(Bj) for i 6= j, (i.e. B1, · · · , Bn define different planes);
(3) V(B1, . . . , Bn) = V(B1, B2), (i.e. B1, . . . , Bn define planes in the pencil containing

V(B1, B2), therefore V(B1, B2) = V(Bi, Bj) for all i 6= j).

Then Z is ACM if and only if m ≥ n− 1.
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V(t)

V(s)

V(x, y)

(a) The set X.

V(s)

V(x, y)

(b) The set X̂.

Figure 5. Example 4.14.

Proof. First assume n = 2, i.e., Z = V(A1, B1) + V(A2, B2) +m · V(B1, B2).

(⇒) By Lemma 4.12, Z ACM implies m ≥ 1.
(⇐) On the other hand, take m ≥ 1 and consider the following short exact sequences

(4.4) 0→ IZ → (A1, B1)⊕ [(A2, B2) ∩ (B1, B2)
m]→ (A1, B1) + [(A2, B2) ∩ (B1, B2)

m]→ 0,

and

(4.5) 0→ (A2, B2) ∩ (B1, B2)
m → (A2, B2)⊕ (B1, B2)

m → (A2, B2) + (B1, B2)
m → 0.

Look at (4.5) and note that (A2, B2) + (B1, B2)
m = (A2, B2, B

m
1 ). Thus, the ideal

(A2, B2) + (B1, B2)
m defines an ACM scheme of height 3. Since the schemes defined by

(A2, B2) and (B1, B2)
m are ACM of height 2, then a mapping cone argument gives that

the ideal (A2, B2)∩ (B1, B2)
m has projective dimension 2. Now consider (4.4), and note

that

(A1, B1) + [(A2, B2) ∩ (B1, B2)
m] = (A1, B1, B

m
2 ),

so it defines an ACM scheme of height 3. Moreover, the module in the middle of the
sequence has projective dimension 2, hence Z is ACM.

Now we proceed by induction, the base case having just been proven. Assume that the statement
is true for n − 1 ≥ 1 and assume that n ≥ 3. That is, assume that if Z has n − 1 reduced
components, then Z is ACM if and only if m ≥ n− 2. Set

Z ′ = V(A2, B2) + · · ·+ V(An, Bn) +mV(B1, B2)

and consider the following short exact sequence:

(4.6) 0→ IZ → (A1, B1)⊕ IZ′ → (A1, B1) + IZ′ → 0.

(⇐) If m ≥ n− 1 then, by the inductive hypothesis, Z ′ is ACM. Thus, in order to prove that
Z is ACM, by the sequence (4.6), it is enough to show that (A1, B1) + IZ′ defines an
ACM variety of height 3. We show that (A1, B1) + IZ′ = (A1, B1, B

m
2 ).

• (A1, B1) + IZ′ ⊆ (A1, B1, B
m
2 ). Indeed, if F ∈ IZ′ then F ∈ (B1, B2)

m ⊆ (B1, B
m
2 );

• (A1, B1)+IZ′ ⊇ (A1, B1, B
m
2 ). We first claim that the form F = Bm−n+2

2 ·B3 · · ·Bn

belongs to IZ′ . By hypotheses 2) and 3), for j > 3 we have Bj = λjB1 + µjB2,
where λj , µj 6= 0. Thus, F = F ′B1 + aBm

2 ∈ IZ′ and therefore Bm
2 ∈ (A1, B1) + IZ′ .



14 G. FAVACCHIO AND J. MIGLIORE

(⇒) Assume that Z is ACM. View Z as a set of planes in P4. By the sequence (4.6), the ideal
(A1, B1) + IZ′ is saturated in k[P4]. Without loss of generality we can assume the linear
form z corresponds to a general form of degree one in k[x, y, z], so that the intersection
of Z with V(z) is a proper hyperplane section of Z in P4, all but one component of
Z ∩ V(z) are reduced, and (B̄1), . . . , (B̄n) are all different in R/(z). Denoting by J the
ideal defining Z ∩V(z) in P3, we have that J ∼= (IZ + (z))/(z) and it is Cohen-Macaulay
in k[P3] ∼= R/(z). Let us denote by Y the scheme defined by J in P3. Hence Y is an
ACM set of lines (one non-reduced) in P3; precisely

J = (A1, B̄1) ∩ · · · ∩ (An, B̄n) ∩ (B̄1, B̄2)
m

where V(B̄j) = V(Bj) ∩ V(z). (Recall that Ai ∈ k[s, t] while Bj ∈ k[x, y, z], so abusing
notation we will view Ai ∈ k[P3].) We set

(4.7) J ′ = (A2, B̄2) ∩ · · · ∩ (An, B̄n) ∩ (B̄1, B̄2)
m

and denote by Y ′ the scheme defined by J ′, and by λ the line defined by (A1, B̄1).
Consider the short exact sequence

(4.8) 0→ J → (A1, B̄1)⊕ J ′ → (A1, B̄1) + J ′ → 0.

Since J defines an ACM curve Y , sheafifying and taking the long exact sequence in
cohomology gives us that the ideal (A1, B̄1) + J ′ is saturated in k[P3]; in particular it
has height 3, and

(4.9) (A1, B̄1) + J ′ = (A1, B̄1, B̄
u
2 ).

What is u? We have by (4.9) that u is the minimum such that [(A1, B̄1) + J ′](0,u) 6=
[(A1, B̄1)](0,u) . Since B̄2B̄3 . . . B̄n is the only minimal generator of (A2, B̄2)∩. . .∩(An, B̄n)
with bidegree (0, v), the equation (4.7) implies that u = max(n − 1,m). In particular,
u ≥ n− 1.

Now we assume by contradiction that m < n− 1. Consider the two forms

F1 = B̄2 · · · B̄n−2B̄n−1An and
F2 = B̄2 · · · B̄n−2An−1B̄n.

Both F1 and F2 have degree (1, n− 2) and both belong to J ′, and so,

F1, F2 ∈ (A1, B̄1) + J ′ = (A1, B̄1, B̄
u
2 ).

By hypothesis (2), F1, F2 /∈ (B̄1). By hypothesis (1), at least one among F1 and F2 does
not belong to (A1), say F1. This means that F1 ∈ (B̄1, B̄

u
2 ) and hence B̄2 · · · B̄n−1 ∈

(B̄1, B̄
u
2 ), so u ≤ n− 2 which contradicts what we have shown above. Therefore we have

shown m ≥ n− 1 as desired.

�

As a corollary, Theorem 4.15 can be translated to a result about lines in P3.

Corollary 4.16. Let λ1 and λ2 be two skew lines in P3. Let α1, . . . αn and β1, . . . βn be planes
containing λ1 and λ2 respectively, such that

• βi 6= βj for any i 6= j;
• αn−1 6= αn.

Set `i = αi∩βi. Then, the set of lines Y = `1+ · · ·+`n+m ·λ2 is ACM if and only if m ≥ n−1.
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Proof. We have k[P4] = k[s, t, x, y, z] as usual. In Theorem 4.15, viewing the configuration as a
union of planes in P4 (one not reduced), the Ai are hyperplanes vanishing on the 2-plane defined
by s = t = 0 and (without loss of generality, after possibly a change of variables) the Bi can be
taken to be hyperplanes vanishing on the 2-plane defined by x = y = 0. In our current setting,
without loss of generality (after possibly a change of variables) we can take k[P3] = k[s, t, x, y],
and set λ1 to be the line defined by s = t = 0 and set λ2 to be the line defined by x = y = 0.
Note that z is a non-zerodivisor for R/IZ in Theorem 4.15. Then Y is the hyperplane section
of Z cut out by the hyperplane defined by z. By [17, Proposition 2.1], Y is ACM if and only if
Z is ACM. The result follows immediately. �

Theorem 4.15 leads us to introduce a new definition.

Definition 4.17. Let Z be as in Notation 4.1. Assume that whenever V(A,B),V(A′, B′) ∈ Z1

with A 6= A′ and B 6= B′, the vertical line V (B,B′) meets n horizontal lines of Z (where
the integer n ≥ 2 depends on the choice of B and B′). We say that Z is fully v-connected if
(n−1)V(B,B′) ⊆ Z, i.e., for each such B,B′ the line V(B,B′) is contained in Z with multiplicity
at least n− 1.

It was shown in [5, Lemma 4.1] that any set of points in P1 × P1 is locally a complete
intersection, and hence locally Cohen-Macaulay. In the next theorem we characterize the local
Cohen-Macaulay property of Z in terms of the fully v-connected property.

Theorem 4.18. Let Z = Z1 ∪ Z2 be a set of lines of P1 × P2 such that the assumptions of
Notation 4.1 hold, i.e.

(a) Z1 is a non-empty set of reduced horizontal lines;
(b) two different horizontal lines of Z are not contained in a hyperplane defined by a form

of degree (0, 1), i.e. if (A,B), (A′, B) ∈ Z1 then (A) = (A′).

Then, Z is locally Cohen-Macaulay if and only if Z is fully v-connected.

Proof. First assume that Z is locally Cohen-Macaulay. Let (B,B′)m define a vertical fat line mL
in Z. It is not restrictive to assume that (B,B′) = (x, y), and also that z is a regular element
in R/IZ . Let V(A1, B1), . . . ,V(An, Bn) ∈ Z1 be the horizontal lines meeting L. Let P ∈ P4

be the point defined by IP = (s, t, x, y). In particular, (x, y) = (B1, . . . , Bn), where B1, . . . , Bn

define different hyperplanes. Let W = V(A1, B1) + · · ·+ V(An, Bn) +mL be the corresponding
subscheme of Z. Note that W satisfies the hypotheses of Theorem 4.15, so W is ACM if and
only if m ≥ n− 1.

Notice that all components of W (viewed in P4) contain the point P , and no other component
of Z does. Thus since the components of W are linear, W is the cone in P4 with vertex P
over a curve, C, in the hyperplane P3 defined by z = 0, and C is precisely of the form given in
Corollary 4.16. Now, since Z is locally Cohen-Macaulay, in particular at P , we conclude that C
is ACM, and hence by Corollary 4.16 we have that m ≥ n− 1. Since this holds for each vertical
line (noting that m and n will change for different vertical lines), Z is fully v-connected.

Conversely, assume that Z is fully v-connected. Certainly at any smooth point of Z (viewed
in P4), Z is locally Cohen-Macaulay. Similarly, at the intersection of two or more horizontal
lines that do not have a vertical line through the point of intersection, locally it is a complete
intersection, hence locally Cohen-Macaulay.

Although the vertical (possibly fat) lines are disjoint in P1×P2, the corresponding (fat) planes
do meet in P4. The intersection of any finite number of such planes is one-dimensional. Still,
this is a cone over a set of (fat) points in P2, so it is ACM and hence is locally Cohen-Macaulay
along this locus.
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Consider the intersection in P1 × P2 of a (fat) vertical line of multiplicity m and a collection
of n horizontal lines. Without loss of generality assume that the vertical line has support
given by (x, y). Let J = (s, t, x, y). Note that the ideal J defines a point P in P4. Let
W = V(A1, B1)+ · · ·+V(An, Bn)+mL be the subscheme of Z corresponding to the components,
viewed in P4, containing P . Note that W satisfies the hypotheses of Theorem 4.15, so W is
ACM if and only if m ≥ n− 1.

Since the components of W are linear, W is the cone in P4 with vertex P over a curve, C,
in the hyperplane P3 defined by z = 0 (which is a non-zerodivisor), and C is precisely of the
form given in Corollary 4.16. Since Z is fully v-connected, we know that m ≥ n− 1. Thus, by
Corollary 4.16, C is ACM. Hence Z is locally Cohen-Macaulay at P . �

Remark 4.19. Let Z = Z1 ∪ Z2 be a set of lines of P1 × P2 such that the assumptions of
Notation 4.1 hold. We wonder which hypotheses ensure Z to be ACM. Note that the fully
v-connected condition is not enough. Take for instance Z = V(s, x)∪V(y, z); it trivially satisfies

Definition 4.17 and it is not ACM. So, as shown in Proposition 4.8, we at least need to ask Ẑ to
be ACM. It would be interesting to show if these two conditions, Z fully v-connected together
with Ẑ ACM, are sufficient to guarantee the ACM property for Z.
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[5] S. Cooper, G. Fatabbi, E. Guardo, A. Lorenzini, J. Migliore, U. Nagel, A. Seceleanu, J. Szpond, and A. Van
Tuyl. Symbolic powers of codimension two Cohen-Macaulay ideals, Communications in Algebra, (2020).

[6] D. Eisenbud and A. Sammartano. Correspondence scrolls. Acta Mathematica Vietnamica, 44(1):101–116,
(2019).

[7] G. Favacchio, E. Guardo, and J. Migliore. On the arithmetically cohen-macaulay property for sets of points in
multiprojective spaces. Proceedings of the American Mathematical Society, 146(7):2811–2825, (2018).

[8] G. Favacchio, E. Guardo, and B. Picone. Special arrangements of lines: Codimension 2 ACM varieties in
P1 × P1 × P1. Journal of Algebra and Its Applications, 18(04):1950073, (2019).

[9] G. Favacchio and J. Migliore. Multiprojective spaces and the arithmetically cohen–macaulay property. Mathe-
matical Proceedings of the Cambridge Philosophical Society 166(3):583–597, (2019).

[10] J. Gao, Y. Li, M. C Loper, and Amal Mattoo. Virtual complete intersections in P1×P1. Journal of Pure and
Applied Algebra. 225(1), (2021).

[11] D. Grayson and M. Stillman. Macaulay 2–a system for computation in algebraic geometry and commutative
algebra, 1997.

[12] E. Guardo, B. Harbourne, A. Van Tuyl. Fat lines in P3: powers versus symbolic powers. Journal of Algebra,
390, 221-230, (2013).

[13] E. Guardo, B. Harbourne, A. Van Tuyl. Symbolic Powers Versus Regular Powers of Ideals of General Points
in P1 × P1. Canadian Journal of Mathematics, 65(4), 823-842, (2013).

[14] E. Guardo and A. Van Tuyl. Arithmetically Cohen-Macaulay Sets of Points in P1 × P1 Springer, 2015.
[15] E. Guardo and A. Van Tuyl. ACM sets of points in multiprojective space. Collectanea mathematica. 59(2),

191–213, (2008)
[16] R. Hartshorne, “Algebraic Geometry,” Springer-Verlag, Graduate Texts in Mathematics 52 (1977).
[17] C. Huneke and B. Ulrich. General hyperplane sections of algebraic varieties. J. Algebraic Geom. 2 (1993),

no. 3, 487–505.
[18] J. Migliore. Introduction to liaison theory and deficiency modules, volume 165. Birkhäuser, Progress in Math-
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