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Multidimensional Models for Double-Swept

Heliopter Blades

Matteo Filippi

1

, Enrio Zappino

2

and Erasmo Carrera

3

Politenio di Torino, Torino, To, 10129, Italy

This paper presents multidimensional �nite element models for the analyses of

modern heliopter blades. The methodology enables �nite elements with di�erent di-

mensionality to be joined together in a onsistent fashion. The formulation exploits

the unique feature of a speial lass of re�ned beam elements, whih have pure dis-

plaements as unknowns. This property makes it possible to onnet beam and solid

elements at node levels without the need for ompliated mathematial formulations.

Various problems in the modelling of realisti blades an be takled with ease suh as

the appliation of non-lassial onstraints. All physial surfaes of the struture an

be modeled regardless of whih �nite element is utilized for disretizing the blade por-

tion. Thus, three-dimensional stress states an be readily obtained by avoiding further

post-proessing operations. The multidimensional models have been veri�ed with ex-

perimental results and validated with beam and shell �nite element solutions available

in the literature by onsidering tip-swept blades with retangular ross-setions. The

methodology has been then applied to a double-swept blade with a realisti pro�le.
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I. Introdution

Aross the last 30 years, various researh programmes, among others the British Experimental Rotor

Programme - BERP, the Advaned Geometry Blade, the Advaned Tehnology Rotor, the Etude d'

un Rotor Aéroaoustique Tehnologiquement Optimisé - ERATO, and the Blue-Edge blade, aimed

at evaluating the e�ets of many parameters suh as the tip shape, tapered pro�les, and lamination

shemes on both aerodynami and strutural harateristis of modern heliopter blades [1℄. The

test ampaigns have motivated the development of new modelling tehniques able to reprodue the

experimental data numerially. Although the three-dimensional (3D) �nite element (FE) approah

would be the most reliable method, its use is often impratiable, espeially during the preliminary

design phase, when many stress, dynami, and aerodynami analyses must be arried out. There-

fore, the need of a omprehensive and omputationally e�ient tool for the design ativities justi�es

the idea of adopting models with smaller dimensionality than 3D models, namely the beam (or 1D)

and plate/shell (or 2D) formulations [2℄.

Generally speaking, the 1D theories may be ategorized aording to whih proedure is used to ex-

press the relations between the generalised stresses and strains above the ross-setion [3℄. The �rst

ategory inludes the axiomati theories in whih the primary variables are approximated using a

ertain number of ross-setional oordinate funtions to apture as many deformation mehanisms

as possible [4, 5℄. The axiomati formulations are, therefore, impliitly based on some kinemati

assumptions depending on the problem harateristis, e.g. the ross-setion deformation modes,

and the material properties. The seond group of formulations aims at removing suh hypotheses

through rigorous ross-setional analyses. One of the pioneering works is Ref. [6℄, where Giavotto

et al. proposed a methodology for the alulation of sti�ness and stresses of beams with arbitrary

pro�les, made of anisotropi and non-homogeneous materials. The proedure allowed the warping

parameters and the global strains of entral beam setions, viz not in�uened by the end zones

e�ets, to be determined by solving a 2D FE problem de�ned above the ross-setion. The fully

populated sti�ness matries omputed with these analyses were then integrated into 1D formu-

lations to perform global analyses of blade-like strutures [7, 8℄. Hodges and oworkers provided

other remarkable ontributions in this ontext with the development of the ode VABS (Variational-
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Asymptotial Beam Setional Analysis) [9℄. Based on the variational asymptoti method (VAM)

proposed by Berdihevskii [10℄, the 3D problem is being split into two parts: the (mostly linear)

ross-setional analysis and the nonlinear, geometrially exat equations of motion along the longi-

tudinal axis of the beam. The best set of setional elasti onstants, whih are input parameters

for the beam formulation, are obtained through an asymptoti analysis above the arbitrary-shaped

ross-setion [2℄. The method enables three-dimensional displaement, stress, and strain �elds to

be reovered [11, 12℄ with a signi�ant saving of omputational ost. The VABS methodology has

been inluded in many 1D odes suh as the Rotorraft Comprehensive Analysis System (RCAS)

with the Generalized Composite Beam (GCB) element [13, 14℄ and the �exible multibody softwares

DYMORE [15℄, and CAMRAD II [16℄.

Thanks to their auray and omputational e�etiveness, models using VABS-based 1D elements

an be onsidered as the state-of-the-art in solving strutural and aeroelasti problems for rotary-

wing appliations. The use of lassial beam formulations, however, may redue the appliability

of suh a sophistiated paradigm in some ases. Systemati omparisons with 3D [14℄ and 2D [17℄

FE solutions demonstrated that 1D results an di�er to moderate, but not negligible, extent when

highly-swept tip blades with a length-to-hord ratio lower than ten are evaluated. Furthermore, the

need for simulating either realisti boundary onditions or nonuniform strutures an exaerbate the

limitations of these redued tehniques. For this reason, models joining both solid and shell formu-

lations to 1D FE have been reently developed [17�19℄. The onnetion of elements with di�erent

dimensionality may generate inonsistenies in the displaement and stress �elds at the interfae.

Beam elements are usually based on lassial kinemati models, e.g. the Timoshenko beam model,

that annot predit omplex displaement �elds. The link of these elements with three-dimensional

FE requires the imposition of ompatibility onditions to ensure the ontinuity of the displaement

�elds. To this end, multi-point onstraints suh as rigid body elements, transition elements, and

variational oupling tehniques have been oneived. Suh methodologies provide satisfatory re-

sults in terms of global displaements and natural frequenies, but they may predit erroneous stress

distributions at the interfae level [20, 21℄.

This paper proposes a onsistent methodology for joining 3D and 1D �nite elements, whih does not
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Fig. 1 Present variable kinemati model.

require either ompliated mathematial manipulations or ad − hoc assumptions. The proedure

exploits the feature of a partiular 1D kinemati formulation that uses only displaements as degrees

of freedom. This property allows one to join diretly the 1D and 3D elements by summing the elas-

ti and inertial ontributions of nodes shared by the two models. Figure 1 shematially illustrates

the idea behind the proedure. The enhaned apabilities of the re�ned kinemati one-dimensional

models make them able to predit omplex ross-setional deformations and, as a onsequene,

the oupling does not produe any stress onentration. The proposed multidimensional tehnique

enables non-lassial boundary onditions at the root blade to be imposed without the need of

disretizing the region with 3D �nite elements. The inherent three-dimensional nature of the 1D

formulation allows one to model all physial surfaes of the struture and no post-proessing proe-

dure is required to reover the three-dimensional displaement, strain and stress �elds. Both solid

and beam �nite elements are derived with ease by using a uni�ed formulation.

II. Theoretial setion

The multidimensional models are developed using the formalism of the Carrera Uni�ed Formulation

(CUF). CUF enables low- and high-�delity strutural theories to be generated automatially. The

methodology is extensively used to oneive and ompare di�erent kinemati theories by going

beyond the limitations of traditional 1D and 2D strutural models, suh as lassial and �rst-order

shear deformation theories. In this work, the indiial notation of CUF has also been adopted for

4



developing Lagrange-type solid elements in order to provide a omprehensive tool for generating

multidimensional FE models. The following setions present the uni�ed formulation for 1D and 3D

�nite elements, the equations of motion for rotating strutures, and the assembling proedure.

Derivation of solid and beam �nite elements via an uni�ed formulation

Aording to the dimensionality of the onsidered �nite element, the three-dimensional displaement

�eld u(x, y, z, t) = (ux uy uz) is being approximated as:

3D − FE −→ u(x, y, z, t) =uiτ (t) ·Ni(x, y, z) · 1 i = 1 . . .N3D
n

1D − FE −→ u(x, y, z, t) =uiτ (t) ·Ni(y) · Fτ (x, z) τ = 1 . . .M ; i = 1 . . .N1D
n (1)

where Ni are the lagrangian 1D and 3D FE shape funtions, Fτ are the funtions used to approxi-

mate the solution above the beam ross-setion (x− z plane), and uiτ (t) is the vetor of unknown

oe�ients. The index i refers to the �nite element approximation and it ranges from 1 to the

maximum number of elemental nodes, whih is N3D
n for the solid and N1D

n for the beam element.

The subsript τ is related to the expansion used for de�ning the ross-setional kinematis and its

maximum value, M , is an input parameter of the analysis. Although several funtions Fτ an be

utilized, the onnetion between 1D and 3D �nite elements is partiularly simple when Lagrange-

type expansions (LE) are used. In this ase, the beam kinematis is obtained as ombinations of

Lagrange polynomials that are de�ned within sub-regions (or elements) delimited by arbitrary num-

bers of points (or nodes). The number of points determines the order of the polynomial. Bi-linear

(L4), bi-quadrati (L9), and bi-ubi expansions (L16) are obtained with four, nine and sixteen

nodes, respetively. For the nine-point element (L9), the interpolation funtions are

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s

2 − s sτ )(1− r2) + 1

2
r2τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1 − s2) τ = 9

(2)
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where r and s vary from −1 to +1, and rτ and sτ are the oordinates of the nine points in the

natural oordinate system. The displaement �eld related to a 1L9 element is

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ ...+ F9 ux9

uy = F1 uy1
+ F2 uy2

+ F3 uy3
+ ...+ F9 uy9

uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(3)

The unknowns (ux1
, ..., uz9) have the same dimension and represent the translational displaements

of the nine points of the element. Figure 2 shows a generi ross-setion modelled using nineteen

L9 elements (19L9).

Fig. 2 Lagrange-type disretization of a generi ross-setion.

For the 3D-FE (see Equation (1)), only the number of elemental nodes (N3D
n ) de�nes the type

of the �nite element, sine all Fτ funtions are equal to 1. In this ase, tri-linear (HEXA-8) and

tri-quadrati (HEXA-27) hexahedral elements are derived by using 8 and 27 nodes, respetively.

Governing Equations for rotating strutures

The formulation is valid for small displaements, rotations, and amplitude vibrations, as well as for

perfetly elasti materials. The assumption related to the geometrial linearity must be onsidered as

a simpli�ation of the problem rather than a limit of the theory. A fully 3D geometrial nonlinear

formulation within the urrent framework was already presented and validated in Ref. [22℄ for

dynami analyses of rotating shell-like strutures. Here, it has been assumed that the onsidered

strutures do not signi�antly deform under the ation of the entrifugal loads. This hypothesis

holds for many pratial ases, even though it ould be too restritive when other loading onditions

are onsidered (gravitational fore at low rotational speeds). However, the sti�ening ontribution

due to the entrifugal fores is taken into aount by omputing the linearized geometri sti�ness
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matrix.

The equations of motion are derived through the Priniple of Virtual Work (PVW), whih establishes

the equilibrium ondition between the virtual variations (denoted with δ) of works done by elasti

deformations (δLint), inertia (δLine) and external fores (δLext)

δLint = δLine + δLext (4)

The strain energy an be written as:

δLint =

∫

V

δεTσ dV (5)

where ε and σ are the strain and stress vetors, respetively, and V is the initial volume of the body.

By using Equation (1), the internal work beomes:

δLint = δuT
js

(∫

V

FsNjb
T
CbNiFτdV

)

︸ ︷︷ ︸

Kijτs

uiτ = δuT
jsK

ijτs
uiτ (6)

The matrix C ontains the oe�ients of linear elasti materials and the matrix b is the linear

di�erential operator that relates the three displaements to the strain omponents. It is possible

to verify that K
ijτs

is a 3-by-3 matrix for both solid and beam �nite elements. The expressions

of its terms do not depend either on the type and the number of funtions used in the kinemati

expansion. The global matries are obtained by permuting the four indexes i, j, τ and s, regardless

of whih �nite element is used. More details about the derivation of the fundamental nuleus an

be found in Ref. [23℄.

The virtual work done by the inertial fores, FI , is

δLine =

∫

V

δuT
FI dV (7)

Displaements and orresponding time derivatives, namely the veloities u̇ and aelerations ü, are

expressed with respet to a oordinate referene frame attahed to the blade that rotates at onstant

speed Ω. Aordingly, the inertial fores are
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(8)

The vetor r = [xe ye, 0] de�nes the distane of a generi point with respet to the rotational axis.

By substituting Equation (8) into Equation (7), the fundamental nulei of the mass M
ijτs

, Coriolis

G
ijτs

, entrifugal K
ijτs
Ω

matries, and the entrifugal fores vetor F
js
Ω

an be obtained with ease.

On the other hand, the geometri sti�ness matrix Kσ derives from the geometri strain energy

de�ned as the produt between the nonlinear part of strains, εnl, and the initial stress vetor, σ0.

To ompute the rotation-indued stresses, a stati linear analysis is arried out

(K0 + KΩ)|Ω=1u = FΩ|Ω=1 (9)

It should be underlined that the three-dimensional stress state is used to ompute the geometri sti�-

ness matrix, Kσ. The natural frequenies (ω) and eigenvetors (ū) assoiated with small-amplitude

vibrations are obtained by assuming an harmoni solution (u = ū e
√

−1ωt
) for the following homo-

geneous equation that is solved through the state-spae transformation tehnique

Mü + Gu̇ + (K0 + Ω2
Kσ + KΩ)u = 0 (10)

A. The assembling proedure: a simple example

The strutural on�guration of Fig. 3 is onsidered to explain the assembling proedure used. A

prismati struture has to be modeled with a beam and a solid element. The beam uses a 4-node

Lagrange element (L4) over the ross-setion and a two node beam element along the longitudinal

axis. Figure 3 shows that the re�ned beam model has four nodes in eah ross-setion. The unknown

displaements are, therefore, uiτ=(ux uy uz)iτ with i = 1, 2 and τ = 1, 2, 3, 4. On the other hand,

the solid element has eight nodes in whih the displaements have to be omputed.

Sine both models have the same unknowns, the imposition of ompatibility between the shared
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ui =u11

u12

u13

u14
u21

u24

u22

u23

u1
u3

u2

u4

u6

u7

u8

i=1

i=2

Beam nodes

=1 =2

=3=4

Cross-section 

nodes

Re ned 1D model

3D model

FEM modelPhysical model

Fig. 3 Example of a multidimensional model: onnetion between a beam and a solid elements.

uiτ=u11

u12

u13

u14
u21

u24

u22

u23

u11

u14

u21

u24

...
...

u1

u4
u5

u8

...
...

Kijτs u1 u3

u2

u4

u6

u7

u8

i=1

i=2

τ=1

τ=...

τ=4

Fig. 4 Assembly of a multidimensional model where the elements have only displaements as

unknowns.

nodes is straightforward:

u21 = u1, u22 = u2, u23 = u3, u24 = u4; (11)

The onditions shown in Equation 11 an be used during the assembly proedure to identify the

nodes that must be onneted (see Fig. 4). The matries of the two elements an be used to build

the global matrix of the whole struture merely summing the ontributions of the shared nodes.

Sine the assembled mathematial model has twelve strutural nodes (SN), the degrees of freedom

are 36 (DoF = SN × 3).
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III. Numerial appliations

A. Veri�ation and Validation

To validate the urrent approah, the rotating swept-tip metalli blade shown in Fig. 5 was onsid-

ered. The dimensions of the elasti portion were L = 0.8001 m, s = 0.1524 m, t = 1.6002 × 10

−3

m, and b = 2.54 × 10

−2
m, while, the length of the rigid hub was r = 6.35 × 10

−2
m. The material

properties taken from Ref. [24℄ were: Young' s modulus E =73.08 GPa, Poisson' s ratio ν = 0.325,

and density ρ = 2682 kg m

−3
.

Fig. 5 Referene frame and geometry of the antilever beam.

The mathematial model onsisted of both 1D and 3D �nite elements. The straight portion and

the tip of the blade were disretized using, respetively, seven and two 4-node beam elements (B4),

while, four 27-node hexahedral solid elements (HEXA-27) were utilized for the transition region. To

ensure the onnetion between the 1D and 3D elements, two 9-node Lagrange elements (L9) were

used to model the beam ross-setion as shown in Fig. 6. The model had 1440 degrees of freedom.

Fig. 6 Mathematial model for the swept-tip blade.
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Figure 7 shows the frequenies omputed at Ω = 750 rpm for di�erent sweep angles of the tip.

The frequenies were related to mode shapes dominated by both �exural ('B') and torsional ('T')

deformations. For omparison purposes, the experimental data ('Exp.') presented in Ref. [25℄ and

the theoretial results obtained with a geometrially exat beam formulation ('NLB') developed

in Ref. [24℄ have been reported. The omparisons revealed a good agreement between the three

approahes, espeially for mode shapes dominated by �exural deformations. For the torsional mode,

some disrepanies between the NLB and the other two sets of results may be observed for the highest

sweep angles.

Fig. 7 Frequenies vs. tip sweep angle at 750 (rpm). 'B': bending mode, 'T': torsional mode.

On the other hand, the frequeny variations with respet to the rotational speed are shown in Fig.

8 for Λ = 45 deg. Also for this ase, the omparisons with experimental values of Ref. [25℄ at Ω =

0, 500, and 750 rpm have been provided.

In the seond appliation, the hub radius, the straight portion, and the swept tip length were

assumed to be equal to r = 0.6985, L = 0.1651, and s = 0.1524, respetively. The ross-setion

dimensions were not modi�ed with respet to the previous example, while the following material

properties were used: E = 68.947 GPa, ν = 0.3, and ρ = 2712 kg m

−3
. The outlined on�guration
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Fig. 8 Frequenies vs. Rotational speed for Λ = 45 (deg). Experimental data taken from Ref.

[25℄.

was analyzed in Refs. [17℄ and [26℄ to ompare the RCAS-GBC nonlinear 1D formulation with 2D

and 3D solutions. The authors observed relevant disrepanies between the di�erent approahes,

espeially for the highest sweep angles. The mathematial models depited in Fig. 9 were utilized

to investigate those mismathes.

Fig. 9 Di�erent mathematial models for the short swept-tip blade.
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Model F1 F2 F3 F4 F5 F6 DoF

2D FE solutions

(1) 14.273 68.901 219.36 219.82 323.05 487.92 5346

(2) 16.533 71.319 223.94 248.10 367.11 571.66 5346

Present

(A) 14.289 69.435 219.42 220.81 325.94 491.16 1575

(B) 14.335 69.439 220.02 220.02 327.06 492.23 1530

(C) 16.603 71.850 224.84 248.90 370.65 579.45 1575

Table 1 Natural frequenies (Hz) of swept-tip blades shown in Fig. 9.

In Model (A), the HEXA-27 elements were used for the transition region only, whereas in models

(B) and (C), they were utilized for the whole swept portion. Although models (A) and (B) were

di�erent from eah other, the strutural geometry was approximated similarly. In these models, the

hord was onsidered as the line perpendiular to the loal longitudinal axes of both straight and

swept portions. Aording to the model (C), the hord was onsidered parallel to the x-axis of the

global referene system (see Fig. 5). It should be mentioned that model (C) orresponded to the

disretizations adopted in Refs. [17℄ and [26℄. Table 1 lists the natural frequenies at Ω = 0 rpm

omputed with the urrent models. For veri�ation purposes, two referene solutions obtained by

using 800 4-node plate elements have also been reported. Solution (1) orresponded to the geometry

of models (A) and (B), while solution (2) was related to the geometry of the model (C).

As expeted, models (A) and (B) strongly agreed with the solution (1), while the model (C) provided

almost the same results of the seond referene solution. Figure 10 shows the Campbell's diagrams

obtained with the three models. In partiular, the results obtained with models (A) and (B) are

shown in Fig. 10-a and ompared with those derived by the beam formulation proposed in Ref. [17℄.

Figure 10-b ompares, instead, the model (C) with 2D and 3D �nite element solutions presented in

Refs. [17℄ and [26℄, respetively. The omparisons revealed signi�ant agreements with the referene

solutions. Therefore, the relevant disrepanies observed between the Campbell's diagrams an be

asribed to the physial approximation of the geometry rather than to the dimensionality of the

�nite elements.
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(a) (b)

Fig. 10 Frequenies vs. Rotational speed for the mathematial models of Fig. 9.

B. Double-swept rotor blade

The urrent methodology was used for the analysis of the double-swept blade on�guration shown

in Fig. 11. The dimensions ross-setional pro�le was taken from Ref. [27℄. The properties of the

metalli skin (labeled with the subsript 'm') and of the foam ('f ') were Em = 72.4 Gpa, νm = 0.3,

ρm = 2700 kg m

−3
, Ef = 2.7 Gpa, νf = 0.22, and ρf = 200 kg m

−3
. The length of the rigid hub

was assumed to be equal to 1 m.

Table 2 reports the �rst ten natural frequenies at Ω = 0.0 rpm omputed with the mathematial

models of Fig. 12 with the orresponding degrees of freedom. The last olumn lists the required

time for the solution of eah eigenvalues problem, by using a laptop with an Intel Core i7-5500U �

2.40 GHz CPU. Models (A) and (B) ombined 1D and 3D (HEXA-27) elements while the remaining

ones onsisted of solid elements only. Various disretizations were adopted for the two modeling

approahes by hanging the number of elements along the longitudinal axis and above the ross-

setion. As far as the multidimensional models (A) and (B) are onerned, four and eight 4-node

beam elements have been used for disretizing the straight portions of the blade, respetively. For

both models, the ross-setion has been modeled by using nineteen L9 elements.

Even though mode shapes involved signi�ant oupled deformations (see Fig. 13), the maximum
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Fig. 11 Double-swept blade on�guration.

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 DoF t (se.)

(A) 0.654 4.142 5.977 9.102 15.42 24.72 36.77 37.36 46.21 58.46 8700 2.57

(B) 0.651 4.124 5.948 9.077 15.35 24.61 36.60 36.88 45.71 56.72 13200 5.15

3D-1 0.651 4.125 5.960 9.030 15.32 24.67 36.67 37.02 45.77 57.45 10500 3.54

3D-2 0.649 4.112 5.939 9.010 15.25 24.51 36.54 36.66 45.34 56.37 37500 18.29

3D-3 0.647 4.096 5.937 9.003 15.22 24.40 36.53 36.53 45.27 56.04 203808 107.93

Table 2 Natural frequenies (Hz) of the double-swept blade. The mathematial models are

shown in Fig. 12.

disrepany between the oarsest and the �nest solution, namely models (A) and 3D-3, has been

less than 5%.

The variations of the ten frequenies along with the rotational speed are shown in Fig. 14-a. It

should be observed that the models predited the same frequeny hanges up to 175 rpm. Beyond

this threshold (see Fig. 14-b), slight disrepanies an be observed between Model (A) and the other

numerial shemes in prediting the veering phenomenon of the seond (F2) and fourth (F4) mode

shape of Fig. 13. These mismathes an be asribed to the FE mesh adopted in Model (A), whih

was not su�ient to provide onvergent results.
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Fig. 12 Double-swept blade on�guration.

IV. Conlusion

This paper presented dynami analyses of blades with advaned geometries. The strutures were

modelled using �nite elements of di�erent dimensionality. In partiular, 3D and 1D elements were

onneted with eah other to reprodue all geometrial details of the blade. The onnetions were

performed by exploiting the property of the Lagrange 1D kinematis, whih has pure displaements

as degrees of freedom. The use of advaned 1D formulations, wherever possible, enables the ompu-

tational ost to be redued by preserving a signi�ant level of auray. The urrent methodology

was validated using experimental data related to rotating swept-tip blades with a retangular ross-

16



Fig. 13 Mode shapes obtained with the Model 3D-3.

(a) (b)

Fig. 14 Frequenies vs. Rotational speed for the double-swept blade.

setion. Furthermore, the results were veri�ed with numerial solutions obtained from nonlinear

geometrial 1D and 2D formulations. Although the present methodology is linearized, the ompar-

isons revealed a signi�ant agreement with the referene solutions also for high sweep angles and

17



length-to-hord ratios. Eventually, both full-3D and 1D/3D models were utilized for analyzing the

dynamis of a blade with a double-swept planform and a realisti ross-setional pro�le. The results

obtained with the onvergent variable kinemati model aurately reprodued the full-3D solutions

with a remarkable omputational saving.
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