POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multidimensional models for double-swept helicopter blades

Original
Multidimensional models for double-swept helicopter blades / Filippi, M.; Zappino, E.; Carrera, E.. - In: AIAA JOURNAL. -
ISSN 0001-1452. - 57:6(2019), pp. 2609-2616. [10.2514/1.J058032]

Availability:
This version is available at: 11583/2881263 since: 2021-04-01T10:02:46Z

Publisher:
American Institute of Aeronautics and Astronautics Inc.

Published
DOI:10.2514/1.J058032

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

16 July 2022



Multidimensional Models for Double-Swept

Helicopter Blades

Matteo Filippi !, Enrico Zappino? and Erasmo Carrera®

Politecnico di Torino, Torino, To, 10129, Italy

This paper presents multidimensional finite element models for the analyses of
modern helicopter blades. The methodology enables finite elements with different di-
mensionality to be joined together in a consistent fashion. The formulation exploits
the unique feature of a special class of refined beam elements, which have pure dis-
placements as unknowns. This property makes it possible to connect beam and solid
elements at node levels without the need for complicated mathematical formulations.
Various problems in the modelling of realistic blades can be tackled with ease such as
the application of non-classical constraints. All physical surfaces of the structure can
be modeled regardless of which finite element is utilized for discretizing the blade por-
tion. Thus, three-dimensional stress states can be readily obtained by avoiding further
post-processing operations. The multidimensional models have been verified with ex-
perimental results and validated with beam and shell finite element solutions available
in the literature by considering tip-swept blades with rectangular cross-sections. The

methodology has been then applied to a double-swept blade with a realistic profile.
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I. Introduction

Across the last 30 years, various research programmes, among others the British Experimental Rotor
Programme - BERP, the Advanced Geometry Blade, the Advanced Technology Rotor, the Etude d’
un Rotor Aéroacoustique Technologiquement Optimisé - ERATO, and the Blue-Edge blade, aimed
at evaluating the effects of many parameters such as the tip shape, tapered profiles, and lamination
schemes on both aerodynamic and structural characteristics of modern helicopter blades [1]. The
test campaigns have motivated the development of new modelling techniques able to reproduce the
experimental data numerically. Although the three-dimensional (3D) finite element (FE) approach
would be the most reliable method, its use is often impracticable, especially during the preliminary
design phase, when many stress, dynamic, and aerodynamic analyses must be carried out. There-
fore, the need of a comprehensive and computationally efficient tool for the design activities justifies
the idea of adopting models with smaller dimensionality than 3D models, namely the beam (or 1D)
and plate/shell (or 2D) formulations [2].

Generally speaking, the 1D theories may be categorized according to which procedure is used to ex-
press the relations between the generalised stresses and strains above the cross-section [3]. The first
category includes the axiomatic theories in which the primary variables are approximated using a
certain number of cross-sectional coordinate functions to capture as many deformation mechanisms
as possible [4, 5]. The axiomatic formulations are, therefore, implicitly based on some kinematic
assumptions depending on the problem characteristics, e.g. the cross-section deformation modes,
and the material properties. The second group of formulations aims at removing such hypotheses
through rigorous cross-sectional analyses. One of the pioneering works is Ref. [6], where Giavotto
et al. proposed a methodology for the calculation of stiffness and stresses of beams with arbitrary
profiles, made of anisotropic and non-homogeneous materials. The procedure allowed the warping
parameters and the global strains of central beam sections, viz not influenced by the end zones
effects, to be determined by solving a 2D FE problem defined above the cross-section. The fully
populated stiffness matrices computed with these analyses were then integrated into 1D formu-
lations to perform global analyses of blade-like structures [7, 8]. Hodges and coworkers provided

other remarkable contributions in this context with the development of the code VABS (Variational-



Asymptotical Beam Sectional Analysis) [9]. Based on the variational asymptotic method (VAM)
proposed by Berdichevskii [10], the 3D problem is being split into two parts: the (mostly linear)
cross-sectional analysis and the nonlinear, geometrically exact equations of motion along the longi-
tudinal axis of the beam. The best set of sectional elastic constants, which are input parameters
for the beam formulation, are obtained through an asymptotic analysis above the arbitrary-shaped
cross-section [2]. The method enables three-dimensional displacement, stress, and strain fields to
be recovered [11, 12] with a significant saving of computational cost. The VABS methodology has
been included in many 1D codes such as the Rotorcraft Comprehensive Analysis System (RCAS)
with the Generalized Composite Beam (GCB) element [13, 14] and the flexible multibody softwares
DYMORE [15], and CAMRAD II [16].

Thanks to their accuracy and computational effectiveness, models using VABS-based 1D elements
can be considered as the state-of-the-art in solving structural and aeroelastic problems for rotary-
wing applications. The use of classical beam formulations, however, may reduce the applicability
of such a sophisticated paradigm in some cases. Systematic comparisons with 3D [14] and 2D [17]
FE solutions demonstrated that 1D results can differ to moderate, but not negligible, extent when
highly-swept tip blades with a length-to-chord ratio lower than ten are evaluated. Furthermore, the
need for simulating either realistic boundary conditions or nonuniform structures can exacerbate the
limitations of these reduced techniques. For this reason, models joining both solid and shell formu-
lations to 1D FE have been recently developed [17-19]. The connection of elements with different
dimensionality may generate inconsistencies in the displacement and stress fields at the interface.
Beam elements are usually based on classical kinematic models, e.g. the Timoshenko beam model,
that cannot predict complex displacement fields. The link of these elements with three-dimensional
FE requires the imposition of compatibility conditions to ensure the continuity of the displacement
fields. To this end, multi-point constraints such as rigid body elements, transition elements, and
variational coupling techniques have been conceived. Such methodologies provide satisfactory re-
sults in terms of global displacements and natural frequencies, but they may predict erroneous stress
distributions at the interface level [20, 21].

This paper proposes a consistent methodology for joining 3D and 1D finite elements, which does not
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Fig. 1 Present variable kinematic model.

require either complicated mathematical manipulations or ad — hoc assumptions. The procedure
exploits the feature of a particular 1D kinematic formulation that uses only displacements as degrees
of freedom. This property allows one to join directly the 1D and 3D elements by summing the elas-
tic and inertial contributions of nodes shared by the two models. Figure 1 schematically illustrates
the idea behind the procedure. The enhanced capabilities of the refined kinematic one-dimensional
models make them able to predict complex cross-sectional deformations and, as a consequence,
the coupling does not produce any stress concentration. The proposed multidimensional technique
enables non-classical boundary conditions at the root blade to be imposed without the need of
discretizing the region with 3D finite elements. The inherent three-dimensional nature of the 1D
formulation allows one to model all physical surfaces of the structure and no post-processing proce-
dure is required to recover the three-dimensional displacement, strain and stress fields. Both solid

and beam finite elements are derived with ease by using a unified formulation.

II. Theoretical section
The multidimensional models are developed using the formalism of the Carrera Unified Formulation
(CUF). CUF enables low- and high-fidelity structural theories to be generated automatically. The
methodology is extensively used to conceive and compare different kinematic theories by going
beyond the limitations of traditional 1D and 2D structural models, such as classical and first-order

shear deformation theories. In this work, the indicial notation of CUF has also been adopted for



developing Lagrange-type solid elements in order to provide a comprehensive tool for generating
multidimensional FE models. The following sections present the unified formulation for 1D and 3D

finite elements, the equations of motion for rotating structures, and the assembling procedure.

Derivation of solid and beam finite elements via an unified formulation
According to the dimensionality of the considered finite element, the three-dimensional displacement

field u(z,y, z,t) = (uy uy u;) is being approximated as:

3D — FE — u(x,y, z,t) =u; (t) - Ni(z,y,2) - 1 i=1...N3P
1D — FE — u(z,y, 2,t) =u;- (t) - N;(y) - Fr(z, 2) T=1...M; i=1...N? (1)

where N; are the lagrangian 1D and 3D FE shape functions, F; are the functions used to approxi-
mate the solution above the beam cross-section (x — z plane), and u;,(¢) is the vector of unknown
coefficients. The index ¢ refers to the finite element approximation and it ranges from 1 to the
maximum number of elemental nodes, which is N3P for the solid and NP for the beam element.
The subscript 7 is related to the expansion used for defining the cross-sectional kinematics and its
maximum value, M, is an input parameter of the analysis. Although several functions F’. can be
utilized, the connection between 1D and 3D finite elements is particularly simple when Lagrange-
type expansions (LE) are used. In this case, the beam kinematics is obtained as combinations of
Lagrange polynomials that are defined within sub-regions (or elements) delimited by arbitrary num-
bers of points (or nodes). The number of points determines the order of the polynomial. Bi-linear
(L4), bi-quadratic (L9), and bi-cubic expansions (L16) are obtained with four, nine and sixteen

nodes, respectively. For the nine-point element (L9), the interpolation functions are

Fr= 02 4 rr)(s +ss)  T=1,3,51

Fr=3s2(s? —ss)(1 =)+ ir2(r? —rr.)(1 = %) 7=2,4,6,8 (2)



where r and s vary from —1 to +1, and 7, and s, are the coordinates of the nine points in the

natural coordinate system. The displacement field related to a 1L9 element is

Uy = F1 Ug, + Fo ugy + F3 ugy + ... + Fy Ug,
Uy = F1 gy, + Fo uy, + F3 Uy, + ... + Fy Uy, (3)
Uy = F) Uy + Fo Uy + F3 Uyy + ...+ Fo Uy
The unknowns (g, , ..., Uz, ) have the same dimension and represent the translational displacements
of the nine points of the element. Figure 2 shows a generic cross-section modelled using nineteen

L9 elements (19L9).

1L9

—

Fig. 2 Lagrange-type discretization of a generic cross-section.

For the 3D-FE (see Equation (1)), only the number of elemental nodes (N2P) defines the type
of the finite element, since all F. functions are equal to 1. In this case, tri-linear (HEXA-8) and

tri-quadratic (HEXA-27) hexahedral elements are derived by using 8 and 27 nodes, respectively.

Governing Equations for rotating structures

The formulation is valid for small displacements, rotations, and amplitude vibrations, as well as for
perfectly elastic materials. The assumption related to the geometrical linearity must be considered as
a simplification of the problem rather than a limit of the theory. A fully 3D geometrical nonlinear
formulation within the current framework was already presented and validated in Ref. [22] for
dynamic analyses of rotating shell-like structures. Here, it has been assumed that the considered
structures do not significantly deform under the action of the centrifugal loads. This hypothesis
holds for many practical cases, even though it could be too restrictive when other loading conditions
are considered (gravitational force at low rotational speeds). However, the stiffening contribution

due to the centrifugal forces is taken into account by computing the linearized geometric stiffness



matrix.
The equations of motion are derived through the Principle of Virtual Work (PVW), which establishes
the equilibrium condition between the virtual variations (denoted with J) of works done by elastic

deformations (dL;n:), inertia (0 L;ne) and external forces (6 Leg:t)

5Lint = 5Line + 5Lezt (4)
The strain energy can be written as:
SLint = / seto dV (5)
%

where ¢ and o are the strain and stress vectors, respectively, and V' is the initial volume of the body.

By using Equation (1), the internal work becomes:

6 Lint = 0u, ( / FSijTCbNiFTdV) u;;r = ouj KV u;, (6)
\4

KiiTs

The matrix C contains the coefficients of linear elastic materials and the matrix b is the linear
differential operator that relates the three displacements to the strain components. It is possible
to verify that K“7* is a 3-by-3 matrix for both solid and beam finite elements. The expressions
of its terms do not depend either on the type and the number of functions used in the kinematic
expansion. The global matrices are obtained by permuting the four indexes 7, j, 7 and s, regardless
of which finite element is used. More details about the derivation of the fundamental nucleus can
be found in Ref. [23].

The virtual work done by the inertial forces, Fy, is

6Line = / sul Frav (7)
14

Displacements and corresponding time derivatives, namely the velocities i1 and accelerations ii, are
expressed with respect to a coordinate reference frame attached to the blade that rotates at constant

speed €. Accordingly, the inertial forces are



i],z _’ary Uy Le
Fr=—pla,| 20| a, [ +p9 [u, | +r2 |y (8)
it 0 0 0

The vector r = [z ye, 0] defines the distance of a generic point with respect to the rotational axis.
By substituting Equation (8) into Equation (7), the fundamental nuclei of the mass M%7 Coriolis
G#75, centrifugal KJ™° matrices, and the centrifugal forces vector F{y can be obtained with ease.
On the other hand, the geometric stiffness matrix K, derives from the geometric strain energy
defined as the product between the nonlinear part of strains, €,;, and the initial stress vector, oy.

To compute the rotation-induced stresses, a static linear analysis is carried out

(Ko + Kq)lo=1u = Fqlo=1 9)

It should be underlined that the three-dimensional stress state is used to compute the geometric stiff-
ness matrix, K,. The natural frequencies (w) and eigenvectors (@) associated with small-amplitude
vibrations are obtained by assuming an harmonic solution (u = @ev ') for the following homo-

geneous equation that is solved through the state-space transformation technique

Mii + Gu + (Ko + 9’°K, + Ko)u = 0 (10)

A. The assembling procedure: a simple example

The structural configuration of Fig. 3 is considered to explain the assembling procedure used. A
prismatic structure has to be modeled with a beam and a solid element. The beam uses a 4-node
Lagrange element (L4) over the cross-section and a two node beam element along the longitudinal
axis. Figure 3 shows that the refined beam model has four nodes in each cross-section. The unknown
displacements are, therefore, w;;=(ug uy u,)ir with ¢ =1, 2 and 7 = 1, 2, 3, 4. On the other hand,
the solid element has eight nodes in which the displacements have to be computed.

Since both models have the same unknowns, the imposition of compatibility between the shared
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Fig. 4 Assembly of a multidimensional model where the elements have only displacements as

unknowns.

nodes is straightforward:

uz; = uj, Uz2 = Uz, uz3 = us, U24 = Uyg; (11)

The conditions shown in Equation 11 can be used during the assembly procedure to identify the
nodes that must be connected (see Fig. 4). The matrices of the two elements can be used to build
the global matrix of the whole structure merely summing the contributions of the shared nodes.

Since the assembled mathematical model has twelve structural nodes (SN), the degrees of freedom

are 36 (DoF = SN x 3).



III. Numerical applications

A. Verification and Validation

To validate the current approach, the rotating swept-tip metallic blade shown in Fig. 5 was consid-

ered. The dimensions of the elastic portion were L — 0.8001 m, s — 0.1524 m, ¢ — 1.6002 x 1073

m, and b = 2.54 x 1072 m, while, the length of the rigid hub was r = 6.35 x 10”2 m. The material

properties taken from Ref. [24] were: Young’ s modulus E =73.08 GPa, Poisson’ s ratio v = 0.325,

and density p = 2682 kg m™°.

3

A-A'
Be

Fig. 5 Reference frame and geometry of the cantilever beam.

The mathematical model consisted of both 1D and 3D finite elements. The straight portion and

the tip of the blade were discretized using, respectively, seven and two 4-node beam elements (B4),

while, four 27-node hexahedral solid elements (HEXA-27) were utilized for the transition region. To

ensure the connection between the 1D and 3D elements, two 9-node Lagrange elements (L9) were

used to model the beam cross-section as shown in Fig. 6. The model had 1440 degrees of freedom.

3D
1D

2 HEXA-27

Fig. 6 Mathematical model for the swept-tip blade.
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Figure 7 shows the frequencies computed at Q = 750 rpm for different sweep angles of the tip.
The frequencies were related to mode shapes dominated by both flexural ('B’) and torsional ("T’)
deformations. For comparison purposes, the experimental data ("Exp.’) presented in Ref. [25] and
the theoretical results obtained with a geometrically exact beam formulation ('NLB’) developed
in Ref. [24] have been reported. The comparisons revealed a good agreement between the three
approaches, especially for mode shapes dominated by flexural deformations. For the torsional mode,
some discrepancies between the NLB and the other two sets of results may be observed for the highest

sweep angles.

200 : , T T T T T
1BA1T —— |
2BMAT X
3BT %
4BAT -~ 4 1
5B/1T —O—
1T/5B — & — Ammre
Exp. @ i
150 L NLB 4 -
' / - .
— 8-
N
T & —8—
= |
O
C
S
g 4&“,_,_““&0._‘“ ;;;;;
|-
L
X * :
,,,,,,, 2 .
r'y

10 15 20 25 30 35 40 45
Sweep Angle (deg)

Fig. 7 Frequencies vs. tip sweep angle at 750 (rpm). 'B’: bending mode, I’: torsional mode.

On the other hand, the frequency variations with respect to the rotational speed are shown in Fig.
8 for A = 45 deg. Also for this case, the comparisons with experimental values of Ref. [25] at Q =
0, 500, and 750 rpm have been provided.

In the second application, the hub radius, the straight portion, and the swept tip length were
assumed to be equal to r = 0.6985, L = 0.1651, and s = 0.1524, respectively. The cross-section
dimensions were not modified with respect to the previous example, while the following material

properties were used: E = 68.947 GPa, v = 0.3, and p = 2712 kg m~3. The outlined configuration

11
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Fig. 8 Frequencies vs. Rotational speed for A = 45 (deg). Experimental data taken from Ref.

[25].

was analyzed in Refs. [17] and [26] to compare the RCAS-GBC nonlinear 1D formulation with 2D
and 3D solutions. The authors observed relevant discrepancies between the different approaches,
especially for the highest sweep angles. The mathematical models depicted in Fig. 9 were utilized

to investigate those mismatches.

b b b
—— -
C11b | 1 L 1 |
13D
- =
- —+—
y —4— —1—1
LX - L1 |
(A) (B) (C)

Fig. 9 Different mathematical models for the short swept-tip blade.
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Model F1 F2 F3 F4 F5 F6 DoF

2D FE solutions

(1) 14.273 68.901 219.36 219.82 323.05 487.92 5346

(2) 16.533 71.319 223.94 248.10 367.11 571.66 5346

Present

(A) 14.289 69.435 219.42 220.81 325.94 491.16 1575
(B) 14.335 69.439 220.02 220.02 327.06 492.23 1530

(C) 16.603 71.850 224.84 248.90 370.65 579.45 1575

Table 1 Natural frequencies (Hz) of swept-tip blades shown in Fig. 9.

In Model (A), the HEXA-27 elements were used for the transition region only, whereas in models
(B) and (C), they were utilized for the whole swept portion. Although models (A) and (B) were
different from each other, the structural geometry was approximated similarly. In these models, the
chord was considered as the line perpendicular to the local longitudinal axes of both straight and
swept portions. According to the model (C), the chord was considered parallel to the x-axis of the
global reference system (see Fig. 5). It should be mentioned that model (C) corresponded to the
discretizations adopted in Refs. [17] and [26]. Table 1 lists the natural frequencies at = 0 rpm
computed with the current models. For verification purposes, two reference solutions obtained by
using 800 4-node plate elements have also been reported. Solution (1) corresponded to the geometry
of models (A) and (B), while solution (2) was related to the geometry of the model (C).

As expected, models (A) and (B) strongly agreed with the solution (1), while the model (C) provided
almost the same results of the second reference solution. Figure 10 shows the Campbell’s diagrams
obtained with the three models. In particular, the results obtained with models (A) and (B) are
shown in Fig. 10-a and compared with those derived by the beam formulation proposed in Ref. [17].
Figure 10-b compares, instead, the model (C) with 2D and 3D finite element solutions presented in
Refs. [17] and [26], respectively. The comparisons revealed significant agreements with the reference
solutions. Therefore, the relevant discrepancies observed between the Campbell’s diagrams can be
ascribed to the physical approximation of the geometry rather than to the dimensionality of the

finite elements.

13
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Fig. 10 Frequencies vs. Rotational speed for the mathematical models of Fig. 9.

B. Double-swept rotor blade

The current methodology was used for the analysis of the double-swept blade configuration shown
in Fig. 11. The dimensions cross-sectional profile was taken from Ref. [27]. The properties of the
metallic skin (labeled with the subscript >m’) and of the foam (' f’) were E,, = 72.4 Gpa, v,,, = 0.3,
pm = 2700 kg m™3, Ey = 2.7 Gpa, vy = 0.22, and py = 200 kg m—3. The length of the rigid hub
was assumed to be equal to 1 m.

Table 2 reports the first ten natural frequencies at 2 = 0.0 rpm computed with the mathematical
models of Fig. 12 with the corresponding degrees of freedom. The last column lists the required
time for the solution of each eigenvalues problem, by using a laptop with an Intel Core i7-5500U @
2.40 GHz CPU. Models (A) and (B) combined 1D and 3D (HEXA-27) elements while the remaining
ones consisted of solid elements only. Various discretizations were adopted for the two modeling
approaches by changing the number of elements along the longitudinal axis and above the cross-
section. As far as the multidimensional models (A) and (B) are concerned, four and eight 4-node
beam elements have been used for discretizing the straight portions of the blade, respectively. For
both models, the cross-section has been modeled by using nineteen L9 elements.

Even though mode shapes involved significant coupled deformations (see Fig. 13), the maximum

14



Metallic skin Profile:

NACA0012

3D Model

0.8124m
z y
E O
S T
o~
g I o
Py 7.5 f35°
xY 2.6m 6m 1.4m
Fig. 11 Double-swept blade configuration.
Model F1 F2 F3 F4 F5 F6 Fr F8 F9 F10 DoF ¢t (sec.)
(A) 0.654 4.142 5.977 9.102 15.42 24.72 36.77 37.36 46.21 58.46 8700  2.57
(B) 0.651 4.124 5.948 9.077 15.35 24.61 36.60 36.88 45.71 56.72 13200 5.15
3D-1 0.651 4.125 5.960 9.030 15.32 24.67 36.67 37.02 45.77 57.45 10500 3.54
3D-2 0.649 4.112 5.939 9.010 15.25 24.51 36.54 36.66 45.34 56.37 37500 18.29

3D-3 0.647 4.096 5.937 9.003 15.22 24.40 36.53 36.53 45.27 56.04

203808 107.93

Table 2 Natural frequencies (Hz) of the double-swept blade. The mathematical models are

shown in Fig. 12.

discrepancy between the coarsest and the finest solution, namely models (A) and 3D-3, has been

less than 5%.

The variations of the ten frequencies along with the rotational speed are shown in Fig. 14-a. It

should be observed that the models predicted the same frequency changes up to 175 rpm. Beyond

this threshold (see Fig. 14-b), slight discrepancies can be observed between Model (A) and the other

numerical schemes in predicting the veering phenomenon of the second (F2) and fourth (F4) mode

shape of Fig. 13. These mismatches can be ascribed to the FE mesh adopted in Model (A), which

was not sufficient to provide convergent results.

15
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Fig. 12 Double-swept blade configuration.

IV. Conclusion
This paper presented dynamic analyses of blades with advanced geometries. The structures were
modelled using finite elements of different dimensionality. In particular, 3D and 1D elements were
connected with each other to reproduce all geometrical details of the blade. The connections were
performed by exploiting the property of the Lagrange 1D kinematics, which has pure displacements
as degrees of freedom. The use of advanced 1D formulations, wherever possible, enables the compu-
tational cost to be reduced by preserving a significant level of accuracy. The current methodology

was validated using experimental data related to rotating swept-tip blades with a rectangular cross-

16
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Fig. 14 Frequencies vs. Rotational speed for the double-swept blade.

section. Furthermore, the results were verified with numerical solutions obtained from nonlinear

geometrical 1D and 2D formulations. Although the present methodology is linearized, the compar-

isons revealed a significant agreement with the reference solutions also for high sweep angles and



length-to-chord ratios. Eventually, both full-3D and 1D /3D models were utilized for analyzing the
dynamics of a blade with a double-swept planform and a realistic cross-sectional profile. The results
obtained with the convergent variable kinematic model accurately reproduced the full-3D solutions

with a remarkable computational saving.
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