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Multidimensional Models for Double-Swept

Heli
opter Blades

Matteo Filippi

1

, Enri
o Zappino

2

and Erasmo Carrera

3

Polite
ni
o di Torino, Torino, To, 10129, Italy

This paper presents multidimensional �nite element models for the analyses of

modern heli
opter blades. The methodology enables �nite elements with di�erent di-

mensionality to be joined together in a 
onsistent fashion. The formulation exploits

the unique feature of a spe
ial 
lass of re�ned beam elements, whi
h have pure dis-

pla
ements as unknowns. This property makes it possible to 
onne
t beam and solid

elements at node levels without the need for 
ompli
ated mathemati
al formulations.

Various problems in the modelling of realisti
 blades 
an be ta
kled with ease su
h as

the appli
ation of non-
lassi
al 
onstraints. All physi
al surfa
es of the stru
ture 
an

be modeled regardless of whi
h �nite element is utilized for dis
retizing the blade por-

tion. Thus, three-dimensional stress states 
an be readily obtained by avoiding further

post-pro
essing operations. The multidimensional models have been veri�ed with ex-

perimental results and validated with beam and shell �nite element solutions available

in the literature by 
onsidering tip-swept blades with re
tangular 
ross-se
tions. The

methodology has been then applied to a double-swept blade with a realisti
 pro�le.
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I. Introdu
tion

A
ross the last 30 years, various resear
h programmes, among others the British Experimental Rotor

Programme - BERP, the Advan
ed Geometry Blade, the Advan
ed Te
hnology Rotor, the Etude d'

un Rotor Aéroa
oustique Te
hnologiquement Optimisé - ERATO, and the Blue-Edge blade, aimed

at evaluating the e�e
ts of many parameters su
h as the tip shape, tapered pro�les, and lamination

s
hemes on both aerodynami
 and stru
tural 
hara
teristi
s of modern heli
opter blades [1℄. The

test 
ampaigns have motivated the development of new modelling te
hniques able to reprodu
e the

experimental data numeri
ally. Although the three-dimensional (3D) �nite element (FE) approa
h

would be the most reliable method, its use is often impra
ti
able, espe
ially during the preliminary

design phase, when many stress, dynami
, and aerodynami
 analyses must be 
arried out. There-

fore, the need of a 
omprehensive and 
omputationally e�
ient tool for the design a
tivities justi�es

the idea of adopting models with smaller dimensionality than 3D models, namely the beam (or 1D)

and plate/shell (or 2D) formulations [2℄.

Generally speaking, the 1D theories may be 
ategorized a

ording to whi
h pro
edure is used to ex-

press the relations between the generalised stresses and strains above the 
ross-se
tion [3℄. The �rst


ategory in
ludes the axiomati
 theories in whi
h the primary variables are approximated using a


ertain number of 
ross-se
tional 
oordinate fun
tions to 
apture as many deformation me
hanisms

as possible [4, 5℄. The axiomati
 formulations are, therefore, impli
itly based on some kinemati


assumptions depending on the problem 
hara
teristi
s, e.g. the 
ross-se
tion deformation modes,

and the material properties. The se
ond group of formulations aims at removing su
h hypotheses

through rigorous 
ross-se
tional analyses. One of the pioneering works is Ref. [6℄, where Giavotto

et al. proposed a methodology for the 
al
ulation of sti�ness and stresses of beams with arbitrary

pro�les, made of anisotropi
 and non-homogeneous materials. The pro
edure allowed the warping

parameters and the global strains of 
entral beam se
tions, viz not in�uen
ed by the end zones

e�e
ts, to be determined by solving a 2D FE problem de�ned above the 
ross-se
tion. The fully

populated sti�ness matri
es 
omputed with these analyses were then integrated into 1D formu-

lations to perform global analyses of blade-like stru
tures [7, 8℄. Hodges and 
oworkers provided

other remarkable 
ontributions in this 
ontext with the development of the 
ode VABS (Variational-
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Asymptoti
al Beam Se
tional Analysis) [9℄. Based on the variational asymptoti
 method (VAM)

proposed by Berdi
hevskii [10℄, the 3D problem is being split into two parts: the (mostly linear)


ross-se
tional analysis and the nonlinear, geometri
ally exa
t equations of motion along the longi-

tudinal axis of the beam. The best set of se
tional elasti
 
onstants, whi
h are input parameters

for the beam formulation, are obtained through an asymptoti
 analysis above the arbitrary-shaped


ross-se
tion [2℄. The method enables three-dimensional displa
ement, stress, and strain �elds to

be re
overed [11, 12℄ with a signi�
ant saving of 
omputational 
ost. The VABS methodology has

been in
luded in many 1D 
odes su
h as the Rotor
raft Comprehensive Analysis System (RCAS)

with the Generalized Composite Beam (GCB) element [13, 14℄ and the �exible multibody softwares

DYMORE [15℄, and CAMRAD II [16℄.

Thanks to their a

ura
y and 
omputational e�e
tiveness, models using VABS-based 1D elements


an be 
onsidered as the state-of-the-art in solving stru
tural and aeroelasti
 problems for rotary-

wing appli
ations. The use of 
lassi
al beam formulations, however, may redu
e the appli
ability

of su
h a sophisti
ated paradigm in some 
ases. Systemati
 
omparisons with 3D [14℄ and 2D [17℄

FE solutions demonstrated that 1D results 
an di�er to moderate, but not negligible, extent when

highly-swept tip blades with a length-to-
hord ratio lower than ten are evaluated. Furthermore, the

need for simulating either realisti
 boundary 
onditions or nonuniform stru
tures 
an exa
erbate the

limitations of these redu
ed te
hniques. For this reason, models joining both solid and shell formu-

lations to 1D FE have been re
ently developed [17�19℄. The 
onne
tion of elements with di�erent

dimensionality may generate in
onsisten
ies in the displa
ement and stress �elds at the interfa
e.

Beam elements are usually based on 
lassi
al kinemati
 models, e.g. the Timoshenko beam model,

that 
annot predi
t 
omplex displa
ement �elds. The link of these elements with three-dimensional

FE requires the imposition of 
ompatibility 
onditions to ensure the 
ontinuity of the displa
ement

�elds. To this end, multi-point 
onstraints su
h as rigid body elements, transition elements, and

variational 
oupling te
hniques have been 
on
eived. Su
h methodologies provide satisfa
tory re-

sults in terms of global displa
ements and natural frequen
ies, but they may predi
t erroneous stress

distributions at the interfa
e level [20, 21℄.

This paper proposes a 
onsistent methodology for joining 3D and 1D �nite elements, whi
h does not
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Fig. 1 Present variable kinemati
 model.

require either 
ompli
ated mathemati
al manipulations or ad − hoc assumptions. The pro
edure

exploits the feature of a parti
ular 1D kinemati
 formulation that uses only displa
ements as degrees

of freedom. This property allows one to join dire
tly the 1D and 3D elements by summing the elas-

ti
 and inertial 
ontributions of nodes shared by the two models. Figure 1 s
hemati
ally illustrates

the idea behind the pro
edure. The enhan
ed 
apabilities of the re�ned kinemati
 one-dimensional

models make them able to predi
t 
omplex 
ross-se
tional deformations and, as a 
onsequen
e,

the 
oupling does not produ
e any stress 
on
entration. The proposed multidimensional te
hnique

enables non-
lassi
al boundary 
onditions at the root blade to be imposed without the need of

dis
retizing the region with 3D �nite elements. The inherent three-dimensional nature of the 1D

formulation allows one to model all physi
al surfa
es of the stru
ture and no post-pro
essing pro
e-

dure is required to re
over the three-dimensional displa
ement, strain and stress �elds. Both solid

and beam �nite elements are derived with ease by using a uni�ed formulation.

II. Theoreti
al se
tion

The multidimensional models are developed using the formalism of the Carrera Uni�ed Formulation

(CUF). CUF enables low- and high-�delity stru
tural theories to be generated automati
ally. The

methodology is extensively used to 
on
eive and 
ompare di�erent kinemati
 theories by going

beyond the limitations of traditional 1D and 2D stru
tural models, su
h as 
lassi
al and �rst-order

shear deformation theories. In this work, the indi
ial notation of CUF has also been adopted for
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developing Lagrange-type solid elements in order to provide a 
omprehensive tool for generating

multidimensional FE models. The following se
tions present the uni�ed formulation for 1D and 3D

�nite elements, the equations of motion for rotating stru
tures, and the assembling pro
edure.

Derivation of solid and beam �nite elements via an uni�ed formulation

A

ording to the dimensionality of the 
onsidered �nite element, the three-dimensional displa
ement

�eld u(x, y, z, t) = (ux uy uz) is being approximated as:

3D − FE −→ u(x, y, z, t) =uiτ (t) ·Ni(x, y, z) · 1 i = 1 . . .N3D
n

1D − FE −→ u(x, y, z, t) =uiτ (t) ·Ni(y) · Fτ (x, z) τ = 1 . . .M ; i = 1 . . .N1D
n (1)

where Ni are the lagrangian 1D and 3D FE shape fun
tions, Fτ are the fun
tions used to approxi-

mate the solution above the beam 
ross-se
tion (x− z plane), and uiτ (t) is the ve
tor of unknown


oe�
ients. The index i refers to the �nite element approximation and it ranges from 1 to the

maximum number of elemental nodes, whi
h is N3D
n for the solid and N1D

n for the beam element.

The subs
ript τ is related to the expansion used for de�ning the 
ross-se
tional kinemati
s and its

maximum value, M , is an input parameter of the analysis. Although several fun
tions Fτ 
an be

utilized, the 
onne
tion between 1D and 3D �nite elements is parti
ularly simple when Lagrange-

type expansions (LE) are used. In this 
ase, the beam kinemati
s is obtained as 
ombinations of

Lagrange polynomials that are de�ned within sub-regions (or elements) delimited by arbitrary num-

bers of points (or nodes). The number of points determines the order of the polynomial. Bi-linear

(L4), bi-quadrati
 (L9), and bi-
ubi
 expansions (L16) are obtained with four, nine and sixteen

nodes, respe
tively. For the nine-point element (L9), the interpolation fun
tions are

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s

2 − s sτ )(1− r2) + 1

2
r2τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1 − s2) τ = 9

(2)
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where r and s vary from −1 to +1, and rτ and sτ are the 
oordinates of the nine points in the

natural 
oordinate system. The displa
ement �eld related to a 1L9 element is

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ ...+ F9 ux9

uy = F1 uy1
+ F2 uy2

+ F3 uy3
+ ...+ F9 uy9

uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(3)

The unknowns (ux1
, ..., uz9) have the same dimension and represent the translational displa
ements

of the nine points of the element. Figure 2 shows a generi
 
ross-se
tion modelled using nineteen

L9 elements (19L9).

Fig. 2 Lagrange-type dis
retization of a generi
 
ross-se
tion.

For the 3D-FE (see Equation (1)), only the number of elemental nodes (N3D
n ) de�nes the type

of the �nite element, sin
e all Fτ fun
tions are equal to 1. In this 
ase, tri-linear (HEXA-8) and

tri-quadrati
 (HEXA-27) hexahedral elements are derived by using 8 and 27 nodes, respe
tively.

Governing Equations for rotating stru
tures

The formulation is valid for small displa
ements, rotations, and amplitude vibrations, as well as for

perfe
tly elasti
 materials. The assumption related to the geometri
al linearity must be 
onsidered as

a simpli�
ation of the problem rather than a limit of the theory. A fully 3D geometri
al nonlinear

formulation within the 
urrent framework was already presented and validated in Ref. [22℄ for

dynami
 analyses of rotating shell-like stru
tures. Here, it has been assumed that the 
onsidered

stru
tures do not signi�
antly deform under the a
tion of the 
entrifugal loads. This hypothesis

holds for many pra
ti
al 
ases, even though it 
ould be too restri
tive when other loading 
onditions

are 
onsidered (gravitational for
e at low rotational speeds). However, the sti�ening 
ontribution

due to the 
entrifugal for
es is taken into a

ount by 
omputing the linearized geometri
 sti�ness
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matrix.

The equations of motion are derived through the Prin
iple of Virtual Work (PVW), whi
h establishes

the equilibrium 
ondition between the virtual variations (denoted with δ) of works done by elasti


deformations (δLint), inertia (δLine) and external for
es (δLext)

δLint = δLine + δLext (4)

The strain energy 
an be written as:

δLint =

∫

V

δεTσ dV (5)

where ε and σ are the strain and stress ve
tors, respe
tively, and V is the initial volume of the body.

By using Equation (1), the internal work be
omes:

δLint = δuT
js

(∫

V

FsNjb
T
CbNiFτdV

)

︸ ︷︷ ︸

Kijτs

uiτ = δuT
jsK

ijτs
uiτ (6)

The matrix C 
ontains the 
oe�
ients of linear elasti
 materials and the matrix b is the linear

di�erential operator that relates the three displa
ements to the strain 
omponents. It is possible

to verify that K
ijτs

is a 3-by-3 matrix for both solid and beam �nite elements. The expressions

of its terms do not depend either on the type and the number of fun
tions used in the kinemati


expansion. The global matri
es are obtained by permuting the four indexes i, j, τ and s, regardless

of whi
h �nite element is used. More details about the derivation of the fundamental nu
leus 
an

be found in Ref. [23℄.

The virtual work done by the inertial for
es, FI , is

δLine =

∫

V

δuT
FI dV (7)

Displa
ements and 
orresponding time derivatives, namely the velo
ities u̇ and a

elerations ü, are

expressed with respe
t to a 
oordinate referen
e frame atta
hed to the blade that rotates at 
onstant

speed Ω. A

ordingly, the inertial for
es are
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FI = −ρ











üx

üy

üz











− 2 ρΩ











−u̇y

u̇x

0











+ ρΩ2











ux

uy

0











+ ρΩ2











xe

ye

0











(8)

The ve
tor r = [xe ye, 0] de�nes the distan
e of a generi
 point with respe
t to the rotational axis.

By substituting Equation (8) into Equation (7), the fundamental nu
lei of the mass M
ijτs

, Coriolis

G
ijτs

, 
entrifugal K
ijτs
Ω

matri
es, and the 
entrifugal for
es ve
tor F
js
Ω


an be obtained with ease.

On the other hand, the geometri
 sti�ness matrix Kσ derives from the geometri
 strain energy

de�ned as the produ
t between the nonlinear part of strains, εnl, and the initial stress ve
tor, σ0.

To 
ompute the rotation-indu
ed stresses, a stati
 linear analysis is 
arried out

(K0 + KΩ)|Ω=1u = FΩ|Ω=1 (9)

It should be underlined that the three-dimensional stress state is used to 
ompute the geometri
 sti�-

ness matrix, Kσ. The natural frequen
ies (ω) and eigenve
tors (ū) asso
iated with small-amplitude

vibrations are obtained by assuming an harmoni
 solution (u = ū e
√

−1ωt
) for the following homo-

geneous equation that is solved through the state-spa
e transformation te
hnique

Mü + Gu̇ + (K0 + Ω2
Kσ + KΩ)u = 0 (10)

A. The assembling pro
edure: a simple example

The stru
tural 
on�guration of Fig. 3 is 
onsidered to explain the assembling pro
edure used. A

prismati
 stru
ture has to be modeled with a beam and a solid element. The beam uses a 4-node

Lagrange element (L4) over the 
ross-se
tion and a two node beam element along the longitudinal

axis. Figure 3 shows that the re�ned beam model has four nodes in ea
h 
ross-se
tion. The unknown

displa
ements are, therefore, uiτ=(ux uy uz)iτ with i = 1, 2 and τ = 1, 2, 3, 4. On the other hand,

the solid element has eight nodes in whi
h the displa
ements have to be 
omputed.

Sin
e both models have the same unknowns, the imposition of 
ompatibility between the shared
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ui =u11

u12

u13

u14
u21

u24

u22

u23

u1
u3

u2

u4

u6

u7

u8

i=1

i=2

Beam nodes

=1 =2

=3=4

Cross-section 

nodes

Re ned 1D model

3D model

FEM modelPhysical model

Fig. 3 Example of a multidimensional model: 
onne
tion between a beam and a solid elements.

uiτ=u11

u12

u13

u14
u21

u24

u22

u23

u11

u14

u21

u24

...
...

u1

u4
u5

u8

...
...

Kijτs u1 u3

u2

u4

u6

u7

u8

i=1

i=2

τ=1

τ=...

τ=4

Fig. 4 Assembly of a multidimensional model where the elements have only displa
ements as

unknowns.

nodes is straightforward:

u21 = u1, u22 = u2, u23 = u3, u24 = u4; (11)

The 
onditions shown in Equation 11 
an be used during the assembly pro
edure to identify the

nodes that must be 
onne
ted (see Fig. 4). The matri
es of the two elements 
an be used to build

the global matrix of the whole stru
ture merely summing the 
ontributions of the shared nodes.

Sin
e the assembled mathemati
al model has twelve stru
tural nodes (SN), the degrees of freedom

are 36 (DoF = SN × 3).

9



III. Numeri
al appli
ations

A. Veri�
ation and Validation

To validate the 
urrent approa
h, the rotating swept-tip metalli
 blade shown in Fig. 5 was 
onsid-

ered. The dimensions of the elasti
 portion were L = 0.8001 m, s = 0.1524 m, t = 1.6002 × 10

−3

m, and b = 2.54 × 10

−2
m, while, the length of the rigid hub was r = 6.35 × 10

−2
m. The material

properties taken from Ref. [24℄ were: Young' s modulus E =73.08 GPa, Poisson' s ratio ν = 0.325,

and density ρ = 2682 kg m

−3
.

Fig. 5 Referen
e frame and geometry of the 
antilever beam.

The mathemati
al model 
onsisted of both 1D and 3D �nite elements. The straight portion and

the tip of the blade were dis
retized using, respe
tively, seven and two 4-node beam elements (B4),

while, four 27-node hexahedral solid elements (HEXA-27) were utilized for the transition region. To

ensure the 
onne
tion between the 1D and 3D elements, two 9-node Lagrange elements (L9) were

used to model the beam 
ross-se
tion as shown in Fig. 6. The model had 1440 degrees of freedom.

Fig. 6 Mathemati
al model for the swept-tip blade.
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Figure 7 shows the frequen
ies 
omputed at Ω = 750 rpm for di�erent sweep angles of the tip.

The frequen
ies were related to mode shapes dominated by both �exural ('B') and torsional ('T')

deformations. For 
omparison purposes, the experimental data ('Exp.') presented in Ref. [25℄ and

the theoreti
al results obtained with a geometri
ally exa
t beam formulation ('NLB') developed

in Ref. [24℄ have been reported. The 
omparisons revealed a good agreement between the three

approa
hes, espe
ially for mode shapes dominated by �exural deformations. For the torsional mode,

some dis
repan
ies between the NLB and the other two sets of results may be observed for the highest

sweep angles.

Fig. 7 Frequen
ies vs. tip sweep angle at 750 (rpm). 'B': bending mode, 'T': torsional mode.

On the other hand, the frequen
y variations with respe
t to the rotational speed are shown in Fig.

8 for Λ = 45 deg. Also for this 
ase, the 
omparisons with experimental values of Ref. [25℄ at Ω =

0, 500, and 750 rpm have been provided.

In the se
ond appli
ation, the hub radius, the straight portion, and the swept tip length were

assumed to be equal to r = 0.6985, L = 0.1651, and s = 0.1524, respe
tively. The 
ross-se
tion

dimensions were not modi�ed with respe
t to the previous example, while the following material

properties were used: E = 68.947 GPa, ν = 0.3, and ρ = 2712 kg m

−3
. The outlined 
on�guration

11



Fig. 8 Frequen
ies vs. Rotational speed for Λ = 45 (deg). Experimental data taken from Ref.

[25℄.

was analyzed in Refs. [17℄ and [26℄ to 
ompare the RCAS-GBC nonlinear 1D formulation with 2D

and 3D solutions. The authors observed relevant dis
repan
ies between the di�erent approa
hes,

espe
ially for the highest sweep angles. The mathemati
al models depi
ted in Fig. 9 were utilized

to investigate those mismat
hes.

Fig. 9 Di�erent mathemati
al models for the short swept-tip blade.
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Model F1 F2 F3 F4 F5 F6 DoF

2D FE solutions

(1) 14.273 68.901 219.36 219.82 323.05 487.92 5346

(2) 16.533 71.319 223.94 248.10 367.11 571.66 5346

Present

(A) 14.289 69.435 219.42 220.81 325.94 491.16 1575

(B) 14.335 69.439 220.02 220.02 327.06 492.23 1530

(C) 16.603 71.850 224.84 248.90 370.65 579.45 1575

Table 1 Natural frequen
ies (Hz) of swept-tip blades shown in Fig. 9.

In Model (A), the HEXA-27 elements were used for the transition region only, whereas in models

(B) and (C), they were utilized for the whole swept portion. Although models (A) and (B) were

di�erent from ea
h other, the stru
tural geometry was approximated similarly. In these models, the


hord was 
onsidered as the line perpendi
ular to the lo
al longitudinal axes of both straight and

swept portions. A

ording to the model (C), the 
hord was 
onsidered parallel to the x-axis of the

global referen
e system (see Fig. 5). It should be mentioned that model (C) 
orresponded to the

dis
retizations adopted in Refs. [17℄ and [26℄. Table 1 lists the natural frequen
ies at Ω = 0 rpm


omputed with the 
urrent models. For veri�
ation purposes, two referen
e solutions obtained by

using 800 4-node plate elements have also been reported. Solution (1) 
orresponded to the geometry

of models (A) and (B), while solution (2) was related to the geometry of the model (C).

As expe
ted, models (A) and (B) strongly agreed with the solution (1), while the model (C) provided

almost the same results of the se
ond referen
e solution. Figure 10 shows the Campbell's diagrams

obtained with the three models. In parti
ular, the results obtained with models (A) and (B) are

shown in Fig. 10-a and 
ompared with those derived by the beam formulation proposed in Ref. [17℄.

Figure 10-b 
ompares, instead, the model (C) with 2D and 3D �nite element solutions presented in

Refs. [17℄ and [26℄, respe
tively. The 
omparisons revealed signi�
ant agreements with the referen
e

solutions. Therefore, the relevant dis
repan
ies observed between the Campbell's diagrams 
an be

as
ribed to the physi
al approximation of the geometry rather than to the dimensionality of the

�nite elements.
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(a) (b)

Fig. 10 Frequen
ies vs. Rotational speed for the mathemati
al models of Fig. 9.

B. Double-swept rotor blade

The 
urrent methodology was used for the analysis of the double-swept blade 
on�guration shown

in Fig. 11. The dimensions 
ross-se
tional pro�le was taken from Ref. [27℄. The properties of the

metalli
 skin (labeled with the subs
ript 'm') and of the foam ('f ') were Em = 72.4 Gpa, νm = 0.3,

ρm = 2700 kg m

−3
, Ef = 2.7 Gpa, νf = 0.22, and ρf = 200 kg m

−3
. The length of the rigid hub

was assumed to be equal to 1 m.

Table 2 reports the �rst ten natural frequen
ies at Ω = 0.0 rpm 
omputed with the mathemati
al

models of Fig. 12 with the 
orresponding degrees of freedom. The last 
olumn lists the required

time for the solution of ea
h eigenvalues problem, by using a laptop with an Intel Core i7-5500U �

2.40 GHz CPU. Models (A) and (B) 
ombined 1D and 3D (HEXA-27) elements while the remaining

ones 
onsisted of solid elements only. Various dis
retizations were adopted for the two modeling

approa
hes by 
hanging the number of elements along the longitudinal axis and above the 
ross-

se
tion. As far as the multidimensional models (A) and (B) are 
on
erned, four and eight 4-node

beam elements have been used for dis
retizing the straight portions of the blade, respe
tively. For

both models, the 
ross-se
tion has been modeled by using nineteen L9 elements.

Even though mode shapes involved signi�
ant 
oupled deformations (see Fig. 13), the maximum

14



Fig. 11 Double-swept blade 
on�guration.

Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 DoF t (se
.)

(A) 0.654 4.142 5.977 9.102 15.42 24.72 36.77 37.36 46.21 58.46 8700 2.57

(B) 0.651 4.124 5.948 9.077 15.35 24.61 36.60 36.88 45.71 56.72 13200 5.15

3D-1 0.651 4.125 5.960 9.030 15.32 24.67 36.67 37.02 45.77 57.45 10500 3.54

3D-2 0.649 4.112 5.939 9.010 15.25 24.51 36.54 36.66 45.34 56.37 37500 18.29

3D-3 0.647 4.096 5.937 9.003 15.22 24.40 36.53 36.53 45.27 56.04 203808 107.93

Table 2 Natural frequen
ies (Hz) of the double-swept blade. The mathemati
al models are

shown in Fig. 12.

dis
repan
y between the 
oarsest and the �nest solution, namely models (A) and 3D-3, has been

less than 5%.

The variations of the ten frequen
ies along with the rotational speed are shown in Fig. 14-a. It

should be observed that the models predi
ted the same frequen
y 
hanges up to 175 rpm. Beyond

this threshold (see Fig. 14-b), slight dis
repan
ies 
an be observed between Model (A) and the other

numeri
al s
hemes in predi
ting the veering phenomenon of the se
ond (F2) and fourth (F4) mode

shape of Fig. 13. These mismat
hes 
an be as
ribed to the FE mesh adopted in Model (A), whi
h

was not su�
ient to provide 
onvergent results.

15



Fig. 12 Double-swept blade 
on�guration.

IV. Con
lusion

This paper presented dynami
 analyses of blades with advan
ed geometries. The stru
tures were

modelled using �nite elements of di�erent dimensionality. In parti
ular, 3D and 1D elements were


onne
ted with ea
h other to reprodu
e all geometri
al details of the blade. The 
onne
tions were

performed by exploiting the property of the Lagrange 1D kinemati
s, whi
h has pure displa
ements

as degrees of freedom. The use of advan
ed 1D formulations, wherever possible, enables the 
ompu-

tational 
ost to be redu
ed by preserving a signi�
ant level of a

ura
y. The 
urrent methodology

was validated using experimental data related to rotating swept-tip blades with a re
tangular 
ross-

16



Fig. 13 Mode shapes obtained with the Model 3D-3.

(a) (b)

Fig. 14 Frequen
ies vs. Rotational speed for the double-swept blade.

se
tion. Furthermore, the results were veri�ed with numeri
al solutions obtained from nonlinear

geometri
al 1D and 2D formulations. Although the present methodology is linearized, the 
ompar-

isons revealed a signi�
ant agreement with the referen
e solutions also for high sweep angles and

17



length-to-
hord ratios. Eventually, both full-3D and 1D/3D models were utilized for analyzing the

dynami
s of a blade with a double-swept planform and a realisti
 
ross-se
tional pro�le. The results

obtained with the 
onvergent variable kinemati
 model a

urately reprodu
ed the full-3D solutions

with a remarkable 
omputational saving.
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