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Abstract: In the present paper, a model-based controller of engine torque and engine-out Nitrogen
oxide (NOx) emissions, which was previously developed and tested by means of offline simulations,
has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. With reference
to the previous version, a new NOx model has been implemented to improve robustness in terms
of NOx prediction. The experimental tests have confirmed the basic functionality of the controller
in transient conditions, over different load ramps at fixed engine speeds, over which the average
RMSE (Root Mean Square Error) values for the control of NOx emissions were of the order of
55–90 ppm, while the average RMSE values for the control of brake mean effective pressure (BMEP)
were of the order of 0.25–0.39 bar. However, the test results also highlighted the need for further
improvements, especially concerning the effect of the engine thermal state on the NOx emissions
in transient operation. Moreover, several aspects, such as the check of the computational time, the
impact of the controller on other pollutant emissions, or on the long-term engine operations, will have
to be evaluated in future studies in view of the controller implementation on the engine control unit.

Keywords: torque; nitrogen oxide emissions; model-based control; diesel engines

1. Introduction

Interest in developing clean and efficient internal combustion engines is still significant
into reducing CO2 and pollutant emissions from the transport sector, with reference to both
spark-ignition and compression-ignition technologies [1].

With specific focus on the latter technology, diesel engines still remain the most
competitive solution for several applications, such as light-duty and heavy-duty transport
and agricultural machines, and, therefore, research efforts in improving their environmental
impact are still ongoing.

Recently developed technologies to reduce CO2 and pollutant emissions from diesel
engines include downsizing [2], alternative fuels [3], advanced combustion [4,5] and injec-
tion systems [6], control algorithms [7–10], innovative ATS (after-treatment systems) [11],
and recovery of thermal energy [12].

Among the previous solutions, model-based control of the performance, combustion,
and emission formation processes will surely provide a significant contribution in the
future for several reasons. First, this technique is suitable to be integrated with the V2X
(vehicle-to-everything) and autonomous driving systems [8,13–15]. As a matter of fact,
a model-based controller can allow a real-time engine optimization to be realized, also
exploiting the traffic information and knowledge of the vehicle driving mission in advance
by means of look-ahead functions [14]. Secondly, an onboard engine control is particularly
attractive in hybrid electric powertrains, whose market is significantly increasing in the
last few years, since the engine operating point can also vary significantly during the
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vehicle mission as a consequence of the optimization of the power split. Therefore, it is of
crucial importance to limit the pollutant emissions and optimize the engine combustion
process in conjunction with the optimization of the energy flows that are delivered by the
powertrain. Finally, model-based engine controllers will be enhanced by the increasing
the computational performance of the vehicle control units, providing significant benefits,
especially for diesel engines, whose management is typically more complex than that of
spark ignition engines.

An example of the advantage of integrating a model-based engine combustion con-
troller with a vehicle energy management supervisor, featuring a look-ahead function, has
recently been demonstrated for heavy-duty vehicles within the IMPERIUM H2020 Euro-
pean collaborative research project [8,15]. Within that project, a fuel consumption reduction
of 20% was achieved in heavy-duty trucks, meeting, at the same time, the requirements in
terms of legal emission limits.

Nitrogen oxide (NOx) emissions represent, together with soot emissions, one of the
major pollutants emitted by diesel engines, and, therefore, several control techniques have
been proposed over the years to meet the emission standards. On the one hand, advanced
ATS systems were developed, [16]. On the other hand, several techniques for the reduction
of the in-cylinder NOx levels were also studied.

The acronym ’NOx’ is referred to the sum of NO (nitrogen monoxide) and NO2 (nitro-
gen dioxide) emissions [17]. The in-cylinder NOx formation is based on several mechanisms:
considering conventional diesel combustion, NOx mainly derives from the thermal mech-
anism [18] and the prompt mechanism [19]. In general, the former contribution is the
predominant one. The thermal formation was described by the super-extended Zeldovich
mechanism [18], and it is enhanced by the high temperatures and O2 concentration in
the burned gases. Therefore, the engine parameters that affect the previously mentioned
quantities can be exploited for in-cylinder NOx control.

Currently, in-cylinder NOx formation in diesel engines is mainly controlled by means
of Exhaust Gas Recirculation (EGR) [17], which reduces both the temperature levels and
O2 concentration in the burned gases. However, the main drawback of EGR is that it leads
to higher soot formation and a lower combustion efficiency. EGR systems can be of the
high pressure (HP-EGR) or low pressure (LP-EGR) types, depending on the position in
which the exhaust gas is taken for recirculation (i.e., upstream or downstream from the
turbine, respectively). In normal production engines, the EGR system is managed by the
air-path controller inside the engine control unit (ECU). In particular, the air-path controller
typically adjusts the EGR valve position and the turbocharger controller device, such as
the rack position for a VGT (Variable Geometry Turbine), in order to achieve optimal set
points of the intake air mass (or of the intake O2 level) and boost pressure, respectively.
These targets are identified offline, through an extensive experimental activity, to achieve
an optimal trade-off between NOx/soot emissions and engine performance [20,21]. Then,
they are stored in look-up tables as functions of the engine speed and load and used as
reference for the air-path controller. Feed-forward and PI/PID controllers are typically
adopted to this purpose in production engines [21]. More recently, an innovative air-path
controller has also been presented in [21], which exploits model predictive control (MPC) to
simultaneously optimize NOx/soot emissions and fuel consumption in a 2 L diesel engine
that is equipped with a HP/LP-EGR system and a VGT. An MPC controller can realize a
real-time optimization of the actuator positions, by exploiting a model of the system. In the
controller that was proposed in [21], the main engine metrics, including emissions, were
modeled by polynomial functions. In that study, the controller acted on the position of the
HP-EGR/LP EGR valves and of the VGT rack, and it was tested on an engine model. The
authors found that the MPC controller outperformed the reference controller in terms of
pollutant emissions and fuel consumption, with a required sampling time of the order of
20 ms. Another example of innovative air-path controller that is based on MPC is provided
in [22] for a diesel engine that features an HP-EGR system. In that study, the controller acted
on the EGR valve position, throttle valve position, VGT position, and fueling rate in order to
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optimize the engine performance and pollutant formation in real-time. Additionally, in that
case, the main engine metrics, including emissions, were modeled by polynomial functions.
The controller was tested on a mean value engine model over some driving cycles, and it
was found to be effective in achieving the emission constraints.

With reference to the previously mentioned air-path controllers, the relatively low
response of the EGR and VGT systems in transient operation can determine a certain
deviation between the desired levels of boost pressure or intake oxygen and the actual ones,
due to dynamic effects, such as turbo-lag or emptying/filling of the gas inside the pipes.
Therefore, they cannot realize a cycle-by-cycle NOx control. Instead, this can be achieved by
alternative control techniques.

The realization of a Miller cycle through variable valve actuation (VVA) provides a
first technique to reduce in-cylinder temperatures. This approach, alone or in conjunction
with EGR [23], can theoretically modulate the NOx formation cycle-by-cycle by modifying
the intake valve closure timing, but it requires the installation of a VVA system, with the
related production costs.

The control of NOx by means of the adjustment of the injection parameters represents
an alternative solution. In particular, it is well known [24] that the injection timing is
closely correlated to the in-cylinder peak temperatures and, therefore, to the thermal NOx
formation, for a given EGR level. Therefore, a NOx control algorithms which, in addition
to the adoption of conventional EGR, also adjusts the injection timing in real-time during
engine operation, is potentially capable of guaranteeing a very accurate NOx control in
transient conditions, also compensating for EGR deviations with respect to the desired levels.
For example, if, during load transients, the EGR level is lower than the set-point, then a
compensation of the additional NOx levels can be quickly realized by temporarily delaying
the main injection timing. Moreover, an approach of this type can also be coupled with
the ATS system management: for example, the engine-out NOx levels can be modulated,
by acting on the injection timing, as a function of the actual efficiency of the ATS, so as to
always meet the tailpipe emission constraints.

Because the modulation of the injection timing affects the engine thermal efficiency
to a great extent, a torque (or BMEP, i.e., brake mean effective pressure) controller has to
be associated with the NOx controller, in order to adjust the fuel quantity in real time on
the basis of the actual value of the start of injection. As a matter of fact, for a given BMEP
target, the fuel quantity must be adjusted when the injection timing is modified, in order to
compensate for the variation in of thermal efficiency.

An approach of this type requires an accurate and fast model to estimate the engine-
out NOx levels and the BMEP on a cycle-by-cycle basis. This model can be used within a
control loop, which defines the values of the injected fuel mass and of the start of injection
of the main pulse in order to reach the targets of NOx emissions and of BMEP within each
engine cycle.

Several modeling approaches can be found in the literature for this purpose, and they
can be classified in three categories: phenomenological models, empirical/semi-empirical
models, and black-box models.

Phenomenological methods implement physical and chemical models to predict NOx
formation. They usually require thermodynamic models (e.g., [25]) that are based on the total
energy conservation equation [26]. Several examples can be found in the literature [25,27–30].
Most of these models implement the Zeldovich mechanism, and they require the estimation
of in-cylinder burned gas temperatures using thermodynamic sub-models. The main
drawback of phenomenological models is that they are quite computationally demanding,
and they cannot be implemented on normal production ECUs. Moreover, the accuracy on
the NOx emission prediction is extremely dependent on the accuracy in the estimated mass
of the charge: an error of 5% can lead to a NOx prediction error of approximately 98% [31].

Empirical and semi-empirical methods typically implement simple correlations to
predict the NOx levels. The main difference is that empirical methods exploit input variables
that can be directly measured, while semi-empirical methods can include input variables
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that have to be estimated by sub-models. The combustion phasing (MFB50) provides an
example, which is closely correlated to the NOx formation, but it does not derive from a
direct measurement. Semi-empirical models are very suitable for real-time model-based
algorithms, since they are implementable in ECUs from the computational effort point of
view. Moreover, they can be developed improving their robustness with respect to input
variables with high measurement uncertainty (e.g., avoiding the use of the trapped air mass
as input quantity), so as to achieve a better performance when coupled with sensors that
were installed in normal production engines. Some examples of semi-empirical approaches
can be found in [32–34].

Finally, black-box methods typically include artificial intelligent systems, such as
artificial neural networks. These approaches have also been adopted as fast and control-
oriented tools for predicting emissions [35–38]. These methods are also suitable for control
purposes, but, in general, they require a higher number of calibration points than semi-
empirical models, since they lack physical consistency.

When considering the previous discussion, a control algorithm for BMEP and engine-
out NOx levels was previously developed and tested offline for a 3.0 dm3 diesel engine
in [7].

The present investigation is the continuation of the previous study, and it is focused
on the improvement of that controller, and on its implementation and assessment on the
engine at the test bench. In particular, the previous controller has been upgraded in this
study by integrating a recent semi-empirical NOx model [34]. In fact, the NOx formation
model used in [7] was based on the estimation of the burned gas temperature, which was
obtained by a three-zone thermodynamic model. It was found that that approach was
highly sensitive to the accuracy in the estimated trapped mass and, therefore, it turned to
be less robust with respect to the measurement uncertainties of the input variables.

In this paper, a specific investigation was also carried out in order to check the effect
of the engine thermal state on the accuracy of the controller in transient operation.

2. Materials and Methods
2.1. Engine and Experimental Setup

The controller was tested on a Euro VI FPT F1C 3.0 dm3 diesel engine. The engine
featured a VGT turbocharger, an HP-EGR system, four valves per cylinder, a common rail
injection system, and it is characterized by a compression ratio of 17.5. The test acquisition
was performed at a dynamic test bench at the Politecnico di Torino.

Figure 1a shows a picture of the engine and of the test bench, while Figure 1b reports
the engine scheme with the related sensors.

Figure 2 reports the main components of the dynamic test rig.
Further details on the engine and test bench specifications can be found in [34].

However, an important novelty with respect to the previous activities described in [34] is
the use of a lambda sensor unit (LSU, which is typically installed at the engine exhaust)
in the intake manifold, which allowed for the intake oxygen percentage to be determined.
The measurement of this quantity is of great importance for a correct estimation of the
NOx levels.

An ‘ES910’ device that was manufactured by ETAS (Stuttgart, Germany), equipped
with a Freescale PowerQUICCTM III MPC8548 processor with 800 MHz clock and 512 MByte
of DDR2-RAM, was adopted to implement the control algorithm on the engine. This device
is connected to the ECU (engine control unit) via ETK communication, and it is capable of
replacing the standard ECU functionalities.

Conventional diesel fuel was adopted, with a cetane number of 53.1 and a lower
heating value of 43.4 MJ/kg.
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2.2. Experimental Tests

Both the stationary and transient test were acquired.
The stationary tests were mainly exploited for the calibration of the combustion model

and for the tuning of the intake oxygen sensor. They are shown in Figure 3 and include:

• An engine map, which is constituted by 123 points.
• EGR-sweep tests, for 11 fixed operating points. The EGR rate was varied in the (0–50%)

range. A total number of 162 tests was acquired.
• Full-factorial sweep tests, in which the injection pressure (pf) and main injection

timing (SOImain) were varied at five fixed operating points. A total number of 125 tests
was acquired. The SOImain was varied of ±6 deg with respect to the baseline value of
each engine point, while the pf was varied of ±20% with respect to the baseline value.

The steady-state tests were performed in warmed engine conditions, with a coolant
temperature at an engine inlet equal to 85 ◦C.

The functionality of the controller was validated over four different load ramps, which
are also indicated in Figure 3:

• Load ramp #1 (at N = 1400 rpm): the controller was enabled or disabled, for a given
NOx target. The NOx target is defined by a map, as a function of the engine load and
speed. The initial coolant temperature was around 65 ◦C.

• Load ramp #2 (at N = 2500 rpm): the controller was enabled, setting several NOx
targets. In particular, target variations of ±20% and ±40% with respect to the baseline
case were set. The initial coolant temperature was around 65 ◦C.

• Load ramp #3 (at N = 3000 rpm): the controller was enabled or disabled, for the given
NOx target defined by the map. The initial coolant temperature was around 65 ◦C.

• Load ramp #4 (at N = 1400 rpm): this ramp was a repetition of load ramp #1, but
with longer stabilization times after each load variation, and with an initial coolant
temperature of around 85 ◦C. Additionally, in this case, the controller was enabled or
disabled, for the given NOx target defined by the map.
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The load ramp test #4 has been designed to verify to what extent the engine thermal
state affected the accuracy of the model-based BMEP/NOx controller. In fact, over the ramp
#1, the engine was running at a lower coolant temperature than that of the warm steady-
state tests over which the model was tuned and, moreover, it featured short stabilization
times after each load variation, so that the engine was not able to reach a stabilized thermal
state, similar to that of the steady-state warm points. Instead, over the load ramp #4 an
initial coolant temperature of 85 ◦C was set, and longer stabilization times were adopted
after each load variation, so as to allow the engine to reach thermal conditions that are as
close as possible to those of the warm steady-state points. Therefore, by comparing the
accuracy of the controller over the load ramps #1 and #4, it was possible to check the effect
of the engine thermal state on the accuracy of the controller.

 
Figure 3. Acquired experimental tests. 
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Table 1 reports a summary of the experimental tests.

Table 1. Summary of the experimental tests.

Transient/Steady-State Test Type Speed Range Load Range

Engine map 850–3850 rpm 0.6–18 bar
Steady-state tests EGR sweep 1000–3250 rpm 1–9 bar

SOImain/pf sweep 1200–3250 rpm 2–11 bar

Ramp 1 (TCW = ~65◦C) 1400 rpm 1.8–10.8 bar
Ramp 2 (TCW = ~65◦C) 2500 rpm 1.4–11.2 bar

Transient tests Ramp 3 (TCW = ~65◦C) 3000 rpm 4.2–10.2 bar
Ramp 4 (TCW = 85◦C) 1400 rpm 1.8–10.8 bar

2.3. Uncertainty Analysis

The uncertainty was evaluated according to the recommended practices that were
reported in [39].

With reference to the measured NOx levels, its relative uncertainty is of the order of
2.5–3.3%. The details of the calculation procedure are reported in [34]. The NOx levels were
measured by means of a chemiluminescence detector (CLD), included in the gas analyzer.
The device featured two measurement ranges (low-NOx/high-NOx), which were calibrated
using reference calibration tanks with a NOx concentration of 150 ppm and 1000 ppm in the
span gas, respectively.

The maximum declared error of the torque meter is ± 0.3% of FSO (525 Nm), being
equal to 1.575 Nm. The related expanded uncertainty, assuming a coverage factor of 2,
is 1.819 Nm, which corresponds to an expanded uncertainty of BMEP that is equal to
0.0762 bar for the engine that is considered in this paper.

2.4. Model-Based BMEP/NOx Controller

Figure 5 reports the conceptual scheme of the control algorithm.
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The choice of controlling the NOx emissions by acting on SOImain can allow a cycle-
by-cycle NOx control to be realized, which can be very effective, especially in transient 
operation. 

The controller requires several state values that are provided by the ECU or by sen-
sors installed on the engine, such as the injection timing and quantity of the pilot pulses 
(SOIpil, qf,pil), intake pressure/temperature (pint/Tint), the air mass flow rate ( ), the injec-
tion pressure (pf), the exhaust manifold pressure (pexh), and the engine speed (N), as shown 
in Figure 5. The latter quantity was acquired by a high frequency piezoresistive pressure 
sensor that was installed in the exhaust manifold. 

Another important input variable for the controller, which affects the accuracy of the 
NOx prediction to a great extent [34], is the intake manifold oxygen concentration (O2). In 
this study, an LSU lambda sensor was installed in the intake manifold for its direct meas-
urement. 

In general, if an oxygen sensor is not available, then the O2 concentration can be eval-
uated using a linear equation of the type O2 = f(Xr/λ) [40], where Xr represents the EGR 
rate and λ indicates the relative air-to-fuel ratio. In the latter case, the EGR mass flow rate 
( ) is also needed (as reported in Figure 5), and this quantity is generally provided by 
the ECU through maps or embedded models. 

The combustion model description can be found in [7, 41], and its scheme is described 
in Figure 6. 

Figure 5. Conceptual scheme of the controller.

BMEP and NOx targets are given as inputs to the controller, which adjusts the control
variables (i.e., the injected fuel quantity ‘qf,inj’ and SOImain), through an iterative loop, until
the error between the BMEP and NOx values that are predicted by the combustion model
and the targets is below pre-defined thresholds, which are indicated as εBMEP and εNOx.
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The iterative loop is entirely completed within a single engine firing. Additional details are
reported in [7].

The choice of controlling the NOx emissions by acting on SOImain can allow a cycle-
by-cycle NOx control to be realized, which can be very effective, especially in transient
operation.

The controller requires several state values that are provided by the ECU or by sensors
installed on the engine, such as the injection timing and quantity of the pilot pulses (SOIpil,
qf,pil), intake pressure/temperature (pint/Tint), the air mass flow rate (

.
mair), the injection

pressure (pf), the exhaust manifold pressure (pexh), and the engine speed (N), as shown
in Figure 5. The latter quantity was acquired by a high frequency piezoresistive pressure
sensor that was installed in the exhaust manifold.

Another important input variable for the controller, which affects the accuracy of the
NOx prediction to a great extent [34], is the intake manifold oxygen concentration (O2).
In this study, an LSU lambda sensor was installed in the intake manifold for its direct
measurement.

In general, if an oxygen sensor is not available, then the O2 concentration can be
evaluated using a linear equation of the type O2 = f (Xr/λ) [40], where Xr represents the
EGR rate and λ indicates the relative air-to-fuel ratio. In the latter case, the EGR mass flow
rate (

.
mEGR) is also needed (as reported in Figure 5), and this quantity is generally provided

by the ECU through maps or embedded models.
The combustion model description can be found in [7,41], and its scheme is described

in Figure 6.
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Figure 6. Scheme of the combustion model.

A novelty of the controller adopted in this paper consists in the integration of a
recently developed NOx model, which was adopted in order to improve robustness and it
is described in [34].

2.5. Implementation of the Model-based Controller Through Rapid Prototyping

For safety reasons, the developed BMEP/NOx controller has been preliminary tested
with offline simulations by means of ‘MiL’ (Model-in-the-Loop), prior to its implementation
on the engine. The description of the ‘MiL’ activity is reported in detail in [42].

The functionalities of the BMEP/NOx controller on the real engine were then verified
by means of the ‘ETAS ES910’ module. The procedure for the implementation of the
controller can be summarized, as follows.

First, the script of the controller, which is developed in the Simulink environment,
is uploaded on the ETAS ES910 module device by means of the ETAS Intecrio RP (Rapid
Prototyping) software, which generates an “a2l” file that can be read by the ECU through
the ETAS INCA software. The ETAS ES910 device receives the input signals that are needed
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by the controller either from the ECU (via ETK) or from external sensors that are installed
on the engine. Subsequently, the controller estimates the optimal values of SOImain and
qf,inj and sends them to the ECU through ETK communication (Figure 7).
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Figure 8 shows a detail of the different ETAS modules that were installed for the rapid
prototyping tests, as well as their connection.

• The ES910 module was used to execute the script of the developed 
BMEP/NOx controller and to by-pass the baseline ECU values of SOImain/pf 
via ETK. 

• The ES930 module is an input/output module that was used to acquire the 
exhaust pressure signal that is measured by the piezoresistive sensor in-
stalled in the exhaust manifold, and to make it available for the ES910 device. 
The raw signal was filtered by means of a FIR (Finite Input Response), with 
sampling frequency of 100 Hz, before being passed to the ETAS ES910 device. 

• The ES592 module allowed for the communication (via Ethernet) between the 
ETAS ES910 module and the INCA software installed on the test bench PC. 

• The ES636 module was used to acquire the signal of the intake oxygen con-
centration measured by the LSU lambda sensor, and to make it available for 
the ES910 device through the connection with the ES930 module. Its display 
was used for the calibration of the LSU lambda sensor. 

The figure shows how the different ETAS modules were connected according to a 
daisy-chain configuration, which was necessary for the correct acquisition of the needed 
variables. 

It was verified that the computational time that is required by the controller on the 
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Figure 8. Daisy-chain configuration for the different ETAS modules.

In particular:

• The ES910 module was used to execute the script of the developed BMEP/NOx
controller and to by-pass the baseline ECU values of SOImain/pf via ETK.

• The ES930 module is an input/output module that was used to acquire the exhaust
pressure signal that is measured by the piezoresistive sensor installed in the exhaust
manifold, and to make it available for the ES910 device. The raw signal was filtered
by means of a FIR (Finite Input Response), with sampling frequency of 100 Hz, before
being passed to the ETAS ES910 device.

• The ES592 module allowed for the communication (via Ethernet) between the ETAS
ES910 module and the INCA software installed on the test bench PC.
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• The ES636 module was used to acquire the signal of the intake oxygen concentration
measured by the LSU lambda sensor, and to make it available for the ES910 device
through the connection with the ES930 module. Its display was used for the calibration
of the LSU lambda sensor.

The figure shows how the different ETAS modules were connected according to a
daisy-chain configuration, which was necessary for the correct acquisition of the needed
variables.

It was verified that the computational time that is required by the controller on the
ETAS ES910 device is of the order of 300–400 µs per iteration, which is compatible with a
cycle-by-cycle control.

3. Results and Discussion
3.1. Accuracy of the Combustion Model

Details regarding the accuracy of the combustion model and of the NOx model are
shown in [7] and [34], respectively.

By summarizing, the model is able to predict BMEP with a RMSE (Root Mean Square
Error) of about 0.15 bar and the engine-out NOx levels with a RMSE of about 44 ppm, when
the steady-state conditions that are shown in Figure 3 are considered.

3.2. Calibration of the Intake O2 Sensor

A preliminary calibration of the intake oxygen sensor was carried out.
The calibration of the oxygen span concentration was made on the basis of the value

taken from the exhaust gas analyzer when the engine was not running (i.e., 20.6 %). A pres-
sure compensation was also made by selecting this option from the ETAS ES636 module
(see Figure 8), so as to take the effect of the intake manifold pressure into account. The
tuning procedure was carried out at three selected key-points in terms of speed and BMEP,
i.e., 1200 × 4, 2000 × 4, and 3000 × 4 rpm × bar.

Transients tests (which are shown in Figure 9) were also performed in order to verify
the functionality of the calibrated oxygen sensor and to check its accuracy in comparison
with the values read by the oxygen sensor of the test cell (which features the highest
accuracy). It is worthwhile noting that additional tests (i.e., a load ramp at N = 1600 rpm
and a speed ramp test at BMEP = 9 bar) were used for the validation of the intake O2 sensor,
but they not used for the validation of the controller in the subsequent section.
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Figure 10 presents the results for the different ramps. The bottom part of the figure
also reports the relative error of the LSU lambda sensor, which was calculated according to
the equation:

%rel error =
[O2]AMA − [O2]LSU

[O2]AMA
·100 (1)

where [O2]AMA indicates the O2 concentration measured by the test cell gas analyzer (con-
sidered to be a reference) and [O2]LSU indicates the O2 concentration that was measured by
the LSU lambda sensor installed in the intake manifold. The raw O2 concentration from the
test cell analyzer was measured on a dry basis; therefore, it had to be corrected into a wet
one in order to be compared with that of the LSU sensor, which is measured on a wet basis.

 
Figure 10. Intake O2 concentration: measurements of the lambda sensor unit (LSU) analyzer vs. test cell analyzer for the 
different ramp tests. 

It can be noted that the most of the points feature an error in a range between -2% 
and 0. The O2 measurement is more accurate at high O2 percentages, since the LSU sensor 
was calibrated with an oxygen level of 20.6 %. 
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In particular, Figure 11 reports, for the load ramp #1 at N = 1400 rpm, the target and 

measured NOx emissions when the controller is either not enabled (Figure 11a) or enabled 
(Figure 11b). As previously stated, the NOx target was defined by means of a map (in 
which the inputs are the load and speed of the engine). This map was derived while using 
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Figure 10. Intake O2 concentration: measurements of the lambda sensor unit (LSU) analyzer vs. test cell analyzer for the
different ramp tests.

It can be noted that the most of the points feature an error in a range between −2%
and 0. The O2 measurement is more accurate at high O2 percentages, since the LSU sensor
was calibrated with an oxygen level of 20.6%.

3.3. Testing of the Model-Based Controller Through Rapid Prototyping

This section reports the main results concerning the functionality of the controller over
the load ramps that are specified in Section 2 and reported in Figure 3.

In particular, Figure 11 reports, for the load ramp #1 at N = 1400 rpm, the target and
measured NOx emissions when the controller is either not enabled (Figure 11a) or enabled
(Figure 11b). As previously stated, the NOx target was defined by means of a map (in which
the inputs are the load and speed of the engine). This map was derived while using the NOx
levels that are emitted by the engine under steady-state warmed conditions with baseline
engine calibration. The experimental NOx level shown in the chart was derived from the
test bench gas analyzer. Figure 11b also reports the SOImain deviation (∆SOI), with respect
to the baseline value, when the controller is enabled. The RMSE between the target and
actual NOx levels is also reported above the figures. The uncertainty band was also added
around the experimental NOx trends.
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Figure 11. Target and measured NOx levels, and relative difference NOx, for the load ramp #1 (N = 1400 rpm) with con-

troller disabled (a) and controller enabled (b). The SOImain deviation (SOI), with respect to the baseline value, is also 

reported for the case in which the controller is enabled. The initial coolant temperature was around 65 °C at the beginning 

of this ramp. 

Figure 11 shows that the activation of the controller allows obtaining a general im-

provement in the emitted NOx levels, with respect to the desired targets, especially at me-

dium-low loads. However, an error peaking at about 150 ppm occurs around the middle 

part of the ramp test. It will later be clarified that this error is partly due to model predic-

tion error, and partly due to engine thermal state effects on NOx formation. 

For the same ramp test, Figure 12 reports the target and experimental BMEP values 

when the controller is either not enabled (Figure 12a) or enabled (Figure 12b). Figure 12b 

Figure 11. Target and measured NOx levels, and relative difference ∆NOx, for the load ramp #1 (N = 1400 rpm) with
controller disabled (a) and controller enabled (b). The SOImain deviation (∆SOI), with respect to the baseline value, is also
reported for the case in which the controller is enabled. The initial coolant temperature was around 65 ◦C at the beginning
of this ramp.

Figure 11 shows that the activation of the controller allows obtaining a general im-
provement in the emitted NOx levels, with respect to the desired targets, especially at
medium-low loads. However, an error peaking at about 150 ppm occurs around the middle
part of the ramp test. It will later be clarified that this error is partly due to model prediction
error, and partly due to engine thermal state effects on NOx formation.

For the same ramp test, Figure 12 reports the target and experimental BMEP values
when the controller is either not enabled (Figure 12a) or enabled (Figure 12b). Figure 12b
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also reports the qf,inj deviation (∆qf,inj), with respect to the setpoint value, when the con-
troller is enabled. The RMSE values are also reported above the figures. The uncertainty
band was also added around the experimental BMEP trends.

also reports the qf,inj deviation (qf,inj), with respect to the setpoint value, when the control-

ler is enabled. The RMSE values are also reported above the figures. The uncertainty band 

was also added around the experimental BMEP trends. 

 

(a) Controller disabled 

 

(b) Controller enabled 

Figure 12. Target and measured BMEP levels, and relative difference BMEP, for the load ramp #1 (N = 1400 rpm) with 

controller disabled (a) and controller enabled (b). The qf,inj deviation (qf,inj), with respect to the baseline value, is also 

reported for the case in which the controller is enabled. The initial coolant temperature was around 65 °C at the beginning 

of this ramp. 

It can be seen that the BMEP control is very accurate. When the controller is activated, 

the value of the RMSE is, in fact, reduced from 0.32 bar to 0.25 bar. 

The same results are also reported, in Figures 13 and 14, for the load ramp #3 at N = 

3000 rpm. 

Figure 12. Target and measured BMEP levels, and relative difference ∆BMEP, for the load ramp #1 (N = 1400 rpm) with
controller disabled (a) and controller enabled (b). The qf,inj deviation (∆qf,inj), with respect to the baseline value, is also
reported for the case in which the controller is enabled. The initial coolant temperature was around 65 ◦C at the beginning
of this ramp.

It can be seen that the BMEP control is very accurate. When the controller is activated,
the value of the RMSE is, in fact, reduced from 0.32 bar to 0.25 bar.

The same results are also reported, in Figures 13 and 14, for the load ramp #3 at
N = 3000 rpm.
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(a) Controller disabled 

 

(b) Controller enabled 

Figure 13. Target and measured NOx levels, and relative difference NOx, for the load ramp #3 (N = 3000 rpm) with con-

troller disabled (a) and controller enabled (b). The SOImain deviation (SOI), with respect to the baseline value, is also 

reported for the case in which the controller is enabled. The initial coolant temperature was around 65 °C at the beginning 

of this ramp. 

Figure 13. Target and measured NOx levels, and relative difference ∆NOx, for the load ramp #3 (N = 3000 rpm) with
controller disabled (a) and controller enabled (b). The SOImain deviation (∆SOI), with respect to the baseline value, is also
reported for the case in which the controller is enabled. The initial coolant temperature was around 65 ◦C at the beginning
of this ramp.
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Figure 14. Target and measured BMEP levels, and relative difference BMEP, for the load ramp #3 (N = 3000 rpm) with 

controller disabled (a) and controller enabled (b). The qf,inj deviation (qf,inj), with respect to the baseline value, is also 

reported for the case in which the controller is enabled. The initial coolant temperature was around 65 °C at the beginning 

of this ramp. 

In contrast to the results obtained for the load ramp #1, NOx emission control is more 

accurate for the load ramp #3. A reasonable explanation for this result is that the transient 

thermal effects (that are not handled by the current version of the combustion model) are 

more significant at lower speed conditions (i.e., at N = 1400 rpm). Therefore, in those con-

ditions, the NOx levels that are emitted by the engine deviate significantly from the corre-

sponding steady-state points in warm conditions. Furthermore, the BMEP control remains 

very accurate also for this load ramp test at N = 3000 rpm. 

Figure 15 shows the results of the tests that were performed over the load ramp #2 at 

N = 2500 rpm (see section 2). In particular, different levels of NOx target values (i.e., map 

target value and ±20% / ±40% variations from map target values) were set at constant 

Figure 14. Target and measured BMEP levels, and relative difference ∆BMEP, for the load ramp #3 (N = 3000 rpm) with
controller disabled (a) and controller enabled (b). The qf,inj deviation (∆qf,inj), with respect to the baseline value, is also
reported for the case in which the controller is enabled. The initial coolant temperature was around 65 ◦C at the beginning
of this ramp.

In contrast to the results obtained for the load ramp #1, NOx emission control is more
accurate for the load ramp #3. A reasonable explanation for this result is that the transient
thermal effects (that are not handled by the current version of the combustion model) are
more significant at lower speed conditions (i.e., at N = 1400 rpm). Therefore, in those
conditions, the NOx levels that are emitted by the engine deviate significantly from the
corresponding steady-state points in warm conditions. Furthermore, the BMEP control
remains very accurate also for this load ramp test at N = 3000 rpm.

Figure 15 shows the results of the tests that were performed over the load ramp #2 at
N = 2500 rpm (see Section 2). In particular, different levels of NOx target values (i.e., map
target value and ±20%/±40% variations from map target values) were set at constant
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BMEP target. Figure 15 reports the target (solid lines) and measured values (dashed lines)
of NOx emissions and the SOImain corrections with respect to the setpoint values.
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Figure 15. Predicted and measured levels of NOx emissions for the load ramp #2 at N = 2500 rpm, for several NOx targets. 
The initial coolant temperature was around 65 °C at the beginning of this ramp. 

The results indicate that the controller works properly, since, when a higher concen-
tration of NOx is demanded, SOImain is progressively advanced, and vice-versa. 

Figure 14 shows the simulated and experimental trends of the cumulative NOx emis-
sion index, as well as the relative errors in the final value of the curves. The results confirm 
the proper behavior of the controller. 

With reference to the results of Figure 16, Table 2 reports the experimental cumula-
tive NOx reduction or increase, with respect to the nominal case, for the different targets. 
The results indicate that the target request is matched with a satisfactory degree of accuracy. 
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Table 2. Summary of the experimental cumulative NOx reduction/increase with respect to the nominal case, for the load
ramp #2 (N = 2500 rpm) with several NOx targets.

NOx target variation with respect to the nominal case −20% −40% +20% +40%

Experimental cumulative NOx reduction/increase with respect to the nominal case −15.08% −37.80% 23.99% 47.89%

Figure 17 reports the target (solid lines) and measured values (dashed lines) of BMEP
and the corrections of injected fuel quantities with respect to the ECU values.
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Figure 17. Predicted and measured levels of BMEP for the load ramp #2 at N = 2500 rpm with different NOx targets. The
initial coolant temperature was around 65 ◦C at the beginning of this ramp.

3.4. Effect of the Engine Thermal State

The engine thermal state has an important impact on the NOx formation: a warm-up
test, in fact, leads to an increase in the emitted NOx levels.

A new load ramp was added (i.e., ramp #4), which was basically a repetition of the
load ramp test #1 at N = 1400 rpm (i.e., the test in which the controller showed the lowest
accuracy in terms of NOx, see Fig. 11) by setting a much longer stabilization time between
the different engine load conditions, in order to verify to what extent controller predictive
capability is affected by the engine thermal state. The target of coolant temperature to be
reached by the test bench controller was set at 85 ◦C over the entire ramp. Moreover, the
engine was warmed before the start of the test, so that the initial coolant temperature was
also equal to 85 ◦C.

Figure 18b shows that the accuracy in the NOx control is much better than that
obtained for the test that was reported in Figure 11b, as the average RMSE has whittled
down from about 91 ppm to 41 ppm. It is also interesting to note that, during the second
part of the test (in the interval between 1100 s and 1400 s), the NOx emitted by the engine
feature a decreasing trend, at fixed values of the control parameters (SOImain, qf,inj). During
this phase, the error in the NOx control progressively decreases over time. The alignment
between the target and experimental levels is better at the end of the transient, when the
engine thermal state is expected to be closer to that corresponding to the steady-state
conditions, in which the combustion model was calibrated.



Energies 2021, 14, 1107 19 of 25

and control NOx emissions, especially in transient operation. For example, such parame-
ters as the coolant temperature, or the oil temperature, could be potentially used as model 
variables to take the engine thermal state effect on NOx formation into account.  

Finally, Figure 19 shows the target and experimental values of BMEP for the consid-
ered load ramp test with controller disabled (a) and controller enabled (b). Figure 19b also 
reports the qf,inj deviation (Δqf,inj), with respect to the setpoint value, when the controller is 
enabled. 

 
(a) Controller disabled 

 

 
(b) Controller enabled 

Figure 18. Target and measured NOx levels, and relative difference ΔNOx, for the load ramp #4 (N = 1400 rpm) with ex-
tended stabilization time, at coolant temperature of 85 °C, with controller disabled (a) and controller enabled (b). The 
SOImain deviation (ΔSOI), with respect to the baseline value, is also reported for the case in which the controller is enabled. 

Figure 18. Target and measured NOx levels, and relative difference ∆NOx, for the load ramp #4 (N = 1400 rpm) with
extended stabilization time, at coolant temperature of 85 ◦C, with controller disabled (a) and controller enabled (b). The
SOImain deviation (∆SOI), with respect to the baseline value, is also reported for the case in which the controller is enabled.

Therefore, this means that the engine thermal state has an appreciable impact on the
NOx emissions, and its effect should be carefully considered in order to correctly estimate
and control NOx emissions, especially in transient operation. For example, such parameters
as the coolant temperature, or the oil temperature, could be potentially used as model
variables to take the engine thermal state effect on NOx formation into account.

Finally, Figure 19 shows the target and experimental values of BMEP for the considered
load ramp test with controller disabled (a) and controller enabled (b). Figure 19b also
reports the qf,inj deviation (∆qf,inj), with respect to the setpoint value, when the controller
is enabled.
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The results presented in Figure 19 show that the effect of the engine thermal state on
the accuracy of the BMEP controller is less significant, at least for the considered tests.

3.5. Discussion on Onboard Controller Implementation and Future Work

The previously reported results indicate the good potential of the developed con-
troller. However, several aspects should be carefully considered before proceeding to its
implementation on a commercial vehicle.

First, it was verified that the model-based controller requires a computational time of
300–400 µs per iteration, which is compatible with a cycle-by-cycle control, when it runs on
the ES910 device. However, the ES910 device is more powerful than a standard ECU. If
the computational performance of the ECU is not sufficient to implement the combustion
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model, a simpler and less demanding model, such as a neural network, should be con-
sidered. The neural network could be trained to mimic the outcomes of the combustion
model, according to a meta-modeling approach, where the calibration dataset is generated
by the combustion model itself, used as a virtual engine.

The effect of the engine thermal state on NOx formation, which is not negligible,
especially at medium-low speeds, is another aspect that was discussed in this work. This
suggests the need of a further improvement of the combustion model in order to enhance
the controller accuracy.

In addition, as previously reported, an important input variable for the controller, which
affects the accuracy of the NOx prediction to a great extent [34], is the intake manifold oxygen
concentration. In this study, an LSU lambda sensor was installed in the intake manifold for
its direct measurement. If an intake oxygen sensor was installed on a commercial engine,
aspects, such as the variation of the accuracy over time, possible drifts, and durability,
should be carefully examined. Moreover, the installation of such a sensor would lead to
additional engine production costs, and a cost/benefit analysis should be carried out. An
alternative approach could be represented by the development and adoption of an intake
O2 model which is accurate enough at both steady-state and transient conditions, and it is
fast enough to be implemented in the ECU.

In view of a potential implementation of the controller on a commercial vehicle,
attention should also be paid to several practical aspects, such as a correct management of
the input and output variables of the controller to improve its robustness. As far as the
input variables are concerned, a saturation of the values that are sent to the controller is
highly recommended, in order to manage possible failures in their acquisition and avoid
calculation errors during the on-road running. Cut-off and gear shifting phases, during
which the fuel quantity is set at zero, also have to be correctly managed, so as to avoid
potential sources of errors, such as infinite values of the air-to-fuel ratio. Limitations in
the range of the output control variables (i.e., SOImain and qf,inj) are highly recommended,
in order to avoid engine operating conditions that could be dangerous for engine safety
(e.g., excessive peak firing pressure if injection timing is too advanced) or could lead to
excessive pollutant emissions (e.g., excessive soot levels if injection timing is too delayed).

The coupling of the combustion controller with other engine/vehicle sub-systems,
such as the cruise controller or the boost controller, should also be carefully handled. For
example, possible instabilities may occur when the torque controller is coupled with the
cruise control system, since both of them act on the injected fuel quantity.

Finally, it should also be considered that the impact of the controller on other pollutant
emissions (especially soot), or on the long-term engine operations, needs to be evaluated
before its implementation.

Therefore, a high number of bench and road-tests needs to be performed in order to
identify and solve potential problems in view of the implementation of the controller on
the vehicle.

On the basis of the previous discussion, future research activities will include:

• an assessment of the computational time of the controller when implemented on an
ECU and a development of a neural network-based model that replicates the results
of the physical combustion model, but it requires a much shorter computational time;

• the improvement of the combustion and NOx model, so as to take into account the
engine thermal state;

• a development of an intake O2 model that is characterized by a satisfactory degree of
accuracy at steady-state and transient conditions, but it is suitable to be deployed on
an ECU; and,

• an investigation of the impact of the controller on other pollutant emissions (especially
soot) or on the long-term engine operations, and the development of compensation
strategies if needed.
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4. Conclusions

In this paper, a model-based algorithm for the control of BMEP and engine-out NOx
emissions has been implemented on an ETAS ES910 rapid prototyping device and tested on
a FPT F1C 3.0 L diesel engine. An intake O2 sensor was adopted to measure the intake O2
concentration, which is an input quantity that affects the accuracy in the NOx estimation
and control to a great extent.

The experimental tests have confirmed the proper functionality of the controller on
the real engine. In particular, the controller was tested over three different load ramp tests
at different engine speeds (N = 1400 rpm, N = 2500 rpm, N = 3000 rpm), which were carried
out with an initial temperature of the coolant of 65 ◦C. Moreover, a specific investigation
was conducted to verify the effect of the engine thermal state on the accuracy in the control
of NOx and BMEP in transient operation, by repeating the load ramp test at N = 1400 rpm,
with longer stabilization times and an initial temperature of the coolant of 85 ◦C.

It was verified that the average RMSE values for the control of NOx emissions were
approximately 90 ppm during the load ramp test at N = 1400 rpm and 55 ppm for the load
ramp test at N = 3000 rpm, while the average RMSE values for the control of BMEP were
about 0.25 bar and 0.39 bar for the same two tests, respectively. It was then pointed out
that the lower accuracy in the control of NOx emissions at low engine speed is due to the
impact of the engine thermal state on the NOx formation. In fact, if the load ramp test at N
= 1400 rpm is repeated with longer stabilization times and an initial coolant temperature
of 85 ◦C, then the emitted NOx levels are much more aligned with the targets, and the
average RMSE value for the control of NOx emissions is reduced to a level that is 41 ppm.

Future research activities will be focused on the improvement of the combustion
model, in order to take the engine thermal state into account, as well as on the evaluation
of its impact on other pollutant emissions and on the long-term engine performance.
Moreover, it will be necessary to identify and solve potential issues that are related to its
implementation on the commercial engine control unit.
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Abbreviations

AC Alternating Current
ATS After-treatment System
BMEP Brake Mean Effective Pressure
CA crank angle
CLD chemiluminescence detector
ECU Engine Control Unit
EGR Exhaust Gas Recirculation
EVO Exhaust Valve Opening
FIR Finite Input Response
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FMEP Friction Mean Effective Pressure
FPT Fiat Powertrain Technologies
FSO Full Scale Output
Habs absolute humidity of the air
HP-EGR High-pressure Exhaust Gas Recirculation
IMEP Indicated Mean Effective Pressure
IMEP360 Gross Indicated Mean Effective Pressure
IMEP720 Net Indicated Mean Effective Pressure

IMPERIUM
IMplementation of Powertrain Control for Economic and Clean Real driving
emIssion and fuel ConsUMption

IVC Intake Valve Closing
LP-EGR Low-pressure Exhaust Gas Recirculation
LSU Lambda Sensor Unit

relative air-to-fuel ratio
m mass
.

mair mass flow rate of fresh air
.

mEGR mass flow rate of EGR
MFB50 crank angle at which 50% of the fuel mass fraction has burned
MPC model predictive control
N engine rotational speed
MiL Model-in-the-Loop
NFC next firing cylinder
NOx nitrogen oxides
O2 intake charge oxygen concentration
p pressure
pcabin pressure in the test bench
pexh exhaust manifold pressure
pf injection pressure
PFP peak firing pressure
pint intake manifold pressure
PID Proportional-Integral-Derivative
PMEP Pumping Mean Effective Pressure
q injected fuel volume quantity
Qch chemical heat release
qf,inj total injected fuel volume quantity per cycle/cylinder
qf,main injected fuel volume quantity for the main pulse per cycle/cylinder
qf,pil injected fuel volume quantity for a pilot pulse per cycle/cylinder
Qf,evap fuel evaporation heat
Qht,glob heat globally exchanged by the charge with the walls over a cycle
Qnet net heat release
RMSE root mean square error
RP rapid prototyping
SOI electric start of injection
SOImain electric start of injection of the main pulse
SOIpil electric start of injection of a pilot pulse
t time
T temperature
Tcabin temperature in the test bench
Tint intake manifold temperature
tgt target value
V2X vehicle-to-everything technology
VGT Variable Geometry Turbine
VPM Virtual Pressure Model
VVA Variable Valve Actuation
Xr EGR rate
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