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Advanced modeling of embedded piezo-electric transducers for the 

health-monitoring of layered structures   

The present paper presents an innovative approach for the numerical modeling of 

piezo-electric transducers for the health-monitoring of layered structures. The 

numerical approach has been developed in the frameworks of the Carrera Unified 

Formulation. This computational tool allows refined numerical models to be 

derived in a unified and efficient fashion. The use of higher-order models and the 

capability to connect different kinematic models using the node-dependent 

kinematic approach has led to an efficient modeling technique for global-local 

analysis. This approach can refine the model only in those regions where it is 

required, e.g., the areas where piezo-electric transducers are placed. The model 

has been used to study embedded and surface-mounted sensors. The accuracy of 

the present model has been verified by comparing the current results with 

numerical and experimental data from the literature. Different modeling solutions 

have been developed, mixing one-, two- and three-dimensional finite elements. 

The results show that the use of the present modeling technique allows the 

computational cost to be reduced with respect to the classical approaches 

preserving the accuracy of the results in the critical areas. 

Introduction 

 The prediction of the failure of composite structures and their health-monitoring 

are critical factors in the design of the next generation light-weight structures. The use 

of sensor networks can provide a large amount of data that can be processed and used to 

predict the residual structural integrity (1,2). 

In the last decades, many research projects and industrial applications have been 

focused on the use of piezoelectric materials as sensors for the identification of 

structural damage (3). Piezoelectric materials have the property to originate an electric 

field as a consequence of a mechanical load and, at the same time, they generate 

mechanical strains when they are subject to an electric field. The design of piezoelectric 

devices requires the solution of an electro-mechanical coupled problem in which the 

electric potential becomes one of the primary variables of the problem (4).  



The sensing capabilities of piezoelectric sensors have been widely used for 

active and passive monitoring of  laminated structures (5,6). The sensing devices can be 

applied on the surface of the structure to be monitored (7,8) or they can be embedded 

(9) in the hosting structure. Figure 1 shows the two strategies. The use of surface-

mounted sensors eases the installation of these devices on new or existing structures but 

keeps the sensors exposed to external agents. 

 

 

Figure 1 Example of surface-mounted and embedded piezoelectric sensors. 

 

Embedded sensors can be installed in laminated structures, e.g., composite materials, 

during the manufacturing process. The use of embedded sensors leads to a higher 

sensitivity of the devices since they are strongly bonded to the hosting structure (10) 

and give to the sensor certain protection. On the other hand, the manufacturing of 

composite material with embedded sensors (11,12) can be challenging since the curing 

temperature must not exceed the Curie temperature of the active material. Moreover, the 

use of integrated sensors can produce local defects and stress concentrations that reduce 

the performances of the hosting structure (13). Dedicated manufacturing techniques, 

e.g. the interlacing (14), have been proposed to minimize the local impact of the sensor 

(15).  An alternative to the use of localized piezo patches is represented by the use of 

embedded piezo fibers, an example is shown in (16).  

Proper numerical modeling techniques can be used to predict the performances 

of active structures with embedded devices, preserving their integrity. In the last 

decades, many research papers have been presented on the modeling of smart structures 



(4,17). Classical one- and two-dimensional structural models are inaccurate when they 

are used in the analysis of smart structures since their fundamental assumptions do not 

allow complex stress and strain fields to be predicted. The use of three-dimensional 

models can lead to accurate results but requires a huge computational cost. The 

constraints on the solid element aspect-ratio and the small thickness of the active layers, 

require refined meshes to be used to preserve the model accuracy.   

The use of an iso-geometric approach for the optimization of micro and 

nanostructures of flexoelectric materials has been proposed in (18). The solution of an 

inverse-problem (19) has been demonstrated to be able to detect voids and inclusions in 

piezoelectric materials. 

  The use of higher-order finite elements for the analysis of smart structures have 

been proposed in many works (20) (21). The capabilities of these models have been 

often used to predict the free vibration of panels with piezo patches (22) or to predict 

the damping capabilities of active control systems (23). Three-dimensional exact 

solutions of piezoelectric layered structures have been presented by Kulikov and 

Plotnikova (24). The use of sinus finite elements has been proposed in (25) to avoid the 

use of shear correction factors in the analysis of laminated structures with distributed 

piezoelectric layers. 

 Carrera and his research group proposed the use of a unified formulation for the 

development of refined models for smart structures (26,27) considering also mixed 

formulations (28). The use of refined models can lead to accurate results, but it still 

requires a high computational cost if large structures are considered.  

A reduction in the computational cost can be achieved by implementing global-

local modeling techniques that make it possible to refine the solution locally. An 

example of these approaches is based on the use of transitional elements (29) that can 



connect a global plate model to a local model based on solid elements. Srivastava and 

Lanza di Scalea (30)  and Spada et al. (31) proposed a global-local approach where the 

finite element (FE) and a Semi-Analytical FE (SAFE) are used to investigate the 

integrity of composite structures. A global-local approach based on FEM/BEM 

(Boundary Element Method) analysis has been proposed in (32) to investigate damaged 

aircraft structures. 

The aim of this article is to present an advanced global-local modeling technique 

for the analysis of surface-mounted and embedded piezoelectric transducers based on 

the Carrera Unified Formulation (33). This numerical tool can be used to derive any 

order structural models in a unified fashion. Recently, the formulation has been 

extended to multidimensional models (34) and, thanks to the node-dependent kinematic, 

NDK, formulation (35) the order of expansion of the structural model can be considered 

as a property of the node (36). These capabilities have originated a powerful framework 

for global-local analysis (37) since the numerical model can be refined only in those 

areas of the structure where complex phenomena are expected. An application of the 

NDK formulation to piezo-electric beams can be found here (36). In the present work, 

these techniques have been extended at the analysis of surface-mounted and embedded 

piezoelectric sensors as the basis for the design of health-monitoring system. 

 In the first part of the article, the Carrera Unified Formulation and the related 

modeling techniques are presented. In the second part, the present approach is used to 

investigate and compare two structures, the first with a surface-mounted sensor and the 

latter with an embedded transducer. The results have been compared with those from 

numerical and experimental analysis proposed in the literature. 

 

Computational Model 



This section introduces the numerical model used in the present paper. An overview of 

the Carrera Unified Formulation and of the structural theories adopted is reported. 

Afterward, the modeling techniques for the case of embedded and surface-mounted 

sensors are presented.  

 

 

Preliminaries 

The solution of the coupled electro-mechanical problem requires to consider the electric 

potential, 𝜙, as a primary variable of the problem. The generalize displacement, q, 

vector can be written as: 

 𝒒 = {𝑢𝑥 𝑢𝑦 𝑢𝑧 𝜙}𝑇 ,  (1) 

and the electric field vector, E, can be written as: 

 𝑬 = {𝐸𝑥 𝐸𝑦 𝐸𝑧}𝑇 = {𝜕𝑥 𝜕𝑦 𝜕𝑧}𝑇ϕ .  (2) 

The generalized strain vector, 𝜀,̅ can be written as: 

 𝜺̅ = {ε𝑥𝑥 ε𝑦𝑦 ε𝑧𝑧 ε𝑥𝑧 ε𝑦𝑧 ε𝑥𝑦 E𝑥 E𝑦 E𝑧}𝑇  =  𝑫𝒒;  (3) 

where D is the matrix of the differential operators. The complete form of the matrix can 

be found in (36).  

The electromechanical constitutive equations can be expressed as follows: 

 𝛔 = 𝑪𝛆  −  𝒆𝑇𝑬;  
𝑫𝒆 = 𝒆𝛆  +  𝛘𝑬,

 
 (4) 

where De is the electric displacement vector {Dx, Dy, Dz}
T, and σ is the mechanical 

stress vector, C the matrix of mechanical material coefficients. χ is the dielectric 

permittivity matrix. The piezoelectric stiffness coefficients are stored in matrix e. 

The generalized stress vector can be arranged as: 

 𝛔̅ = {σ𝑥𝑥 σ𝑦𝑦 σ𝑧𝑧 σ𝑥𝑧 σ𝑦𝑧 σ𝑥𝑦 D𝑥 D𝑦 D𝑧}𝑇.  (5) 

The generalized stress vector can be obtained as: 



 𝛔̅ =  𝑯𝛆̅ .  (6) 

Kinematic assumptions 

The three-dimensional generalized displacement field can be written in the general form 

as: 

 𝒒 = 𝒒(𝐱, 𝐲, 𝐳)  (7) 

When slender bodies must be investigated it is justified to reduce the three-dimensional 

problem to an one-dimensional problem. In this case, the generalized displacement field 

can be written as: 

 𝒒𝟏𝑫 = Fτ(𝑥, 𝑧)𝒒τ(𝑦)  (8) 

Where the 𝐹𝜏(𝑥, 𝑧) is the functions expansion used to approximate the cross-sectional 

kinematic of the one-dimensional model. 𝒒𝜏(𝑦) are one-dimensional unknown 

functions. The index τ denotes the term of the expansion. 

The choice of the expansion generates different kinematic models, the use of a Taylor 

expansion leads to equivalent single layer (ESL) models while, when Lagrange 

functions are used, layer-wise (LW) models can be obtained. More details can be found 

in (25). 

The analysis of thin structures can be carried out introducing two-dimensional models, 

in this case Eq. (7) becomes: 

 𝒒𝟐𝑫 = Fτ(𝑧)𝒒τ(𝑥, 𝑦)  (9) 

The kinematic approximation is introduced through-the-thickness by means of the 

expansion Fτ, while the unknow quantities 𝐪τ are defined on the reference plane of the 

structure. The structural model depends on the kinematic approximation used, as for the 

case of the one-dimensional models, a Taylor expansion leads to ESL models while 

Lagrange functions can be used to derive LW models.  



The solution of the problem can be obtained using the classical finite element 

formulation, that is, a set of shape functions, Ni, can be use do approximate the one-, 

two- or three-dimensional problem.  

The final formulation of the generalized displacement field for the three cases can be 

written as: 

 𝒒𝟑𝑫 = Ni(𝑥, 𝑦, 𝑧)𝒒𝒊

𝒒𝟐𝑫 = Ni(𝑥, 𝑧)Fτ
i (𝑧)𝒒iτ

𝒒𝟏𝑫 = Ni(𝑦) Fτ
i (𝑥, 𝑧)𝒒iτ

 

 (10) 

The index i on the 𝐹𝜏 comes from the node dependent kinematic approach, NDK, and 

denotes that for each node i a different kinematic assumption can be introduced. 

 

Node-dependent kinematic models 

The NDK approach is used, in the present paper, to refine locally the numerical model 

and to impose compatible kinematic models at the interface between one- two- and 

three-dimensional elements. The theoretical derivation of the NDK modeling approach 

has been presented in (35) and has been used for the analysis of piezoelectric structure 

in (36). A simple, two node, beam element is here used to present the approach.  

The displacement field of the considered beam model can be written as follow: 

 𝒒𝟏𝑫 = N1(𝑦) Fτ
1(𝑥, 𝑧)𝒒1τ + N2(𝑦) Fτ

2(𝑥, 𝑧)𝒒2τ  (11) 

Where N1is the shape function in node 1 while N2 is the shape function of node two. In 

each node a different kinematic model can be imposed, here a first order Taylor 

expansion is considered at the first node: 

 Fτ
1(𝑥, 𝑧) = 1𝑞11 + x 𝑞12  + z 𝑞13 ;  (12) 

  

 



while a four-node linear Lagrange expansion, L𝜏, is used on the cross-section placed on 

node 2: 

 Fτ
2(𝑥, 𝑧) = L1𝑞21 + L2𝑞22 + L3𝑞23 + L4𝑞24.  (13) 

The displacement filed of the element thus is: 

 𝒒𝟏𝑫 = N1(1𝑞11 + x 𝑞12  + z 𝑞13) + N2 (L1𝑞21 + L2𝑞22 + L3𝑞23 + L4𝑞24).  (14) 

 

Governing equation 

The stiffness matrix, as well as the external load vector, can be derived by applying the 

principle of virtual displacement (PVD). By substituting the constitutive equations, the 

following expression can be attained: 

 
𝛅𝑳𝒊𝒏𝒕 = ∫𝛅

𝑽

𝜀̅𝑇𝜎̅ 𝒅𝑽 = 𝛅𝑳𝒆𝒙𝒕 
 (15) 

If the geometrical relations and shape functions are substituted into the above 

expression, one can obtain: 

 
𝛅𝑳𝒊𝒏𝒕 = δ𝐪sj ∫ Nj𝐈

V

Fs
j
𝐃T𝐇𝐃Fτ

i 𝐈NidV𝐪iτ 
 (16) 

in which I is a 4x4 identity matrix. In a more compact form, the above expression can 

be written as: 

 δLint = δ𝐪sj
T 𝐊ijτs𝐪τi  (17) 

where 𝐊ijτs is the fundamental nucleus of the stiffness matrix. The global stiffness 

matrix can be obtained by the proper assembly of fundamental nuclei evaluated for each 

combination of the indexes i, j, τ, and s. More details about the assembly procedure can 

be found in (25). 

 

 

 



Global-local modeling techniques 

Figure 2 shows an example of an aeronautical reinforced structure with two sensors 

embedded in the panels. Despite classical finite element formulations have been used 

over the years to analyze such thin-walled structures, these models are not effective in 

the prediction of the local effects originated by the sensors. The investigation of the 

output of the sensors resulting from a structural deformation requires a coupled analysis 

where both mechanical and electrical fields must be defined. The local response can be 

highly three-dimensional, that is, solid element are often used to solve the multifield 

problem locally. 

 

Figure 2 Example of an aeronautical structure with embedded piezoelectric sensors. 

 

The coupling of refined local and coarse global models has been the topic on many 

research works (38,39) and has been solved mainly using transitional elements (29) or 

imposing ad hoc constrains at the interface of the local and the global model, e.g. using 

Lagrange multipliers. 



This section presents an advanced technique for the global-local modelling of smart 

structures that takes advantage of the capabilities of the Carrera Unified Formulation to 

derive any order theories with a systematic procedure. The local refinement of the 

model and the transition between elements with different dimensions can be achieved 

using the NDK approach.  

Figure 3 shows an example of a plate with an embedded sensor. The use of a 2D LW 

model in the sensor area ensures high accuracy of the results. The transition area 

between the sensor and the hosting structure can have a variation in the thickness of the 

structure, in this case, three-dimensional elements can be used to ensure a high-fidelity 

representation of the geometry. Finally, classical two- and one-dimensional models can 

be used for the hosting structure where no complex phenomena are expected. 

 

Figure 3  Example of the global-local modeling of a structure with an embedded piezo-sensor. 

The transition strategies between models with different dimension are shown in Figure 

4. Using the NDK approach, it is possible to impose compatible kinematic models at the 

interface between elements with different dimensions (37).  

 

Figure 4 Transition strategy between 1D and 2D models and between 2D and 3D models (34) . 



The use of kinematic models based on Lagrange functions originates a formulation with 

only displacements as degrees-of-freedom, that is, one-, two- and three-dimensional 

elements can be easily connected by imposing the equivalence of the displacements at 

the shared nodes (34).  

 

Numerical Results 

Two specimens, one with a surface-mounted sensor and one with an embedded 

transducer are considered in this section. The two benchmarks came from the work by 

Shin et al.(10)  where numerical and experimental results have been presented. 

The specimens have been built using glassfiber-epoxy composite with a stacking 

sequence equal to [0/90]10S, both have a piezoelectric circular transducer serving as a 

sensing device, the transducer is considered bounded with an adhesive. The laminate, 

piezoelectric material and adhesive properties are reported in Table 1.  

Material Fiberglass/epoxy PZT-5A Adhesive 

EL (GPa) 20.1 61.0 1 

ET (GPa) 21.8 61.0 1 

EZ (GPa) 12.7 53.2 1 

νLT 0.115 0.35 0.35 

νLZ 0.212 0.384 0.35 

νZT 0.452 0.384 0.35 

GLT (GPa) 3.8 21.1 0.37 

GLZ (GPa) 7.6 21.6 0.37 

GZT (GPa) 7.5 22.6 0.37 

e31 (C/m2) - -5.35 - 

e15 (C/m2) - 12.29 - 

e33 (C/m2) - 15.78 - 

ε11
*/ε0 - 919 - 

ε33
*/ε0 - 914 - 

ρ (kg/m3) 1896 7800 1200 

*Constant strain    
Table 1 Material properties used in the simulation (ε0 is the permittivity in the free space) 

 



The geometry of the two specimens is reported in Figure 5 Geometry of the models 

considered. The point P denotes the position in which the axial strain has been 

evaluated, via strain gauge, during the test and is placed at 8 mm from the halfwidth of 

the specimen. The surface-mounted sensor is considered bounded at the coupon surface 

via a layer of adhesive with a thickness of 0.15 mm. The piezoelectric sensor has a 

circular shape with a diameter of 6.3 mm and a thickness of 0.191 mm. 

The embedded sensor is placed under the upper glassfiber ply, which has with a 

thickness of 0.00027, and is bounded with a layer of adhesive all around the sensor. The 

details of the piezo transducers are shown in Figure 6.  

 

 

Figure 5 Geometry of the models considered 

 

A three-point bending test has been simulated imposing a vertical displacement of 1mm 

at the center of the specimens. The response in terms of voltage and strain have been 

evaluated and compared with those reported in the literature. Figure 7 shows the details 

of the virtual test setup and the reference system used in the analysis. The two lateral 

supports have been modeled as simply support boundaries. 

 



 

Figure 6 Details of the sensor area for the surface mounted (left) and embedded (right) sensors. 

 

Figure 7 Virtual test setup and reference system for the embedded sensor specimen. The same setup has been used for 

the surface-mounted sensor coupon. 

 

Different modeling approaches have been used to investigate the static and electro-

mechanical response of the structures. Figure 8 shows the subdivision of the structure 

with the embedded sensor in different subdomains or areas, each of them can be 

analyzed with a different kinematic. The same subdivision has been adopted for the 

specimen with the surface-mounted sensor unless subdomain 4, in this case, subdomain 

2 is directly connected with subdomain 5. 

 



 

Figure 8 Subdivision of the specimen in different subdomains each of them can have a different kinematic. 

 

Table 1Table 2 shows the different combinations of kinematic models considered. 

Models EMB-1 to EMB-4 are related to the embedded sensor specimen while models 

SUR-1 to SUR-4 are related to the surface-mounted sensor coupon.  

Two different plate models have been considered. The TE-2 model uses a quadratic 

Taylor expansion through-the-thickness of the plate and is based on an equivalent single 

layer approach. The LE model is a layer-wise model based on Lagrange functions, in 

this case three quadratic elements have been used through-the-thickness of hosting 

structure, additional elements have been added to include the adhesives and the piezo 

patch. 

 

 Area 1 Area 2 Area 3 Area 4 Area 5 DOFs 

EMB-1 2D (TE-2) 2D (TE-2) 2D (TE-2) 2D (TE-2) 2D (TE-2) 7245 

EMB-2 2D (LE) 2D (LE) 2D (LE) 3D 2D (LE) 38313 

EMB-4 2D (TE-2) 2D (LE) 2D (TE-2) 3D 2D (LE) 30753 

EMB-4 1D (TE-2) 2D (LE) 1D (TE-2) 3D 2D (LE) 29781 

SUR-1 2D (TE-2) 2D (TE-2) 2D (TE-2) - 2D (TE-2) 7245 

SUR -2 2D (LE) 2D (LE) 2D (LE) - 2D (LE) 22320 

SUR -3 2D (TE-2) 2D (TE-2) 2D (TE-2) - 2D (LE) 17691 

SUR -4 1D (TE-2) 2D (LE) 1D (TE-2) - 2D (LE) 17046 

Table 2 Elements (3D -solid; 2D – plate; 1D – beam) and Kinematic models (TE- Taylor expansion; LE – Lagrange 

expansion) considered for each subdomain.  

 



A second order beam model, 1D (TE-2), has been used in the subdomain 1 and 3 where 

no local effects were expected. A Lagrange Expansion, LE, beam model has been used 

at the interface between beam and plate models to obtain the displacement continuity.  

A standard quadratic kinematic was considered when solid elements have been 

employed, that is, 27-node solid elements have been adopted. 

 

Surface-mounted sensor analysis 

The results for the surfaced mounted sensor specimen are presented in this section. At 

first, a static analysis has been carried out to investigate the effects of the modeling 

approaches on the strain and stress distributions.  Then, the coupled electro-mechanical 

problem has been solved to investigate the electric response originated by the applied 

displacement. 

 

Static Analysis 

The results coming from the static analysis are reported in Table 3. The first column 

reports the modeling approach while columns two and three show the axial strain and 

stress evaluated at the central point of the piezo transducer. The results show that the 

use of a full equivalent single layer model, model SUR-1, leads to an overestimation of 

the axial strain and stress if compared with a full LW approach, model SUR-2. 

 

Model εyy σyy [MPa] 

SUR-1 0.002243 168.78 

SUR -2 0.001455 89.91 

SUR -3 0.001465 90.27 

SUR -4 0.001452 89.69 
Table 3 Axial Stress and strain evaluated at the center of the piezo patch using different modeling approaches. 

 



Models SUR-3 and SUR-4 can replicate the solution of the layer-wise model using an 

accurate kinematic approximation only in the sensor area. 

The lack of accuracy showed by model SUR-1 can be explained by looking at the 

results in Figure 9. The picture reports trough-the-thickness distributions of the axial 

strain and stress evaluated in the central point of the sensor. Only the upper part of the 

specimen (0.003 mm < z < top) has been reported to emphasize the sensor area. 

The results show that an ESL approach is unable to detect the discontinuities in the 

strain field originated by the interfaces between the substrate and the adhesive, and 

between the adhesive and the piezo transducer. Consequently, the axial stress predicted 

in the active material is much larger than expected, almost the double. 

 

 

Figure 9 Axial strain, on the left, and stress, on the right, distribution through-the-thickness. The results have been 

evaluated in the central point of the piezo transducer.  

 

Electro-mechanical Analysis 

The lack of accuracy of model SUR-1 in the prediction of the static response of the 

structure can be also seen in the results of the coupled electro-mechanical analysis. 

Table 4Table 4 Electro-mechanical coupled analysis of the surface-mounted sensor 

specimen. Axial strain, voltage, and effective coupling factor. reports the axial strain 

evaluated at points P, see Figure 5, the voltage generated by the deformation and the 

ratio between these two quantities that denotes the effective coupling factor. The results 



are compared with those from literature (10) where experimental and numerical results 

have been presented. The use of ESL models for the description of the electric potential 

is not recommended since it has a typical piece-wise distribution. In the present work 

the electric potential for model SUR-1 has been evaluated starting from the axial strain 

distribution following the procedure presented in (40). 

Model εyy V V/ εyy [V/µε] 

Experimental (10) - - 0.036 

3D FEM (10) - - 0.036 

SUR-1 0.00291 175.5 † 0.060 

SUR -2 0.00307 108.6 0.035 

SUR -3 0.00300 108.1 0.036 

SUR -4 0.00308 108.3 0.035 

SUR -2* 0.00299 188.0 0.063 
† The electric potential has been evaluated using the formulation in (40)  

Table 4 Electro-mechanical coupled analysis of the surface-mounted sensor specimen. Axial strain, voltage, and 

effective coupling factor. 

As expected, the model SUR-1 is unable to predict the correct response overestimating 

the effective coupling factor. The prediction of a higher coupling is due to the fact that, 

an equivalent single layer approach cannot describe the interface between the hosting 

structure and the piezo-electric transducer properly. The lower stiffness of the adhesive 

reduces the coupling between the two joined components that is, the piezo patch cannot 

see the same strain of the structure. To confirm this results model SUR -2* has been 

introduced. This model is equivalent to model SUR-2 but the adhesive has a stiffness 

100 times higher, that is, a perfect bonding is ensured. In this case, the value of the 

effective coupling factor is much closer to the value provided by model SUR-1. 

The use of variable kinematic models, SUR-2 and SUR-4, allows to achieve the same 

results of the full layers-wise model with a reduced computational cost. Table 5 shows 

the reduction of the computational costs achieved using the present variable kinematic 

models.  



Despite the number of degree of freedom in the area 5, see Figure 8 Subdivision of the 

specimen in different subdomains each of them can have a different kinematic. is 

constant, the use of a reduced-order model elsewhere can provide a computational cost 

saving in areas 1 to 4 up to 56%.   

Model DOF Full model DOF Area 5 DOF Area 1-4 Δ% DOF Area 1-4 

SUR -2 22320 12996 9324 - 

SUR -3 17691 12996 4695 -49.6 

SUR -4 17046 12996 4050 -56.6 
Table 5 Computational cost reduction using variable kinematic models. 

Embedded sensor analysis 

In this section are reported the results obtained considering the specimen with the 

embedded sensor. Both static and coupled electro-mechanical analyses have been 

performed. 

 

Static Analysis 

The results obtained through a static pure mechanical analysis have been reported in 

Table 6. 

The axial strain, as well as the axial stress, have been evaluated at the center of the 

piezo transducer. The results confirm the outcome of the previous case. The use of an 

equivalent single layer model, EMB-1, leads to inaccurate results since it is not able to 

predict the interface between the active material and the hosting structure properly. 

Variable kinematic models, EMB-3 and EMB-4, provide accurate results with a lower 

number of degrees of freedom with respect to the refined model, EMB-2. 

Model εyy σyy [MPa] 

EMB-1 0.002141 164.56 

EMB-2 0.001790 115.22 

EMB -3 0.001801 116.70 

EMB-4 0.001792 116.12 
Table 6 Axial Stress and strain evaluated at the centre of the piezo patch using different modeling approaches. 

 



Figure 10 shows through-the-thickness distributions of the axial strain and stress at the 

central point of the piezo transducer. The results show that EMB-1 is not able to predict 

the piece-wise distribution of the strain and, as a consequence, this model provides an 

inaccurate distribution of axial stress, mainly in the piezo sensor. 

 

Figure 10 Axial strain, on the left, and stress, on the right, distribution through-the-thickness of the embedded sensor 

specimen. The results have been evaluated in the central point of the piezo transducer 

 

Electro-mechanical Analysis 

The results of the coupled electro-mechanical analysis are reported in Table 7. The 

results have been compared with those from literature (10). 

All the models, except EMB-1, predict the expected value of effective coupling factor, 

that is, a correct description of axial strain, evaluated at point P, and voltage is obtained. 

Model EMB-1 shows the limits of the ESL formulation. The coarse description of the 

interface between the piezo and the substrate leads to an overestimation of the voltage 

and, as a consequence, the effective coupling factor is greater than the reference value. 

Model εyy V V/ εyy [V/µε] 

Experimental (10) - - 0.086 

3D FEM (10) - - 0.081 

EMB-1 0.002361 272.18† 0.115 

EMB-2 0.002488 216.25 0.087 

EMB-3 0.002509 222.01 0.088 

EMB-4 0.002496 220.80 0.088 
† The electric potential has been evaluated using the formulation in (40)  

Table 7 Electro-mechanical coupled analysis of the embedded sensor specimen. Axial strain, voltage, and effective 

coupling factor. 



The use of an ESL model also introduces some approximations in the description of the 

geometry of the coupon.  

 

 

Figure 11 Details of the area around the piezo patch. The use of solid elements in models EMB 2-4 leads to a high-

fidelity representation of the geometry while model EMB-1 introduces some simplifications. 

Figure 11 shows the details of the transition between the area of the piezo patch and the 

surrounded structure. The use of solid elements in models EMB-2 to EMB-4 ensures a 

high-fidelity representation of the geometry while model EMB-1 introduces an 

approximation with a ‘step’ in the thickness of the plate. 

As for the case of the surface-mounted sensor, the use of variable kinematic models 

reduces the computational costs preserving the accuracy of the results.  

  

Surface-mounted VS embedded sensor 

The results obtained considering the surface-mounted and the embedded sensors 

confirm the better performances, in term of effective coupling, of the second solution. 

The use of embedded sensors allows the loads to be transferred more efficiently to the 

transducer that is, a higher output voltage can be achieved with the same deformation of 

the substructure.  Figure 12 shows the axial strain field for models SUR-2 and EMB-2.  



 

 

Figure 12 Axial strain field for models SUR-2 and EMB-2 

The higher effective coupling factor provided by the embedded sensor can be explained 

looking at Figure 13 where is reported the axial strain on the upper surface of the piezo 

patch for models SUR-2 and EMB-2. The results show that the deformation of the 

embedded sensor is more uniform since no free boundaries are present, as in the case of 

the surface-mounted sensor. 

 

Figure 13 Axial strain on the upper surface of the piezo patch for models SUR-2 and EMB-2. Th 

Although the embedded sensor can provide a higher coupling, it should be noted that a 

strain concentration appears in the adhesive layer, see Figure 12. The presence of a 

strain concentration could lead to undesired failure or delamination of the structure that 



is, a suitable modeling approach should be adopted to predict the reliability of the 

structure.  

 

Conclusions 

An advanced modeling technique for the analysis of smart structures has been 

presented in the present paper. The Carrera Unified Formulation has been used to derive 

any order structural theories with an automatic computational tool. The kinematic 

model has been refined locally by means of the node dependent kinematic approach. 

The same technique has been used to set compatible kinematics at the interface between 

elements with different dimensions.  

The present global-local framework has been used to investigate layered 

structures with localized piezoelectric transducers. Different modeling approaches have 

been compared, and the results have been validated with those from literature. The 

results suggest the following considerations: 

• The use of embedded sensors gives a higher effective coupling factor but can 

lead to premature failure of the structure due to local stress concentrations. 

• A refined modeling approach is mandatory in the analysis of smart structures to 

represent the interface between the piezo-patch and the hosting structure 

accurately. 

• The use of the present global-local approach can reduce the computational costs 

keeping the same level of accuracy. 

  

In conclusion, the present approach is very promising for the analysis of smart 

structures and could find applications in the design of health-monitoring systems. The 

numerical advantages presented in this paper are expected to be more significant in the 



analysis of larger structures. In this case, just a few spots would require a refined model 

while most of the structure could be solved using the global model. 
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