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Abstract In this paper, we present two novel non-relativistic
superalgebras which correspond to supersymmetric exten-
sions of the enlarged extended Bargmann algebra. The
three-dimensional non-relativistic Chern–Simons supergrav-
ity actions invariant under the aforementioned superalgebras
are constructed. The new non-relativistic superalgebras allow
to accommodate a cosmological constant in a non-relativistic
supergravity theory. Interestingly, we show that one of the
non-relativistic supergravity theories presented here leads to
the recently introduced Maxwellian exotic Bargmann super-
gravity when the flat limit � → ∞ is considered. Besides,
we show that both descriptions can be written in terms of
a supersymmetric extension of the Nappi–Witten algebra or
the extended Newton–Hooke superalgebra.
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1 Introduction

Non-relativistic (NR) supergravity theories have recently
been studied and their construction has only been approached
in three spacetime dimensions [1–6]. In this way, to for-
mulate a NR (super)gravity theory invariant under a cer-
tain NR (super)symmetry remains as a challenging but at
the same time interesting problem. At the bosonic level, the
NR theories have been of particular interest due to their rela-
tion to condensed matter systems [7–17] and NR effective
field theories [18–22]. In presence of supersymmetry, mov-
ing toward this kind of theories can be useful, for instance,
to approach supersymmetric field theories on non-relativistic
curved backgrounds via localization [23–25]. Also from the
purely theoretical point of view, NR supergravity is an attrac-
tive topic that deserves to be developed. The construction of
NR (super)algebras and the formulation of NR (super)gravity
theories are of special interest for the present work. As it hap-
pens in NR gravity theories, the suitable construction of a NR
supergravity action has been shown to require the introduc-
tion of extra bosonic and fermionic generators. In particular,
working in three spacetime dimensions, the appropriate con-
struction of a Chern–Simons (CS) action is possible due to
the presence of additional generators which allow to have a
non-degenerate invariant tensor. The non-degeneracy of the
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invariant tensor is a fundamental ingredient to get a well-
defined CS (super)gravity action [26–28].

Recently, the NR version of a three-dimensional CS grav-
ity theory invariant under a particular enlargement of the
extended Bargmann algebra [29–35] was presented in [36].
Such algebra, called as enlarged extended Bargmann (EEB)
algebra by the authors, was obtained by considering the NR
contraction of the [AdS-Lorentz] ⊕ u1 ⊕ u1 ⊕ u1 algebra.
Such novel NR symmetry offers us an alternative way to
accomodate a cosmological constant to a three-dimensional
NR gravity theory different from those studied in [37–45].
Interestingly, as was shown in [36], the Maxwellian exotic
Bargmann (MEB) algebra recently introduced in [46] can
be obtained from the EEB gravity theory when the flat limit
� → ∞ is considered (where � is the length parameter related
to the cosmological constant through � ∝ ± 1

�2 ; the limit
� → ∞ corresponds to � → 0).

The AdS-Lorentz (AdS-L) (super)symmetry has been
introduced in [47–49] and has been useful in three and higher
dimensions in diverse (super)gravity contexts. On the grav-
ity side, this symmetry and its generalizations were used to
recover (pure) Lovelock gravities from CS and Born–Infeld
theories in different odd an even dimensions, respectively
[50–52]. Subsequently, in the case of a three-dimensional
gravity theory invariant under the AdS-L algebra, it has been
shown that the asymptotic symmetry of conserved charges
at null infinity is given by a semi-simple enlargement of
bms3[53]. On the other hand, the supersymmetric exten-
sion of the AdS-L algebra allowed to introduce a general-
ized supersymmetric cosmological constant term in a four-
dimensional supergravity theory [54–58]. In three space-
time dimensions, the construction of the N -extended AdS-L
supergravity theory was presented in [59,60].

As pointed out in [36], an open problem was to extend their
results at the supersymmetric level. Very recently, a NR ver-
sion of the Maxwell CS supergravity theory was presented in
[6] while the construction of a possible EEB supergravity the-
ory remained unexplored till now. In this work, we approach
the aforesaid problem, and present two different supersym-
metric extensions of the EEB algebra by expanding different
relativistic N = 2 AdS-L superalgebras. In particular, the
Lie algebra expansion method [61–64] has resulted to be a
powerful tool in NR symmetries [36,65–75]. Here, we show
that the semigroup expansion method [64] allows us to obtain
not only new NR superalgebras but also provides with the
non-vanishing components of the invariant tensor allowing
to construct the corresponding NR CS supergravity actions.
We show that, although both supersymmetric descriptions
allow us to introduce a cosmological constant to a NR super-
gravity action, only one supersymmetric extension contains
a well-defined vanishing cosmological constant limit.

The paper is organized as follows: in Sect. 2, a brief review
of the EEB algebra and the corresponding formulation of

the three-dimensional CS gravity action are presented. Sec-
tions 3 and 4 contain the main results of the work. First, a
supersymmetric extension of the EEB is presented. Then,
a NR CS supergravity action based on the EEB superalge-
bra is constructed. The supersymmetry transformation laws
are also provided. In Sect. 4, we provide with an alternative
supersymmetric extension of the EEB algebra which we call
non-standard EEB superalgebra. The construction of the CS
supergravity action is also studied. Section 5 concludes our
work with discussions and some possible future approaches.

2 Enlarged extended Bargmann gravity

In this section, we briefly review the enlarged extended
Bargmann algebra considered in [36] and the associated CS
gravity theory constructed in the same paper in three space-
time dimensions. The particular enlargement of the Extended
Bargmann algebra presented in [36] was denoted as EEB
algebra and its non-trivial commutation relations read
[
G̃a, P̃b

]
= −εab M̃,

[
G̃a, Z̃b

]
= −εabT̃ ,

[
H̃ , Z̃a

]
= 1

�2 εab P̃b ,

[
H̃ , G̃a

]
= εab P̃b,

[
J̃ , Z̃a

]
= εab Z̃b,

[
Z̃a, Z̃b

]
= − 1

�2 εabT̃ ,

[
J̃ , P̃a

]
= εab P̃b,

[
H̃ , P̃a

]
= εab Z̃b,

[
P̃a, Z̃b

]
= − 1

�2 εab M̃,

[
J̃ , G̃a

]
= εabG̃b,

[
P̃a, P̃b

]
= −εabT̃ ,

[
Z̃ , P̃a

]
= 1

�2 εab P̃b,
[
G̃a, G̃b

]
= −εab S̃,

[
Z̃ , G̃a

]
= εab Z̃b,

[
Z̃ , Z̃a

]
= 1

�2 εab Z̃b, (2.1)

where a = 1, 2, εab = ε0ab and εab = ε0ab, and where � is a
length parameter. Such algebra turns out to be the NR version
of the relativistic [AdS-L] ⊕ u(1)⊕u(1)⊕u(1) algebra. The
AdS-L algebra reads

[JA, JB] = εABC J
C , [JA, PB] = εABC P

C ,

[JA, ZB] = εABC Z
C , [PA, PB] = εABC Z

C ,

[ZA, ZB] = 1

�2 εABC Z
C , [PA, ZB] = 1

�2 εABC P
C ,

(2.2)

with A = 0, 1, 2, where JA are the Lorentz generators, PA the
spacetime translation generators, and ZA are extra Abelian
charges. The aforementioned U (1)-enlargement (given in
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terms of the U (1) generators Y1, Y2, and Y3) of the rela-
tivistic AdS-L symmetry is necessary to assure a finite and
non-degenerate invariant tensor allowing to construct a well-
defined NR CS gravity theory in three spacetime dimensions.
As it was shown in [36], the EEB algebra (2.1) appears as a
contraction of the relativistic algebra (2.2). Indeed, the NR
algebra is obtained considering the limit ξ → ∞ in the fol-
lowing redefinition of the [AdS-L] ⊕ u(1)⊕u(1)⊕u(1) gen-
erators:

J0 = J̃

2
+ ξ2 S̃, Ja = ξ G̃a, Y2 = J̃

2
− ξ2 S̃,

P0 = H̃

2ξ
+ ξ M̃, Pa = P̃a, Y1 = H̃

2ξ
− ξ M̃,

Z0 = Z̃

2ξ2 + T̃ , Za = Z̃a

ξ
, Y3 = Z̃

2ξ2 − T̃ ,

(2.3)

together with the rescaling of the length parameter � → ξ�.
Furthermore, as in the case of its relativistic counterpart, a
vanishing cosmological constant limit � → ∞ can be applied
to the EEB algebra (2.1), leading to the Maxwellian Extended
Bargmann (MEB) algebra of [46].

The EEB algebra admits the following non-vanishing
components of the invariant tensor:
〈
G̃aG̃b

〉
= α̃0δab,

〈
G̃a P̃b

〉
= α̃1δab,

〈
G̃a Z̃b

〉
= α̃2δab,

〈
P̃a P̃b

〉
= α̃2δab,

〈
J̃ S̃

〉
= −α̃0,

〈
J̃ M̃

〉
= −α̃1,

〈
H̃ S̃

〉
= −α̃1,

〈
J̃ T̃

〉
= −α̃2,

〈
H̃ M̃

〉
= −α̃2,

〈
S̃ Z̃

〉
= −α̃2,

〈
Z̃a Z̃b

〉
= α̃2

�2 δab,
〈
Z̃a P̃b

〉
= α̃1

�2 δab,

〈
Z̃ M̃

〉
= − α̃1

�2 ,
〈
T̃ H̃

〉
= − α̃1

�2 ,

〈
Z̃ T̃

〉
= − α̃2

�2 , (2.4)

where α̃0, α̃1, and α̃2 are arbitrary constants which are related
to the relativistic parameters as

α0 = α̃0ξ
2, α1 = α̃1ξ, α2 = α̃2 . (2.5)

Such rescaling of the coupling constants reproduces the
most general NR non-degenerate invariant tensor in the limit
ξ → ∞. Let us note that the non-degeneracy of the invariant
tensor is related to the Physical requirement that the CS action
involves a kinematical term for each field and the equation of
motions imply that all curvatures vanish. On the other hand,
one can see that the limit � → ∞ applied to the components

of the invariant tensor written in (2.4) leads to the invariant
tensor of the MEB algebra [46].

The CS form for a connection A constructed with the
invariant non-degenerate bilinear form defines an action for
the relativistic gauge theory based on the symmetry under
consideration as

ICS =
∫ 〈

A∧d A+ 2

3
A∧A∧A

〉
=

∫ 〈
A∧d A+ 1

3
A∧[A, A]

〉
.

(2.6)

In terms of the NR generators and fields of the EEB algebra,
the gauge connection one-form of [36], A = AATA, where
TA = { J̃ , G̃a, H̃ , P̃a, Z̃ , Z̃a, M̃, S̃, T̃ }, is given by

A = ω J̃+ωaG̃a+τ H̃+ea P̃a+k Z̃+ka Z̃a+mM̃+s S̃+t T̃ .

(2.7)

The EEB curvature two-form is then

F = R(ω) J̃ + Ra(ωb)G̃a + R(τ )H̃ + Ra(eb)P̃a

+R(k)Z̃ + Ra(kb)Z̃a + R(m)M̃

+R(s)S̃ + R(t)T̃ , (2.8)

with1

R(ω) = dω,

Ra(ωb) = dωa + εacωωc,

R(τ ) = dτ,

Ra(eb) = dea + εacωec + εacτωc + 1

�2 εackec + 1

�2 εacτkc,

R(k) = dk,

Ra(kb) = dka + εacωkc + εacτec + εackωc + 1

�2 εackkc,

R(m) = dm + εaceaωc + 1

�2 εaceakc,

R(s) = ds + 1

2
εacωaωc,

R(t) = dt + εacωakc + 1

2
εaceaec + 1

2�2 εackakc . (2.9)

Then, the NR three-dimensional CS action based on the
EEB algebra [36], up to boundary terms, is obtained con-
sidering the gauge connection one-form (2.7) and the non-
vanishing components of the invariant tensor (2.4) in the
general expression of the CS action (2.6). The NR CS graviy
action reads

IEEB =
∫

α̃0

[
ωa R

a(ωb) − 2sR(ω)
]

+α̃1

[
ea R

a(ωb) + ωa R
a(eb) − 2mR(ω) − 2τds

1 In the sequel, we will omit the wedge product ∧ between differential
forms.
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+ 1

�2 ea R
a(kb) + 1

�2 ka R
a(eb) − 2

�2 τdt

− 2

�2 mR(k)

]
+ α̃2

[
ea R

a(eb) + ka R
a(ωb)

+ ωa R
a(kb) + 1

�2 ka R
a(kb)

−2sR(k) − 2mR(τ ) − 2t R(ω) − 2

�2 t R(k)

]
.

(2.10)

The CS gravity theory based on the EEB symmetry can be
seen as an alternative NR gravity model in presence of a
cosmological constant. The NR CS action (2.10) contains
three sectors proportional to different arbitrary constants α̃0,
α̃1, and α̃2. The first contribution, proportional to α̃0, is the
CS action for the NR Exotic Gravity. The second and third
term, proportional, respectively, to α̃1 and α̃2, reproduce the
enlarged extended Bargmann gravity with the explicit pres-
ence of the ka gauge field. Observe that the limit � → ∞
taken in the term proportional to α̃1 reproduces the CS action
for the Extended Bargmann algebra [3]. On the other hand,
the limit � → ∞ in the sector proportional to α̃2 leads to
the CS action for the NR Maxwell algebra [46]. Let us note
that the term proportional to α̃1 is not the extended Newton–
Hooke gravity Lagrangian, although it leads to the extended
Bargmann gravity Lagrangian in the � → ∞ limit. In partic-
ular, the additional gauge fields related to the EEB algebra
appearing in the α̃1 term vanish in the flat (� → ∞) limit.

3 Three-dimensional supergravity based on a
supersymmetric extension of the Enlarged Extended
Bargmann algebra

Here, we present a supersymmetric extension of the EEB
algebra which allows us to construct a NR supergravity
action. Consequently, we develop the aforementioned NR
supergravity action by exploiting the CS construction in three
dimensions. In order to have a proper NR CS supergravity
action based on a supersymmetric extension of the EEB alge-
bra, one requires to find a NR superalgebra which not only
contains the EEB algebra as a subalgebra but also admits an
invariant supertrace. Such task can be properly accomplished
by considering the S-expansion procedure [64] (see also
[76,77] for recent developments on the same method; more
details on the S-expansion procedure are given in Appendix
A). Indeed, an EEB superalgebra can be obtained by apply-
ing the S-expansion to the N = 2 AdS-L superalgebra [60]
with a suitable semigroup S.

3.1 Supersymmetric extension of the Enlarged Extended
Bargmann algebra

The relativistic N = 2 AdS-L superalgebra is charac-
terized by the presence of the AdS-L bosonic generators
{JA, PA, ZA}, the fermionic spinor charges {Qi

α,
i
α}, and

three so(2) generators T , U , and B. Such generators satisfy
the following non-vanishing commutation relations [60]:

[JA, JB ] = εABC JC , [JA, PB ] = εABC P
C ,

[JA, ZB ] = εABC Z
C ,

[PA, PB ] = εABC Z
C , [ZA, ZB ] = 1

�2 εABC Z
C ,

[PA, ZB ] = 1

�2 εABC P
C ,

[
JA, Qi

α

]
= −1

2
(γA) β

α Qi
β,

[
JA, 
i

α

]
= −1

2
(γA) β

α 
i
β,

[
PA, Qi

α

]
= −1

2
(γA) β

α 
i
β,

[
PA, 
i

α

]
= − 1

2�2 (γA) β
α Qi

β,
[
ZA, Qi

α

]
= − 1

2�2 (γA) β
α Qi

β,

[
ZA, 
i

α

]
= − 1

2�2 (γA) β
α 
i

β,

[
T , Qi

α

]
= 1

2
εi j Q j

α,
[
T , 
i

α

]
= 1

2
εi j
 j

α,

[
U, Qi

α

]
= 1

2
εi j
 j

α,

[
U, 
i

α

]
= 1

2�2 εi j Q j
α,

[
B, Qi

α

]
= 1

2�2 εi j Q j
α,

[
B, 
i

α

]
= 1

2�2 εi j
 j
α, (3.1)

along with the following anti-commutators,

{Qi
α, Q j

β} = −δi j

(
γ AC

)
αβ

PA − Cαβεi jU ,

{Qi
α,


j
β} = −δi j

(
γ AC

)
αβ

ZA − Cαβεi jB,

{
i
α,


j
β} = −δi j

�2

(
γ AC

)
αβ

PA − 1

�2Cαβεi jU , (3.2)

where A, B,C = 0, 1, 2 are the Lorentz indices which
are raised and lowered with the Minkoswki metric ηAB =
(−1, 1, 1), α, β = 1, 2,2 and i, j = 1, 2 label the number of
supercharges. Here, γ A are Dirac matrices in three spacetime
dimensions and C is the charge conjugation matrix,

Cαβ = Cαβ =
(

0 −1
1 0

)
, (3.3)

which satisfies CT = −C and Cγ A = (Cγ A)T . As it was
discussed in [60], the presence of so(2) symmetry genera-
tors is not arbitrary and assures the non-degeneracy of the

2 In the following, we will frequently omit these spinorial indices in
order to lighten the notation.
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invariant tensor. In particular, the N = 2 AdS-L superal-
gebra admits the following non-vanishing components of an
invariant tensor,

〈JA JB〉 = α0ηAB, 〈JAPB〉 = α1ηAB, 〈JAZB〉 = α2ηAB,

〈PAPB〉 = α2ηAB, 〈PAZB〉=α1

�2 ηAB, 〈ZAZB〉=α2

�2 ηAB,

〈T T 〉 = α0, 〈T U〉 = α1, 〈T B〉 = α2,

〈UU〉 = α2, 〈UB〉 = α1

�2 , 〈BB〉 = α2

�2 ,

〈Qi
αQ

j
β〉 = α1Cαβδi j , 〈Qi

α

j
β〉 = α2Cαβδi j ,

〈
i
α


j
β〉 = α1

�2 Cαβδi j . (3.4)

One can notice that the flat limit � → ∞ leads to the N =
2 Maxwell supergravity theory [60] in which the internal
symmetry generator B becomes a central charge.

A supersymmetric extension of the EEB algebra can be
obtained by expanding the N = 2 AdS-L superalgebra (3.1)
and (3.2). Indeed, as we shall see, the S-expansion of a rel-
ativistic superalgebra considering S(2)

E as the relevant semi-
group reproduces a NR contraction. This is due to the fact
that the S-expansion method can be seen as a generaliza-
tion of the Inönü–Wigner contraction process [78], when the
semigroup under consideration belongs to the S(N )

E family.
In particular, it would be interesting to analyze which kind of
superalgebras can be found by considering S(N )

E for N > 2.

Here, we shall focus on the semigroup S(2)
E , which allows us

to obtain not only a well-defined EEB superalgebra but also
its non-degenerate invariant tensor.

Let S(2)
E = {λ0, λ1, λ2, λ3} be the relevant semigroup

whose elements satisfy the following multiplication law:

λ3 λ3 λ3 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ1 λ1 λ2 λ3 λ3

λ0 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

(3.5)

Here λ3 = 0s is the zero element of the semigroup
such that 0sλk = 0s . Before applying the S-expansion
to the N = 2 AdS-L superalgebra we will consider a
particular subspace decomposition of the Lie superalge-
bra. Let V0 = {J0, P0, Z0, T ,U ,B, Q+

α ,
+
α } and V1 =

{Ja, Pa, Za, Q−
α ,
−

α } be the subspaces decomposition of the
N = 2 superalgebra (3.1) and (3.2), where we have split the
Lorentz index as A = {0, a} with a = 1, 2 and where we
have defined

Q±
α = 1√

2

(
Q1

α ± εαβQ
2
β

)
, 
±

α = 1√
2

(

1

α ± εαβ
2
β

)
.

(3.6)

One can see that such decomposition satisfies

[V0, V0] ⊂ V0, [V0, V1] ⊂ V1, [V1, V1] ⊂ V0. (3.7)

Let us consider now S(2)
E = S0 ∪ S1 as the semigroup decom-

position where

S0 = {λ0, λ2, λ3},
S1 = {λ1, λ3} . (3.8)

Then, the decomposition (3.8) is said to be resonant since it
satisfies the same structure than the subspaces, that is

S0 · S0 ⊂ S0, S0 · S1 ⊂ S1, S1 · S1 ⊂ S0 . (3.9)

Following the definitions of [64], after extracting a resonant
subalgebra of the S(2)

E -expansion of theN = 2 AdS-L super-
algebra and applying a 0s-reduction, one finds a novel NR
expanded superalgebra spanned by the set of generators:

{ J̃ , G̃a, S̃, H̃ , P̃a, M̃, Z̃ , Z̃a, T̃ , Ỹ1, Ỹ2, Ũ1, Ũ2, B̃1, B̃2,

Q̃+
α , Q̃−

α , R̃α, 
̃+
α , 
̃−

α , W̃α} . (3.10)

The NR generators are related to the relativistic ones through
the semigroup elements as

J̃ = λ0 J0, S̃ = λ2 J0, G̃a = λ1 Ja,

H̃ = λ0P0, M̃ = λ2P0, P̃a = λ1Pa,

Z̃ = λ0Z0, T̃ = λ2Z0, Z̃a = λ1Za,

Q̃+
α = λ0Q

+
α , R̃α = λ2Q

+
α , Q̃−

α = λ1Q
−
α ,


̃+
α = λ0


+
α , W̃α = λ2


+
α , 
̃−

α = λ1

−
α ,

Ỹ1 = λ0T , Ũ1 = λ0U , B̃1 = λ0B,

Ỹ2 = λ2T , Ũ2 = λ2U , B̃2 = λ2B . (3.11)

The NR generators satisfy the bosonic subalgebra (2.1) along
with the following commutation relations:
[
J̃ , Q̃±

α

]
= −1

2
(γ0)

β
α Q̃±

β ,
[
J̃ , R̃α

]
= −1

2
(γ0)

β
α R̃β,

[
H̃ , Q̃±

α

]
= −1

2
(γ0)

β
α 
̃±

β ,

[
J̃ , 
̃±

α

]
= −1

2
(γ0)

β
α 
̃±

β ,
[
J̃ , W̃α

]
= −1

2
(γ0)

β
α W̃β,

[
H̃ , 
̃±

α

]
= − 1

2�2 (γ0)
β
α Q̃±

β ,

[
Z̃ , Q̃±

α

]
= − 1

2�2 (γ0)
β
α Q̃±

β ,
[
H̃ , R̃α

]
= −1

2
(γ0)

β
α W̃β,

[
Z̃ , 
̃±

α

]
= − 1

2�2 (γ0)
β
α 
̃±

β ,

[
S̃, Q̃+

α

]
= −1

2
(γ0)

β
α R̃β,

[
M̃, Q̃+

α

]
= −1

2
(γ0)

β
α W̃β,

[
T̃ , Q̃+

α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
S̃, 
̃+

α

]
= −1

2
(γ0)

β
α W̃β,

[
M̃, 
̃+

α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
T̃ , 
̃+

α

]
= − 1

2�2 (γ0)
β
α W̃β,
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[
H̃ , W̃α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
Z̃ , R̃α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
Z̃ , W̃α

]
= − 1

2�2 (γ0)
β
α W̃β,

[
G̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Q̃−

β ,
[
G̃a, Q̃

−
α

]
= −1

2
(γa)

β
α R̃β,

[
P̃a, Q̃

+
α

]
= −1

2
(γa)

β
α 
̃−

β ,

[
G̃a, 
̃

+
α

]
= −1

2
(γa)

β
α 
̃−

β ,
[
G̃a, 
̃

−
α

]
= −1

2
(γa)

β
α W̃β,

[
P̃a, Q̃

−
α

]
= −1

2
(γa)

β
α W̃−

β ,

[
P̃a, 
̃

+
α

]
= − 1

2�2 (γa)
β
α Q̃−

β ,
[
Z̃a, Q̃

+
α

]
= − 1

2�2 (γa)
β
α Q̃−

β ,

[
Z̃a, Q̃

−
α

]
= − 1

2�2 (γa)
β
α R̃β,

[
P̃a, 
̃

−
α

]
= − 1

2�2 (γa)
β
α R̃β,

[
Z̃a, 
̃

+
α

]
= − 1

2�2 (γa)
β
α 
̃−

β ,

[
Z̃a, 
̃

−
α

]
= − 1

2�2 (γa)
β
α W̃β, (3.12)

while the additional bosonic generators {Y1,Y2,U1,U2,

B1, B2}, which are expansions of so(2) internal symmetry
generators, satisfy the following commutators:
[
Ỹ1, Q̃

+
α

]
= 1

2
(γ0)αβ Q̃+

β ,
[
Ỹ1, Q̃

−
α

]
= −1

2
(γ0)αβ Q̃−

β ,

[
Ỹ1, R̃α

]
= 1

2
(γ0)αβ R̃β,

[
Ỹ1, 
̃

+
α

]
= 1

2
(γ0)αβ 
̃+

β ,
[
Ỹ1, 
̃

−
α

]
= −1

2
(γ0)αβ 
̃−

β ,

[
Ỹ1, W̃α

]
= 1

2
(γ0)αβ W̃β,

[
Ỹ2, Q̃

+
α

]
= 1

2
(γ0)αβ R̃β,

[
Ũ1, Q̃

−
α

]
= −1

2
(γ0)αβ 
̃−

β ,

[
Ũ1, Q̃

+
α

]
= 1

2
(γ0)αβ 
̃+

β ,

[
Ỹ2, 
̃

+
α

]
= 1

2
(γ0)αβ W̃β

[
Ũ1, R̃α

]
= 1

2
(γ0)αβ W̃β,

[
Ũ2, Q̃

+
α

]
= 1

2
(γ0)αβ W̃β,

[
Ũ1, 
̃

+
α

]
= 1

2�2 (γ0)αβ Q̃+
β ,

[
Ũ1, 
̃

−
α

]
= − 1

2�2 (γ0)αβ Q̃−
β ,

[
B̃1, R̃α

]
= 1

2�2 (γ0)αβ R̃β,

[
B̃1, Q̃

+
α

]
= 1

2�2 (γ0)αβ Q̃+
β ,

[
B̃1, Q̃

−
α

]
= − 1

2�2 (γ0)αβ Q̃−
β ,

[
B̃1, W̃α

]
= 1

2�2 (γ0)αβ W̃β,

[
B̃1, 
̃

+
α

]
= 1

2�2 (γ0)αβ 
̃+
β ,

[
B̃1, 
̃

−
α

]
= − 1

2�2 (γ0)αβ 
̃−
β ,

[
Ũ1, W̃α

]
= 1

2�2 (γ0)αβ R̃β,

[
Ũ2, 
̃

+
α

]
= 1

2�2 (γ0)αβ R̃β,
[
B̃2, Q̃

+
α

]
= 1

2�2 (γ0)αβ R̃β,

[
B̃2, 
̃

+
α

]
= 1

2�2 (γ0)αβ W̃β .

(3.13)

On the other hand, the fermionic generators satisfy the fol-
lowing anti-commutation relations:

{
Q̃−

α , Q̃−
β

}
= −

(
γ 0C

)
αβ

M̃ +
(
γ 0C

)
αβ

Ũ2,

{
Q̃+

α , Q̃+
β

}
= −

(
γ 0C

)
αβ

H̃ −
(
γ 0C

)
αβ

Ũ1,

{
Q̃−

α , 
̃−
β

}
= −

(
γ 0C

)
αβ

T̃ +
(
γ 0C

)
αβ

B̃2,

{
Q̃+

α , 
̃+
β

}
= −

(
γ 0C

)
αβ

Z̃ −
(
γ 0C

)
αβ

B̃1,

{
Q̃+

α , R̃β

}
= −

(
γ 0C

)
αβ

M̃ −
(
γ 0C

)
αβ

Ũ2,

{
Q̃+

α , W̃β

}
= −

(
γ 0C

)
αβ

T̃ −
(
γ 0C

)
αβ

B̃2,

{

̃+

α , R̃β

}
= −

(
γ 0C

)
αβ

T̃ −
(
γ 0C

)
αβ

B̃2,

{

̃−

α , 
̃−
β

}
= −

(
γ 0C

)
αβ

M̃

�2 +
(
γ 0C

)
αβ

Ũ2

�2 ,

{

̃+

α , 
̃+
β

}
= −

(
γ 0C

)
αβ

H̃

�2 −
(
γ 0C

)
αβ

Ũ1

�2 ,

{

̃+

α , W̃β

}
= −

(
γ 0C

)
αβ

M̃

�2 −
(
γ 0C

)
αβ

Ũ2

�2 ,

{
Q̃+

α , Q̃−
β

}
= − (

γ aC
)
αβ

P̃a,
{
Q̃±

α , 
̃∓
β

}
= − (

γ aC
)
αβ

Z̃a,

{

̃+

α , 
̃−
β

}
= − 1

�2

(
γ aC

)
αβ

P̃a . (3.14)

The superalgebra given by (2.1), (3.12), (3.13), and (3.14)
will be denoted as the enlarged Extended Bargmann super-
algebra and, as we can see, it properly contains the EEB
algebra [53] as bosonic subalgebra. Let us note that the pres-
ence of the R̃ and W̃ generators is similar to what happens
in the Extended Bargmann superalgebra presented in [3] and
the Extended Newtonian superalgebra of [5] in which a R̃
generator is considered. One can see that the supersymmet-
ric extension of the EEB algebra requires the presence of
six additional bosonic generators Ỹ1, Ỹ2, Ũ1, Ũ2, B̃1, and
B̃2 which act non-trivially on the fermionic charges Q̃±

α ,

̃±

α , R̃α , and W̃α . Interestingly, both B̃1 and B̃2 become cen-
tral in the vanishing cosmological constant limit. Indeed, the
flat limit � → ∞ of the EEB superalgebra reproduces the
Maxwellian version of the extended Bargmann superalgebra
introduced in [6], and corresponds to the supersymmetric
extension of the MEB algebra first presented in [46]. Let
us stress that the EEB superalgebra obtained here has been
obtained through an S(2)

E -expansion of a relativistic super-
algebra. As we shall see in the next section, the supersym-
metric extension of the EEB algebra presented here allowing
the construction a well-defined CS supergravity action is not
unique. Indeed, a different supersymmetric extension of the
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AdS-L algebra can be expanded with the same semigroup
S(2)
E to get a different EEB superalgebra.

Before studying the construction of a NR CS supergrav-
ity action invariant under the novel NR superalgebra, we will
show that the present NR structure can be rewritten in a differ-
ent way. Indeed, the Nappi–Witten symmetry [79,80], which
can be seen as a central extension of the homogeneous part
of the Galilei algebra, appears considering an appropriate
redefinition of the generators. In particular, the EEB superal-
gebra can be written as three copies of the Nappi–Witten
algebra, two of which are augmented by supersymmetry,
endowed with u(1) generators. Indeed, the aforesaid struc-
ture is revealed by considering the following redefinition:

Ga = 1

2

(
�2 Z̃a + �P̃a

)
, G∗

a = 1

2

(
�2 Z̃a − �P̃a

)
,

Ĝa = G̃a − �2 Z̃a,

J = 1

2

(
�2 Z̃ + �H̃

)
, J ∗ = 1

2

(
�2 Z̃ − �H̃

)
,

Ĵ = J̃ − �2 Z̃ ,

S = 1

2

(
�2T̃ + �M̃

)
, S∗ = 1

2

(
�2T̃ − �M̃

)
,

Ŝ = S̃ − �2T̃ ,

T1 = 1

2

(
�2 B̃1 + �Ũ1

)
, T ∗

1 = 1

2

(
�2 B̃1 − �Ũ1

)
,

T̂1 = Ỹ1 − �2 B̃1,

T2 = 1

2

(
�2 B̃2 + �Ũ2

)
, T ∗

2 = 1

2

(
�2 B̃2 − �Ũ2

)
,

T̂2 = Ỹ2 − �2 B̃2,

Q+
α = 1

2

(
�1/2 Q̃+

α + �3/2
̃+
α

)
, Q−

α = 1

2

(
�1/2 Q̃−

α + �3/2
̃−
α

)
,

Rα = 1

2

(
�1/2 R̃α + �3/2W̃α

)
,

G+
α = i

2

(
�1/2 Q̃+

α − �3/2
̃+
α

)
, G−

α = i

2

(
�1/2 Q̃−

α − �3/2
̃−
α

)
,

Wα = i

2

(
�1/2 R̃α − �3/2W̃α

)
. (3.15)

One can notice that set of generators {Ĝa, Ĵ , Ŝ, T̂1, T̂2} sat-
isfies the Nappi–Witten algebra [79] endowed with u(1) gen-
erators T̂1 and T̂2,
[
Ĵ , Ĝa

]
= εabĜb,

[
Ĝa, Ĝb

]
= −εab Ŝ . (3.16)

On the other hand, the set of generators {Ga, J, S, T1,

T2,Q+
α ,Q−

α ,Rα} satisfies a novel supersymmetric extension
of the Nappi–Witten algebra,

[J,Ga] = εabGb, [Ga,Gb] = −εabS,

[
J,Q±

α

] = −1

2
(γ0)

β
α Q±

β , [J,Rα] = −1

2
(γ0)

β
α Rβ,

[
Ga,Q+

α

] = −1

2
(γa)

β
α Q−

β ,
[
Ga,Q−

α

] = −1

2
(γa)

β
α Rβ,

[
S,Q+

α

] = −1

2
(γ0)

β
α Rβ,

[
T1,Q±

α

] = ±1

2
(γ0)αβ Q±

β ,

[
T2,Q+

α

] = 1

2
(γ0)αβ Rβ, [T1,Rα] = 1

2
(γ0)αβ Rβ,

{
Q+

α ,Q−
β

}
= − (

γ aC
)
αβ

Ga,

{
Q+

α ,Q+
β

}
= − (

γ 0C
)
αβ

J − (
γ 0C

)
αβ

T1,

{
Q−

α ,Q−
β

}
= − (

γ 0C
)
αβ

S+ (
γ 0C

)
αβ

T2,

{
Q+

α ,Rβ

} = − (
γ 0C

)
αβ

S − (
γ 0C

)
αβ

T2 . (3.17)

Furthermore, one can see that the generators {G∗
a, J

∗
, S∗, T ∗

1 , T ∗
2 ,G+

α ,G−
α ,Wα} satisfy an additional copy of a

Nappi–Witten superalgebra (3.17). The present supersym-
metric extension of the Nappi–Witten algebra contains addi-
tional bosonic generators {T1, T2} which are required to
assure the Jacobi identities. Furthermore, as in the case of the
extended Bargmann superalgebra [3] and the extended New-
tonian superalgebra [5], the Nappi–Witten superalgebra has
three fermionic charges given byQ+

α ,Q−
α , andRα . Such fea-

ture could be useful to establish some Lie algebra expansion
between the Nappi–Witten superalgebra (3.17) and known
NR superalgebras, similarly as in the bosonic case [36,67].
Interestingly, the EEB superalgebra inherits the same struc-
ture than its relativistic version, in which case the AdS-L
superalgebra can be rewritten as the direct sum of the Lorentz
algebra and two super-Lorentz.

Let us note that the Nappi–Witten algebra (3.16) endowed
with u(1) generators along with the Nappi–Witten superal-
gebra (3.17) can be rewritten as an extended Newton–Hooke
superalgebra [5]. Indeed, such structure can be obtained by
considering the following redefinition of the generators of
(3.16) and (3.17):

Ǧa = Ga − Ĝa, P̌a = 1

�

(
Ga + Ĝa

)
, Q̌+

α =
√

2

�
Q+

α ,

J̌ = J + Ĵ , Ȟ = 1

�

(
J − Ĵ

)
, Q̌−

α =
√

2

�
Q−

α ,

Š = S + Ŝ, M̌ = 1

�

(
S − Ŝ

)
, Řα =

√
2

�
Rα,

Ť1 = T1 − T̂1, Ǔ1 = 1

�

(
T1 + T̂1

)
,

Ť2 = T2 − T̂2, Ǔ2 = 1

�

(
T2 + T̂2

)
. (3.18)

One can see that the set of generators {Ǧa, P̌a, J̌ ,

Ȟ , Š, M̌, Ť1, Ť2, Ǔ1, Ǔ2, Q̌+
α , Q̌−

α , Řα} satisfies an extended
Newton–Hooke superalgebra,

[
J̌ , Ǧa

]
= εabǦb,

[
Ǧa, Ǧb

]
= −εab Š,

[
J̌ , P̌a

]
= εab P̌b,

[
Ȟ , Ǧa

]
= εab P̌b,

[
Ǧa, P̌b

]
= −εab M̌,

[
Ȟ , P̌a

]
= 1

�2 εabǦb,

[
P̌a, P̌b

]
= − 1

�2 εab Š,
[
J̌ , Q̌±

α

]
= −1

2
(γ0)

β
α Q̌±

β ,

123



 1105 Page 8 of 19 Eur. Phys. J. C          (2020) 80:1105 

[
Ȟ , Q̌±

α

]
= − 1

2�
(γ0)

β
α Q̌±

β ,

[
J̌ , Řα

]
= −1

2
(γ0)

β
α Řβ,

[
Ȟ , Řα

]
= − 1

2�
(γ0)

β
α Řβ,

[
Ǧa, Q̌

+
α

]
= −1

2
(γa)

β
α Q̌−

β ,

[
P̌a, Q̌

+
α

]
= − 1

2�
(γa)

β
α Q̌−

β ,
[
Ǧa, Q̌

−
α

]
= −1

2
(γa)

β
α Řβ,

[
P̌a, Q̌

−
α

]
= − 1

2�
(γa)

β
α Řβ,

[
Š, Q̌+

α

]
= −1

2
(γ0)

β
α Řβ,

[
M̌, Q̌+

α

]
= − 1

2�
(γ0)

β
α Řβ,

[
Ť1, Q̌

±
α

]
= ±1

2
(γ0)αβ Q̌±

β ,

[
Ǔ1, Q̌

±
α

]
= ± 1

2�
(γ0)αβ Q̌±

β ,
[
Ť2, Q̌

+
α

]
= 1

2
(γ0)αβ Řβ,

[
Ǔ2, Q̌

+
α

]
= 1

2�
(γ0)αβ Řβ,

[
Ť1, Řα

]
= 1

2
(γ0)αβ Řβ,

[
Ǔ1, Řα

]
= 1

2�
(γ0)αβ Řβ,

{
Q̌+

α , Q̌−
β

}
= −1

�

(
γ aC

)
αβ

Ǧa − (
γ aC

)
αβ

P̌a,

{
Q̌+

α , Q̌+
β

}
= −1

�

(
γ 0C

)
αβ

J̌ −
(
γ 0C

)
αβ

Ȟ

−1

�

(
γ 0C

)
αβ

Ť1 −
(
γ 0C

)
αβ

Ǔ1,

{
Q̌−

α , Q̌−
β

}
= −1

�

(
γ 0C

)
αβ

Š −
(
γ 0C

)
αβ

M̌

+1

�

(
γ 0C

)
αβ

Ť2 +
(
γ 0C

)
αβ

Ǔ2,

{
Q̌+

α , Řβ

}
= −1

�

(
γ 0C

)
αβ

Š −
(
γ 0C

)
αβ

M̌

−1

�

(
γ 0C

)
αβ

Ť2 −
(
γ 0C

)
αβ

Ǔ2, (3.19)

which involves two more generators (Ť1 and Ť2, which act
non-trivially on the fermionic generators Q̌± and Ř) with
respect to the extended Newton–Hooke superalgebra of [5].
As we can see, in (3.19) both Ǔ1 and Ǔ2 act non-trivially on
the fermionic generators Q̌± and Ř in the presence of the
length parameter �. In particular, both of these NR genera-
tors become central in the flat limit � → ∞ which reproduces
a central extension of the extended Bargmann superalgebra
[3] endowed with two additional generators Ť1 and Ť2. Let
us note that the extended Newton–Hooke superalgebra (3.19)
can be seen as the NR counterpart of the N = 2 AdS super-
algebra [81],

[JA, JB ] = εABC JC , [JA, PB ] = εABC P
C ,

[PA, PB ] = 1

�2 εABC JC ,
[
JA, Qi

α

]
= −1

2
(γA) β

α Qi
α,

[
PA, Qi

α

]
= − 1

2�
(γA) β

α Qi
α,

[
T, Qi

α

]
= 1

2
εi j Qi

α

[
U, Qi

α

]
= 1

2�2 εi j Qi
α,

{Qi
α, Q j

β} = − δi j

�

(
γ AC

)
αβ

JA − δi j

(
γ AC

)
αβ

PA

−Cαβεi j
(

1

�
T +U

)
. (3.20)

Indeed, the extended Newton–Hooke superalgebra (3.19)
can alternatively be obtained after applying a resonant S(2)

E -
expansion of the N = 2 AdS superlalgebra and performing
a 0s-reduction.

Thus, the EEB superalgebra can alternatively be rewritten
as the direct sum of the extended Newton–Hooke superal-
gebra (3.19) and the super Nappi–Witten one (3.17). Such
feature is inherited from its relativistic version, in which case
the N = 2 AdS-L superalgebra can be written as the direct
sum of the super AdS algebra and the super-Lorentz one.

3.2 Non-relativistic Chern–Simons supergravity action

We now construct a NR CS supergravity action based on the
EEB superalgebra given by (2.1), (3.12), (3.13), and (3.14).
Although the superalgebra seems simpler written as copies
of the Nappi–Witten (super)algebra, the motivation to con-
sider the EEB structure given by (2.1), (3.12), (3.13), and
(3.14) is twofold. First, as we shall see, it directly offers us
an alternative NR supergravity theory in presence of a cos-
mological constant. Second, it allows to establish a flat limit
leading in a manifest way to the Maxwellian version of the
extended Bargmann supergravity [6].

As we have already mentioned, a crucial ingredient to
construct a CS action is the invariant tensor. Interestingly, the
same semigroup allowing to obtain the new NR superalgebra
can be used to find the non-vanishing components of the
EEB invariant tensor (for further details see Appendix A).
Indeed, the invariant tensor for the EEB superalgebra can
be obtained in terms of the invariant tensor for the N = 2
AdS-L superalgabra given by (3.4). One can then show that
the non-vanishing components of the invariant tensor for the
EEB superalgebra are given by (2.4) along with

〈
Ỹ1Ỹ2

〉
= α̃0,

〈
Ỹ1Ũ2

〉
= α̃1,

〈
Ũ1Ỹ2

〉
= α̃1,

〈
Ỹ1 B̃2

〉
= α̃2,

〈
Ũ1Ũ2

〉
= α̃2,

〈
B̃1Ỹ2

〉
= α̃2,

〈
Ũ1 B̃2

〉
= α̃1

�2 ,
〈
B̃1Ũ2

〉
= α̃1

�2 ,

〈
B̃1 B̃2

〉
= α̃2

�2 ,

〈
Q̃−

α Q̃−
β

〉
= 2α̃1Cαβ,

〈
Q̃+

α R̃β

〉
= 2α̃1Cαβ,
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〈
Q̃−

α 
̃−
β

〉
= 2α̃2Cαβ,

〈

̃+

α R̃β

〉
= 2α̃2Cαβ,

〈
Q̃+

α W̃β

〉
= 2α̃2Cαβ,

〈

̃+

α W̃β

〉
= 2α̃1

�2 Cαβ,

〈

̃−

α 
̃−
β

〉
= 2α̃1

�2 Cαβ, (3.21)

where the NR generators are related to the relativistic ones
through the semigroup elements as in (3.11). Here, the NR
constants α̃i are related to the relativistic parameters appear-
ing in (3.4) as

α̃0 = λ2α0, α̃1 = λ2α1, α̃2 = λ2α2 . (3.22)

On the other hand, the gauge connection one-form A for the
EEB superalgebra reads

A = ω J̃ + ωaG̃a + τ H̃ + ea P̃a + k Z̃ + ka Z̃a + mM̃

+s S̃ + t T̃ + y1Ỹ1 + y2Ỹ2 + b1 B̃1

+b2 B̃2 + u1Ũ1 + u2Ũ2 + ψ̄+ Q̃+ + ψ̄− Q̃−

+ξ̄+
̃+ + ξ̄−
̃− + ρ̄ R̃ + χ̄ W̃ . (3.23)

The corresponding curvature two-form F = d A + A ∧ A =
d A + 1

2 [A, A] written in terms of the generators is given by

F = F(ω) J̃ + Fa(ωb)G̃a + F(τ )H̃ + Fa
(
eb

)
P̃a

+F (k) Z̃ + Fa
(
kb

)
Z̃a + F(m)M̃

+F(s)S̃ + F(t)T̃ + F (y1) Ỹ1

+F (y2) Ỹ2 + F (b1) B̃1 + F (b2) B̃2 + F (u1) Ũ1

+F (u2) Ũ2 + ∇ψ̄+ Q̃+ + ∇ψ̄− Q̃− + ∇ ξ̄+
̃+

+∇ ξ̄−
̃− + ∇ρ̄ R̃ + ∇χ̄ W̃ . (3.24)

In particular, the bosonic curvature two-forms are given by

F(ω) = R(ω),

Fa(ωb) = Ra
(
ωb

)
,

F(τ ) = R (τ ) + 1

2
ψ̄+γ 0ψ+ + 1

2�2 ξ̄+γ 0ξ+,

Fa(eb) = Ra
(
eb

)
+ ψ̄+γ aψ− + 1

�2 ξ̄+γ aξ−,

F (k) = R(k) + ψ̄+γ 0ξ+,

Fa(kb) = Ra
(
kb

)
+ ψ̄+γ aξ− + ψ̄−γ aξ+,

F(m) = R (m) + 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ + 1

2�2 ξ̄−γ 0ξ−

+ 1

�2 ξ̄+γ 0χ,

F(s) = R (s) ,

F(t) = R (t) + ψ̄−γ 0ξ− + ψ̄+γ 0χ + ξ̄+γ 0ρ, (3.25)

where R(ω), Ra(ωb), R(τ ), Ra(eb), R (k), Ra(kb), R(m),
R(s), and R(t) are the EEB curvatures defined in (2.9),
together with

F (y1) = dy1,

F (y2) = dy2,

F (b1) = db1 + ψ̄+γ 0ξ+,

F (b2) = db2 − ψ̄−γ 0ξ− + ψ̄+γ 0χ + ξ̄+γ 0ρ,

F (u1) = du1 + 1

2
ψ̄+γ 0ψ+ + 1

2�2 ξ̄+γ 0ξ+,

F (u2) = du2 − 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ − 1

2�2 ξ̄−γ 0ξ−

+ 1

�2 ξ̄+γ 0χ . (3.26)

Let us observe that, if we restrict ourselves to the purely
bosonic sector and excluding the extra bosonic gauge field
{y1, y2, u1, u2, b1, b2}, we properly recover the two-form
curvatures associated with the EEB algebra introduced in
[36]. On the other hand, the covariant derivatives of the spinor
1-form fields read

∇ψ+ = dψ+ + 1

2
ωγ0ψ

+ − 1

2
y1γ0ψ

+ + 1

2�2 τγ0ξ
+

+ 1

2�2 kγ0ψ
+ − 1

2�2 u1γ0ξ
+ − 1

2�2 b1γ0ψ
+,

∇ψ− = dψ− + 1

2
ωγ0ψ

− + 1

2
ωaγaψ

+ + 1

2
y1γ0ψ

− + 1

2�2 τγ0ξ
−

+ 1

2�2 e
aγaξ

+ + 1

2�2 k
aγaψ

+

+ 1

2�2 kγ0ψ
− + 1

2�2 u1γ0ξ
− + 1

2�2 b1γ0ψ
−,

∇ξ+ = dξ+ + 1

2
ωγ0ξ

+ + 1

2
τγ0ψ

+ − 1

2
y1γ0ξ

+

−1

2
u1γ0ψ

+ + 1

2�2 kγ0ξ
+ − 1

2�2 b1γ0ξ
+,

∇ξ− = dξ− + 1

2
ωγ0ξ

− + 1

2
τγ0ψ

− + 1

2
eaγaψ

+

+1

2
ωaγaξ

+ + 1

2
y1γ0ξ

− + 1

2
u1γ0ψ

−

+ 1

2�2 k
aγaξ

+ + 1

2�2 kγ0ξ
− + 1

2�2 b1γ0ξ
−,

∇ρ = dρ + 1

2
ωγ0ρ + 1

2
ωaγaψ

− + 1

2
sγ0ψ

+ − 1

2
y2γ0ψ

+

−1

2
y1γ0ρ + 1

2�2 e
aγaξ

−

+ 1

2�2 k
aγaψ

− + 1

2�2 mγ0ξ
+ + 1

2�2 τγ0χ

+ 1

2�2 tγ0ψ
+ + 1

2�2 kγ0ρ

− 1

2�2 u1γ0χ − 1

2�2 u2γ0ξ
+

− 1

2�2 b1γ0ρ − 1

2�2 b2γ0ψ
+,

∇χ = dχ + 1

2
ωγ0χ + 1

2
ωaγaξ

− + 1

2
eaγaψ

−

+1

2
τγ0ρ + 1

2
sγ0ξ

+ + 1

2
mγ0ψ

+
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−1

2
y2γ0ξ

+ − 1

2
y1γ0χ − 1

2
u2γ0ψ

+

−1

2
u1γ0ρ + 1

2�2 k
aγaξ

− + 1

2�2 tγ0ξ
+ + 1

2�2 kγ0χ

− 1

2�2 b1γ0χ − 1

2�2 b2γ0ξ
+ . (3.27)

Notice that taking the � → ∞ limit of the curvature two-
forms (3.25), (3.26), and (3.27) one recovers the curvatures
associated with the MEB superalgebra of [6].

A CS supergravity action based on the EEB superalgebra
given by (2.1), (3.12), (3.13), and (3.14) can be constructed
by combining the non-zero components of the invariant ten-
sor (2.4) and (3.21) with the gauge connection one-form A
(3.23). The NR CS supergravity action reads, up to boundary
terms, as follows:

INR = α̃0 I0 + α̃1 I1 + α̃2 I2, (3.28)

where

I0 =
∫

ωa R
a(ωb) − 2sR (ω) + 2y1dy2,

I1 =
∫

ea R
a(ωb) + ωa R

a(eb) − 2mR(ω) − 2τds

+ 1

�2 ea R
a(kb) + 1

�2 ka R
a(eb)

− 2

�2 τdt − 2

�2 mR(k) + 2y1du2 + 2u1dy2 + 2

�2 u1db2

+ 2

�2 b1du2 − 2ψ̄+∇ρ

−2ρ̄∇ψ+ − 2ψ̄−∇ψ− − 2

�2 ξ̄+∇χ

− 2

�2 χ̄∇ξ+ − 2

�2 ξ̄−∇ξ−,

I2 =
∫

ea R
a(eb) + ka R

a
(
ωb

)
+ ωa R

a(kb)

+ 1

�2 ka R
a(kb) − 2sR(k) − 2mR (τ )

−2t R(ω) − 2

�2 t R(k) + 2y1db2 + 2u1du2 + 2y2db1

+ 2

�2 b1db2 − 2ψ̄−∇ξ−

−2ξ̄−∇ψ− − 2ψ̄+∇χ − 2χ̄∇ψ+ − 2ξ̄+∇ρ − 2ρ̄∇ξ+ .

(3.29)

The CS action (3.28) obtained here describes the so-called
Enlarged Extended Bargmann supergravity theory. Let us
note that the NR CS supergravity action (3.28) contains three
independent sectors proportional to α̃0, α̃1, and α̃2. In par-
ticular, I0 corresponds to the CS action for the NR exotic
gravity coupled to the extra gauge fields y1 and y2. The CS
actions I1 and I2 describe the EEB CS supergravity in pres-
ence of the cosmological constant and the gauge field ka .
We observe that taking the flat limit � → ∞ of (3.28) we

recover the CS MEB supergravity action of [6].3 In particu-
lar, the vanishing cosmological constant limit applied to the
CS action I1 reproduces the extended Bargmann supergrav-
ity CS action coupled to the additional gauge fields y1, y2, u1,
and u2. The new NR CS supergravity action (3.28) general-
izes the extended Newton–Hooke supergravity theory [5] in
the sense that it not only reproduces the extended Bargmann
supergravity in the flat limit, but also the Maxwellian version
proportional to I2.

It is important to emphasize that in order to obtain the
CS supergravity action through the S-expansion method we
have restricted ourselves exclusively to the CS terms related
to the λ2 element of the semigroup S(2)

E . Indeed, all the NR
parameter α̃0, α̃1, and α̃2 are defined as in (3.22) in terms of
the relativistic parameters and the λ2 element. On the other
hand, it is possible to obtain diverse exotic-like contributions
to the CS action which are proportional to the λ0 element.
Nevertheless, since we are interested in the supersymmetric
extension of the EEB gravity theory [36], we shall omit such
exotic-like terms which would imply that the bosonic sector
is no more EEB gravity. It would be interesting to study the
Physical implications of such additional contributions.

Let us note that the CS supergravity action (3.28) can
alternatively be obtained by expanding directly the relativis-
tic N = 2 AdS-L CS supergravity action [60],

IR =
∫

α0

[
ωAdωA + 1

3
εABCωAωBωC + tdt

]

+α1

[
2eAR

A + 1

3�2 εABCe
AeBeC + 2

�2 eAF
A

− ¯̂
ψ i∇ψ̂ i − 1

�2
¯̂
ξ i∇ ξ̂ i + udt + udb

]

+α2 [ 2σAR
A + eAT

A + 2

�2 eAF
A + 1

�2 εABCe
Aσ BeC

− ¯̂
ψ i∇ ξ̂ i − ¯̂

ξ i∇ψ̂ i + bdt + udu + 1

�2 bdb

]
, (3.30)

where

RA = dωA + 1

2
εABCωBωC ,

T A = deA + εABCωBeC ,

F A = dσ A + εABCωBσC + 1

2�2 εABCσBσC ,

∇ψ̂ i = dψ̂ i + 1

2
ωAγAψ̂ i + tεi j ψ̂ j + 1

�2 bεi j ψ̂ j

+ 1

�2 uεi j ξ̂ j ,

∇ ξ̂ i = d ξ̂ i + 1

2
ωAγA ξ̂ i + 1

2
eAγAψ̂ i + tεi j ξ̂ j + uεi j ψ̂ j

+ 1

�2 bεi j ξ̂ j . (3.31)

3 This also fixes a sign misprint appearing in [6].
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Indeed, we can express the NR gauge fields in terms of the
relativistic ones and the semigroup elements as

ω = λ0ω0, s = λ2ω0, ωa = λ1ωa,

τ = λ0e0, m = λ2e0, ea = λ1ea,

k = λ0σ0, t = λ2σ0, ka = λ1σa,

ψ+
α = λ0ψ̂

+
α , ρα = λ2ψ̂

+
α , ψ−

α = λ1ψ̂
−
α ,

ξ+
α = λ0ξ̂

+
α , χα = λ2ξ̂

+
α , ξ−

α = λ1ξ̂
−
α ,

y1 = λ0t, u1 = λ0u, b1 = λ0b,

y2 = λ2t, u2 = λ2u, b2 = λ2b, (3.32)

where we have split the Lorentz index as A = {0, a} with
a = 1, 2 and where we have defined

ψ̂±
α = 1√

2

(
ψ̂1

α ± εαβψ̂2
β

)
, ξ̂±

α = 1√
2

(
ξ̂1
α ± εαβ ξ̂2

β

)
.

(3.33)

Then, the EEB supergravity action is obtained considering
the expanded gauge fields (3.32), the expanded parameters
(3.22), the multiplication law (3.5), and the 0s-reduction
property.

As an ending remark let us note that, since the invariant
tensor is non-degenerate, the field equations from the NR CS
supergravity action (3.28) imply the vanishing of the curva-
ture two-forms (3.25), (3.26), and (3.27) associated with the
EEB superalgebra. The aforementioned curvatures transform
covariantly with respect to the supersymmetry transforma-
tion laws given in Appendix B.

4 Three-dimensional non-standard enlarged extended
Bargmann supergravity

Let us focus now on an alternative supersymmetric extension
of the EEB algebra which we call as non-standard EEB super-
algebra. The new structure appears as an S-expansion of a
different N = 2 AdS-L superalgebra and, unlike the EEB
superalgebra presented in the previous section, contains only
three fermionic charges. The construction of a CS supergrav-
ity action based on the aforementioned superalgebra is also
discussed.

4.1 Non-standard enlarged extended Bargmann
superalgebra

An alternative supersymmetric extension of the EEB alge-
bra can be defined by expanding a N = 2 extension of the
relativistic non-standard AdS-L superalgebra [59,82]. The
aforesaid N = 2 non-standard supersymmetric extension
of the AdS-L algebra is spanned by the set of generators

{Ja, Pa, Za,U , T ,B, Qi
α} which satisfy the following (anti-

)commutation relations:

[JA, JB ] = εABC JC , [JA, PB ] = εABC P
C ,

[JA, ZB ] = εABC Z
C , [PA, PB ] = εABC Z

C ,

[ZA, ZB ] = 1

�2 εABC Z
C , [PA, ZB ] = 1

�2 εABC P
C ,

[
JA, Qi

α

]
= −1

2
(γA) β

α Qi
β,

[
PA, Qi

α

]
= − 1

2�
(γA) β

α Qi
β,

[
ZA, Qi

α

]
= − 1

2�2 (γA) β
α Qi

β,
[
T , Qi

α

]
= 1

2
εi j Q j

β,

[
U, Qi

α

]
= 1

2�2 εi j Q j
β,

{Qi
α, Q j

β} = − δi j

�

(
γ AC

)
αβ

PA − δi j

(
γ AC

)
αβ

ZA

−Cαβεi j
(
U + 1

�
B

)
, (4.1)

where, as usual, i = 1, 2 denotes the number of supercharges
and A, B, . . . = 0, 1, 2 are the Lorentz indices. Let us note
that B is a central charge, while U and T are so(2) internal
symmetry generators. The presence of the central charge and
internal symmetry generators are required to guarantee the
non-degeneracy of the invariant tensor. In particular, the non-
vanishing components of a non-degenerate invariant tensor
of the superalgebra (4.1) are given by

〈JA JB〉 = α0ηAB, 〈JAPB〉 = α1ηAB,

〈JAZB〉 = α2ηAB, 〈PAPB〉 = α2ηAB,

〈PAZB〉 = α1

�2 ηAB, 〈ZAZB〉 = α2

�2 ηAB,

〈T T 〉 = α0, 〈T U〉 = α2,

〈UU〉 = 1

�2 α2, 〈T B〉 = α1,

〈UB〉 = 1

�2 α1, 〈BB〉 = −1

�
α1,

〈
Qi

αQ
j
β

〉
= 2

(α1

�
+ α2

)
Cαβ δi j . (4.2)

Although such superalgebra is well-defined since it allows us
to reproduce a proper three-dimensional N = 2 CS super-
gravity action in presence of a cosmological constant, its flat
limit � → ∞ is problematic. Indeed, the vanishing cosmo-
logical constant limit reproduces an N = 2 exotic Maxwell
supersymmetric CS action due to the behavior of the PA

generator which is no more expressed as a bilinear expres-
sion of the fermionic generators Qi . Such feature is respon-
sible of the label “non-standard” in the Maxwell superal-
gebra [47,83]. A dual version of the non-standard super-
Maxwell algebra being the supersymmetric extension of the
Hietarinta–Maxwell algebra [84,85] could overcome such
difficulty by interchanging the role of the PA and ZA gen-
erators. Nevertheless, such approach will not be considered
here.

123



 1105 Page 12 of 19 Eur. Phys. J. C          (2020) 80:1105 

Here, we shall see that a new and consistent NR super-
algebra is obtained by considering an S-expansion of the
non-standard superalgebra (4.1). Let us consider S(2)

E =
{λ0, λ1, λ2, λ3} as the relevant abelian semigroup whose ele-
ments satisfy the multiplication law (3.5) with λ3 = 0S being
the zero element of the semigroup. Let S(2)

E = S0 ∪ S1 be a
semigroup decomposition where

S0 = {λ0, λ2, λ3},
S1 = {λ1, λ3} . (4.3)

The decomposition (4.3) is said to be resonant since it
satisfies the same structure than the subspaces V0 =
{J0, P0, Z0, T ,U ,B, Q+

α } and V1 = {Ja, Pa, Za, Q−
α } of

the N = 2 superalgebra (4.1) with a = 1, 2 and where we
have defined

Q±
α = 1√

2

(
Q1

α ± εαβQ
2
β

)
. (4.4)

A new NR superalgebra is obtained after applying a reso-
nant S(2)

E -expansion of (4.1) and performing a 0S-reduction.
In particular, the expanded generators are related to the
N = 2 super AdS-L ones through the semigroup elements
as

J̃ = λ0 J0, S̃ = λ2 J0, G̃a = λ1 Ja,

H̃ = λ0P0, M̃ = λ2P0, P̃a = λ1Pa,

Z̃ = λ0Z0, T̃ = λ2Z0, Z̃a = λ1Za,

Q̃+
α = λ0Q

+
α , R̃α = λ2Q

+
α , Q̃−

α = λ1Q
−
α ,

Ỹ1 = λ0T , Ũ1 = λ0U, B̃1 = λ0B,

Ỹ2 = λ2T , Ũ2 = λ2U, B̃2 = λ2B . (4.5)

The commutators of the expanded NR superalgebra are given
by the bosonic EEB algebra (2.1) along with the following
commutation relations:
[
J̃ , Q̃±

α

]
= −1

2
(γ0)

β
α Q̃±

β ,
[
J̃ , R̃α

]
= −1

2
(γ0)

β
α R̃β,

[
H̃ , Q̃±

α

]
= − 1

2�
(γ0)

β
α Q̃±

β ,

[
H̃ , R̃α

]
= − 1

2�
(γ0)

β
α R̃β,

[
Z̃ , Q̃±

α

]
= − 1

2�2 (γ0)
β
α Q̃±

β ,

[
Z̃ , R̃α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
S̃, Q̃+

α

]
= −1

2
(γ0)

β
α R̃β,

[
M̃, Q̃+

α

]
= − 1

2�
(γ0)

β
α R̃β,

[
T̃ , Q̃+

α

]
= − 1

2�2 (γ0)
β
α R̃β,

[
G̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Q̃−

β ,
[
G̃a, Q̃

−
α

]
= −1

2
(γa)

β
α R̃β,

[
P̃a, Q̃

+
α

]
= − 1

2�
(γa)

β
α Q̃−

β ,

[
P̃a, Q̃

−
α

]
= − 1

2�
(γa)

β
α R̃β,

[
Z̃a, Q̃

+
α

]
= − 1

2�2 (γa)
β
α Q̃−

β ,

[
Z̃a, Q̃

−
α

]
= − 1

2�2 (γa)
β
α R̃β,

[
Ỹ1, Q̃

+
α

]
= 1

2
(γ0)αβ Q̃+

β ,
[
Ỹ1, Q̃

−
α

]
= −1

2
(γ0)αβ Q̃−

β ,

[
Ỹ1, R̃α

]
= 1

2
(γ0)αβ R̃β,

[
Ỹ2, Q̃

+
α

]
= 1

2
(γ0)αβ R̃β,

[
Ũ1, Q̃

+
α

]
= 1

2�2 (γ0)αβ Q̃+
β ,

[
Ũ1, Q̃

−
α

]
= − 1

2�2 (γ0)αβ Q̃−
β ,

[
Ũ1, R̃α

]
= 1

2�2 (γ0)αβ R̃β,
[
Ũ2, Q̃

+
α

]
= 1

2�2 (γ0)αβ R̃β, (4.6)

while the fermionic generators satisfy the following anti-
commutation relations:
{
Q̃+

α , Q̃+
β

}
= −1

�

(
γ 0C

)
αβ

H̃ −
(
γ 0C

)
αβ

Z̃

−
(
γ 0C

)
αβ

(
Ũ1 + 1

�
B̃1

)
,

{
Q̃+

α , Q̃−
β

}
= −1

�

(
γ aC

)
αβ

P̃a − (
γ aC

)
αβ

Z̃a,

{
Q̃+

α , R̃β

}
= −1

�

(
γ 0C

)
αβ

M̃ −
(
γ 0C

)
αβ

T̃

−
(
γ 0C

)
αβ

(
Ũ2 + 1

�
B̃2

)
,

{
Q̃−

α , Q̃−
β

}
= −1

�

(
γ 0C

)
αβ

M̃ −
(
γ 0C

)
αβ

T̃

+
(
γ 0C

)
αβ

(
Ũ2 + 1

�
B̃2

)
. (4.7)

The expanded NR superalgebra corresponds to an alter-
native non-standard supersymmetric extension of the EEB
algebra introduced in [36]. Unlike the previous EEB super-
algebra obtained in this work, the NR centrally extended
superalgebra (4.6) and (4.7) does not contain additional
fermionic generators, reducing considerably the number of
(anti-)commutators. One can notice that B1 and B2 are central
charges, while {Y1,Y2} and {U1,U2} correspond to expan-
sions of the relativistic R-symmetry generators T and U ,
respectively. Interestingly, both supersymmetric descriptions
of the EEB algebra can be contracted through a vanishing
cosmological constant limit � → ∞. As we have shown,
the flat limit applied to the EEB superalgebra given by (2.1),
(3.12), (3.13), and (3.14) reproduces the MEB superalge-
bra [6] allowing to construct a consistent NR supergravity
which generalizes the extended Bargmann supergravity [3].
On the other hand, although a flat limit can be done at the
level of the non-standard EEB superalgebra (4.6) and (4.7),
the resulting NR superalgebra does not guarantee the proper
construction of a NR supergravity action. Similarly to the
non-standard relativistic Maxwell superalgebra, the absence
of the Pa generators in the anti-commutator after consider-
ing � → ∞ would reproduce an exotic NR supersymmetric
CS action. It would be interesting to avoid such difficulty by
exploring a NR version of the non-standard Maxwell algebra
using the Hietarinta basis [86].
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One can notice that the EEB superalgebra (4.6) and (4.7)
can be written alternatively as the direct sum of three copies
of the Nappi–Witten algebra [79,80] where one copy is super-
symmetric. Indeed, one can consider the following redefini-
tion of the generators,

G̃a = Ĝa + Ga + G∗
a, P̃a = 1

�

(
Ga − G∗

a

)
,

Z̃a = 1

�2

(
Ga + G∗

a

)
,

S̃ = Ŝ + S + S∗, M̃ = 1

�

(
S − S∗) ,

T̃ = 1

�2

(
S + S∗) ,

J̃ = Ĵ + J + J ∗, H̃ = 1

�

(
J − J ∗) ,

Z̃ = 1

�2

(
J + J ∗) ,

Ỹ1 = T̂1 + T1 + T ∗
1 , B̃1 = 1

�

(
T1 − T ∗

1

)
,

Ũ1 = 1

�2

(
T1 + T ∗

1

)
,

Ỹ2 = T̂2 + T2 + T ∗
2 , B̃2 = 1

�

(
T2 − T ∗

2

)
,

Ũ2 = 1

�2

(
T2 + T ∗

2

)
,

Q̃+
α =

√
2

�
Q+

α , Q̃−
α =

√
2

�
Q−

α ,

R̃α =
√

2

�
Rα, (4.8)

and see that both subsets spanned by {Ĝa, Ŝ, Ĵ } and
{G∗

a, S
∗, J ∗} define a Nappi–Witten algebra (3.16) cou-

pled to u(1) generators {T̂1, T̂2} and {T ∗
1 , T ∗

2 }, respectively.
On the other hand, the set of generators {Ga, S, J, T1, T2,

Q+
α ,Q−

α ,Rα} satisfy a supersymmetric extension of the
Nappi–Witten algebra whose (anti-)commutation relations
are given by (3.17). It is interesting to point out that, although
the non-standard EEB superalgebra seems to be quite differ-
ent to the “standard” one studied previously, they actually
differ just on the amount of supersymmetric copies of the
Nappi–Witten algebra.

An alternative change of basis allows us to rewrite the EEB
superlalgebra (4.6) and (4.7) as the direct sum of the extended
Newton–Hooke superalgebra and the Nappi–Witten algebra.
Such structure can be obtained by considering the following
redefinition of the generators:

G̃a = G�
a + Ga, P̃a = Pa, Z̃a = 1

�2 Ga,

S̃ = S� + S, M̃ = M, T̃ = 1

�2 S,

J̃ = J � + J, H̃ = H, Z̃ = 1

�2 J,

Ỹ1 = T �
1 + T1, B̃1 = B1, Ũ1 = 1

�2 T1,

Ỹ2 = T �
2 + T2, B̃2 = B2, Ũ2 = 1

�2 T2,

Q̃+
α =

√
1

�
Q+

α , Q̃−
α =

√
1

�
Q−

α , R̃α =
√

1

�
Rα .

(4.9)

The subset spanned by {Ga, Pa, S, M, J, H, T1,

T2,Q+
α ,Q−

α ,Rα} corresponds to the extended Newton–
Hooke superalgebra (3.19) (with, in this case,U1 = U2 = 0)
now endowed with a central extension given by B1 and B2.
On the other hand, the set of generators {G�

a, S
�, J �, T �

1 , T �
2 }

satisfies the Nappi–Witten algebra (3.16) coupled to the u(1)

generators T �
1 and T �

2 . Here, we shall focus on the EEB
superalgebra written as in (4.6) and (4.7) which, as we shall
see, offers us an alternative way to introduce a cosmolog-
ical constant in NR supergravity theory different from the
one presented in the previous section and from the extended
Newton–Hooke one [5].

4.2 Non-standard non-relativistic extended supergravity
action

We can now construct a NR CS supergravity action based on
the non-standard EEB superalgebra previously introduced.
To this aim, let us start by writing the non-vanishing com-
ponents of the invariant tensor for the non-standard EEB
superalgebra, which can be determined by exploiting the
S-expansion on (4.2) (see Appendix A). In particular, the
non-standard EEB superalgebra admits the bosonic invariant
tensor (2.4) along with the following non-vanishing compo-
nents of the invariant tensor

〈
Ỹ1Ỹ2

〉
= α̃0,

〈
Ỹ1 B̃2

〉
= α̃1,

〈
Ỹ2 B̃1

〉
= α̃1,

〈
Ỹ1Ũ2

〉
= α̃2,

〈
Ỹ2Ũ1

〉
= α̃2,

〈
Ũ1 B̃2

〉
= α̃1

�2 ,

〈
Ũ2 B̃1

〉
= α̃1

�2 ,
〈
B̃1 B̃2

〉
= α̃1

�2 ,
〈
Ũ1Ũ2

〉
= α̃2

�2 ,

〈
Q̃−

α Q̃−
β

〉
= 2

(
α̃1

�
+ α̃2

)
Cαβ,

〈
Q̃+

α R̃β

〉
= 2

(
α̃1

�
+ α̃2

)
Cαβ, (4.10)

where α̃0, α̃1 and α̃2 are arbitrary constants which are related
to the relativistic ones through (3.22).

The gauge connection one-form A for the non-standard
EEB superalgebra is

A = ω J̃ + ωaG̃a + τ H̃ + ea P̃a + k Z̃ + ka Z̃a + mM̃

+s S̃ + t T̃ + y1Ỹ1 + y2Ỹ2

+b1 B̃1 + b2 B̃2 + u1Ũ1 + u2Ũ2 + ψ̄+ Q̃+

+ψ̄− Q̃− + ρ̄ R̃, (4.11)
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and the corresponding curvature two-form is given by

F = F(ω) J̃ + Fa(ωb)G̃a + F(τ )H̃ + Fa
(
eb

)
P̃a

+F (k) Z̃ + Fa
(
kb

)
Z̃a + F(m)M̃

+F(s)S̃ + F(t)T̃ + F (y1) Ỹ1 + F (y2) Ỹ2

+F (b1) B̃1 + F (b2) B̃2 + F (u1) Ũ1

+F (u2) Ũ2 + ∇ψ̄+ Q̃+ + ∇ψ̄− Q̃− + ∇ρ̄ R̃, (4.12)

where

F(ω) = R(ω),

Fa(ωb) = Ra
(
ωb

)
,

F(τ ) = R (τ ) + 1

2�
ψ̄+γ 0ψ+,

Fa(eb) = Ra
(
eb

)
+ 1

�
ψ̄+γ aψ−,

F (k) = R(k) + 1

2
ψ̄+γ 0ψ+,

Fa(kb) = Ra
(
kb

)
+ ψ̄+γ aψ−,

F(m) = R (m) + 1

�
ψ̄+γ 0ρ + 1

2�
ψ̄−γ 0ψ−,

F(s) = R (s) ,

F(t) = R (t) + ψ̄+γ 0ρ + 1

2
ψ̄−γ 0ψ−, (4.13)

being R(ω), Ra(ωb), R(τ ), Ra(eb), R(k), Ra(kb), R(m),
R(s), and R(t) the bosonic EEB curvatures defined in (2.9),
together with

F (y1) = dy1,

F̂ (y2) = dy2,

F (b1) = db1 + 1

2�
ψ̄+γ 0ψ+,

F (b2) = db2 + 1

�
ψ̄+γ 0ρ − 1

2�
ψ̄−γ 0ψ−,

F (u1) = du1 + 1

2
ψ̄+γ 0ψ+,

F (u2) = du2 + ψ̄+γ 0ρ − 1

2
ψ̄−γ 0ψ− . (4.14)

On the other hand, the covariant derivatives of the spinor
1-form fields read

∇ψ+ = dψ+ + 1

2
ωγ0ψ

+ − 1

2
y1γ0ψ

+ + 1

2�
τγ0ψ

+

+ 1

2�2 kγ0ψ
+ − 1

2�2 u1γ0ψ
+,

∇ψ− = dψ− + 1

2
ωγ0ψ

− + 1

2
ωaγaψ

+ + 1

2
y1γ0ψ

− + 1

2�
τγ0ψ

−

+ 1

2�
eaγaψ

+ + 1

2�2 k
aγaψ

+

+ 1

2�2 kγ0ψ
− + 1

2�2 u1γ0ψ
−,

∇ρ = dρ + 1

2
ωγ0ρ + 1

2
ωaγaψ

− + 1

2
sγ0ψ

+

−1

2
y2γ0ψ

+ − 1

2
y1γ0ρ + 1

2�
eaγaψ

−

+ 1

2�2 k
aγaψ

− + 1

2�
mγ0ψ

+

+ 1

2�
τγ0ρ + 1

2�2 tγ0ψ
+ + 1

2�2 kγ0ρ

− 1

2�2 u1γ0ρ − 1

2�2 u2γ0ψ
+ . (4.15)

A CS supergravity action based on the non-standard (NS)
EEB superalgebra (4.6) and (4.7) can be constructed by com-
bining the non-zero components of the invariant tensor (2.4)
and (4.10) with the gauge connection one-form A (4.11). One
can see that the explicit CS supergravity action can be split
in three independent sectors:

INS
NR = α̃0 Ĩ0 + α̃1 Ĩ1 + α̃2 Ĩ2, (4.16)

where

Ĩ0 =
∫

ωa R
a(ωb) − 2sR(ω) + 2y1dy2,

Ĩ1 =
∫

ea R
a(ωb) + ωa R

a(eb) − 2mR(ω) − 2τds

− 2

�2 mR(k) − 2

�2 τdt + 1

�2 ea R
a(kb)

+ 1

�2 ka R
a(eb) + 2b1dy1 + 2b1dy2

+ 2

�2 u1db2 + 2

�2 u2db1 − 2

�
b1db2 − 2

�
ψ̄−∇ψ−

−2

�
ψ̄+∇ρ − 2

�
ρ̄∇ψ+,

Ĩ2 =
∫

ωa R
a(kb) + ka R

a(ωb) + ea R
a(eb)

−2sR(k) − 2t R(ω) − 2mR(τ ) + 1

�2 ka R(kb)

− 2

�2 t R(k) + 2u2dy1 + 2u1dy2 + 2

�2 u1du2

−2ψ̄−∇̂ψ− − 2ψ̄+∇̂ρ − 2ρ̄∇̂ψ+ . (4.17)

The CS action (4.17) obtained here describes a non-standard
Enlarged Extended Bargmann supergravity model whose
field equations are given by the vanishing of the curvature
2-form (4.12). Although it contains the bosonic EEB grav-
ity theory, the non-standard version of the EEB superalge-
bra leads to a CS action diverse from the “standard” one
(3.28) discussed in the previous section. Both supersymmet-
ric descriptions contain the exotic NR gravity action Ĩ0 = I0
as particular subcase. However, Ĩ1 and Ĩ2 are quite different
from the I1 and I2 contributions appearing in the standard
case. Indeed, the fact that the non-standard EEB superalge-
bra contains only three different spinor generators reduces
considerably the CS expression. Furthermore, the vanishing
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cosmological constant limit � → ∞ in the non-standard
case reproduces an exotic supersymmetric theory. In partic-
ular, the flat limit applied to the Ĩ1 contribution does not
reproduce a supergravity theory anymore, but leads us to
the extended Bargmann gravity [3] coupled to extra gen-
erators {y1, y2, b1, b2}. Such peculiar behavior is inherited
from the relativistic counterpart and is responsible of the
label “non-standard”. However, a different interpretation of
the gauge field could overcome such difficulty to repro-
duce a supergravity theory in the flat limit by using the
Hietarinta–Maxwell interpretation [85]. It would be interest-
ing to explore the Physical implications of considering the
Hietarinta basis at both the relativistic and the NR levels.

On the other hand, as in the “standard” case, the CS super-
gravity action presented here is restricted exclusively to the
CS terms related to the λ2 element of the semigroup S(2)

E .
The exotic-like terms produced due to the λ0 element has
been omitted intentionally. Indeed, such terms would mod-
ify the CS bosonic sector, meaning that one would have a
supersymmetric extension of a diverse CS gravity theory.

An alternative procedure to recover the non-standard EEB
supergravity action (4.17) can be performed by considering
an S(2)

E -expansion of the relativistic N = 2 non-standard
AdS-L CS supergravity action,4

INS
R =

∫
α0

[
ωAdωA + 1

3
εABCωAωBωC + tdt

]

+α1

[
2eAR

A + 1

3�2 εABCe
AeBeC + 2

�2 eAF
A

−2

�

¯̂
ψ i∇ψ̂ i + tdb + 1

�2 udb + 1

�
bdb

]

+α2

[
2σAR

A + eAT
A + 2

�2 eAF
A + 1

�2 εABCe
Aσ BeC

−2 ¯̂
ψ i∇ψ̂ i + tdu + 1

�2 udu
]

, (4.18)

where RA, T A, and F A are defined as in (3.31), while the
covariant derivative of the fermionic gauge field is given by

∇ψ̂ i = dψ̂ i + 1

2
ωAγAψ̂ i + 1

2�
eAγAψ̂ i + 1

2�2 σ AγAψ̂

+tεi j ψ̂ j + 1

�2 uεi j ψ̂ j . (4.19)

In fact, the NR gauge fields can be written in terms of the
relativistic ones and the semigroup elements as

ω = λ0ω0, s = λ2ω0, ωa = λ1ωa,

τ = λ0e0, m = λ2e0, ea = λ1ea,

k = λ0σ0, t = λ2σ0, ka = λ1σa,

ψ+
α = λ0ψ̂

+
α , ρα = λ2ψ̂

+
α , ψ−

α = λ1ψ̂
−
α ,

4 The relativistic CS action appears considering the non-vanishing com-
ponents of the invariant tensor for theN = 2 AdS-L superalgebra (4.2).

y1 = λ0t, u1 = λ0u, b1 = λ0b,

y2 = λ2t, u2 = λ2u, b2 = λ2b, (4.20)

where we have performed the split A = {0, a} with a = 1, 2
and where ψ̂±

α is defined as in (3.33). Thus, the non-standard
EEB supergravity action can be obtained by considering
the expanded gauge fields (4.20), the expanded parameters
(3.22), the multiplication law (3.5), together with the 0s-
reduction property.

5 Discussion

In this work we have presented two diverse supersymmet-
ric extensions of the enlarged extended Bargmann gravity in
three spacetime dimensions introduced in [36]. The new NR
superalgebras we have introduced differ on the number of
fermionic generators and have been obtained from two dif-
ferent relativistic N = 2 AdS-L superalgebras considering
the semigroup expansion procedure [64]. We have shown that
both EEB superalgebras allows us to introduce a cosmologi-
cal constant to a NR supergravity different from the extended
Newton–Hooke one[5]. Nevertheless, only the “standard”
description reproduces a consistent vanishing cosmologi-
cal constant limit � → ∞ leading to the Maxwellian ver-
sion of the extended Bargmann supergravity presented in
[6]. Indeed, the flat limit of the non-standard version of the
EEB supergravity leads us to an exotic supersymmetric the-
ory since {Q, Q} ∼ Za . One way to overcome such difficulty
could be performed by interchanging the role of the Pa and
Za generators as in the relativistic Hietarinta–Maxwell grav-
ity theory [85]. Motivated by the fact that both topological
and minimal massive gravity theories [87,88] appear as par-
ticular cases of a generalized minimal massive gravity arising
from a spontaneous breaking of the Hietarinta–Maxwell in a
CS theory, it would be worth it to explore the Physical impli-
cations of a possible NR version of the three-dimensional
Hietarianta–Maxwell CS (super)gravity.

On the other hand, both EEB superalgebras can be written
in terms of three copies of the Nappi–Witten algebra where
one or two copies are augmented by supersymmetry depend-
ing on the case. An alternative redefinition of the generators
reveals that the (non-)standard EEB superalgebra can also
be written as the direct sum of the extended Newton–Hooke
superalgebra[5] and the Nappi–Witten (super)algebra. Such
structures are inherited from their relativistic counterparts, in
which case the AdS-L superalgebra are isomorphic to three
copies of the Lorentz (super)algebra and to the the direct
sum of the AdS superalgebra and the (super) Lorentz one. It
would be interesting to explore if the supersymmetric exten-
sion of the Nappi–Witten algebra obtained here can be used
to obtain novel superalgebras through the S-expansion proce-
dure [89]. In particular, one could extend the results obtained
in [36,67,73] to the supersymmetric case.
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The S-expansion method used here is a powerful tool to
obtain new NR superalgebras and to construct the respective
NR CS supergravity theories. Consequently, the procedure
performed here could serve as a starting point for diverse
further studies. In particular, we have shown that the S-
expansion of a relativistic N = 2 AdS-L superalgebra using
S(2)
E as the relevant semigroup reproduces its NR counterpart.

It would be interesting to first check if known NR superal-
gebras appears from N = 2 superalgebras considering the
same approach. Then, one could go further and study which
kind of superalgebras can be obtained by considering S(N )

E -
expansions for N > 2 to diverse relativistic superalgebras.
On the other hand, one could apply our method to four and
higher spacetime dimensions and construct NR supergravity
models.

Another aspect that deserves further developments is the
study of the asymptotic symmetry of the EEB (super)gravity
theory. At the relativistic level, a semi-simple enlargement of
the bms3 algebra results to describe the boundary dynamics
of the three-dimensional AdS-L gravity [53]. Interestingly,
such asymptotic structure can be written as three copies of the
Virasoro algebra or as the direct sum of the conformal sym-
metry and the Virasoro one [90,91]. A future development
could consist on the study of consistent boundary conditions
for the EEB gauge field to unveil the asymptotic symmetry
of the theory. One could expect to obtain a canonical real-
ization of a new infinite-dimensional symmetry which could
be written as three copies of the NR version of the Virasoro
algebra.

Besides, since these NR supersymmetry algebras share the
presence of extra fermionic generators, it could be intriguing
to study higher-dimensional cases and, in particular, to carry
on an analysis on their possible hidden gauge structure in
higher dimensions, on the same lines of [92–94]. This could
give new insights in the NR regime of supergravity theories.
In correspondence with the present results, it would be worth
to analyze the NR counterpart of [94] in the presence of a
cosmological constant.

Concerning other possible future developments, it would
also be interesting to extend the study to the ultra-relativistic
regime, where some results in the context of supergravity
have been recently presented in [95,96] [work in progress].
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Appendix A: Invariant tensor and semigroup expansion
method

The semigroup expansion method, introduced in [64] and
latter studied in [97–99], consists in combining the ele-
ments of a semigroup S with the structure constant of a Lie
(super)algebra g. The new Lie (super)algebra G = S × g

is said to be an S-expanded (super)algebra whose structure
constants are related to the structure constant of the original
Lie (super)algebra g as

C (C,γ )

(A,α)(B,β) = K γ
αβ C C

AB, (A.1)

where K γ
αβ is the 2-selector which encodes the information

from the multiplication law of the semigroup S and satisfy

K γ
αβ =

{
1 when γ = ρ(α, β),

0 otherwise.
(A.2)

Interestingly, the S-expansion procedure allows us to
obtain the invariant tensor of the expanded Lie (super)algebra
G. The invariant tensor is a crucial ingredient for the
construction of a CS action based on the expanded Lie
(super)algebra.

According to [64], let us considergbeing a Lie (super)algebra
spanned by {TA} and let S be an abelian semigroup. If
the original Lie (super)algebra g admits

〈
TA1 · · · TAn

〉
as

the invariant tensor, then the expanded Lie (super)algebra
G = S × g admits the following invariant tensor,

〈
TA1,α1 · · · TAn ,αn

〉 = αγ K
γ

α1···αn
〈
TA1 · · · TAn

〉
, (A.3)

where the αγ ’s are arbitrary constants. Here Kα1···αn is the
n-selector for the semigroup S which is defined as

K γ
α1···αn =

{
1 when γ = ρ(α1, . . . , αn)

0 otherwise.
(A.4)

The possibility to find the invariant tensor for an expanded
Lie (super)algebra is an additional advantage of the S-
expansion method. Furthermore, the S-expansion procedure
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allows us to obtain new expanded Lie (super)algebras which
cannot be obtained through other Lie (super)algebra expan-
sion methods. Indeed, an S-expansion performed by using
the particular semigroup S(N )

E reproduces the expanded Lie
(super)algebras derived through the Maurer-Cartan forms
power series expansion [62,63]. A different choice of the
semigroup would lead to other expanded Lie (super)algebras
which cannot be obtained through the Maurer-Cartan formal-
ism.

Appendix B: Gauge transformations

The supersymmetry transformation laws of the EEB super-
algebra read

δω = 0, δωa = 0, δτ = −ε̄+γ 0ψ+

− 1

�2 ϕ̄+γ 0ξ+,

δea = −ε̄+γ aψ− − ε̄−γ aψ+ − 1

�2 ϕ̄+γ aξ− − 1

�2 ϕ̄−γ aξ+,

δk = −ε̄+γ 0ξ+ − ϕ̄+γ 0ψ+,

δka = −ε̄+γ aξ− − ε̄−γ aξ+ − ϕ̄+γ aψ− − ϕ̄−γ aψ+,

δm = −ε̄−γ 0ψ− − ε̄+γ 0ρ − η̄γ 0ψ+ − 1

�2 ϕ̄−γ 0ξ−

− 1

�2 ϕ̄+γ 0χ − 1

�2 ζ̄ γ 0ξ+,

δs = 0,

δt = −ε̄−γ 0ξ− − ϕ̄−γ 0ψ− − ε̄+γ 0χ

−ζ̄ γ 0ψ+ − ϕ̄+γ 0ρ − η̄γ 0ξ+,

δy1 = 0,

δy2 = 0,

δb1 = −ε̄+γ 0ξ+ − ϕ̄+γ 0ψ+,

δb2 = ε̄−γ 0ξ− + ϕ̄−γ 0ψ− − ε̄+γ 0χ − ζ̄ γ 0ψ+

−ϕ̄+γ 0ρ − η̄γ 0ξ+,

δu1 = −ε̄+γ 0ψ+ − 1

�2 ϕ̄+γ 0ξ+,

δu2 = ε̄−γ 0ψ− − ε̄+γ 0ρ − η̄γ 0ψ+ + 1

�2 ϕ̄−γ 0ξ−

− 1

�2 ϕ̄+γ 0χ − 1

�2 ζ̄ γ 0ξ+,

δψ+ = dε+ + 1

2
ωγ0ε

+ − 1

2
y1γ0ε

+ + 1

2�2 τγ0ϕ
+ + 1

2�2 kγ0ε
+

− 1

2�2 u1γ0ϕ
+ − 1

2�2 b1γ0ε
+,

δψ− = dε− + 1

2
ωγ0ε

− + 1

2
ωaγaε

+ + 1

2
y1γ0ε

− + 1

2�2 τγ0ϕ
−

+ 1
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2
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+ − 1
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+,

δξ− = dϕ− + 1

2
ωγ0ϕ

− + 1

2
τγ0ε

− + 1

2
eaγaε
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+1

2
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+ + 1

2
y1γ0ϕ

− + 1

2
u1γ0ε

−

+ 1

2�2 k
aγaϕ

+ + 1

2�2 kγ0ϕ
− + 1

2�2 b1γ0ϕ
−,

δρ = dη + 1

2
ωγ0η + 1

2
ωaγaε

− + 1

2
sγ0ε

+

−1

2
y2γ0ε

+ − 1

2
y1γ0η + 1

2�2 e
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−

+ 1

2�2 k
aγaε

− + 1

2�2 mγ0ϕ
+ + 1

2�2 τγ0ζ

+ 1

2�2 tγ0ε
+ + 1

2�2 kγ0η

− 1

2�2 u1γ0ζ − 1

2�2 u2γ0ϕ
+ − 1

2�2 b1γ0η − 1

2�2 b2γ0ε
+,

δχ = dζ + 1

2
ωγ0ζ + 1

2
ωaγaϕ

− + 1

2
eaγaε

− + 1

2
τγ0η

+1

2
sγ0ϕ

+ + 1

2
mγ0ε

+

−1

2
y2γ0ϕ

+ − 1

2
y1γ0ζ − 1

2
u2γ0ε

+ − 1

2
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2�2 k
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− + 1

2�2 tγ0ϕ
+ + 1

2�2 kγ0ζ

− 1

2�2 b1γ0ζ − 1

2�2 b2γ0ϕ
+, (B.1)

where ε±, ϕ±, η, and ζ are the fermionic gauge parameters
related to Q̃±, 
̃±, R̃, and W̃ , respectively. Let us observe
that by taking the flat limit � → ∞ of one recovers the
supersymmetry transformations under which the curvatures
associated with the MEB superalgebra transform in a covari-
ant way (see [6]).
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