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Learning for predictions: real-time reliability assessment of
aerospace systems

Pier Carlo Berri∗, Matteo D.L. Dalla Vedova† and Laura Mainini‡
Politecnico di Torino, Turin, Italy, 10129

Prognostics and Health Management (PHM) aim to predict the Remaining Useful Life
(RUL) of a system and to allow a timely planning of replacement of components, limiting the
need for corrective maintenance and the down time of equipment. A major challenge in system
prognostics is the availability of accurate physics based representations of the grow rate of
faults. Additionally, the analysis of data acquired during flight operations is traditionally time
consuming and expensive. This work proposes a computational method to overcome these
limitations through the dynamic adaptation of the state-space model of fault propagation to
on-board observations of system’s health. Our approach aims at enabling real-time assessment
of systems health and reliability through fast predictions of the Remaining Useful Life that
account for uncertainty. The strategy combines physics-based knowledge of the system damage
propagation rate, machine learning and real-time measurements of the health status to obtain
an accurate estimate of theRULof aerospace systems. TheRULprediction algorithmrelies on a
dynamical estimator filter, which allows to deal with nonlinear systems affected by uncertainties
with unknown distribution. The proposed method integrates a dynamical model of the fault
propagation, accounting for the current and past measured health conditions, the past time
history of the operating conditions (such as input command, load, temperature, etc.), and the
expected future operating conditions. The model leverages the knowledge collected through
the record of past fault measurements, and dynamically adapts the prediction of the damage
propagation by learning from the observed time history. The original method is demonstrated
for the RUL prediction of an electromechanical actuator for aircraft flight controls. We
observe that the strategy allows to refine rapid predictions of the RUL in fractions of seconds
by progressively learning from on-board acquisitions.

I. Introduction

Prognostics and HealthManagement (PHM) are key enablers for improving the safety and reducing the environmental
impact of aircraft system operations. PHM relies on the prediction of the residual time before the failure of equipment,

which is commonly referred to as the Remaining Useful Life (RUL) of components and systems. A widespread
adoption of those techniques would result in a more efficient planning of maintenance actions, and a reduction of
the required spares [1]. Most approaches to RUL prediction available in literature focus on offline execution during
maintenance, and are only able to deal with failure modes that evolve slowly compared to the mission of the vehicle. In
contrast, a PHM performed onboard, in nearly real-time, would ease the introduction of novel design solutions and the
integration of novel technologies. The improvement in mission reliability offered by real-time prognostics would allow
to consider innovative, although less consolidated, system configurations for flight applications, without compromising
safety. Greener and more efficient design solutions, such as more-electric and all-electric system architectures could be
employed safely and extensively [2, 3]. Eventually, real-time PHM would support a future relaxation of redundancy
requirements, that are now necessary to guarantee safety.

With the PHM approach to system lifecycle management the Remaining Useful Life (RUL) of components is
estimated dynamically, based on the current health status of the system. The real-time response is analyzed to detect the
early signs of failure modes, and maintenance activity is planned in advance to perform the required preventive and
corrective actions.
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The RUL estimate is unavoidably affected by uncertainty associated with a variety of elements. First, the detection
of the current health status (Fault Detection & Identification) can be affected by measurement errors due to the accuracy
of the acquisition technologies, the disturbance caused by the variability of operating conditions, or the uncertainty
associated with modelling the behavior of the faulty system. The uncertainty that affects the detection and identification
of the faults propagates to the estimate of the remaining useful life, and might lead to a potentially large error in
predicting the reliability properties of the system [4, 5]. In addition, the complexity of aircraft systems causes multiple
failure modes to potentially interact in a manner that is difficult to predict analytically: hence, models of damage
propagation rate are commonly affected by significant structured and unstructured uncertainties [6, 7]. Finally, the
mission profile of the system, that is the operating and environmental conditions, is inherently unpredictable: this
particularly holds when dealing with equipment intended for aircraft (or in general vehicle) applications, as opposed to
industrial systems which commonly operate in a more controlled environment [8].

The investigation and development of methods for the rapid estimate of the remaining useful life as a measure of
system’s reliability is gaining a lot of interest in the engineering community, since a reliable, real-time RUL prediction
could bring huge benefits in terms of maintenance costs related to the operation of a fleet of vehicles. Okoh et al. [9]
provide a review of methods for the prediction of Remaining Useful Life of systems. Karandikar et al. [10] discusses
the use of Bayesian Inference for the estimation of RUL of tools for machining processes; this method requires large
experimental datasets and is difficult to exend to multiple failure modes. Grosso et al. [11] compare the performance of
Long-Short Term Memory (LSTM) neural networks and Particle Filtering for prognostics of industrial automation
equipment: while the former tends to be less precise on long term predictions, the latter requires computational efforts
not suitable for real-time evaluations. Additionally, most of these approaches deal with industrial equipment, intended
to operate in a semi-controlled environment and with a repeatable operation sequence.

We propose a strategy to obtain a nearly real-time estimate of the Remaining Useful Life of a dynamical system by
acquiring and processing its response. We combine an adaptive physics-based knowledge of the damage propagation
rate with surrogate modeling of the system performance to obtain an accurate and computationally efficient estimate
of the RUL of the equipment, which in turn gives a measure of the current reliability of the system. Specifically, we
introduce an original algorithm for the real time estimate of the remaining useful life of aerospace systems which
leverages a dynamical estimator filter [12, 13] that runs in parallel with a system identification routine and corrects the
instantaneous estimate of the health condition with predictions given by a model.

This approach permits to deal in a computationally efficient manner with the two issues usually associated with the
RUL estimation. On one hand, the dynamical estimator filter allows to deal with the uncertainties associated with the
FDI: the RUL estimation accounts for the entire observed health time-history and compares it to a reference model
to discriminate between random FDI errors and the actual health evolution, instead of considering uniquely the last
detected health condition. On the other hand, the system identification routine deals with the uncertainty associated
with the model of damage propagation. The initial model is progressively updated and calibrated in real-time to match
the time-evolution of the health condition actually experienced by the equipment. This strategy also allows to account
for unexpected variations in the environmental and operating conditions.

In addition, the proposed strategy is designed to obtain a major reduction of the computational time for the
estimation of Remaining Useful Life that is suitable for real-time onboard computations. The computational burden
is very low in comparison with similar approaches (such as those based on particle filtering [14]). Our method is
assessed in combination with a hybrid physics-based and data-driven Fault Detection and Identification (FDI), originally
introduced in [4]. This employs an optimal sampling technique to compress information received from installed
sensors, and computes in nearly real-time an estimate of the current system health condition through projection-based
model order reduction and supervised machine learning. The approach is demonstrated for the prognostic analysis
of an electromechanical actuator for aircraft flight controls. The application over different fault case is discussed and
quantitative results assessing accuracy and computational effort are proposed.

In this manuscript, Section II details the proposed PHM methodology, Section III describes a possible application to
aircraft actuation systems and Section IV discusses the results of our investigation.

II. Methodology
A typical PHM process can be divided into three tasks: (1) Data Acquisition, (2) Fault Detection & Identification

(FDI) and (3) RUL estimation. In the Data Acquisition task, the sensors installed on the system measure a set of working
parameters, which are sampled at a given frequency and stored on a memory support. Ideally, these sensors are installed
to guarantee the nominal operations of the system. For example, they are employed for closing feedback loops, or to
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give indications to the pilot. This way, the PHM process leverages the data already available, and does not require the
installation of additional hardware with the associated weight, cost, and failure rate.

In the FDI task, data are analyzed to uncover the underlying characteristic features of physical fault modes. For
example, a partial short circuit of an electric motor may cause an increase in current to produce a given torque, or the
wear of a bearing can result in vibrations at a specific frequency. Several algorithms can be used, either model-based
[15, 16], data-driven [17, 18] or combinations of both [19, 20]. Model based FDI relies on the comparison of the
measured dynamical behavior of the system with that of numerical simulations, able to determine the effect of faults.
For example, Sidhu et al. [21] propose to employ the residual between the actual terminal voltage and that estimated
by a Kalman Filter to detect fault signatures in lithium batteries. Kim and Parlos [22] employ multiresolution signal
processing methods to diagnose faults of induction motors. Data driven FDI leverages machine-learning algorithms
trained on a dataset, gathered from an experimental campaign and representative of the common failure modes affecting
a given system. In [23], Qin proposes the use of multivariate statistics tools to monitor complex industrial processes.
Sarkar et al. [24] leverages symbolic dynamic filtering to estimate the health condition of aircraft gas turbines accounting
for sensor noise.

The RUL estimation task exploits the information on the current health status of the equipment to compute its
Remaining Useful Life. This is usually done both by analyzing the damage propagation rate and by leveraging models
of the degradation of components. The first phase is necessarily performed in real-time; the others are usually executed
offline since they involve a high computational cost.

Our goal is to develop suitable algorithms to accurately and reliably achieve RUL estimation in real-time in order to
enable a continuous monitoring of the aircraft critical systems, such as the flight control actuators. This would not
only result in increased safety of the operations, but also in the possibility to adapt in-flight the mission profile and
system control laws in order to deal with an off-nominal condition. We propose a novel RUL prediction process that
learns in real-time a model for the fault growth rate from the available observations, and accounts for the uncertainties
associated with the previous Fault Detection and Identification task. The algorithm is tested in combination with the
compression and FDI strategies proposed in the PHM framework discussed in [5]. The framework covers the three main
PHM tasks of signal acquisition (Section II.A), FDI (Section II.B) and RUL estimation (Section II.C): model-based and
data-driven approaches are combined to reduce the computational burden associated with each phase and to enable
real-time fault detection and RUL estimation. Each of the three PHM tasks is split into two phases: an offline training
and an online evaluation. Offline we learn efficient models from data and physics, online we use those models to obtain
rapid predictions of the remaining useful life from acquired physical signals. The entire prognostic computational
framework employed in this work is represented schematically in Figure 1.

A. Signal Acquisition and Compression
We address the signal acquisition and compression phase to reduce the amount of data to store and process, while

retaining the useful information about the health condition of the monitored system. To this purpose, offline we
determine a set of informative time locations in which the output of the system will be measured and analyzed online.

1. Offline
A training set of =B output signals of the monitored system is collected, either from experiments, historical records

of field data, or simulations: the latter approach is employed in this work. Each signal from the dataset is associated with
a different combination of faults affecting the system, and the output of the system shall be chosen so that it is sensitive
to the considered fault modes. The output signals are arranged into the columns of a measurement matrix Y, and the
principal components v of the dataset are computed through Proper Orthogonal Decomposition (POD) [25, 26]. POD is
a procedure commonly employed for model reduction that processes possibly correlated data searching for underlying
structures. Candes et al. [27] employ POD for robust signal recovery in presence of measurement uncertainty; in [28],
POD is leveraged to solve optimal control problems for closed-loop control.

POD allows expressing each signal y of the training dataset in the form:

y = y0 +
=B∑
8=1

v8"8 (1)

where y0 is a baseline signal and "8 are the POD coefficients. By truncating the expansion to the first =< � =B modes,
a reduced representation of the signal is obtained.

3



Si
gn

al
A

cq
u

is
it

io
n

 
an

d
 C

o
m

p
re

ss
io

n
FD

I
R

U
L 

es
ti

m
at

io
n

OFFLINE ONLINE

Signal acquisition

POD coefficient reconstruction
Gappy POD

Estimation of health condition
MLP evaluation

Integration of adaptive  
damage propagation model

Evaluation of SVM as a 
surrogate failure threshold
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Proper Orthogonal Decomposition (POD)

2nd step of compression
Self Organizing Map (SOM)

Training a surrogate assessment function
Support Vector Machine (SVM)

Multi-Layer Perceptron (MLP) training

Fig. 1 Overview of the PHM framework employed in this work

A second step of compression leverages the properties of Self Organizing Maps (SOM) to obtain an compression
mask in form of a set of informative time locations for the signal y. SOMs are a class of single layer neural networks
employing unsupervised learning to find clusters of self-similar points in a training dataset [29]. In [30], SOMs are
employed as a classifier for diagnosing failure modes of induction motors. Svensson et al. [31] propose the use of
SOMs enabling automatic fault detection of a fleet of vehicles.

In this paper, an SOM is trained with a dataset ) = [t>v>1 ...v
>
=<
], including the first =< components of the signal v8

and the associated time-coordinates t. After training, the components of the weight vectors of the SOM associated with
the time input encode a set of informative time-locations to be employed online to measure the system output. The
approach, introduced in [32, 33] for structural applications, was applied to fault detection of dynamical assemblies with
promising results [4, 5].

2. Online
The signal is measured and stored only at the informative time locations determined offline, to obtain the compressed

measurement Ĥ. Then, Gappy Proper Orthogonal Decomposition (Gappy POD, [34]) is exploited to estimate the POD
coefficients associated with the newly measured signal. Specifically, an estimate of the coefficients " is obtained by
solving the linear system:

G" = f (2)

where G = Ê>Ê is the gappy matrix, 5 = Ê> Ĥ is the projection of the compressed measurement Ĥ along the compressed
POD modes Ê. Those coefficients encode a compressed representation of the signal, more robust to noise and uncertainty
than the direct signal measurement, to be employed for FDI.

4



B. Fault Detection and Identification
Fault Detection and Identification (FDI) leverages supervised machine learning to create a map from the POD

coefficients to the fault condition. Specifically, a Multi-Layer Perceptron (MLP) [35] is trained offline and evaluated
online in order to determine the faults affecting the system.

1. Offline
The training set is assembled with the POD coefficients associated with the =B signals of the initial dataset, and

the fault combinations employed to compute each signal. A standard MLP formulation is adopted, including a single
hidden layer with sigmoid activation function and an output layer with linear saturated activation function. MLPs are
Artificial Neural Networks relying on supervised learning to obtain computationally efficient models for data regression
or classification. The particular choice of the activation functions is motivated by the specific characteristics of the
considered problem: the linear saturated output layer permits to produce a bounded health condition estimate; differently
than a continuous sigmoid function, the output tends to stick to the lower bound (i.e. a completely healthy system)
when the system behavior is nearly nominal, limiting the risk of false positive FDIs. The choice of this particular
network layout and topology is discussed in Berri et al. [5], which demonstrated the effectiveness of this particular MLP
configuration in providing estimates of fault states from reduced and compressed current signals. The MLP model is
trained through a Levenberg-Marquardt backpropagation algorithm [36, 37].

2. Online
The MLP model trained offline maps the POD coefficients "8 into the fault condition k. The model is evaluated

online to compute the fault condition from the POD coefficients reconstructed via Gappy POD (Section II.A.2).

C. Estimation of Remaining Useful Life
The last phase of the PHM process is the actual estimation of the Remaining Useful Life. The input for the process

is the current health condition determined by FDI, employed as a starting point for the evaluation of a model of damage
propagation. The Remaining Useful Life can be formally defined as the remaining time before a performance parameter
of the system hits a failure threshold:

RUL = max(C)
s.t. q0 (k (C)) = “healthy”

(3)

where q0 (k (C)) is a function for the assessment of the system health, that evaluates the system performance under the
health condition k and compares it to any applicable requirements.

The approach discussed in this work is inspired by structural health monitoring strategies associated with the
damage tolerant design paradigms that are adopted for material fatigue [38]. In the field of structural health monitoring,
the components are inspected periodically in search of cracks. Since the rate of propagation of cracks in metal and
composite structure is known and well described by physics based models, the next inspection is planned before the
existing cracks reach a critical length; if no cracks are detected during the inspection, they are assumed to be just below
the sensitivity of the employed equipment.

The extension of this approach to systems poses two issues. First, the higher complexity of the monitored equipment
makes accurate inspections impractical in periodical maintenance; then, this study proposes to replace, at least in part,
manual inspections with the automatic, real-time FDI process described in Section II.B. Second, the heterogeneous
disciplines that rule the propagation of faults results in the difficulty (or often in the impossibility) to determine an
accurate physics-based model for damage propagation. To address this difficulty, we use an adaptive model for damage
propagation, which is updated in real-time according to the observed time-history of the health condition.

Based on the definition of Remaining Useful Life of Equation 3, we employ a model of damage propagation in
the form of a state-space dynamical model. The model is integrated numerically, starting from the combination of
faults determined by FDI as the initial condition, and accounting for the entire observed time history of faults through a
dynamic estimator filter. The simulation is adaptive and leverages a system identification algorithm to tune itself to
match the observations. The function for the assessment of health condition is employed as a stopping criterion for the
integration. This way, a failure threshold is set on the actual performance of the equipment, rather then on the fault
parameters. This strategy permits to deal with combinations of multiple fault modes according to the definition of
Remaining Useful Life as the remaining time after which the equipment will no longer meet the required performances:
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when the estimated health condition reaches a value that is no more compatible with the requirements of the system,
the corresponding integration timestep is assumed as the RUL estimate. The function for the assessment of the health
condition requires the evaluation of a physics-based model to determine the performance of the faulty system. Therefore,
computing the assessment function q0 of Equation 3 is too expensive for time-constrained on-board computations. To
enable real-time evaluation, a Support Vector Machine (SVM) is trained offline as a surrogate assessment function.

1. Offline
The function for health condition assessment q0 (k) behaves as a binary classifier: it simulates the response of

the system under the effect of the fault combination k and determines whether or not the applicable performance
requirements are met by the equipment, assigning to k a binary output in the form of a "healthy" or "faulty" label. For
simple application (like health monitoring of bearings, gears or other individual components, for which a low number of
possible fault modes exist), the direct comparison of the fault vector with a threshold may be enough to determine the
acceptability of a given health condition. However, this is usually not acceptable to deal with the combined effects of
multiple fault modes affecting the equipment at the same time. More complex assessment functions quickly become
impractical to evaluate in real-time. For example, a viable option for the health assessment of an actuator is to evaluate
its transfer function with an iterative simulation at variable frequency of the command: this results in computational
times of several seconds or more.

To enable real-time evaluation of the assessment function, this study proposes to employ a surrogate function in the
form of a Support Vector Machine (SVM). SVMs are algorithms that leverage supervised machine learning to perform
an efficient classification of the input data [39, 40]. In [41], SVM classifiers are employed to generate explicit decision
functions for design optimization problems. Leng et al. [42] propose to combine SVMs and decision trees to improve
computational time on large nonlinear problems.

To train a surrogate assessment function, we assemble a training set with the matrices K = [k>1 , ..., k
>
=B
]> and

Φ = [q1, ..., q=B ] discussed in Section 2.1. In the standard linear formulation, given a set of training points k8 , each
defined in R=B , and their classes q8 = ±1, the SVM seeks an optimal hyperplane in R=: to separate the two classes. The
equation of a generic hyperplane in R=: is:

5 (k) = k># + 1 = 0 (4)

where 5 (k) is a cost function, # has the same dimensionality as k and 1 is a scalar bias. The goal of the training process
for the SVM is to find the best separating hyperplane, that is, the one that results in the largest margin between the two
classes q = ±1.

The training process employs the method of Lagrange Multipliers to find the optimal values for # and 1, that
maximize the margin between the two classes (or minimizes the classification error, if the training set is not linearly
separable). After training, the function q0 (k) = B86=( 5 (k)) is the surrogate function for the assessment of the health
condition k, to be employed in the online RUL estimation procedure.

2. Online
Remaining Useful Life is estimated online by integrating a model of damage propagation in form of a state-space

dynamical model, which expresses the evolution in time of the health condition of the system, employing the surrogate
assessment function q0 (k) as a stopping criterion. A flow chart of the online procedure is provided in Figure 2.

The integration starts at time C0 = 0, corresponding to the oldest known health condition k0 measured by the first
FDI. The integration from C0 to the current time C=>F (that is, the time coordinate associated to the last FDI) accounts
for the known time history of the fault vector k (C) in order to filter out uncertainties in fault detection and tune the
model of damage propagation. Indeed, one of the most important challenges in system prognostics is that accurate
physics-based descriptions of the fault growth rate are not commonly available. The proposed approach addresses this
limitation by dynamically adapting a state space model to the real-time observations of the system’s health. The general
formulation of a state-space model is: {

¤k = Ak + Bu
j = Ck + Du

(5)

where A is the state matrix, B is the control matrix, C is the output matrix, D is the feedthrough matrix, k is the
state, j is the observation, and u is the input. For the application to RUL estimate addressed in this study, we can
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Fig. 2 Flow chart of the real-time procedure for RUL estimation

set k = [:1...:=: ]> as the health condition of the system, and u = [D1...D=D ]> as the environmental and operating
conditions; the observation j can be considered equal to the state k (that is, the system health condition): then, we can
neglect the second equation.

The state and control matrices may be derived from physics-based knowledge of the system. However, in this case a
large uncertainty is usually associated with the state-space model, as the complex interactions between fault modes
are difficult to derive from physical models and may be affected by unexpected changes in the operating conditions.
Therefore, the matrices shall be estimated from observed data, allowing a more precise prediction of the evolution of
faults. The elements of A and B can be computed from the equation:

^808 = ¤̂8 for 8 = 1...=: (6)

where ^ is a matrix containing the observed states k and inputs u of the last = timesteps:

^8 =


:1 (C=>F−=)) ... :=: (C=>F−=) D1 (C=>F−=) ... D=D (C=>F−=)

...
. . .

...
...

. . .
...

:1 (C (=>F)) ... :=: (C (=>F)) D1 (C (=>F)) ... D=D (C (=>F))

 (7)
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08 is a column vector with the elements of the 8-th row of A and the 8-th row of B:

08 = [�8,1, ..., �8,=: , �8,1, ..., �8,=D ]> (8)

and ¤̂8 is a column vector containing the time history of the 8-th element of the state derivative ¤k:

¤̂8 = [:8 (C=>F−=), ..., :8 (C=>F )]> (9)

At each integration timestep, the matrices A and B are computed by solving the linear systems of Equation 6. The
number of timesteps = is determined as a trade off between the need to filter out the uncertainties components from the
observations (i.e. the errors of the FDI process), and the need to meet the time constraints imposed by the on-board
computations. In any case, = shall be larger than =: + =D , i.e. the sum of the number of elements of the state and control
vectors to guarantee that the system is not under determined; a number of timesteps larger than =: + =D is allowed since
Equation 6 can be solved in the least squares sense.

After the state and control matrices A and B are identified, the state-space model is employed for two purposes:
as a dynamical estimator filter for the computation of the next fault condition, and as a predictor to extrapolate the
future time evolution of the fault condition to determine the system RUL. The fault condition at the next timestep is
estimated by fusing the information from FDI and the state-space system; this operates as a dynamical observer to filter
the observations supplied by FDI. The method is similar to Kalman filtering, but does not make assumptions about the
variance of the observations. The state is updated as a weighted sum of the prediction of the state-space model and the
observation of the FDI procedure:

:8+1 = Wk
4 (C8+1) + (1 − W) [k8 + (A8k8 + B8u8)ΔC] (10)

where W ∈ (0, 1) is a scalar weight parameter, k4 (C8+1) is the fault condition measured by the FDI procedure according
to Section 2.3, and the term k8 + (A8k8 + B8u8)ΔC = k8 + ¤k8ΔC is the fault condition predicted by the integration of the
model. This procedure can be used when the observations k4 are available, that is, for C ≤ C=>F . Since future fault
condition are not measurable, the propagation of the state for C > C=>F is embedded by the state space model alone:

k8+1 = k8 + (A8k8 + B8u8)ΔC (11)

At each time step C8 of the numerical integration, the surrogate assessment function q0 (k) trained offline determines
whether the equipment is still able to operate under the effect of the fault combination k (C8). When a "faulty" condition
is detected by the assessment function at time C 5 , the integration is stopped, and the difference between the failure time
and the current time is assumed as the RUL estimate:

RUL = C 5 − C=>F (12)

The proposed methodology permits to achieve a good accuracy in RUL prediction, even if the rate of propagation
of the damage from its incipient state at C0 to the actual failure at C 5 is not known. This is often the case for complex
mechatronic systems, where heterogeneous components described by different disciplines coexist and work together,
sometimes interacting in ways that are difficult to predict analytically. Additionally, this method has a lower computational
cost than comparable approaches available in literature (e.g. those based on particle filtering [43]) and can be executed
in real-time on limited hardware resources.

III. Application
The proposed methodology is applied to prognostics and reliability assessment of aircraft Electro Mechanical

Actuators (EMAs). These flight critical systems combine heterogeneous components which behavior is modeled
by different branches of physics and engineering: electrical machines, electronics and software, rational mechanics,
tribology, thermodynamics and heat transfer, fluid dynamics. As a result, the possible failure modes affecting such
equipment are diverse; additionally, the contemporary presence of multiple failure modes results in effects that are
different from the linear superposition of the individual faults. Then, the PHM task for this kind of systems is inherently
challenging and constitutes a representative test case for the proposed methodology.
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A. Dynamical model of the actuator
The EMA model considered in this paper is schematically represented in the block diagram of Figure 3. It is a

lumped parameter model, which can be used in two different configurations: (1) for EMAs based on Brushless DC
(BLDC) motors [44], and (2) for Permanent Magnet Synchronous Motors (PMSMs) [45]. This virtual representation of
the electromechanical actuator is a multi-domain model and comprises electrical, mechanical and control components,
which together simulate the multidisciplinary assembly of the physical actuator. The model can be described through
the following five building blocks.

Actuator Control Electronics The Actuator Control Electronics (ACE) block emulates the PID control law that
compares the position setpoint with the actual user position and speed, to compute a torque setpoint for the motor. The
controller is able to switch between a position control mode and a speed control mode, and accounts for signal noise and
digitization.

Actuator Power Electronics The Actuator Power Electronics block models the behavior of the three phase inverter
that applies the required voltages to the motor coils, while controlling in closed loop the current and managing the phase
commutation sequence.

Motor Electromagnetic Model The Motor Electromagnetic model computes the motor torque and current as
a function of voltage and speed, by evaluating the electromagnetic coupling between the rotor poles and the stator
windings. The model is able to account for the effect of multiple fault modes of the motor, including partial short circuit
of the stator and eccentricity of the rotor shaft.

Motor-transmission Dynamical Model The Motor-transmission Dynamical Model is a nonlinear second order
model for the motor and gearbox of the actuator. It accounts for viscous and dry friction between mechanical components,
transmission backlash, endstops, and finite stiffness of the gears.

Load Model The Load Model is a simplified representation of the aerodynamic hinge moment acting on the actuator,
assuming that it is employed for aircraft primary flight controls. It leverages the linearized longitudinal model of the
F-16 fighter jet, available from Stevens [46] to evaluate the coupling between the dynamics of the actuator and aircraft.

Actuator 
Control 

Electronics 
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Power 
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Motor 
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Dynamical 

model

Load 
model

𝑠𝑒𝑡

𝜃𝑚

 𝜃𝑚

𝜃𝑢

Flight condition

𝐼𝑟𝑒𝑓

𝑉𝐴,𝐵,𝐶

𝑖𝐴,𝐵,𝐶

𝑇𝑚

𝑇𝑙

Partial short circuit 𝑘3, 𝑘4, 𝑘5
Rotor eccentricity 𝑘6, 𝑘7

Friction 𝑘1
Backlash 𝑘2

Drift of controller gain 𝑘8

Fig. 3 Block diagram of the dynamical model of the actuator considered as a case study in this paper; the
blocks affected by each fault mode is indicated in red.
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Mechanical Transmission
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Actuator Control Electronics

Fig. 4 Test bench employed for the validation of the EMA dynamical model

This EMA model allows to achieve high accuracy in predicting the behavior of the system in nominal and faulty
conditions and has been validated against experimental data [47, 48]. Figure 4 illustrates the test bench employed to
validate the output of the model in nominal conditions; the validation in presence of faults is currently in progress. The
effects of 5 different fault modes are considered, namely friction (:1) and backlash (:2) of the mechanical transmission,
partial short circuit (:3 to :5) and static eccentricity (:6 and :7) of the motor, and drift of the position control loop
gain (:8). The short circuit fault has three degrees of freedom, since it may affect each of the three electrical phases;
the eccentricity fault depends on two parameters that encode the eccentricity measured in the two main directions
perpendicular to the axis of rotation of the motor. As a result, the dimensionality of the fault vector k is 8.

The blocks affected by each fault mode are indicated in red in Figure 3. The signal monitored for prognostic
purposes is the envelope of the three phase currents of the motor, as this quantity showed a good sensitivity to a variety
of failure modes [4, 5]. The model is employed to compute high-fidelity reference data to train the data acquisition and
compression (Section II.A.1) and FDI (Section II.B.1) algorithms. This virtual model, although much faster than a
distributed parameter simulation, is about two orders of magnitude slower than what required for real-time evaluations:
each second of simulated time requires about one minute of computational time on a common laptop PC.

B. Damage propagation model
The model of damage propagation adopted in this work is in the form of a state-space representation, where the

damage propagation rate is a combination of two contributions: one is a function of the actual health condition and
operating environment; the other is a normally distributed uncertainty, intended to account for the random fluctuations
of operating conditions and the variability of characteristics and manufacturing defects of individual components. Those
two contributions are captured in the state-space model as follows:

¤k = A(C)k + Bu + N(0, f) (13)

where A(C) is a piece-wise constant function whose changes happen randomly in time, and N(0, f) is an independent
and identically distributed noise affecting the damage rate ¤k.

An example of fault propagation time history simulated by this model is shown in Figure 5. The vertical axis reports
the components of the fault vector k. Each component of k encodes the extent of one fault mode, either normalized
with respect to its maximum allowed value. The black vertical line is the complete failure: a failure threshold is not
represented as it is set on performance parameters, rather than on the individual fault parameters. For the specific
example reported in Figure 5, the failure occurs at C = 6700ℎ, when neither of the fault parameter alone exceeds its
maximum allowable value, but the combined effect of all the fault modes results in unacceptable performances.

A variation in model parameters can be injected randomly during the simulation of the system operation. This
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Fig. 5 Example of evolution of the system health condition. The black vertical line is the complete failure:
the failure threshold is not represented as it is set on performance parameters, rather than on individual fault
parameters

feature of the numerical model is used to simulate the unstructured uncertainty inherently associated with any model for
the system’s RUL. For example, a variation of the fault growth rate may represent the effect of an unexpected change in
the environmental conditions of the system, such as the ingress of contaminants in a mechanical transmission.

C. Assessment function
The assessment function relies on a model-based strategy to evaluate the performance of the system under the

effect of faults, in order to determine if the current health condition is still compatible with safe system operations.
In particular, the specific assessment function employed here evaluates the several features of the system response
(including no-load speed, stall load, frequency response, and stability margins). These features are then compared
with the applicable performance requirements, in order to determine whether or not they are still met. The assessment
function is employed as a stopping criterion in the numerical integration of the damage propagation model. Since the
associated computational burden is high, the assessment function is replaced with an SVM surrogate for real-time
evaluations, as described in Section II.C.1. Further details on the Assessment Function and a parametric study to
optimize the SVM may be found in [49].

IV. Results and Discussion
To demonstrate our original strategy for the real-time reliability assessment of the electromechanical actuator

discussed in Section III, we collect two reference dataset – a training dataset and a validation dataset – through the
evaluation of the virtual models (Sections III.A, III.B and III.C) for a variety of fault conditions. The training dataset
comprises 10000 combinations of fault modes k determined with a particular importance sampling strategy that
increases the density of data points near the nominal condition and allows to characterize the effects of small, incipient
faults [5]. For each fault combination of the training set, the dynamical model of the actuator (Section III.A) and the
Assessment Function (Section III.C) are evaluated. The validation set includes 50 test cases determined with the same
sampling technique used for the training set. The two dataset sample the same space of fault modes, but do not share
any specific combination of faults k. For each test case of the validation set, the damage propagation model III.B
is integrated numerically to simulate the evolution of faults to a complete failure. At each integration timestep, the
dynamical model of the actuator and the Assessment Function (Section III.C) are evaluated to determine respectively
the response of the system (needed as input for the FDI algorithm) and the compliance of that response to the applicable
requirements.

Online, the proposed methodology processes the actuator dynamical response through the compression and FDI
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Fig. 6 Distribution of the error associated to FDI, for each fault parameter :8

steps described in Sections II.A.2 and II.B.2, respectively. The estimate of the system health k is obtained as a result.
Figure 6 illustrates the uncertainty distributions associated with these estimates of fault conditions k: the histograms
shows the modulus of the normalized error 4=0:

4=0 =
|:� − :� |

max :� −min :�
(14)

where :� is the estimated fault parameter and :� is the actual one. The friction fault mode, encoded in the parameter
:1, is captured with better accuracy than the other fault modes. Larger errors are recorded for backlash, eccentricity and
gain drift. The partial short circuits are characterized by moderate uncertainty. This behavior mirrors the sensitivity of
the specific monitored signal (the stator current of the motor) to each fault mode.

Figure 7 shows the evolution of the RUL estimate when the damage propagation model is constant in time, that
is 3A(C)/3C = 0 ∀C, where A is the state matrix describing the evolution of faults. At the beginning, the algorithm
overestimates the system RUL: indeed, the state and control matrices of Equation 5 are initialized to zero, and the
estimated RUL is infinite. The early estimates have a very large dispersion, as both the model of damage propagation and
the measurement of the initial condition are affected by uncertainty. The model of damage propagation superimposes a
normally distributed noise to the otherwise exponential rate of fault growth; this behavior is clearly visible in Figure 5
and simulates the effect of manufacturing defect and variability of operating conditions experienced by the equipment.
Additionally, uncertainty on FDI arises from two sources: the additive white noise acting on the output of the dynamical
model of the EMA (simulating the error in measurements) and the error associated to the evaluation of the MLP model.
The assimilation of additional observations of the fault propagation history allows to filter out errors inevitably affecting
FDI, and to obtain less disperse and more robust predictions of the system life. As time runs, approaching to the right
of Figure 7, the estimate of the remaining useful life improves in accuracy thanks to the efficient assimilation from
real-time measurements. At first, only a rough value is available, but the expected failure is still far ahead, and a precise
information is not needed yet. As the failure approaches, the estimate becomes more accurate, when it is required to
plan corrective actions.
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Figure 8 shows the evolution of the RUL estimate for a test case where the damage propagates at a variable
(increasing) rate, that is 3A(C)/3C > 0 ∃C. At the beginning, the actual RUL of the system is overestimated, since the
current damage propagation rate is predicted to the complete failure. At '*! ≈ 1800ℎ, the fault growth rate rises: this
event may simulate either an uncertainty in the model (e.g. a given component starts wearing faster after a critical
threshold is reached, such as a hardened external layer is completely worn out) or an unpredictable change in the external
conditions that affects the wear rate (such as, the lubricant of a sealed transmission may get contaminated and lose its
properties). The RUL estimation algorithm reacts to this change by adapting its prediction to the new observed time
history of health conditions. As shown in the second part of Figure 8, shortly after the change in damage growth rate the
dispersion on the estimation shrinks and the median RUL estimate moves closer to the actual one.
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Fig. 8 Comparison between actual and estimated RUL with a time-varying model. The reference damage
propagation rate increases at '*! ≈ 1800ℎ
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Table 1 summarizes the error associated with the RUL prediction in the two test cases of Figures 7 and 8. The early
estimates are characterized by a large uncertainty, particularly in the case of a time-varying damage growth rate. As
the actual RUL decreases, the algorithm is able to get the prediction within ±20% of the exact value. This error is
coherent with most approaches available in literature, and is mainly due to the inherent variability associated to the fault
growth. The advantage introduced with our approach is that we efficiently learn in real-time to compute predictions of
the Remaining Useful Life. The whole online process runs in the Matlab environment, on a laptop PC with an i7-6500U
processor and 8GB of memory. The computational time required for each FDI and RUL estimate ranges between 0.1s
and 1s, which makes it suitable for on-board, nearly real-time execution.

Table 1 Median relative error in RUL prediction

actual RUL, h error - time-invariant fault growth error - time-varying fault growth
3000 23,90% 243,64%
1500 -18,85% 50,11%
500 -17,04% 18,95%

V. Conclusions
A novel method for the estimation of Remaining Useful Life of aerospace systems and on-board equipment has

been developed. The strategy processes and assimilates the available observations of the system health condition
to infer a model of damage propagation and estimate the remaining time to failure; no prior knowledge of the wear
rate of the involved components is required. The proposed methodology achieves an accuracy comparable to similar
approaches available in literature, since the limiting factor tends to be the variability in fault propagation rate that is
inherent to dynamical system. However, the strength of the proposed method lies in its ability to deal with unstructured
uncertainties and to adapt to unexpected variations in the fault propagation dynamics. This way, an acceptable accuracy
in RUL prediction is kept even when an unexpected event modifies the wear rate of the components, or when fault
detection is affected by a large uncertainty.

Our strategy dynamically assimilates new information from the observed time-evolution of the health condition of
the system and updates a model of damage propagation to yield an accurate estimate of the RUL, acknowledging the
effect of any changes in the operating condition of the equipment. The entire RUL estimation process requires limited
computational resources, and can be performed in real-time to inform the planning of maintenance interventions and
ensure the safety of operations. This will ease the early and safe integration of innovative technology in aerospace
systems. Future developments will include a better characterization of the uncertainty associated with the RUL estimate
and the validation of the EMA models in faulty conditions.
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