POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development and Performance Evaluation of Network Function Virtualization Services in 5G Multi-
Access Edge Computing

Original
Development and Performance Evaluation of Network Function Virtualization Services in 5G Multi-Access Edge
Computing / Avino, Giuseppe. - (2021 Mar 17), pp. 1-120.

Availability:
This version is available at: 11583/2875737 since: 2021-03-23T09:45:59Z7

Publisher:
Politecnico di Torino

Published
DOI:

Terms of use:
Altro tipo di accesso

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

16 July 2022

ScuDo

Scuola di Dottorato - Doctoral School
WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering
(331 cycle)

Development and Performance
Evaluation of Network Function
Virtualization Services in 5G
Multi-Access Edge Computing

Giuseppe Avino

* % % %k

Supervisors
Prof. Carla Fabiana Chiasserini, Supervisor
Prof. Claudio Ettore Casetti, Co-supervisor

Doctoral Examination Committee:

Prof. Antonio Cianfrani, Universita degli Studi di Roma “La Sapienza”, Rome
Prof. Antonio De La Oliva Delgado, Universidad Carlos III de Madrid, Madrid
Prof. Marcelo Dias de Amorim, Sorbonne Université, Paris

Prof. Fabio Dovis, Politecnico di Torino, Turin

Prof. Renato Lo Cigno, Universita degli Studi di Brescia, Brescia

Politecnico di Torino
March 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text may
be reproduced for non-commercial purposes, provided that credit is given to the origi-
nal author.

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Giuseppe Avino
Turin, March 2021

www.creativecommons.org

Summary

5G technology aims at enriching the telecommunication network ecosystem by im-
proving the existing mobile networks and by supporting the deployment and provi-
sion of services from several vertical industries. It is now commonly agreed that three
technologies are crucial for the success of 5G, i.e., Network Function Virtualization
(NFV), network slicing and Multi-access Edge Computing (MEC). Leveraging these
technologies, the 5G-Transformer (5GT) project has developed an open and flexible 5G
NFV/MEC-based transport and computing platform tailored to support the tight and
heterogeneous requirements of a wide range of vertical services.

In order to assess the effectiveness and reliability of the 5GT architecture, five ver-
tical domains have been selected to develop different use cases (UCs). In this thesis,
we focus on the automotive UC, in particular on the design and implementation of a
collision avoidance (CA) service (i.e., a road safety service) which provides support to
vehicles approaching urban crossroads. The service is based on the periodic and anony-
mous exchange of messages between vehicles and a CA algorithm hosted in the cellular
network infrastructure. By combining the information contained in these messages, the
algorithm can detect possible dangerous situations in advance and send unicast warn-
ings to the involved vehicles.

The core of our safety service is indeed the CA algorithm. We have designed a
trajectory-based algorithm able to detect collisions between any type of entity, i.e., not
only between vehicles, but also between cars and vulnerable road users (e.g., pedes-
trians). Leveraging this algorithm, we have built a first testbed of a CA service on an
OpenAirInterface architecture (an open-source software-based cellular network imple-
mentation) including MEC functionalities. The service is composed of two main VNFs
running in a virtualized environment on the MEC platform: the Cooperative Informa-
tion Manager (CIM) VNF and the CA VNF. The CIM is a database which decodes and
stores the messages sent by vehicles, while the CA VNF runs the trajectory-based algo-
rithm, by relying on the messages stored in the CIM, and generates the warning mes-
sages for the cars involved in potentially dangerous situations. We have then assessed
the effectiveness and reliability of our CA service through a hardware-in-the-loop sim-
ulation technique. We have obtained excellent results, as all the simulated collisions
were timely detected (i.e., the alert messages were received by the drivers sufficiently
in time to react before the collision), with a low number of false positives (i.e., alerts

III

referring to low or even no danger situations). We have hence shown how the latency
and reliability required by delay sensitive safety applications can be addressed by the
MEC paradigm and the cellular network.

Finally, once a reliable CA service was developed, we have assessed the perfor-
mances of the 5GT architecture. In particular, we have tested the automated deploy-
ment of our CA application and two important management functions that are provided
at the service runtime, i.e., arbitration and scaling. These two functionalities enable the
fulfillment of the requirements during the whole lifecycle of services. The architecture
developed in the 5GT project has proven to be suitable to meet the significantly differ-
ent requirements of vertical services, offering a platform on which they can be easily
deployed, guaranteeing, at the same time, their service level agreements.

v

Acknowledgements

Before presenting the work, I would like to thank everyone helped me during this Ph.
D. program. First, I would express my profound gratitude to my advisor, prof. Carla
Fabiana Chiasserini, and co-advisor, prof. Claudio Ettore Casetti, for their continuous
support along these three years. I thank them for their endless scientific knowledge, for
their incredible patience, and for every suggestion and teaching. Thanks for believing
in me and allowing me to grow professionally.

A huge thanks to my mom, Laura, and my dad, Angelo. Thanks for your enormous
effort and sacrifice to allow me to achieve this goal. You have been an inspiration.

I would like to thank all my awesome colleagues of this journey, Greta, Marco,
Francesco, Corrado and Kaldidan. Thanks for our coffee breaks and for the shared
meals together, thanks for making less painful certain moments on this journey. Es-
pecially thanks to Greta and Francesco, your suggestions were of great importance to
me in writing this manuscript. Thanks also to Christian and Francesco, two former
post-doctoral fellows of Politecnico di Torino, from whom I learned a great deal about
scientific research. Thanks also to all the people met in my crazy experience at IMDEA
during a pandemic. Special thank to prof. Joerg Widmer, who hosted me for 4 months
and still continues to support part of my work. Thanks also to the CRF team with which
I worked within the 5G-Transformer project, so thanks to Paolo, Giuliana and Marina.

I would like to thanks my second family, all the friends I grew up with, Dede, Blepty,
Nik, Mari, Michi, Agger, Picca and Anes. But also thanks to the “newer” friends, Greta,
Vetrus, Lucia and Francesca. Really, you have been fundamental to me. Thanks for each
night spent together (“da Gianca”), each beer, each dinner, and our awesome summer
vacations. Thanks to my new bro Robi and to her husband and my lifelong friend,
Bordo. Thanks because you have always been present and ready to help me at any time
during these three years.

Thanks to Daniela, Claudio, Silvia and Carmelo, four very important people in my
life, people I can always rely on.

Thanks also to all those people who I have not explicitly mentioned but who have
contributed, even in a small part, to this work and to my professional training.

Finally, thanks to Michela. You are saving me from the darkest period of my life.
Thanks for putting up with me even when no one else would, thanks for your enormous
support, for how much you believe in me and for your incredible and awesome disegnini.

Dedicato a Debby

alla persona che piu di tutte ha creduto in
me e che mi ha insegnato che ogni giorno é
un Buon Giorno.

Contents

List of Tables X1
List of Figures XI11
1 Introduction 1
1.1 Key enablers for 5G and next generation mobile networks 2
1.1.1 Network virtualization 2

1.1.2 NFV management and orchestration framework 3

1.1.3 Multi-access Edge Computing 4

1.2 The 5G-Transformer architecture 5
1.21 The 5GT Vertical Slicer 5

1.2.2 The 5GT Service Orchestrator 6

1.2.3 The 5GT Mobile Transport Platform 7

1.3 Road safety applications L. 7

1.4 Main contributions oL o oo 8

1.5 Outlineofthethesis, 13

2 Virtualization of Vertical Services through Docker Containers 15
2.1 Service virtualization 15
2.1.1 Hypervisor-based vs. container-based virtualization technologies 16

22 Docker 18
2.2.1 The Docker architecture 18

2.2.2 Key technologies for the Docker platform 19

223 Dockerfiles 20

224 Dockercommands L 21

2.25 TheDockeroverhead 22

2.3 Performance evaluation of the Docker overhead 23
23.1 Testbeddescription L. 24

2.3.2 Measuring the Docker overhead 25

2.3.3 Experimentalresults 25

24 Finalremarks o 30

VIII

3 Design, Implementation and Performance Analysis of a Collision Avoid-

ance Algorithm through Simulation 33
3.1 The automotiveusecases 34
3.1.1 Vehicle-to-Everything communication 35
3.1.2 The vehicle collision avoidance service 37
3.2 The collision avoidance algorithm 38
3.3 Simulation testbed and methodology 39
3.3.1 Simulationtools. o oo 40
3.3.2 Referencescenario 40
3.3.3 Systemdescription 43
3.3.4 Processing the simulationlogs. 44
3.4 Simulationresults o o 45
3.4.1 Sensitivity study on the collision thresholds 46
3.4.2 Performance evaluation of the CA algorithm 47
3.5 Finalremarks o 51
4 Implementation of a MEC-based Collision Avoidance Service in an Ex-
perimental Testbed 33
4.1 The MEC architecture 53
4.2 Testbed implementation. 55
42.1 A MEC platform basedon OAI 55
4.2.2 Vertical service components as MEC applications 57
4.23 The vehicle simulator 59
424 The automotive MEC service 61
4.2.5 Related work and MEC testbed implementations 66
43 Performance metrics 67
43.1 End-to-end delay and application processing times 67
432 CAservice performance 68
44 Performance evaluation Lo Lo 68
44.1 Reference scenario 68
442 End-to-end and processing delays 69
443 CAservice performance 73
4.5 Field tests withreal vehicles 75
46 Finalremarks o 76

5 Service Instantiation, Arbitration and Scaling in the 5G-Transformer Ar-

chitecture 77
5.1 Vertical service instantiation 77
5.1.1 CA service instantiation 78
5.2 The service arbitration function 79
5.2.1 The 5GT Arbitratormodel 80
5.2.2 Service arbitration demonstration 81

IX

5.3

5.4

The service scaling function
5.3.1 Criteria for the automated scalingout
5.3.2 Service scaling out demonstration.
Finalremarks

6 Conclusions
A Published and Submitted Content

Bibliography

89

93

99

List of Tables

2.1 KPIs of the main vertical use cases and applications [85]. 16
3.1 CA algorithm parameters. 48

XI

List of Figures

1.1
2.1
2.2
2.3
24

2.5
2.6

2.7

2.8

2.9

3.1
3.2
3.3

34
35
3.6
3.7

3.8

4.1
4.2
4.3
4.4
4.5

5G-Transformer concept. Lo
Architectures of hypervisor-based and container-based virtual services [72]. .
Docker architecture.o oL o
Diagram of the Docker processes tree.
Layout of our testbed: clients access the containerized servers through a Wi-Fi
AP. e e
Docker overhead for 8 clients and a varying number of servers..
Temporal evolution of the CPU consumption due to the application and to the
Docker overhead, in the case “8 clients - 4 servers”.
Docker overhead CPU consumption for a single server and different number
of clients. L
Percentage of CPU consumption due to the Docker overhead, for one server
and diverse number of clients. L o0
Megabytes of data processed by the two applications, in the specific case 1
server-4clients. L L L
V2X communication modes and entities.
Screenshot (from SUMO) of the urban area monitored by the CA algorithm.
Evolution of the average number of vehicles for 4, = 0.2 and 4, ranging be-
tweenOand 1.5. Lo
Collision avoidance system.
Timeline of the communication between the CA server and the vehicle.
Percentage of undetected or late-detected collisions.
Percentage of vehicle-with-vehicle and vehicle-with-pedestrian detected and
undetected collisions: MECvs. cloud.
Percentage of vehicle-with-vehicle and vehicle-with-pedestrian false positives:
MECvs.cloud. e
Standard MEC architecture [51].
Overview on the interaction among the testbed building blocks.
VehicleSimulator architecture. 000,
CAMReceiver architecture. Lo oo
Information Manager architecture. Lo

XII

19
22

24
27

27

28

29

30

36
41

4.6 Screenshot of the CIM Web Portal: example of the map used for selecting the

area monitored by the CAM manager. 64
4.7 CA VNF architecture. The CA Algorithm is the one presented in Chapter 3

and described in Algorithm 1. oo 0oL 65
4.8 Components of the end-to-end delay. 67

4.9 Screenshot (from SUMO) of the urban area monitored by the MEC CA service. 69
4.10 CDF of the network delays measured in the MEC and in the cloud experiments. 70

4.11 CDF of the processing time of the CAVNF. 71
4.12 CDF of the end-to-end delay as a function of the vehicle density. 72
4.13 Percentage of collisions detected and undected: MEC vs. cloud. 73
4.14 Analysis of the false positives: MECvs. cloud. 74
4.15 Vehicle equipment used in the field tests [6]. 75
5.1 Experimental setup used to instantiate the CA service on the 5GT platform. . 78
5.2 5GT-VS GUL list of services the automotive vertical can deploy. 79
53 5GT-SOGUL: VN ofthe CAservice. 80
5.4 Experimental setup used to evaluate the arbitration function of the 5GT platform. 81
5.5 5GT-VS GUL status of the services. 83
5.6 Processing time of the CA VNF at different CPUloads. 84

5.7 Grafana GUI: percentage of CPU consumption of the two CA VNF instances. . 86

XIII

Chapter 1

Introduction

In the last decades, the wireless communications industry has experienced an over-
whelming growth. Legacy 3G and 4G/LTE have enabled the expansion of mobile In-
ternet, opening the path to a wide variety of multimedia applications, such as mobile
video streaming and gaming, smart cities, and several others. This wide range of new
services led to an escalation in the number of users, thus in the total amount of mo-
bile data traffic. According to a study by the International Telecommunication Union
(ITU), the global mobile data traffic will increase from the current 0.057 zettabyte (ZB)
per month to 5 ZB, in 2030 [97]. The great popularity of mobile Internet and the con-
tinuous rise of massively data-intensive UCs and applications, as mentioned in the ITU
study, brought to the development of the fifth generation of mobile networks (5G), and
they will be the driving force for the future ones.

With the development of the 5G technologies, an increasing number of vertical in-
dustries such as automotive, robotics, eHealth, is interested in developing state-of-the-
art services, which demand stringent requirements in terms of latency, reliability, data
rate, coverage, power consumption. In order to meet these requirements and the mas-
sive device connectivity, 5G systems must be efficient in terms of energy consumption
and resource management, and they should provide a high scalability and versatility,
with the latter constituting one of the main challenges undertaken by industry and re-
search when developing the technologies beneath 5G. These challenges can be tackled
by implementing the 5G network functions (NFs) as software components, by relying
the Network Function Virtualization (NFV) paradigm [68]. In this context, hardware-
based network functions become software-based, implemented as virtual network func-
tions (VNFs) in general purpose telco-cloud instead of specialized hardware. The vir-
tualization of NFs makes it possible to cope with the continuously increasing traffic
demands because it enables the creation of elastic on-demand networks along with
their lifecycle management, ensuring the scalability and versatility required by the 5G
networks.

Along with NFV, it is fundamental to mention two other pillar technologies in 5G

Introduction

networks: Multi-access Edge Computing (MEC) [54] and network slicing [9]. MEC pro-
vides IT services and cloud-computing capabilities at the edge of the mobile network,
within the Radio Access Network (RAN). Network slicing, on the other hand, enables
the subdivision of the infrastructure in slices, each one hosting a particular service.
Each network slice can then be configured in order to meet the specific requirements
of the service will be deployed there. Given its flexibility, the 5G community considers
network slicing one of the most valid and cost-efficient solutions to share the mobile
network infrastructure among 5G services.

NFV, MEC and network slicing are deemed pivotal technologies not only for 5G
but also for the next generations of mobile networks. The future sixth generation will
be enhanced by many new driving features, but there is a broad consensus among re-
searchers that it will continue to benefit from many 5G technologies.

1.1 Key enablers for 5G and next generation mobile
networks

5G is envisioned to expand and improve the existing mobile networks by optimizing
the throughput, latency, energy consumption, reliability and coverage. The high per-
formances of the mobile networks allow vertical industries to deploy a wide range of
services, including the ones with stringent requirements (e.g., delay sensitive services).
As described above, there is a broad consensus in considering some technologies crucial
for the accomplishment of 5G and next generation mobile networks. In this section, a
brief overview of the main key enablers is presented.

1.1.1 Network virtualization

One of the possible approaches to adapt the network architecture to the multi-provider
nature of the Internet and to its high number of users is network virtualization. The mul-
tiplicity of 5G services and their extremely different performance requirements cannot
be supported in an efficient way by relying on the current architecture. A candidate
technology, based on network virtualization and emerged to address this challenge, is
network slicing. Network slicing envisions to divide the infrastructure in virtual log-
ical subnetworks called network slices. Each network slice represents an isolated and
independent virtualized end-to-end network, tailored to meet the performance require-
ments of the supplied services.

In this new vision, services are deployed on network slices as set of individual soft-
warized network functions (i.e., VNFs). The logical connectivity of VNFs belonging to
the same service, as well as their allocation onto the infrastructure, is described by the
so-called VNF forwarding graph (VNFFG). The decomposition of services in function
blocks enables the sharing of virtualized functions among different slices, and it more
generally ensures:

1.1 - Key enablers for 5G and next generation mobile networks

Optimization of the resource allocation, both in terms of energy and costs;

« Migration of VNFs from one hardware to another;

Scalability of VNFs to let the service adapt to network conditions;

High reliability in performance guarantees of VNFs operations, including
maximum latency and packet loss;

« Coexistence of VNFs with non-virtualized functions.

This new and flexible virtual architecture turns out to be essential in modern mobile
networks, strongly characterized by the provision of heterogeneous services with di-
verse stringent requirements. For this reason, despite the numerous challenges posed,
network slicing is considered a pillar for modern mobile networks.

1.1.2 NFV management and orchestration framework

The NFV paradigm enables the decomposition between the implementation of network
functions and the underlying hardware. This concept is, instead, completely different
from the approach used in legacy networks, where the implementations of NFs is tightly
coupled with the infrastructure. According to the European Telecommunications Stan-
dards Institute (ETSI), NFV adds new capabilities to communications networks and re-
quires a novel set of management and orchestration functions to be added to the current
model of operations, administration, maintenance and provisioning [34]. These new
functions aim to coordinate the NFs and the infrastructure they run on. The solution
proposed by ETSI is the so-called NFV Management and Orchestration (NFV-MANO)
framework, an entity in charge of managing the infrastructure and allocating the re-
sources needed by the VNFs to run each service.

The MANO platform represents the key enabler for the service and infrastructure
virtualization, as it manages the instantiation and termination of VNFs by, respectively,
allocating and releasing the physical resources. Besides the resource allocation, it is also
responsible for all the operations that are part of the VNFs’ lifecycle, such as the VNF
scale and VNF update. The former allows a VNF to increase or reduce their computation
and storage capabilities at runtime, while the latter refers to the possibility of changing
the VNF configuration.

As the reader can realize, the concept of service manager and orchestrator is cen-
tral to NFV. In the last years, numerous orchestration platforms have been proposed,
such as OpenSource MANO (OSM) [77], Cloudify [29] and Open Network Automation
Platform (ONAP). In Section 1.2.2 the 5G-Transformer service orchestrator platform
is presented. This orchestrator offers additional features with respect the previously

Introduction

mentioned platforms, including the support for network slicing, MEC deployment and
service federation’.

1.1.3 Multi-access Edge Computing

MEC paradigm envisions the instantiation and execution of services at the edge of the
network, in close proximity to mobile subscribers. The main features of a MEC envi-
ronment are:

« Low latency. Ultra-low delays are ensured by the service location, within the
RAN, very close to the end users.

+ Reduction of core traffic. Running applications at the RAN level means han-
dling traffic at the network edge, thus reducing the load at the core network.

+ Network information. MEC applications can exploit real-time radio and net-
work information to offer context-related services.

» Location information Users’ positions and mobility patterns can be collected
by base stations at the edge of the network and leveraged on by MEC applications.

« Proximity. MEC servers are physically close to the final users. Their proximity
to user equipments (UEs) make them particularly proficient in gathering analytics
and information for big data.

Generally, such features enable an increased quality of experience of mobile subscribers
and ensure efficient network and service operations based on real-time radio, network,
and location information.

Multi-access Edge Computing needs the support of various key technologies. The
deployment of high volume servers at each mobile station is an absolute necessity to
develop a MEC architecture, as well as virtualization. Indeed, each MEC application
is virtualized and runs on top of a virtualization infrastructure located at the network
edge. The virtualization infrastructure, along with the MEC platform and MEC appli-
cations, is part of the MEC host, the core of the MEC paradigm. Further details about
the MEC architecture, its components and interfaces will be provided in Chapter 4.

Multi-access Edge computing moves computation and storage capacity from the
core to the points of access of the network. In spite of various challenges that MEC
deployments pose, such as resource management, network integration, security and
privacy, the offered technological opportunities make this paradigm essential for the
present and future mobile networks ecosystem.

!'Federation: the possibility to deploy a network service in the administrative domain owned by an-
other operator.

1.2 — The 5G-Transformer architecture

1.2 The 5G-Transformer architecture

Most of the research activity described in this manuscript is related to the European
Project 5G-Transformer (5GT) [4]. Politecnico di Torino was involved in this project
along with many relevant European universities, research centers and companies. The
aim of the 5GT project is to deploy an open and flexible 5G transport and computing
platform tailored to support diverse service requirements of various vertical industries
[66]. The architecture is based on the ETSI MANO platform and presents innovative
functionalities. The purpose of the architecture is twofold: firstly, to enable the deploy-
ment of vertical services within network slices meeting their performance requirements
and, secondly, to manage network slices throughout a federated virtualized infrastruc-
ture.

In the context of the 5GT project, a few vertical industries, i.e., automotive, eHealth,
media and entertainment, and e-Industry, designed and implemented services with dif-
ferent performance requirements. When instantiating a vertical service, the 5GT plat-
form creates an end-to-end 5GT slice, i.e., a dedicated logical infrastructure on which
vertical services are deployed meeting the specific requirements of the customer. 5GT
slices are therefore composed of a set of VNFs and/or virtual applications (VAs) with
the resources needed to the service. Figure 1.1 shows the 5GT concept and highlights
the three main components of the architecture:

« Vertical Slicer (5GT-VS),
« Service Orchestrator (5GT-SO),
« Mobile Transport Platform (5GT-MTP).

The 5GT architecture is described more in details in the following subsections.

1.2.1 The 5GT Vertical Slicer

The 5GT-VS is a new functional block introduced in the 5GT architecture, representing
the common entry point for verticals. It is part of the operating and business support
system (OSS/BSS) of the administrative domain of a provider.

Vertical users interact with the VS whenever they want to deploy a new service.
To achieve this goal, verticals should prepare specific templates or blueprints contain-
ing high-level details of the required service. The blueprints are designed in a way
which is easily understandable by verticals, and they may be integrated with essential
services provided by the platform. The resulting descriptor is called vertical service
descriptor (VSD) and is mapped by the VS onto a network service descriptor (NSD).
The NSD is hence a service graph composed of VNFs chains and other crucial instan-
tiation parameters (e.g., deployment flavor) used by the SO to instantiate the service.

Introduction

=l @ @i Atss

Tenant A Tenant B Tenant C Tenant D
M(V)NO Vertical: eHealth Vertical: Automotive Vertical: Media & Entertainment

~
J

(5GT - Vertical Slicer)
Defining vertical services (VSB->VSD) le—>
Mapping vertical's requirements to network slice
N\ requirements (NSD) /

5GT - Service Orchestrator
Network service orchestration
Network service federation

wioje|d
Buliojiuo - 195

p
5GT — Mobile Transport Platform

Allocation of resources over the infrastructure

* Resource abstractions
- J \

.

Figure 1.1: 5G-Transformer concept.

Another important function performed by the 5GT-VS is service arbitration. An arbitra-
tion mechanism enables the handling of services of a certain vertical according to their
service level agreement (SLA) requirements, service priorities and available resources.

The 5GT-VS enables vertical industries to easily deploy services such as VNFs chains,
thanks to the blueprints mentioned earlier, which, being simple interconnection mod-
els, hide all the low-level slice details from the customer. Being the complexity hidden
at the VS level, verticals can deploy services in short time-scale with an easy-to-use
mechanism.

1.2.2 The 5GT Service Orchestrator

The 5GT-SO is the core of the system, being the entity that provides end-to-end orches-
tration of services across multiple administrative domains. The need of a management
and orchestration platform in NFV was widely introduced in the previous section. Here,
we describe in detail how the 5GT orchestrator works and which functionalities it can
provide.

The 5GT-SO interacts with the 5GT-MTP and with the service orchestrators of the
other administrative domains. It manages the allocation of virtual resources to network
slices. Upon the reception of a request from the VS, the SO maps the received NSD to an
MTP network slice and it decides whether to create a new slice or to rely on an existing
one, by leveraging on resource sharing. Requested can come both from the 5GT-VS and
from the mobile (virtual) network operator (M(V)NO).

When instantiating a service, if the 5GT-SO detects that the MTP does not have
enough resources to ensure the desired SLA, it contacts other SOs to compose service

6

1.3 — Road safety applications

federation. In this case, the SO will interact with the neighboring SOs and the service
will be orchestrated over different administrative domains. Federation is completely
hidden to verticals.

Finally, the 5GT-SO also implements a flexible monitoring platform (5GT-MON) to
efficiently check whether the service requirements are met. The 5GT-MON works on
multiple domains to collect data from various MTPs and to support service management
at runtime. The monitoring data acquired by the platform is available to the verticals
through a set of dedicated APIs.

1.2.3 The 5GT Mobile Transport Platform

The 5GT-MTP is the actual infrastructure over which VNFs and physical network func-
tions (PNFs) are deployed. The MTP orchestrates the resources, handles the instantia-
tion of VNFs, and manages the physical mobile transport network and the computing
and storage infrastructure. Furthermore, it provides a MEC platform for the deployment
of sensitive low-latency services and support for network slicing. The MTP interacts
with the SO and exposes to it an abstract view of the available computation and storage
resources. Thanks to this feature, the SO can select the proper resources to allocate ver-
tical slices. As mentioned above, if the resources available on the MTP are not enough,
the service is orchestrated in federation across multiple administrative domains.

Overall, the 5GT-MTP aims at providing a complete and scalable MTP integrated
with MEC services and supporting the dynamic placement and migration of VNFs. Ad-
ditionally, the platform introduces innovative mechanisms to effectively share VNFs
among different services.

1.3 Road safety applications

As previously mentioned, the 5GT consortium includes verticals from different indus-
tries, such as automotive and eHealth. In order to accomplish the strict constraints and
satisfy the high demand of their applications, each one of these industry partners is un-
dergoing key technological transformations and changes, effectively taking advantage
of 5G networks. As a result, they were deemed suitable for the purposes of the project
and selected for demonstration.

Within this project, the efforts of Politecnico di Torino mainly focused on the au-
tomotive use case (UC), in particular on the design and development of a road safety
application. The focus of innovation of the automotive industries is shifting towards
the connected and fully automated (i.e., autonomous) vehicle. A vehicle able to commu-
nicate with the surrounding environment (including roadside infrastructure elements,
vulnerable road users, other vehicles) can help the driver or the vehicle itself making
more informed decisions, based on exchanged local views and information from nearby
entities, instead of rely only on local awareness based on on-board sensors.

Introduction

As a result, to be connected is an essential requirement for an autonomous vehicle
and to drastically reduce fatalities on the road and improve traffic flow. To enable such
an idea, many road safety applications have been designed, such as cooperative sens-
ing, collision avoidance, or high-density platooning. These types of safety applications
feature hard-to-meet communication requirements, well beyond the legacy 4G/LTE net-
works or IEEE 802.11 standard. An ultra-low latency below 10 ms, ultra-high reliability
close 100% and a high-data rate in the order of Gbps, are the main features indicating
the need for 5G networks [71].

In this manuscript we focus and present the automotive UC within the 5GT project,
i.e., a vehicle collision avoidance application which offers support to vehicles approach-
ing blind crossroads.

1.4 Main contributions

The main purpose of this thesis is the design, development and performance evaluation
of a road safety service suitable for the 5GT architecture. Firstly, we investigated on
container-based virtualization technologies since services instantiated on the 5GT plat-
form are composed of VNFs running as software components. Then, we designed, im-
plemented and assessed the performances of the road safety service, both in simulation
and within the 5GT architecture. Finally, we validated a couple of key functionalities of
the 5GT platform for the management of vertical services (focusing on the automotive
domain). Further details about the main contributions and the topics covered in this
work are presented below.

Suitability of the Docker framework for a 5G architecture

In the 5GT architecture, both vertical and network services can be instantiated as vir-
tual functions (VFs). Isolation, service scalability and live migration are just a few of
the main advantages brought by virtualization. The main existing virtualization tech-
nologies are either hypervisor-based or container-based. Both approaches require addi-
tional resources to be available, and their overheads may negatively impact the resource
utilization as well as the quality of service.

For many years virtual machines (VMs) have been the most widespread virtualiza-
tion technology. Recently, container-based solutions have become appealing as a valid
alternative to VMs. This great and raising popularity mainly comes from the Docker
framework [31]. This platform extended the Linux container technology in various
ways (for instance, by introducing a user-friendly interface), providing the users with
a complete solution for the management of containers’ lifecycle. Docker claims to be
a lightweight containerization solution and a perfect tool for enabling an easy and fast
deployment of applications. This led us to carry on a study on the suitability of Docker
in a 5G architecture by quantifying the CPU consumed by Docker when running two
different containerized services: multiplayer gaming and video streaming. We selected

8

1.4 — Main contributions

these two applications because they clearly represent service models with opposite re-
quirements in terms of CPU load and managed data. Throughout our experiments, we
validated the Docker framework as a lightweight virtualization tool and we studied the
overhead resource consumption trend when varying both the number of users consum-
ing the services and the number of virtualized servers.

Low overheads are pivotal in the 5G ecosystem where plenty of services are virtual-
ized. In this context, Docker exhibited excellent performances, proving to be a valid vir-
tualization alternative to VMs. However, due to some challenges and issues which arose
in the interaction between Docker containers and the 5GT architecture, we preferred to
opt for the hypervisor-based solution, virtualizing network and vertical services with
VMs.

Within the container virtualization area, our contributions can be found in:

« Giuseppe Avino, Marco Malinverno, Francesco Malandrino, Claudio Casetti, Carla
Fabiana Chiasserini. “Characterizing Docker Overhead in Mobile Edge Computing
Scenarios”. Published in Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems. p. 30-35, 21-25 August 2017, Los Angeles, CA,
USA. https://doi.org/lO.l145/3094405.3094411

« Francesco Malandrino, Carla Fabiana Chiasserini, Giuseppe Avino, Marco Malin-
verno, Scott Kirkpatrick. “From Megabits to CPU Ticks: Enriching a Demand Trace
in the Age of MEC”. Published in IEEE Transactions on Big Data (2018). https:
// ieeexplore.ieee.org/ document/ 8447497

Design and evaluation of a collision avoidance algorithm

5G networks aim to improve the existing mobile networks and support several vertical
services, including the ones with strict performance requirements. The automotive
industry is one of the verticals acting as a driving force to construct this new ecosystem.
With 5G networks, automotive industries will be able to design and deploy road safety
applications, which requirements (i.e., ultra-high reliability and ultra-low latency) are
not ensured by legacy 4G/LTE networks.

The automotive industry is also one of the main actors in the 5GT system. The au-
tomotive service use case in the 5GT project is a collision avoidance (CA) service, which
provides support to vehicles approaching urban crossroads, especially in non-line-of-
sight (NLOS) conditions, which are relatively common in urban areas. The service is
based on the periodic [92] and anonymous [63] transmission of Cooperative Awareness
Messages (CAMs) by vehicles. Each CAM contains information of the sender, includ-
ing its position, direction, speed and acceleration. CAMs are sent to the CA service,
which combines the information contained in the messages from different vehicles and
determines if any couple of cars is on a collision course.

The first step to implement the CA service is the development of an efficient collision
avoidance algorithm. We designed a trajectory-based algorithm that can be applied to

9

https://doi.org/10.1145/3094405.3094411
https://ieeexplore.ieee.org/document/8447497
https://ieeexplore.ieee.org/document/8447497

Introduction

any kind of possibly colliding entity (i.e., not only to vehicle-with-vehicle collisions but,
for instance, also to vehicle-with-pedestrian collisions). The algorithm takes as input
position, direction, speed and acceleration of two road users and determines (i) the time
instant at which the distance between them will be the minimum one and (ii) such a
minimum distance. If these values are lower than a threshold, the system generates and
forwards a warning message to the two vehicles. The algorithm was extensively tested
in a simulation environment, by relying on the SimuLTE-Veins simulator [90]. The
simulation-based results highlighted the reliability of our algorithm, which was able
to detect in advance all the simulated collisions, and, more importantly, to generate
sufficiently on time the warning messages, leaving to the drivers a large enough time
margin to react.

Part of the CA algorithm development was carried out with TIM, within a research
project for the study of MEC-based services for road users.

In this field, our research activity can be found in:

« Giuseppe Avino, Marco Malinverno, Francesco Malandrino, Claudio Casetti, Carla
Fabiana Chiasserini, Giovanni Nardini, Salvatore Scarpina. “Poster: A Simulation-
based Testbed for Vehicular Collision Detection”. Published in the IEEE Vehicular
Networking Conference (VNC), 27-29 November 2017, Turin, Italy. https://ieeexplore.
ieee.org/document/8275655

« Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Salvatore Scarpina . “Performance Analysis of C-V2I-based
Automotive Collision Avoidance”. Published in the 19th IEEE International Sympo-
sium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM 2018),
12-15 June 2018, Chania, Greece. https://ieeexplore.ieee.org/abstract/document/
8449772

« Giuseppe Avino, Marco Malinverno, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Marco Rapelli, Giuliana Zennaro. “Support of Safety Ser-
vices through Vehicular Communications: The Intersection Collision Avoidance Use
Case”. Published in the IEEE International Conference of Electrical and Electronic
Technologies for Automotive, p. 1-6, 9-11 July 2018, Milan, Italy. https://ieeexplore.
ieee.org/abstract/document/8493191

« Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Salvatore Scarpina. “MEC-based Collision Avoidance for Ve-
hicles and Vulnerable Users™. Published in IEEE Vehicular Technology Magazine,
vol. 15, no. 1, pp. 27-35, March 2020. https://doi.org/10.1109/MVT.2019.2953770

10

https://ieeexplore.ieee.org/document/8275655
https://ieeexplore.ieee.org/document/8275655
https://ieeexplore.ieee.org/abstract/document/8449772
https://ieeexplore.ieee.org/abstract/document/8449772
https://ieeexplore.ieee.org/abstract/document/8493191
https://ieeexplore.ieee.org/abstract/document/8493191
https://doi.org/10.1109/MVT.2019.2953770

1.4 — Main contributions

Design, implementation, and performance evaluation of a road safety service
through a testbed implementation

Simulations were only the first step for the design of the 5G-Transformer road safety
service. Once the reliability of the CA algorithm had been verified through simulations,
we could start the design and implementation of a full-fledged testbed. Our testbed has
been built by leveraging on the popular OpenAirInterface (OAI) project [78] (an open
source implementation of a full mobile network), and by implementing a flexible MEC
architecture to support of ultra-low latency services.

The CA application, which was designed together with Centro Ricerche Fiat, a re-
search branch of Fiat Chrysler Automobiles (CRF-FCA), is a service composed of two
main VNFs: the Cooperative Information Manager (CIM) and the CA algorithm. The
two VNFs run on two different VMs on top of the MEC platform. The CIM is a database
in charge of receiving and storing the CAM messages coming from the vehicles. The
CA algorithm, instead, consumes the information contained in the CAMs to detect in
advance collisions between vehicles (it leverages on the algorithm presented earlier).
All the vehicles are simulated by a software, which generates and transmits the same
CAMs that real vehicles would send. The service instantiation on our MEC platform
(which represents the 5GT-MTP) is handled by the 5GT architecture. In order to make
this operation possible, we prepared a blueprint template for the CA service, which, as
described in Section 1.2, is used by the 5GT-VS during the service on-boarding.

The 5GT architecture correctly instantiated the CA service on a 5GT slice of the
MEC platform and the experimental measurements obtained through our testbed re-
vealed the excellent performance of our MEC-based road safety service. We evaluated
the reliability of the application by considering the number of collisions correctly and
timely detected and the number of generated false positives, i.e., warning messages re-
ferring to low or even no danger. The service was able to detect every collision occurred
in the experiments and, at the same time, to generate a low number of false positives.
This second aspect is also fundamental to establish user confidence in the reliability of
alerts received through the system.

Finally, to prove the reliability of the CA service also in real-word scenarios, we
made several field tests with actual cars. The trials were conducted in a test circuit with
two vehicles and expert drivers. The two cars were equipped with Uu interfaces for
the communication with our testbed, and with an automatic braking system. The two
drivers were instructed to simultaneously approach a crossroad, creating a collision risk
situation. The CA service, combining the information received in the CAMs transmit-
ted by the vehicles, could detect in advance all the actual collisions and generate the
corresponding warning messages. The outcome of these test sessions was excellent, as
all the collisions were avoided thanks to the timely reception of the warning messages,
which properly triggered the automatic braking system.

The testbed and service implementation, as well as the service performance evalu-
tation, were broadly reported in:

11

Introduction

+ Giuseppe Avino, Paolo Bande, Pantelis A. Frangoudis, Christian Vitale, Claudio Casetti,
Carla Fabiana Chiasserini, Kalkidan Gebru, Adlen Ksentini, Giuliana Zennaro. “A
MEC-based Extended Virtual Sensing for Automotive Services”. Published in IEEE
Transactions on Network and Service Management, pp.1450-1463, July 2019. https:
//ieeexplore.ieee.org/abstract/document/8781832

Techniques for effective instantiation and adaptation of vertical services: de-
sign and implementation of service arbitration and scaling

After having designed, implemented and assessed the performance of an automotive
service, we focused on the validation of some key 5GT platform functionalities.

In general, the 5GT architecture facilitates the instantiation of vertical services,
manages the lifecycle of the VFs composing them, and guarantees the fulfillment of
the service requirements. As far as this last aspect is concerned, two features of the
platform are of great importance: the service arbitration and the service scaling.

As described in Section 1.2.1, the arbitration function is performed by the 5GT-
VS component and enables the handling of different service requests coming from a
certain vertical while satisfying the agreed SLAs between the service provider (SP) and
the vertical itself. We validated this functionality, as offered by the 5GT architecture,
by considering two relevant automotive services: a high priority service, i.e., the CA
service, and a low priority one, i.e., a video streaming. The validation is divided into
three phases. First, the video streaming service is instantiated on the 5GT platform.
Then, once the video server is up and running, the request for the instantiation of the
CA service is performed and the arbitrator module checks the available resource budget
for this vertical. However, it realizes that such budget is not sufficient to run both
services in parallel. This situation may occur since the available resources for each
vertical are limited and agreed with the infrastructure provider. In the third phase, the
arbitrator module decides to terminate the running video streaming service since it has
a lower priority with respect the safety service. The termination of the this service
frees up part of the resources, which can then be used to instantiate the CA service.
This arbitration mechanism allows the 5GT platform to effectively manage services
belonging to a same vertical user. As shown in this simple case study, according to the
priority of each service, the arbitration module chooses which application can run and
which should, instead, be terminated when the amount of resources are not sufficient
for running more services in parallel.

Another important functionality of the 5GT architecture, which we investigated,
is the service scaling. The scaling function is fundamental in order to guarantee the
service quality requirements during the whole service lifecycle, under any network
operational conditions. One of the main requirements of the CA service is low latency.
Indeed, high delays lead to a lowered efficiency of this application, as the generated
warning messages would be received late or even after a collision. For this reason, the
CA service is instantiated in the MEC platform, even though this may not be sufficient

12

https://ieeexplore.ieee.org/abstract/document/8781832
https://ieeexplore.ieee.org/abstract/document/8781832

1.5 — Outline of the thesis

to ensure the desired latency requirements. As a matter of fact, the overall service delay
is composed by both the network latency and the processing time of the service VNFs.
The latter is extremely sensible to the service workload; as the higher is the number of
users, the higher is the VNFs’ processing time. In order to tackle this challenge, the 5GT
platform is able, by monitoring the CPU consumed by a service, to autonomously create
new instances of the VNFs composing it (scale out operation), as well as terminate them
(scale in operation) once the network is no more in a peak situation.

In order assess the performance of the service scaling provided by the 5GT archi-
tecture, in this work we analyzed together the CPU consumed by the CA service and
the number of monitored vehicles.

Arbitration and scaling are pivotal functionalities for 5G and the future generation
of mobile networks. They ensure to vertical industries both the provision of the high
priority services, as well as the their adaptation to any network condition. Our main
contributions in the investigation of these topics are included in:

« Jorge Baranda, Giuseppe Avino, Josep Mangues-Bafalluy, Luca Vettori, Ricardo Martinez,

Carla Fabiana Chiasserini, Claudio Casetti, Paolo Bande, Marina Giordanino, Marco
Zanzola. "Automated deployment and scaling of automotive safety services in 5G-
Transformer”. Published in the IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), p. 1-2, 12-14 November 2019, Dallas,
TX, USA. https://ieeexplore.ieee.org/abstract/document/9039990

« Jorge Baranda, Josep Mangues-Bafalluy, Luca Vettori, Ricardo Martinez, Giuseppe
Avino, Carla Fabiana Chiasserini, Corrado Puligheddu, Claudio Casetti, Juan Brenes,
Giada Landi, Koteswararao Kondepu, Francesco Paolucci, Silvia Fichera, Luca Val-
carenghi. “Demo Abstract: Arbitrating Network Services in 5G Networks for Auto-
motive Vertical Industry”. Published in the IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WORKSHOPS), p 1318-1319, 6-9 July 2020, Toronto,
ON, Canada. https://ieeexplore.ieee.org/document/9162679

« Giada Landi, Pietro Giardina, Marco Capitani, Koteswararao Kondepu, Luca Val-
carenghi, Giuseppe Avino. “Demo: provisioning and automated scaling of network
slices for virtual Content Delivery Networks in 5G infrastructures”. Published in
Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, p. 397-398, 2-5 July 2019, Catania, Italy. https://dl.acm.
org/doi/abs/10.1145/3323679.3326613

1.5 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter 2 focuses on virtualization. It provides a comparison between the hypervisor-

based and the container-based solution, and an overview on the most popular container-
ization technology, i.e., the Docker framework. The chapter ends with the presentation

13

https://ieeexplore.ieee.org/abstract/document/9039990
https://ieeexplore.ieee.org/document/9162679
https://dl.acm.org/doi/abs/10.1145/3323679.3326613
https://dl.acm.org/doi/abs/10.1145/3323679.3326613

Introduction

of some experimental results.

Chapter 3 introduces the automotive vertical industry and our collision avoidance
service. It hence presents the core of the service, i.e., the CA algorithm that we designed,
as well as the performance evaluation through simulations. The performance of the
service was assessed both when it is deployed in a MEC fashion and in the cloud, and
both for the detection of vehicle-with-vehicle and vehicle-with-pedestrian collisions.
Moreover, this chapter also includes a study in which the service protection is extended
also to vulnerable users.

Chapter 4 firstly presents the implementation of a testbed built on the popular
OpenAirInterface framework. Then, it describes how the road safety service is designed
and implemented in the testbed, and it ends with the service performance evaluation.

Chapter 5 focuses on the automated deployment of services on the 5GT platform,
and on two key network functionalities: the scaling and the arbitration. The chapter
continues with a more detailed overview of these functions and concludes by presenting
the benefits brought to our safety service.

Chapter 6 aims at summarizing the work and the contributions presented in this
manuscript.

14

Chapter 2

Virtualization of Vertical Services
through Docker Containers

The 5GT architecture leverages the network slicing, NFV and MEC paradigms, which
are considered the pillar technologies for the present and future mobile networks. In
this context, both vertical and network services can be virtualized, running as software
components. Since our goal is the design and implementation of a road safety applica-
tion within the 5GT architecture, our first priority was hence to find the best virtual-
ization solution that met our needs. Currently, the main virtualization technologies are
either hypervisor-based, an established and extremely reliable solution, or container-
based, a relatively new approach compared to the previous one, promising to noticeable
reduce the overhead of virualization.

In this chapter, we first discuss the need of a new mobile network architecture able
to meet the different and heterogeneous vertical service requirements, and highlight
the differences between the two virtualization approaches. Then we focus on Docker,
the most popular platform for the creation and management of containers. Finally,
we present our experimental results on the Docker overhead CPU consumption when
virtualizing two different services: multiplayer gaming and video streaming.

2.1 Service virtualization

With 5G networks, telecom industry is changing its service delivery model, moving
from a “horizontal” model in which services are independent of the consumers, to a
“vertical” model where services are tailored to each specific industry. With this new
approach, the relationship between MNOs and vertical industries is undergoing a com-
plete revolution. Verticals can now interact with the infrastructure provider to instan-
tiate dynamic services and enjoy the ultra-low latency and high throughput offered by
the cellular network. The transition to this novel service delivery model is expected
to have a great impact on the whole business of mobile networks. Innovative services,

15

Virtualization of Vertical Services through Docker Containers

offered by industries that were not covered by 4G, can now be provided thanks to the
support of several new use cases. This enriched telecom ecosystem includes a wide
range of verticals which can supply various types of services with very different net-
work requirements. The key performance indicators (KPIs) resulting from the main
vertical use cases and applications are listed in Table 2.1.

Table 2.1: KPIs of the main vertical use cases and applications [85].

Metric Most demanding value Some relevant verticals
Latency <5ms Media and entertainment
Reliability 99.999% Manufacturing, health
Density 1M terminals/km2 Energy and utilities
Mobility 500 Km/h Automotive
Slice deployment time < 90 min All
Data rate per user > 50 Mb/s Media and entertainment
Location accuracy <lm Public safety

The design and development of a versatile network able to support services with
extremely different requirements has thus become a primary need. Network slicing,
NFV and MEC, which leverage on the network virtualization paradigm, are considered
the major key enablers to meet these diverse service requirements. Network slicing
is essential to deploy isolated slices for different services and ensure low latency, high
data rates, and high reliability. NFV enables the virtualization of network functions that
will be run on network slices, whereas the deployment of services at the edge of the
network (MEC paradigm) ensures ultra-low latency to services.

With this aim, the 5GT project has proposed a flexible 5G transport and computing
platform tailored to support the vertical services requirements. In the 5GT architecture,
which leverages the three technologies mentioned above, both vertical and network ser-
vices are virtualized, becoming VNFs, and running as software components on network
slices. Finding the best solution to virtualize services within the 5GT architecture has
been thus one of our priorities. Consequently, in the rest of this section, we provide
a brief overview of the two aforementioned virtualization solutions and describe their
main differences.

2.1.1 Hypervisor-based vs. container-based virtualization tech-
nologies

The de facto solution to virtualize environments was, for decades, the hypervisor-based

technology. In this virtualization solution, the hypervisor manages the physical re-

sources of the machine and enables the creation of VMs in isolated slices of the hard-
ware. Two types of hypervisors can be mentioned: the bare-metal hypervisors, that are

16

2.1 — Service virtualization

installed and run directly on the computing hardware, and the hosted hypervisors, which
require a host operating system (OS). Examples of the first type of hypervisors are Xen
[110] and VMware’s ESX [106], whereas VirtualBox [103] and VMware Server [105] are
examples of the second type. To better highlight the differences between containers and
VMs, and because of the major popularity of VirtualBox and VMware, in this analysis
we will focus on the hosted hypervisors. Such a type of hypervisors provides access to
physical resources only, requiring to each VM a full implementation of a guest OS. On
the contrary, the container-based solutions virtualize at OS level and share resources
with the OS of the physical machine.

VM VM VM Container Container Container
) SEEER)
Bins/Lib Bins/Lib Bins/Lib Bins/Lib L .
A B B A Binaries/Llibraries B

Guest OS Guest OS Guest OS

Container Engine Container Engine
Operating System Operating System
Hardware Hardware
Host Machine Host Machine
(a) Services virtualized in VMs. (b) Services virtualized in containers.

Figure 2.1: Architectures of hypervisor-based and container-based virtual services [72].

Figure 2.1 shows three applications running in separate VMs and containers. In
Figure 2.1a each application runs in a VM, which is created and managed by the hyper-
visor. The hypervisor also controls the access to the underlying OS and hardware, and
interprets system calls. As mentioned above, each VM requires a full copy of the OS. In
contrast, Figure 2.1b shows the same three applications virtualized in a containerized
system. The container engine is responsible for the creation and termination of the
containers, similarly to the hypervisor on VMs. However, unlike VMs, the kernel of
the machine is shared with the running containers [72]. This brings two main bene-
fits. First, a much more efficient resource utilization because there is no need to create
a whole OS, and applications using same libraries can share this data avoiding redun-
dant copies. Second, containers appear lightweight, therefore fast to create and destroy
since there is no need to boot and shutdown an OS. Starting and stopping a container
is a matter of few seconds, a much shorter time with respect the one required to do the

17

Virtualization of Vertical Services through Docker Containers

same with VMs.

Although several studies have investigated on the performance advantages of con-
tainers, such as [107, 109], only with the emergence of Docker the container-based vir-
tualization solutions have gained popularity. Docker is an open source framework that
facilitates the management of containers. It has quickly become the most widespread
container solution through offering a unified tool set and API for the deployment of
Linux containers.

2.2 Docker

Although the interest in containers has particularly grown in recent years, containers
are an old concept. In the late 1970s, Unix developed the chroot command to provide a
basic form of filesystem isolation. In later years, FreeBSD [44] expanded the concept of
the chroot command to make it useful for virtualization, whereas, in 2001, SWsoft (now
Parallels, Inc.) released the Virtuozzo container tecnology for Linux. Then, in 2008,
the Linux Containers (LXC) project started and, by leveraging cgroups, kernel names-
paces, and chroot technology, aimed to provide a complete containerization solution
[72]. Based on LXC, the first version of Docker was released in 2013. Docker marked
a turning point in container virtualization, making it a promising alternative to VMs.
It extended the LXC technology by adding several features, such as a user-friendly in-
terface, in order to offer a complete solution to easily create, manage and distribute
containers.

Docker is composed of two main components: the Docker engine and the Docker
Hub. The former provides a user-friendly interface to create, run and manage contain-
ers. It is one of the strengths of Docker, fundamental to its popularity because allows
users to work with containers even without specialist knowledge. The Docker Hub is
instead a cloud service that provides public container images. This service has been
essential for Docker’s popularity because allows users to quickly get started and avoid
repeating works already done by others.

Following, we describe the Docker architecture with its main components and pro-
vide an overview on the building process of Docker images. A rigorous definition of
these aspects are out of the scope of this thesis, and further details can be found in
theory books like [72].

2.2.1 The Docker architecture

This section addresses the typical Docker architecture. Figure 2.2 shows the key com-
ponents of a Docker installation:

« Docker daemon: It is in charge of creating and running containers, and more in
general, managing their lifecycle. The daemon is also responsible for the building
and storing of Docker images.

18

2.2 — Docker

« Docker client. It is used by users to interact with the Docker engine. The com-
munication is based on the Hypertext Transfer Protocol (HTTP) and the API used
is well documented. Therefore, developers can easily write programs to interact
with the daemon and bypass the Docker client.

« Docker registries. They are used to store and distribute images. The default
Docker registry is the aforementioned Docker Hub, from which users can down-
load “official” images. However, Docker gives also the possibility to build and run
private registries.

+ Docker objects. They are diverse entities used to assemble applications in Docker.
The main classes of objects are the following:

— Docker container: standardized and encapsulated environment where ap-
plications run.
— Docker image: read-only template needed to build containers.

— Docker service: to enable the scaling of containers across multiple Docker
daemons.

Registries

r' s

Images
ubuntu:16.04
debian:buster

Client <———> Daemon

i Containers
A nginx-data
furious_heisember

Host Machine

Figure 2.2: Docker architecture.

2.2.2 Key technologies for the Docker platform

The Docker engine uses a proprietary execution environment to create containers,
namely the libcontainer library. It is crucial for the Docker platform and is tightly tied

19

Virtualization of Vertical Services through Docker Containers

to a couple of Linux kernel features:

« cgroups. Abbreviation of control groups, the cgroups feature limits, accounts for,
and isolates the use of resources such as CPU and memory, of Docker containers.
It is also responsible for freezing and unfreezing containers.

« namespaces. It partitions kernel resources, separating the container’s filesystem,
hostname, users, networking and processes from the rest of the system.

The libcontainer library leverages these features mainly for ensuring container isolation
and resource control.

Another important technology used by Docker is the Union File System (UFS), which
allows to store the layers for containers. The UFS can be provided by diverse storage
drivers, such as AUFS and devicemapper.

2.2.3 Dockerfiles

The first step to run a Docker container is the creation of a Docker image. As men-
tioned in Section 2.2, the Docker Hub contains plenty of ready-to-use container images
that prevent the users from creating their own images. This is particularly helpful for
common application software such as databases; users can download existing images
and simply add (if needed) their configuration files and/or data.

When a user does not find any official image that suits his needs or he wants a
container to host his own application, he needs to create an image. The primary way to
create a new Docker image is through the composition of a Dockerfile. A Dockerfile is a
simple text file containing the set of instructions that will be run by the Docker daemon
to create the image. Below, we provide a non-exhaustive list that aims at summarizing
the main Dockerfiles instructions. Docker instructions shall be written in upper case
letters.

ADD - It copies files from a local path or remote URLs into the image. If archives are
added, they are automatically unpacked. A simpler command similar to ADD (which
has many functionalities) is COPY.

CMD - It allows to specify a command to run when the container is started. If the
instruction ENTRYPOINT has been defined, the CMD command will be interpreted as an
argument to the ENTRYPOINT. There can be one CMD instruction in a Dockerfile. If
more than one is present, only the last CMD will take effect.

COPY - Another possibility to copy files from a local path or a URL into the Docker
image. It is a simple instruction that requires two arguments: src and dest. It copies the
file or the directory at src to dest, inside the image.

20

2.2 — Docker

ENTRYPOINT - It allows to set an executable that will be run when the container
starts. Analogous to the CMD instruction, only the last ENTRYPOINT will have effect.

EXPOSE - Used to specify to Docker that the container built on this image will have a
process listening on a given port (or ports). The EXPOSE instruction is a way provided
by Docker to make containers accessible from the outside world.

FROM - It is the first instruction in a Dockerfile and sets the parent image of the con-
tainer. The image is specified as IMAGE : TAG (e.g., debian:buster) and all the sub-
sequent instructions will be run on top of this image.

RUN - Instruction used to run Linux commands while creating the image.

VOLUME - It allows to define a specific file or directory as volume. It is possible to
define multiple volumes.

WORKDIR - Used to set the working directory for the subsequent instructions. It can
be used multiple times within the same Dockerfile.

2.2.4 Docker commands

The Docker commands allow to create images from the Dockerfiles, and create, manage
and monitor the containers. There exist several commands to perform such actions, and
below we provide a brief overview on some of them.

docker build - Command to build the Docker image from a Dockerfile. This op-
eration may take time, it depends on the complexity and the number of instructions
present in the Dockerfile. Once the command is finished, the new image can be used
and will be listed by the docker images command.

docker create - It is similar to the docker run command, with the difference
that it creates a container from an image but does not start it. It is possible to start the
container with the docker start command.

docker ps - It lists the containers and reports high-level information, such as the
container’s ID and status. By default it shows only the running container but the ar-
gument -a allows to get information of all containers (including the ones with status
“created”, “paused”, and “exited”).

docker rm -Command that removes containers. By default is not possible to remove
a running container, unless the argument -f is used.

21

Virtualization of Vertical Services through Docker Containers

docker run - It is the most complex Docker command and allows to create a con-
tainer on top of an image and start it. This command supports several arguments,
which allow users to configure how the image is run, override Dockerfile settings, and
set privileges and resources for the container.

docker start - It allows to start a container whose status is “exited” or “created”.
In the former case the container was stopped with the docker stop command, in the
latter, it was only created and never started.

docker stop - With this command, the main process inside the container will re-
ceive a SIGTERM signal and the container is stopped changing its status to “exited”.

2.2.5 The Docker overhead

The Docker overhead is the runtime performance cost to run Docker containers. It is
due to several processes whose number varies depending on different factors, such as
the number of containers running in background or foreground. The Docker processes

dockerd

docker-containerd

docker-containerd-shim docker-proxy

Service

Container

Host Machine

Figure 2.3: Diagram of the Docker processes tree.

are divided into persistent and non-persistent processes. The former are always active,
no matter whether there are running containers or not; the latter are created as soon
as a Docker container is started. Figure 2.3 shows the Docker processes tree.

The persistent processes are two:

22

2.3 — Performance evaluation of the Docker overhead

« dockerd. It is the Docker daemon process (described also in Section 2.2.1). It is
in charge of managing the Docker images and containers, as well as the entire
Docker platform.

« docker-containerd. Itis in charge of managing the containers on the Docker
host, independently of the Docker daemon. In order to do this, it uses a particular
non-persistent process, i.e., the docker-containerd-shim process. docker-
containerd has been introduced to avoid disruption in the normal container
execution while the Docker daemon is performing specific maintenance actions,
such as rebooting or upgrading.

The non-persistent processes, instead, are:

« docker-containerd-shim. It is created by the persistent process docker-
containerd to facilitate some crucial operations on the Docker container. Firstly,
it allows runtime, low-level components, to exit after the container is started.
This avoids the execution of long-running runtime processes for the container
management and allows to isolate the dockerized application and the shim pro-
cess. Secondly, it can keep the standard input-output (STDIO), the standard error
(STDERR) and other file descriptors open for the container. Finally, it reports back
to the Docker daemon the “exit” status of the container when it is terminated.

« docker-proxy. For each port exposed by a container, a docker-proxy process
is created. It operates in user space and for each packet received at the specified
host port, redirects it to the container port. This process was introduced to get
around a limitation of the old kernels. Nowadays it is not used but kept only for
backwards compatibility purposes.

« docker. Process in charge of managing the container user interface. If the con-
tainer runs in background, this process is not created.

2.3 Performance evaluation of the Docker overhead

While VMs are a robust and consolidated technology, the container-based solution has
only in the last years become appealing, thanks to the emergence of Docker. Docker
is considered a lightweight solution with a low overhead when virtualizing services.
Taking into account this, we measured and characterized the Docker overhead implied
by the implementation of two applications within containers.

For our analysis, among the multitude of Internet services, we selected video stream-
ing and multiplayer gaming, due to their steadily increasing growth and impact. Indeed,
the video streaming is one of the biggest contributors to Internet traffic: it generates a
greater amount of data than a picture or a web page, and secondly, countless videos are

23

Virtualization of Vertical Services through Docker Containers

daily streamed on the Internet (YouTube videos, Netflix series, in addition to videocon-
ferencing tools such as Skype or Google Hangouts). At the same way, the online gaming
industry is continuously on the rise too, with increasing investment in development of
new applications and technologies. In addition to their popularity, video streaming
and gaming represent service models with profoundly different requirements. A video
server implies a low computational effort but generates a fairly large amount of data. A
gaming server, instead, requires a much higher CPU resources and generally generates
a lower traffic (which depends on the level of interaction between the players in the
gaming session), traveling in both directions.

This section hence provides details on the testbed used to collect data and presents
the obtained experimental results.

2.3.1 Testbed description

To investigate the overhead cost of providing the video streaming service and the online
gaming through Docker containers, we took an experimental approach and deployed
the testbed shown in Figure 2.4. We considered a MEC scenario where the containerized

Client Server
1 a3
‘\) f\ /I\
N @ / . docker docker

)
// + \ . Ffsewer
() ¢ Minecraft PE server

)
AN Genymotion Minecraft PE /
emulator

Figure 2.4: Layout of our testbed: clients access the containerized servers through a Wi-Fi AP.

services are provided by servers deployed at the edge of the network infrastructure.
For the sake of simplicity, we used the Wi-Fi as wireless access technology. However,
it is possible to replace it with any other technology (e.g., LTE), without altering the
architecture of the testbed.

The video server selected for our experiments is FFserver' [42], part of the FFmpeg
framework [41]. It streams both live and non-live audio and video contents over the

"While FFmpeg is still an active project, the FFserver command-line program was removed. The last
version of FFserver is 3.4; the version used in our tests is 3.1.3.

24

2.3 — Performance evaluation of the Docker overhead

Internet. FFserver supports clients running on multiple platforms, including mobile
devices such as tablet and smartphones. At client side, instead, we used VLC [104] as
video player, which ran on a Linux host.

As far as the gaming server concerns, we used Minecraft Pocket Edition®. The clients
supported by this server are only mobile devices, thus we resorted to an Android emula-
tor. We chose Genymotion [47], a powerful virtualization platform capable of emulating
many Android devices and compatible with Linux systems. Unlike the streaming of a
video, the gaming case requires the interaction of a human being. This is a problem
when plenty of tests with several clients are performed. To address this need, the An-
droid application FRep [45] was installed in each emulator. With this tool, it is possible
to record a sequence of taps on the screen and then replicate them over each emulator.
In this way, the interaction player-game was automated.

2.3.2 Measuring the Docker overhead

In our testbed, the dockerized servers ran on a Linux Ubuntu desktop. On these systems,
the CPU consumed by any process can be monitored by retrieving the unique identifier
of the process (i.e., PID) and then parsing the file /proc/PID/stat. In particular, two
fields contain information about the CPU consumption: the user time (called utime)
and the system time (called stime). The former is the time length for which a process
has been scheduled in user mode, the latter is the time the process spends in system
mode. The values of the two fields are expressed in CPU ticks. Generally, in Linux, 1
CPU tick corresponds to a CPU usage of 10 ms [32]. To have a complete overview of
the whole CPU usage evolution over time, we sampled the stat file of each process
described in Section 2.2.5 once per second.

An important element that could affect the Docker CPU consumption is the data
sent and received by each container. In order to monitor each byte processed by the
network card(s) of a host, Linux systems provide the file /proc/net/dev. This file
contains, for each network card of a host, a lot of information, such as the number of
packets sent and received as well as the quantity of bytes transmitted and received.
Since Docker creates a virtual ethernet card for every container, it is easy to monitor
the data traffic managed by each container. Therefore, also in this case, we sampled the
dev file once per second.

2.3.3 Experimental results

The machine used to virtualize the two services was a desktop with 32-GB RAM mem-
ory, an octa-core Intel Core i7-4790 @ 3.60GHz processor, and running Ubuntu OS. We
performed many tests, each one 300s-long. In every test involving the video service,

%We used the Minecraft Pocket Edition version 0.10.5.

25

Virtualization of Vertical Services through Docker Containers

the video streamed by the dockerized server instances was always the same, which had
the following features: (i) mpeg format with (ii) an average bitrate of 4215 kbps and
(iii) resolution 1280x720 (720p).

In the video streaming use case, we used a single machine as client, as depicted in
Figure 2.4. On the contrary, for the gaming case, up to two different Linux machines
were used at client side since Android emulators are computationally heavier than VLC
instances. Both the client and the server machines were connected under the same
subnet and associated to the Wi-Fi AP. The images developed to build the two containers
are available in the Docker Hub*.

Below, we present the results obtained through the experimental tests. First, we
fixed the number of clients to 8 and varied the number of dockerized servers, while
then we did the opposite, i.e., we considered a single server and varied the number of
clients.

Fixed number of clients

This first set of experiments is divided into four different case studies. Each one differs
for the number of dockerized servers, i.e., 1, 2, 4, and 8, whereas the number of clients
is fixed to 8. As mentioned above, each dockerized FFserver streamed the same video,
which was stored in every container.

Figure 2.5 shows the Docker overhead CPU consumption for both video streaming
and gaming, along with the results for the case with no running containers. The figure
shows important aspects, both for the video streaming service and the online gaming,.
As far as the video server is concerned, it can be noticed that the CPU consumption of
the persistent processes (i.e., dockerd, docker-containerd) is not affected by the
number of running containers. Indeed, the amount of CPU used by these two processes
together is around 40 ticks (throughout the 300 s of each test) regardless the number
of running containers. In addition, the docker-containerd-shim processes do not
consume CPU. It is important to notice that the only non-persistent process that we can
observe is docker-containerd-shim. Indeed, the docker-proxy was switched off
since our Docker host had a recent kernel version®, whereas the docker process, which
manages the container in foreground, cannot be observed because our containerized
services ran in background. If no non-persistent processes run, then the only cost to
dockerize the video server instances is due to the creation and termination of the con-
tainers. For the online gaming, instead, we observe a different behavior because both
the persistent and the non-persistent processes consume CPU. In particular, the CPU
utilization of all the processes depends on the number of running containers.

*Video server: https://hub.docker.com/r/giuseppeav/ffmpeg/.
*Gaming server: https://hub.docker.com/r/marcomali/minecraft/.

>The Docker host kernel version is 4.4.

26

https://hub.docker.com/r/giuseppeav/ffmpeg/
https://hub.docker.com/r/marcomali/minecraft/

2.3 — Performance evaluation of the Docker overhead

Cumulative CPU usage [ticks]

CPU usage [ticks]

200

docker-containerd-shim

mm dockerd

docker-containerd

150

N
o
o

et
o o ?""?'N
b

.eC
W

ef
R ‘1\\‘\
2

??"?' \z\\“ec ??”e @* ec
[>

Number of servers

Figure 2.5: Docker overhead for 8 clients and a varying number of servers.

In the two use cases, the diverse CPU utilization by the non-persistent processes
can be related to different behaviors of the applications. A significant example is rep-
resented by the logging operations performed by the two servers. Indeed, we must
take into account a couple of aspects: first, the docker-containerd-shim process,
among its other tasks, manages the STDIO and STDERR streams; second, the Minecraft
game server produces much more logs than FFserver. Together these two observations
partially explain why the shim process of each Minecraft server is subject to a higher
workload, and therefore to a higher CPU consumption.

B
o
o

400
350
300
250
200
150

=
=]
o o O

Il FFserver

docker-containerd-shim

M dockerd

50

docker-containerd

100 150 200
Elapsed time [s]

(a) FFserver.

250

300

]
[Ve]
o
o
o

8000 B Minecraft . .
docker-containerd-shim

7000 mmm dockerd

6000 docker-containerd

5000
4000
3000
2000
1000

0

Cumulative CPU usage [ticks

0 50 100 150 200 250 300
Elapsed time [s]

(b) Minecraft.

Figure 2.6: Temporal evolution of the CPU consumption due to the application and to the
Docker overhead, in the case “8 clients - 4 servers”.

The temporal evolution of the CPU consumed by the Docker processes and by the
dockerized applications is depicted in Figure 2.6. The plot refers to the specific case

27

Virtualization of Vertical Services through Docker Containers

with 8 clients and 4 servers. First of all, we can note that the video streaming server
consumes much less CPU, in the order of 1/20th than the gaming application. As we
already highlighted, this is due to the fact that a video server does not require high
computational capacities, because it simply reads and forwards data. The second ob-
servation concerns the Docker overhead, which is very low in both cases. However,
although the virtualization cost of the video server is much lower than the one of the
gaming server, the overhead of the latter is negligible with respect to the application
CPU load, while it accounts for over 10% in the case of video streaming,.

Fixed number of servers

In this second experimental campaign, we used a single server and varied the number
of clients between 1 and 8. Figure 2.7 shows the CPU utilization due to the Docker
overhead for both the video streaming and the online gaming. For what concerns FF-

=
o

RN <e W & W@

N 7@0"/ 1 W % }m\e [3 “m\"'
3 2 & ?
Number of clients

0

70 docker-containerd-shim
mmm dockerd
docker-containerd

60
o 50
X
o
=l
© 40
o
©
g
S 30
[+
O

: I

N\ \‘\‘(, e‘-"o“ C N

Figure 2.7: Docker overhead CPU consumption for a single server and different number of
clients.

server, we can once again observe that (i) the docker-containerd-shim process
does not consume CPU, and (ii) the CPU utilization for both persistent processes is
not affected by the server workload (in this specific case, independent of the number
of clients served). The same behavior can be noticed in the Minecraft use case, indeed
the CPU usage by the two Docker persistent processes and the docker-containerd-
shimis always constant. These experimental results demonstrate that the Docker over-
head, at least for the two services selected, is not dependent on the workload of each
container.

An interesting common point between the two case studies and the different types
of tests is the CPU consumed by the persistent process docker-containerd, which is

28

2.3 — Performance evaluation of the Docker overhead

always equal to 0.05 CPU ticks per second. Moreover, we saw that this process was not
crucial in our tests. Indeed, it performs specific maintenance actions, (e.g., rebooting)
on the Docker daemon, thus it is unrelated to the normal container execution. The
termination of docker-containerd hence does not affect the behavior of the running
containers.

45
docker-containerd-shim
N dockerd
docker-containerd

w
& 8

w
o

CPU usage [%]
= [N N
o w o w o w
< [
Q

Number of clients

Figure 2.8: Percentage of CPU consumption due to the Docker overhead, for one server and
diverse number of clients.

Finally, Figure 2.8 shows the overhead impact on the total CPU consumed by the
dockerized services. As mentioned above, the CPU consumption of the video server
is much lower when compared to the one of the gaming. For this reason, the Docker
overhead has a greater impact on the video streaming use case. In particular, with a
single client, it accounts for almost 45% of the total CPU consumed by the containerized
server. However, since the higher the number of clients served, the larger the CPU
consumption of the application itself, the overhead impact steadily decreases and falls
below 10% for eight clients. The same behavior can be observed for the gaming server,
even if less noticeable because the impact of the overhead is already very low even with
a single client connected.

Data processed by Docker containers

Last question is whether the data processed by containerized services affects the Docker
overhead CPU consumption. Figure 2.9 represents the amount of data transmitted and
received by the two dockerized services, in the case study with 4 clients and 1 server.
As expected, FFserver processes much more data than the Minecraft server, indeed it
transmits to four clients a video with a size of around 160 MB. Other two facts are
worth underlining. First, we can infer that FFserver does not buffer (it is used mainly

29

Virtualization of Vertical Services through Docker Containers

103

102

o
Z
-
8 101 ((\(4.(‘(\(‘(\((‘(\((«(\(.
$ ‘x\\muu. K
PRYS
: gt
e gpuesronds
Py o
0
o 10 f
E L
D L]
101
[FFserver
e ® ¢ Minecraft
102
-50 0 50 100 150 200 250 300 -

Elapsed time [s]

Figure 2.9: Megabytes of data processed by the two applications, in the specific case 1 server -
4 clients.

for live streaming), because the amount of data transmitted by the video server increases
linearly with time. Second, the Minecraft server exchanges the largest amount of data
with the clients in the first time instants. Indeed, at the beginning, the server sends
to all players information about the virtual world in which they will play. The other
packets are due to in-game interactions between server and clients.

By comparing this plot and Figure 2.7, it is possible to conclude that the data pro-
cessed by dockerized servers does not affect the Docker overhead. The data transferred
by FFserver is about 638 MB in 300 s, while only 8 MB for Minecraft. However, look-
ing at Figure 2.7, we can see that, in the case “1 server - 4 clients” the Docker CPU
consumption for Minecraft is much higher.

2.4 Final remarks

The experimental results confirmed that Docker can be employed as a lightweight vir-
tualization solution. We selected two services with opposite requirements in terms of
CPU load and generated network traffic. For both services, the Docker overhead ranged
between negligible and moderate. The overhead was found to be independent of both
the number of served clients and the data processed by the two services.

The purpose of this study was the analysis of the Docker performance, in order
to evaluate its suitability within the 5GT platform. Docker exhibited an excellent per-
formance, proving to be a valid alternative to the robust and reliable hypervisor-based
technology. However, the 5GT platform is composed by a complex architecture, with
several components that interact each other. Due to some incompatibilities between

30

2.4 — Final remarks

Docker containers and a few 5GT components, we were forced to select the hypervisor-
based technology to virtualize the network functions of the 5GT architecture.

31

32

Chapter 3

Design, Implementation and
Performance Analysis of a Collision
Avoidance Algorithm through
Simulation

As discussed in the previous chapter, the 5G technology is envisioned to expand and
improve the existing mobile networks. 5G aims at ensuring ultra-low latency, extensive
coverage, ultra-high reliability and high data rate. As a result, many industries have a
growing interest in reaping the benefits of 5G networks, in order to increase the quality
of their existing services or to deploy new ones. Indeed, as shown in Table 2.1, inno-
vative vertical services can demand very strict and diverse requirements, which cannot
be guaranteed by legacy 3G and 4G networks.

In this challenging context, the 5GT project has designed a NFV-based 5G mobile
transport and computing platform able to meet the specific needs of a wide range of
services. This project has been driven by some relevant vertical industries, from various
sectors such as automotive, entertainment, e-Health and e-Industry. Such industries
are some of the most affected by the deep technologies changes of the last two decades.
For instance, the automotive industry has the possibility to provide safety services able
to dramatically reduce (aiming at zero) fatalities on the road, whereas the media and
entertainment industry is called to satisfy the huge demand from users of media-rich
contents and provide a better quality of experience. These service requirements pose a
great challenge to the network infrastructure [5].

Within the 5GT project, each of the vertical industry has developed a use case (UC),
in order to assess the 5GT infrastructure and architecture. Among these UCs, as men-
tioned in Chapter 1, we have focused on the automotive one, which consisted in the
development of a cellular-based vehicle collision avoidance (CA) service, based on an
ad-hoc CA algorithm.

In this chapter, we first present an overview of the main services and applications

33

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

involving the automotive field, and the vehicular communication technology necessary
for their development. Then, we describe the design and the implementation of the CA
algorithm. Finally, we discuss the simulation testbed used to simulate the service and
evaluate its performances.

3.1 The automotive use cases

The automotive industry is currently undergoing many technological transformations.
Indeed, a growing number of vehicles are equipped with communication hardware,
which enables access to the Internet and connectivity with third parties. This permits
the development of innovative automotive services, to offer a variety of applications,
such as entertainment, safety and many others. Nevertheless, for their implementa-
tion, the 5G technology is strictly necessary to accomplish the reliability and delay
constraints they require.

Vehicular applications cover a wide variety of potential consumer needs and busi-
ness model. In the literature, it is common to group UCs together according to their
purpose and requirements. As a result, vehicular applications can be classified in four
categories [61]:

1. Infotainment: Infotainment applications provide informative or entertaining ser-
vices such as instant messaging and delivery of geo-specific advertisements, to
drivers and passengers. These applications does not require neither ultra-low
latency (500-1000 ms) nor high data rate (60-80 Mbps) [10].

2. Traffic Efficiency: This kind of applications aims at optimizing the flow of road
traffic and increasing the driving experience. For instance, an on-board GPS able
to find the best route according to the traffic conditions is a concrete example. The
requirements of these services fall between the traffic safety and infotainment
categories [35]; overall, they demand low latency and a high reliability [61].

3. Traffic Safety: The objective of these applications is to reduce the risk of acci-
dents and human casualties. The exchange and processing of messages and data
between vehicles and vulnerable road users (VRUs), e.g., pedestrians and bikers,
enables the deployment of a variety of services, targeted at alerting road users
in case any potentially dangerous situation arises. Such applications mainly re-
quire ultra-low latency and ultra-high reliability [35, 82]. However, all those ser-
vices relying on remote processing for real-time event handling may need high-
throughput data transmission, in the order of hundreds of Mbps. For instance, an
application for the road sign and obstacle recognition, require up to 700 Mbps of
throughput [28].

34

3.1 — The automotive use cases

4. Cooperative Driving: These applications can be both classified as traffic safety ap-
plications and form a fourth category. They are characterized by strict require-
ments and are uniquely suited to autonomous vehicle operation. For instance,
cooperative platooning is a cooperative driving application requiring a quite low
data rate but an ultra-low latency, between 2 and 10 ms [40].

3.1.1 Vehicle-to-Everything communication

The vehicular services and applications described in Section 3.1 require that cars are
connected and able to communicate between each other, with other road users or with
the infrastructure. The data exchange between a vehicle and the entities surrounding it
(e.g., other vehicles, pedestrians) is called vehicle-to-everything (V2X) communication.

The third generation partnership project (3GPP) standardized the support for V2X
communications, as part of the Long Term Evolution (LTE) technology, in Release 14
[1]. Figure 3.1 represents all the supported types of communications:

« Vehicle-to-Network (V2N): this is the communication between the vehicle and
servers or cloud-based services, which are reachable through the cellular infras-
tructure, i.e., the base station (BS).

« Vehicle-to-Infrastructure (V2I): this kind of communication involves the trans-
mission of data, within a certain radio range, between vehicles and road side units
(RSUs). The RSU is usually co-located within a BS or in standalone devices, such
as traffic lights.

 Vehicle-to-Vehicle (V2V): this kind of communication involves a direct data ex-
change among vehicles, in radio range between each other.

+ Vehicle-to-Pedestrian (V2P): it represents the direct communication between
vehicles and VRUs.

In Release 14, 3GPP standardized both the direct communications between user
equipments (V2V and V2P), and the V2I/V2N communications: the former leverage the
sidelink (PC5) interface, whereas the latter occur over the cellular LTE-Uu interface, in
the traditional licensed spectrum. Furthermore, the direct communication supports two
diverse communication modes: Mode 3 and Mode 4. In Mode 3, vehicles can communi-
cate only if under coverage of a BS, as the allocation of radio resources is controlled by
the network. As far as Mode 4 is concerned, instead, the resources are pre-configured,
in such a way that vehicles do not need any cellular network coverage to communicate
[27].

Further specifications for LTE-V2X communications are detailed in Release 15 [2],
which provides the service requirements to support several V2X scenarios, such as ve-
hicle platooning and extended sensors. Finally, Release 16 [3] contains enhancements
to the 5G architecture to meet the most demanding V2X performance requirements. At

35

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

e Y s
e
'g A g /\

oo - ﬁ /_‘
e e

Figure 3.1: V2X communication modes and entities.

the time of writing, Release 16 is at its draft stage. The smooth evolution from LTE-V2X
to 5G V2X is commonly referred to as cellular-V2X (C-V2X) [11].

Alternative access technologies

The usage of cellular network is not the only solution enabling vehicular communica-
tion. For nearly two decades, IEEE 802.11p (a particular amendment of IEEE 802.11), has
been investigated as radio access technology for V2V and V2I communications [22, 57].
The main advantage of 802.11p is that it ensures low-latency connectivity among vehi-
cles even in absence of a roadside infrastructure. Although it offers good performances
in low congested traffic scenarios, it seems to suffer from throughput degradation and
large delays when the number of vehicles increases significantly [71, 70]. These limi-
tations are mainly due to its very basic physical layer and the absence of a mechanism
able to reduce the collisions, which is particularly critical for broadcast communications
under congestion [24]. An exhaustive comparison between 802.11p and C-V2X, as well
as a detailed description of the two technologies, are out of the scope of this thesis but
widely covered in the literature [13, 23, 21, 24]. Overall, the choice of the best commu-
nication technology is still subject of an intense debate in the scientific community.
Recently, also the millimeter wave (mmWave) band has been investigated as access
technology for automotive applications. mmWave communications ensure a high data
rate up to several Gbps [75] by utilizing the Extremely High Frequency (EHF) band oc-
cupying the 30-300 GHz band of the radio frequency spectrum. Such an access technol-
ogy is particularly appealing both for V2V communications between very close vehicles

36

3.1 — The automotive use cases

(e.g., to support cooperative sensing in a high-density platoon) and for V2I communi-
cations, for offloading massive amounts of data (on-board sensors may generate a large
amount of data, in the order of terabytes per driving hour [28]). Despite a very high
throughput and low latency, mmWave communications suffer a severe isotropic path
loss and require a Line-of-Sight (LoS) connection between the transmitting and receiv-
ing node, which is difficult to achieve in mobile scenarios [61]. Further information
on the use of mmWave band for C-V2X applications can be found in [98, 50, 49]. In
general, mmWave is not yet a mature technology for vehicular networks but it has the
potential to meet some of the boldest requirements of next-generation transportation
systems, being able to provide excellent performance in terms of data rate and latency,
both in urban and high-mobility highway scenarios [48].

3.1.2 The vehicle collision avoidance service

The vehicle collision avoidance service was selected as an automotive safety UC in the
context of the 5GT project. The aim of the service is to warn drivers about any immi-
nent danger that may result in a collision (e.g., the presence of an unseen vehicle), and
eventually activate the emergency braking system to avoid the accident. In order to
exploit this service, vehicles should be equipped with on-board units (OBUs) through
which they can send and receive data.

The vehicles periodically transmit anonymous Cooperative Awareness Messagges'
(CAMs), which contain kinematic and dynamic data of sender, such as position, speed,
acceleration and heading. The CAM generation follows a dynamic scheme standardized
by ETSI [33]. According to this scheme, the higher the variation of vehicle’s speed,
position or heading angle, the higher the CAM frequency will be. ETSI also defined the
minimum and maximum frequency values: 1 Hz and 10 Hz, respectively [33].

The service can leverage both the V2V and V2I communication modes. In the first
case, the CAMs generated by a vehicle are sent as broadcast packets and received by
any other car in its close proximity. Each vehicle equipped with a unit running a CA al-
gorithm can autonomously foresee potential dangerous situations and warn the driver.
In case of V2I communication, instead, a centralized approach is used, with a single
instance of the CA algorithm, running in a server in proximity of a BS. CAMs are hence
transmitted toward this server, which, in case of danger, generates and sends an alert
to the vehicles involved. The alert is encoded inside a Decentralized Environmental
Notification Message (DENM), which can simply warn human drivers, or activate the
autonomous emergency braking system.

In order to increase the accuracy of the service, the data generated and received by
each vehicle can be processed together with additional information, collected thanks to
Advanced Driver-Assistance Systems (ADAS), by relying on on-board sensors.

'Equivalently, the Basic Safety Messages (BSM) standardized by SAE could be considered.

37

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

3.2 The collision avoidance algorithm

The core of our safety service is the collision avoidance algorithm, presented in Algo-
rithm 1. With a different flavor, the basics of the algorithm have been used in [69],
which presents a top-down and specification-driven design of an adaptive peer-to-peer
collision warning system. Note that, although the safety service we want to develop
for the 5GT project focuses on collisions between vehicles, since the algorithm is based
on generic trajectories, it can be applied to detect collisions between any kind of entity
(e.g., between vehicles and pedestrians).

The algorithm, which runs at each new CAM message received, requires as input:
(i) the position py, speed U and acceleration d of the vehicle transmitting the CAM; (ii)
the set % containing the information of all other vehicles traveling in the same area.
As soon as a CAM is received, the algorithm first initializes the set € of nodes with
which the sender v of the CAM could collide (Line 1), then evaluates its position for
each future time instant (Line 2 and 3). At this point, the algorithm reads position,
speed and acceleration of each entity that recently sent a CAM (Line 5), and calculates

Algorithm 1 Collision avoidance pseudocode

Require: 1;0, U,d, B
1: € «@
2: p.(t) « pg + 0.t + %axt2
3: p,(1) « p)+ vt + %ayt2
4: for all b € & do
5: read 50, 5, 4 from b
6 Pty = L+ O +5a,0
T p0) — B)+ 0,1+ 34,0
8 D(1) < (po(1) = p(D)* + (p, (1) — p, (1)) =

- [pg—ﬁ2+(ux—ﬁx)t+%(ax—éx)tz]2+ [0 3+ (0, - 0,) 1+ 4 (ay—ay)tz]z

9. T —t: %D(r):O

10: for all t* € T do

11: if t* < 0 or t* > 12¢, then
12: continue

13: end if

14: d* « \/D@*)

15: if d* < s2¢, then
16: € <~ G U {b}
17: break

18: end if

19: end for

20: end for

21: return €

38

3.3 — Simulation testbed and methodology

their future positions (Line 6 and 7). In Line 8, we compute the square of the Euclidean
distance between v and the generic entity b.

Since we are interested in the minimum value of D(?), in Line 9 we compute the
set 7. This computation represents the most complex part of the algorithm because
requires solving a 4 grade equation. Each value t* of the set 'is defined as time instant
at which the distance between the two entities is minimum. For each *, the algorithm
checks if it is included between 0 and a threshold 12¢, (time to collision threshold). If
t* is negative, the two entities are getting farther apart, whereas, if * is greater than
t2¢,, we assume that the possible collision is not imminent. In both cases, no action
is performed (Line 11). On the contrary, if t* is between 0 and t2c,, the algorithm
computes the distance d* at which the two entities will be at time t* (Line 14). Such a
distance is compared against a second threshold called s2¢, (space to collision threshold):
if d* is greater, the algorithm moves to the next iteration of the for cycle, otherwise b is
added to € because a collision is deemed likely (Line 16). In this second case the nested
for cycle in Line 10 is interrupted (Line 17) and the algorithm moves to the next entity.

After processing all the CAMs in %, the algorithm returns the set € containing the
entities with which v is on a collision course. The set € could be empty, in that case no
action is taken. Otherwise, an alert message (i.e., a DENM) is generated and sent to v
as well as to all the entities in the set .

3.3 Simulation testbed and methodology

The CA service developed for the 5GT project is based on the algorithm presented in
Section 3.2. To assess its effectiveness and reliability, we used the SimuLTE-Veins frame-
work [90], integrating our CA service inside the simulator. In this context, the CA ser-
vice leverages the cellular-V2I (C-V2I) communication technology [101], meaning that
the collision detector is hosted in a dedicated server, able to monitor the whole urban
area under study. All the CAMs are sent by the vehicles toward the BS, through which
they reach the CA server. The latter, in case of danger, alerts the involved drivers by
generating and transmitting DENM messages.

There are several works in the literature that are related to safety applications in the
automotive domain (e.g., [46]). Many of these works, such as [86] and [108], propose
CA applications that do not leverage any mobile network infrastructure. In particular,
[86] focuses on collisions between vehicles and pedestrians in industrial plants. In this
case, positioning is achieved using a combination of GPS, Micro-Electro-Mechanical
Systems (MEMS) and smart sensors, while the type of wireless communication to the
control center is not specified. In [108], White et al. propose a way to automatically
detect a collision after it has occurred, using smartphone accelerometers to reduce the
time gap between the actual collision and the first aid dispatch. A very interesting work
is presented in [53], where Hafner et al. develop and assess through field tests the effi-
ciency of decentralized algorithms for two-vehicle cooperative CA at intersections. The

39

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

algorithms proposed leverage the V2V communication technology. Nevertheless, simu-
lation tools, which use CA algorithms and C-V2I communications, are usually neglected
in literature. For this reason, we implemented a simulation testbed which allows us to
provide several experimental results in order to assess the performance of both our CA
algorithm and the LTE-V2I technology in vehicular scenarios.

In this section, we focus on the simulator and on the selected urban scenario. More-
over, we provide some details on the service implementation and the processing of the
simulation logs.

3.3.1 Simulation tools

In order to assess the performance of the CA algorithm, we used the OMNeT++ simula-
tor [76], a well-known, widely-used modular simulation framework. More specifically,
we used the SimuLTE-Veins framework, where OMNeT++ is combined with:

« SUMO [95, 60]: an open-source, highly portable simulator of urban mobility;

+ Veins [99, 91]: an open-source framework enabling the communication between
SUMO and OMNeT++;

« SimuLTE [100, 102]: an open-source system-level framework for simulating both
LTE and LTE-Advanced (LTE-A) networks within OMNeT++.

We used the following versions of the components mentioned above: SimuLTE v1.0.1,
SUMO v0.30.0, OMNeT++ v5.1.1.

3.3.2 Reference scenario

The reference road topology is the urban area depicted in Figure 3.2. It was composed
of three roads, crossing at two intersections, a pedestrian lane and three pedestrian
crossings. As can be deduced from the presence of pedestrian areas, we also considered
VRUs, in addition to vehicles. This was done in order to evaluate the performance
of the designed algorithm also in case of possible collisions involving different road
users. Indeed, as mentioned in Section 3.2, our solution includes a trajectory-based CA
algorithm suitable for any kind of road user. As a result, the CA service detected both
the vehicle-with-vehicle collisions, which occurred at the two intersections, and the
vehicle-with-pedestrian collisions on the zebra crossings.

Every entity in the area was connected to the cellular infrastructure and subscribed
to the CA service?. Vehicles were equipped with on-board units which leveraged the Uu
interface for C-V2I communications. Pedestrians, instead, carried a smartphone with

*We are assuming a penetration rate equal to 1.

40

3.3 — Simulation testbed and methodology

Pedestrians lane

o | EE=Tm)

B

Figure 3.2: Screenshot (from SUMO) of the urban area monitored by the CA algorithm.

cellular connectivity. Both types of entities periodically transmitted CAMs toward the
CA server.

The cellular network simulated by SimuLTE-Veins was LTE, therefore the safety
service leveraged the LTE-V2I communication technology. The whole considered area
was covered by a single evolved Node B (eNB), located at the center of the topology.
The server running the CA algorithm can be located at different points of the network
infrastructure. In order to study the diverse performances of the service according to
its location, we considered two server deployments: at the Metro node (very close to
the eNB), namely in a MEC fashion, and in a cloud data-center.

It is worth emphasizing that, even if the selected topology is very simple, it is very
widespread, and therefore allows to closely mimic many real-world urban road layouts.

Populating the scenario

We used a realistic mobility model and a realistic generation rate for the simulated
vehicles and pedestrians. Vehicles traveled at the maximum speed of 13.89 m/s (i.e.,
50 km/h), and followed a straight path, i.e., they did not turn at intersections. Pedestri-
ans moved on the pedestrian lane at a steady speed of 2 m/s. They could cross the street
at three different spots. Each generated vehicle was randomly assigned to one of the
six entry points at the edge of the scenario (marked as v1..v6 in Figure 3.2), whereas
each VRU was assigned to one of either ends of the pedestrian lane (p1 or p2). Follow-
ing [58], vehicles and pedestrian arrivals were modeled as Poisson processes with two
diverse rates: 4, for vehicles, /lp for pedestrians.

In order to have reliable results and a realistic mobility pattern, we performed a
stability study on the scenario under consideration. Indeed, it was crucial to set both

41

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

the vehicular generation rate 4, and the pedestrian generation rate 4, in such a way that
the simulated scenario was stable. In this way, the number of vehicles or pedestrians
did not grow so high as to yield the following situations:

« the clogging of the intersections due to the presence of too many cars;
« the formation of long queues of low-speed vehicles.

Note that, both situations lead to a low number of collisions that would have not allowed
us to properly assess the effectiveness of the CA algorithm.

The dependence of the number of vehicles and pedestrians from the two rates 4,
and 4, was not linear because of the three spots in which the two entities share the
road occupancy (i.e., at the zebra crossings). To properly select the arrival rate of both
cars and pedestrians, we simulated the scenario when 4, varied from 0 to 1.5 (with step
0.05) whereas A, took one of five possible values: 0, 0.05, 0.10, 0.15, 0.20. The results
for 4, = 0 (i.e., without pedestrians) have shown that the value of 4, for which the
average number of simulated vehicles grows linearly with the generation rate (i.e., it is
in the stability region) is between 0 and 1.2. As expected, the introduction of VRUs has
a significant impact: while with 4, = 0 the maximum 4, allowing stability is 1.2, with
A, equal to 0.2, only values lower than 0.9 ensure stability. Figure 3.3 shows the growth

350
300

250

Average number of vehicles

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Vehicular generation rate A,

Figure 3.3: Evolution of the average number of vehicles for 4, = 0.2 and 4, ranging between
0 and 1.5.

of the average number of vehicles for different values of 4,, with /1p fixed to 0.2.
As aresult, for our simulations, we set 4,t0 0.7 and 4 pt00.1. Furthermore, the value
selected for 4, is consistent with real-world measurements from the city of Turin, Italy

[7].

42

3.3 — Simulation testbed and methodology

3.3.3 System description

In Section 3.1.2 we provided a general overview of the CA application. Here, we describe
in detail how it works within the SimuLTE-Veins simulator, and present our improve-
ments, in order to make the algorithm more efficient.

The frequency at which CAMs are sent by vehicles and pedestrians was different:
10 Hz for vehicles (i.e., 1 CAM every 100 ms), 1 Hz for pedestrians (1 CAM per second).
The difference is mainly owing to the speed at which the two entities move. Indeed,
considering vehicles traveling at 13.89 m/s, and the same CAM frequency of pedestrians,
the error at the server (ignoring the transmission delays) would be in the worst case of
13.89 m. Clearly, an error in this order of magnitude is not acceptable when dealing with
safety applications. As a result, the frequency at which vehicles transmitted CAMs was
the maximum standardized by ETSI, whereas for pedestrians, the minimum.

Our CA algorithm is able to distinguish between CAMs sent by pedestrians and
CAMs sent by vehicles. This gives us two advantages. First, if the CAM is sent by a
vehicle, the algorithm looks for possible collisions with both cars and pedestrians, while
on the contrary (i.e., with a message sent from a pedestrian), the analysis for pedestrian-
with-pedestrian collisions is skipped. The second advantage involves the possibility to
set different parameters for the thresholds #2¢, and s2ct, according to the type of entity
that sent the CAM. This ensures better performances of the algorithm, both in terms of
false positives and false negatives (further details in Section 3.4.1).

In order to increase the efficiency and reliability of the service, the CA algorithm
implemented in the simulator provided two improvements:

1. Every time the algorithm receives a CAM, it checks if it is up-to-date: if so, the
information of the message is stored and the algorithm checks if the sender is
at risk of collision; otherwise, the CAM is discarded. In our simulations, the
threshold used to determine whether a message is up-to-date or stale (therefore
to discard) was different for vehicles and pedestrians: 0.8 s and 4 s, respectively.
The diverse values are due to the lower speed at which pedestrians move and thus,
even considering older information, the error in the evaluation of the position is
smaller.

2. When the algorithm checks if two entities, far from each other, risk to collide, it
is loosing time and decreasing its efficiency. To address this issue, we filter some
iterations. We therefore introduced a range of action and only the entities within
the range of action of the sender of the CAM will be checked by the algorithm as
potential colliders. The radius varies according to the car speed as follows:

Radius = max{Speed * t2c,, s2c,} (3.1)

At this point it should be clear how a CA application works and the implementation
of such an application in our simulator. A visual representation of our CA service with
the main components is provided by Figure 3.4.

43

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

Server
CAM P
[PRy e
car_i CAM : ; .
- @ ¢ CAM reception

k ii CA System
ped_j / \
| is up-to-date? |

s, Discard CAM
| update TABLES |
’ : CA Algorithm
"o rosron | oo | v
Collisi found?
car_1 pos(car_1) speed(car_1) Iterate | ollision(s) foun
among
ped_1 pos(ped_1) speed(ped_2) .. entries YES
of the
table | send DENM(s) | | Exit |
car_n pos(car_n) speed(car_n)

& =/

Figure 3.4: Collision avoidance system.

3.3.4 Processing the simulation logs

In order to derive the metrics of interest and evaluate the performances of the algorithm,
we collected information from both SUMO and SimuLTE-Veins. In particular, we were
interested in:

« position, speed and heading of each vehicle and pedestrian (information con-
tained in the SUMO Floating Car Data output);

« each vehicle-with-vehicle and vehicle-with-pedestrian collision occurred (infor-
mation obtainable from the SUMO error-log file);

« each alert message (DENM) generated by the collision avoidance algorithm, (re-
turned by the SimuLTE-Veins simulator).

Then, through post-processing, we analyzed, when each collision occurred and if
the corresponding DENM was generated by the algorithm. Furthermore, if the DENM
was correctly transmitted, we also looked at when it was received, in order to determine
if the vehicles had sufficient time to brake and avoid the accident.

44

3.4 — Simulation results

Determining if a collision is detected in time

Whether a collision is detected in time or too late is determined in the post-processing
phase, by cross-referencing the information collected in the logs of SUMO and SimuLTE-
Veins. A collision is considered as “detected too late” when:

T,<Tg (3.2)

T, is the time available to the driver to react to the danger, i.e., the interval between
when the driver initiates evasive actions and the actual collision. T, instead, represents
the time needed by the entity to stop, given its current speed and maximum decelera-
tion. T4 is computed as follows:

Ty=Tpp—Tp-Ty (3.3)
The three elements reported in (3.3) are:

o Tp. It represents the time interval between the moment at which a collision
is detected by the algorithm and the moment at which the DENM reaches the
driver. It is composed of the transmission time and the processing time. The
former includes the time to transfer data from the application server to the eNB,
and then to the entities involved in the collision. The processing time, instead, is
the time needed at the receiving node to process a DENM, from the time instant
at which the first bit is received until the moment at which the human-machine
interface (HMI) shows the warning message to the driver. In our simulations, we
set the processing time to 400 ms [39].

« Ty. It is the time needed by a human to take action following the prompt of a
DENM. This value depends on several variables such as age, travel length, envi-
ronment, etc. According to [94], we set T to 1 s.

o Tr4. It represents the time elapsed between the generation of the first DENM
related to a possible collision and when such a collision occurs.

Figure 3.5 shows the timeline of the communication between the collision detector
and the human driver, highlighting the time intervals discussed above.

3.4 Simulation results

In this section, we first present a sensitivity study on the time and space thresholds,
then we show and discuss our simulation results.

45

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

Propagation Processing Human Available
+ tx time time reaction Time Time
| 1 1 1 I
Detection ~ DENM DENM Start \M1,
and DENM tx received on HMI braking ﬂ'ﬁ
| T T T
/ b §2 H | A
TFA

Figure 3.5: Timeline of the communication between the CA server and the vehicle.

3.4.1 Sensitivity study on the collision thresholds

The thresholds #2¢, and s2c, are the two parameters that mostly affect the running of
the algorithm. For this reason, in order to optimize the performance of the CA service,
they shall be properly set. Before delving into the analysis, we remind the reader what
t2¢, and s2c, represent:

« 12¢,: it is an upper bound on the time to collision metric, i.e., the time gap needed
for two entities to reach their mutual minimum distance.

+ 52¢,: it is the upper bound to the distance at which two entities are at the time to
collision.

Both thresholds depend on several factors, such as the maximum velocity at which ve-
hicles travel, the kind of colliding entity (e.g., vehicle, pedestrian), the human reaction
time, and so on. The higher their value, the more likely it is that a pair of entities is con-
sidered in collision course. This means that high values allow the algorithm to correctly
detect all the collisions, but, at the same time, to generate too many DENM messages,
even when not needed, i.e., in situations of low or no danger. On the contrary, low
values ensure a few number of unnecessary DENMs, but a percentage of the collisions
goes undetected or detected too late. Both cases are potentially dangerous for drivers.

In light of this, we undertook a study on the number of undetected or late-detected
collisions, as functions of s2¢, and #2¢;. Our aim was to find the minimum values that
ensure 100% of collisions correctly detected: higher values only increase the number of
false positives, lower values do not permit to detect all the collisions. The results of the
study are reported in Figure 3.6.

Looking at the heatmap in Figure 3.6a, it can be noticed that, in the scenario under
study, any value of f2¢, equal or lower than 3 s, does not make the system reliable.
This means that, due to the delays introduced by diverse factors (e.g., human reaction,
braking time), the minimum #2¢, value is 4 s. For s2c,, instead, with a t2¢, equal to 4 s,
any value greater than 3 m ensures maximum efficiency to the system, allowing the
algorithm to detect in time all the collisions occurred.

46

3.4 — Simulation results

100%

100%

10

EEEEEEE

10

9
9

80%

80%

8
8

E" E
Iy 60%) 60%
& o 9 e
T T
E s} Eu‘\
[} w
4 40% e 40%
£« -
m m
20% 20%
~ ~
— Ll
L g% — 0%
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Threshold t2c [s] Threshold t2c¢ [s]
(a) Vehicle-with-vehicle (b) Vehicle-with-pedestrian.

Figure 3.6: Percentage of undetected or late-detected collisions.

As far as the case vehicle-with pedestrian collisions is concerned, Figure 3.6b shows
that the minimum #2¢, and s2¢, that guarantee maximum reliability are respectively
2 s and 3 m. The two threshold values are lower because, compared to a vehicle, a
pedestrian can stop much faster, almost instantaneously, due to her low speed.

In conclusion, it is worthy to emphasize that these two pairs of values are optimal
for our reference scenario, in which vehicles and pedestrians move at a certain speed,
drivers have a certain reaction time, and so on. Changing any of these factors, the
optimal values of the thresholds may vary.

3.4.2 Performance evaluation of the CA algorithm

We ran two sets of 300s-long simulations, one with the server at the Metro node (i.e.,
MEC fashion) and the other with the server placed in the cloud. As exemplary values
reflecting real-world mobile operators topology, we chose 5 ms and 20 ms for the MEC
and cloud case network delays.

In order to get a substantial number of collisions in each simulation, we had to tweak
the SUMO’s parameters, in order to have always-green traffic lights at the crossings.
Furthermore, we did not account for rear-end collisions since we are mainly interested
in testing our system in accidents occurring at the intersections.

Table 3.1 summarizes the key parameters used by the CA algorithm and their value.

47

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

Table 3.1: CA algorithm parameters.

Parameter Value
Vehicle Pedestrian
2¢; 4s 2s
s2¢; 4m 3m
Max CAM age 0.8s 4s
CAM frequency 10Hz 1Hz

Collisions detected

In this section we focus on the effectiveness of the service, by analyzing the number
of accidents that can be prevented. In SUMO, a collision is reported every time the

polygon describing an entity overlaps with the polygon describing another entity. The
results derived from the simulations are reported in Figure 3.7.

Il Detected [Detected too late Il Not detected
— MEC___

CLOUD

100+

801

60

Collisions [%]

40+

20+

Veh-veh Veh-ped Veh-veh Veh-ped
Colliding entities

Figure 3.7: Percentage of vehicle-with-vehicle and vehicle-with-pedestrian detected and unde-
tected collisions: MEC vs. cloud.

For what concerns the vehicle-with-vehicle collisions, the results obtained are ex-
cellent. On average, we had 17.5 accidents per simulation and all of them, regardless
the CA server position, were correctly detected. Moreover, each collision was reported
to the driver sufficiently in advance, giving him time to react and stop the vehicle.

Next, we can focus on the vehicle-with-pedestrian collisions. The pedestrian gen-
eration rate 4, is relatively low (on average we have 1 pedestrian every 10 s), so the

48

3.4 — Simulation results

number of collisions observed is lower than in the previous case. In a first moment, we
noticed a little decrease in the effectiveness of our algorithm, with a few collisions unde-
tected. This was observed both in the MAC and in the cloud case. Since such collisions
are very few, we scrutinized each of them. It turned out that all these false negatives
are due to SUMO, in particular because of the mobility model used for pedestrians at
zebra crossings while vehicles are approaching.. Let us consider a car and a pedestrian
approaching a free zebra crossing. Since no pedestrian occupies the crosswalk, the car
can proceed at its maximum speed. Once the pedestrian enters the zebra crossing, the
vehicle sees the obstacle and, according to the SUMO mobility model, starts to slow
down attempting to stop. Our algorithm, which is aware of the speed and acceleration
of the vehicle, predicts that the latter will never hit the pedestrian and, also, when it
stops completely, the pedestrian will be behind the car. As a result, no DENM mes-
sages are generated. However, in SUMO, if the vehicle stops on the zebra crossing, the
pedestrian, completing the crosswalk, rather than dodging it, physically walks over it.
Therefore, in the SUMO logs, this is reported as a vehicle-with-pedestrian collision. By
taking into account this issue and not considering such collisions, the service reliability
is maximized, since each collision is detected in time.

The results obtained from the simulations are consistent with the performance study
presented in the previous section. The values with which we set the thresholds 2¢, and
s2c, allow the algorithm to detect in time each collision occurred in the SUMO simulator.

False positives

In this section we investigate on the quality of DENM messages that are received by
the vehicles, in order to find the fraction of false positives, i.e., the DENMs referring
to situations of low or no danger. False positives can be harmful and may annoy the
drivers, increasing the likelihood they will not react appropriately to future warnings.
For this analysis, we studied the following metrics:

« DENMs sent: total number of alerts sent by the server to vehicles to warn them
about detected collisions.

« True positives: transmitted DENMs referring to collisions that actually occurred.
They include:

— True and timely positives: DENMs for which the driver had enough time to
brake before the collision happen.

— True but late positives: DENMs for which the driver did not have enough
time to brake and avoid the impact.

« False positives: transmitted DENMs referring to collisions that would not take
place.

49

Design, Implementation and Performance Analysis of a Collision Avoidance Algorithm through Simulation

Il Detected [Detected too late [False positive
‘ ‘ CLOUD _

MEC

100

801

60

40

Expected hazards [%]

201

Veh-veh Veh-ped Veh-veh Veh-ped
Colliding entities

Figure 3.8: Percentage of vehicle-with-vehicle and vehicle-with-pedestrian false positives:
MEC vs. cloud.

Figure 3.8 shows the results of this analysis. As regards the vehicle-with-vehicle col-
lisions, the false positives are always lower than 14%. With the MEC-based implemen-
tation, this value is 8.66%, smaller than 13.98%, obtained in the other case study. This
is due to the lower network latency when the CA server is hosted in a MEC platform.
Smaller delays allow more precise computations by the server, thus less unnecessary
DENMs transmission.

As far as the vehicle-with-pedestrian false positive alerts are concerned, we can see
an increase in cases. Indeed, the rate is around 33% for both server positions. Again,
better results are achieved with the MEC-based solution: 32.52% against 33.56%. How-
ever, with respect the previous case, this difference is less evident. This is due to the
speed at which entities move: pedestrians move slower, thus the higher positioning
error made by the server running in the cloud is less incisive.

The higher vehicle-with-pedestrian false positives rate can be explained by consid-
ering the characteristics of the pedestrian mobility with respect to cars. Zebra crossings
are occupied for a longer time by pedestrians and, since they move at a maximum speed
of 2 m/s and the two lanes are 6 m wide each, they will occupy the crossing for about
6 seconds. During this time, it is likely that other vehicles will approach the crosswalk
and, if they stop or pass close to a pedestrian, the CA algorithm will generate a DENM,
even if no collision actually occurs. By reducing the space threshold s2c,, we could
drastically reduce the false positives but then we would get undetected collisions.

50

3.5 — Final remarks

3.5 Final remarks

The main purpose of the work described in this chapter was the design and performance
assessment of a CA algorithm. We developed a trajectory-based CA algorithm, capa-
ble of detecting collisions between vehicles, as well as between vehicles and VRUs. We
evaluated its reliability and effectiveness through simulations, by developing, within the
SimuLTE-Veins simulator, a C-V2I CA service. The service aims at avoiding collisions
between vehicles at intersections and between cars and pedestrians at crosswalks. The
performances exhibited by the algorithm were excellent, as all the simulated danger-
ous situations, involving a possible accident, were correctly detected and drivers were
alerted in time.

51

52

Chapter 4

Implementation of a MEC-based
Collision Avoidance Service in an
Experimental Testbed

The 5GT project has aimed at designing and implementing a whole end-to-end archi-
tecture capable of offering fine grained and tailored services for a variety of vertical
domains with various needs and requirements. In order to assess the performance and
the reliability of the 5GT platform, five different vertical industries have been selected
to develop each a specific UC, which has been implemented within the platform. One
of the UCs was the CA service.

As described in the previous chapter, our first step has been the design of the CA
algorithm and its performance assessment through simulations. Here, we present the
second step of the work, i.e., the implementation of the CA service within the 5GT-MTP,
in our case represented by a MEC platform.

In this chapter we first provide some details on the MEC architecture, and then
we describe each module composing the CA service, together with its implementation
within the MEC platform. Finally we discuss the performances of our MEC-based ser-
vice and compare it against a cloud-based solution, i.e., with the CA server hosted in
the cloud.

4.1 The MEC architecture

Edge computing comes with the promise of enabling low-latency services, exploiting
distributed heterogeneous computing and network resources close to the final user,
and reducing core network load by offloading traffic to edge service instances. Recent
efforts have brought to detailed standardized architectures for MEC. Figure 4.1 depicts
the MEC architecture provided by the ETSI MEC Industry Specification Group (ISG)
[67]. The main entities of the MEC architecture are as follows:

53

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

: I
| R e e L] .
UE Mx2 - [User app Mm1 I
app L T LCM proxy |
| : Mm9 [I

: E [MEC orchestrator |-
IMEC system level l |
| management O
- - - = D r — — v — — 1 —r — — — o
Mp|3 | -+ Mm2 -+ Mm3 I
' MEC - Mm4 =
service I |

L[MEC) (vEc 200
Other Mp1 Mp1 [Service Registry J | clatform ru‘esél MEC |
MEC L | |element regls fg:n |
platform (Service) Tra:ffir: DNS N;mql mgmt mgmt |
rules .
MEC || MEC || MEC || | control | | Manding i ,
a a a ' | MEC platform manager :
e £ E MEC platform i P ; g I
-~ i | —MmB |
. : T e e e 2
Other (1 Virtualisation]
MEC : Virtualisation : Mm7 | Infrastructure Manager i I
host e infrastructure & MEC host F e e e e |
- - ’ ! MEC host level management

Figure 4.1: Standard MEC architecture [51].

« MEC host. It provides an execution environment on which (virtualized) Mobile
Edge (ME) applications can run. It is composed of the MEC Platform (MEP) and
a virtualization infrastructure (where ME applications are deployed).

« MEP. This component represents the interface between the mobile network and
ME applications. The MEP leverages the (non-standardized) Mp2 interface to in-
teract with the mobile network and access the user data plane. It exposes MEC
services via the Mp1 reference point. The component responsible for MEP config-
uration and ME application lifecycle management is the MEP Manager (MEPM),
which is under the control of the Mobile Edge Orchestrator (MEO).

« MEC services. Services discovered and consumed by MEC applications over the
Mp1 reference point. The ETSI MEC standards specify a set of MEC services that
are provided natively by the MEC platform, such as the Radio Network Informa-
tion Service (RNIS) [37], local DNS, traffic rules control. The Mp1 interface is also
used by third-party MEC applications to register and provide their own services.
Note that, it is not necessary that MEC applications provide or consume MEC
services.

+ Mobile Edge Orchestrator: This component has a global view of the whole mo-
bile edge network and is responsible for managing ME applications. The MEO is

54

4.2 — Testbed implementation

the interface between the BSS/OSS and the MEP and host. By interacting with the
MEP and the virtual infrastructure, the MEO supports the lifecycle management
(e.g., instantiation and termination) of ME applications.

4.2 Testbed implementation

In this section, we illustrate the implementation details of our testbed. It can be divided
in four main blocks:

« The MEC-enabled Evolved Packet-Core (EPC) network;

The procedures for service on-boarding and instantiation within the MEC plat-
form;

A piece of code to generate and transmit CAMs;

The CA VNF and the Cooperative Information Manager (CIM) VNF, the two main
virtual functions composing the MEC service.

Figure 4.2 provides an overview of the interactions among these building blocks. In
the testbed, two realistic OAI-based implementations of cellular user equipments (UEs)
act as vehicles. Each UE periodically sends messages (CAMs) containing information
related to the position, speed, acceleration, and heading of several emulated vehicles to-
wards a third-party database, the CIM. In turn, the MEC-enabled EPC identifies these
messages directed to the CIM VNF and applies traffic redirection rules to keep them at
the edge. The CA VNF, which runs the trajectory-based algorithm presented in Algo-
rithm 1, periodically retrieves the latest vehicle information received by the CIM. When
a possible hazard is detected, the CA VNF sends DENM messages towards the vehicles,
exploiting again the same traffic redirection rules that the MEC-enabled EPC applied
for the uplink traffic.

4.2.1 A MEC platform based on OAI

Our system builds on OAI [79], an open-source implementation of a full LTE network,
which includes the RAN and the EPC. On top of this, the MEC platform is implemented.
It exposes REST-based API endpoints to the MEO and ME applications, so that they can
discover, register, and consume MEC services, such as traffic redirection and, in our
case, the automotive service.

In order to implement the Mp2 interface, the extensions to the OAI RAN and the
core network elements have been provided. Core network extensions are critical for

'Observe that, in the previous chapter, the CIM was not considered as a third-party service.

55

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

Physical & Virtual
v — 3] - host == instance
S— S—
CA VNF CIM VNF MEC host mp2

| (ME Apps) « » reference o= Data
| point plane
1 Geth
1 Geth)\o
7
I 1 ‘\E%L
o ' 1| GTP Tunnel Internet ((I
-U ctri & :
. (OpenFlow) ~— ,// UE ;\
S/PGW-U ((.)) e a
’
S UEbearer _ S = 1 Geth — | use3 IS
R y info .) S
MEP S/PGW-C MEP+OAI vEPC \\\(('
+OAI Vi
4 < UEMME _ =~ (MME, HSS,S/PGW-C/U) OAleNB USRPB210 UE ;,\a
state S—
IVE o

RAN info

Figure 4.2: Overview on the interaction among the testbed building blocks.

traffic offloading to ME application instances, whereas specific support is needed at the
RAN level for retrieving radio network information from eNBs (e.g., per-UE channel
quality indications (CQI)), and exposing them to subscribing ME applications.

The Mp2 interface towards the RAN is based on the FlexRAN protocol [43], which
is integrated into the standard OAI software distribution. For traffic management, the
Control and User Plane Separation (CUPS) paradigm introduced by the 3GPP [89] has
been used. According to CUPS, the data- and control-plane functions are separated at
the Service/Packet-Gateway (S/P-GW) level. As a result, the S/P-GW has been split
into two entities: S/P-GW-C and S/P-GW-U (C for control plane; U for user plane). The
former is in charge of managing the signaling, in order to establish the user data plane;
the latter is responsible of forwarding the user plane data. In our implementation, the
S/P-GW-U leverages a version of OpenVSwitch (OVS), patched to support GTP packet
matching. When requested over its Mp1 interface, the MEP, through OpenFlow com-
mands, installs traffic redirection rules on the S/P-GW-U to offload data to the MEC
applications. The MEP needs to be aware of specific UE bearer information (i.e., UE
IMSI, GTP tunnel endpoint identifiers, UE and eNB IP addresses) in order to appropri-
ately install the rules. This information is available at the S/P-GW-C level thus, it was
needed to modify the OAI EPC code to share it to the MEP via its REST Mp2 interface.

In our testbed, ME applications are run on the MEC host as VMs, directly on top of
the kvm [55] hypervisor. However, this MEC platform is also compatible with Virtual
Infrastructure Managers (VIMs) such as OpenStack [81], while, as regards container-
based solutions, only 1xd [59] is supported.

Figure 4.2 shows our MEC testbed setup with their main interfaces and components.

56

4.2 — Testbed implementation

The OAI EPC is virtualized, thus the HSS, MME, and S/P-GW run as separate VMs on a
single physical machine. The same machine also hosts the MEP. The OAI eNB instead,
due to its real-time constraints, runs on a dedicated machine, to which a USRP B210 RF
board is attached.

4.2.2 Vertical service components as MEC applications

In this section, we present the procedures for the deployment of our automotive service
components as MEC applications on our platform, i.e., preparation, instantiation and
service discovery.

Application preparation and on-boarding - The ETSI MEC standards require that
MEC applications are characterized by an application descriptor (AppD) [36], which
is prepared by the service provider (in our case, the automotive vertical) as part of an
application package. It provides a lot of pivotal information for the application deploy-
ment, such as:

+ Reference (URL) to the actual application image;

Application latency requirements;

Minimum resources requirements (e.g., amount of computing resources that should
be allocated for an application instance)

« MEC services exploited or consumed by the application;

o DNS rules and traffic filters.

The latter two define the characteristics of the traffic that should be forwarded toward
the MEC application instance (e.g., traffic flows matching a specific protocol-destination
and address-port tuple).

The vertical industry provides an application package for on-boarding to the OSS/BSS
via the Customer Facing Service (CFS) Portal. Then, the OSS/BSS on-boards such an
application package to the MEC system by communicating with the MEO over the stan-
dardized Mm1 reference point, thus making it available for instantiation.

Our automotive service was composed of two main application packages, namely,
the CIM VNF and the CA VNF. Our service design did not preclude monolithic imple-
mentations, where all components are (i) provided by the same entity, (ii) developed
in a single package by the vertical, (iii) deployed in a single, standalone, MEC applica-
tion instance, but it would have limited deployment flexibility and scaling capabilities.
Furthermore, we expect that in a real-world implementation the CIM is provided by a
different entity, such as a transportation authority, and would expose its information to
multiple MEC applications (such as our CA VNF). For this reason, we opted for a micro-
services based implementation, where each component is on-boarded and instantiated

57

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

separately. As discussed later, appropriate, standards-based service registration and dis-
covery procedures are used so that the application components (including those aboard
the vehicles) can discover and share information with each other.

In conclusion, our vertical service design included the following two main MEC
application components:

« CIM VNF, which included both the CAM Receiver module and the Information
Manager module. The CIM was characterized by a modular design, with all its
components operating as separate, networked sub-services.

« CA VNF. It was composed of the CA Manager module, the CA algorithm, and
the DENM-Generator (DENM-G) module. The CA algorithm communicated with
both, as it received the CAMs to be processed by the CA Manager and, in case
of detected collision, forwarded the information needed to generate the DENM
messages to the DENM-G.

Further details on these VNFs are provided in Section 4.2.4.

Instantiation - Once the application packages have been on-boarded (as per the re-
quest of the vertical service provider over the CES portal), the OSS/BSS uses the Appli-
cation Lifecycle Management Interface of the MEO (Mm1 reference point) to instantiate
the CIM and the CA VNFs. Each request includes the identifier of the respective ap-
plication package, according to the procedure detailed in ETSI MEC 010-2 [36]. The
information included in the AppDs is used to: (i) configure the MEP for traffic redirec-
tion, (ii) update the the MEC service’s DNS, and (iii) register the necessary service API
endpoints of each component with the MEP.

Service discovery - As regards the CIM, the following requirements need to be met:

« Since CIM virtual instances are created dynamically within the MEC system, and
each client subscribed to the CA service needs to transmit its CAMs to the CIM
instance covering its region, a mechanism to steer CAMs to the appropriate MEC
instance has to be put in place. This needs to take place transparently and with
minimal UE involvement.

« Inareal-world implementation, the CIM service may be provided by a third-party,
e.g., a transportation authority, and a single CIM instance may have to provide
its information to multiple CA instances. Consequently, upon the deployment of
a CIM MEC instance, its service endpoint needs to be registered with the MEP,
so that it can be discovered by CA applications.

In order to allow vehicles to discover the IP address of the CIM covering their area,
we used a combination of standard DNS mechanisms and MEC capabilities. We rea-
sonably assumed that OBUs on vehicles are pre-programmed to search for the CIM at

58

4.2 — Testbed implementation

a well-known DNS name. Thus, to encode it, we used the appDNSRule field of the
AppD. Once the CIM VNF is instantiated, the MEO instructs the MEP(M) via the Mm3
reference point to update the MEC DNS database. A new entry is then created to resolve
the CIM name to the IP address of the new MEC application instance?.

If the vehicular UEs are instead pre-programmed to communicate with a fixed CIM
IP address (or receive this IP address by a centralized control entity), it is needed to
add specific appTrafficRule entries in the AppD, so that appropriate traffic redi-
rection rules can be set up in the MEC platform. In particular, this field enables the
use of traffic filters that can match specific flows, identified among others by tuples
composed of service IP address, port, protocol. Upon service instantiation, the MEO
extracts appTrafficRules from the AppD and, by communicating with the MEPM
via the Mm3 interface, apply them. The MEPM, in turn, gets the MEP’s traffic rules ser-
vice (in our implementation, using a REST interface), and the latter eventually applies
them to the S/P-GW-U over the Mp2 interface. This type of traffic redirection is based
on SDN and is transparent to the UE: CAMs are sent to the well-known IP address and
port of the CIM, and the S/P-GW-U redirects the traffic to the IP address/port of the
MEC instance, by applying packet-rewriting OpenFlow rules installed by the MEP.

CA VNFs, on the other hand, consume the CIM VNF data through the Mp1 interface.
Upon the CIM instantiation, the MEO extracts the appServiceProduced field from
the AppD. This field describes the service endpoint exposed by the CIM that should be
used by the CA Manager component, in order to access and consume the input to the
CA algorithm. Lastly, the MEO can finally add the service to the MEP Service Registry.

4.2.3 The vehicle simulator

In our testbed, two different UEs acted as vehicles. The mobility traces describing the
pattern of such emulated cars were obtained previously, by running the well-known
SUMO simulator. We sampled the mobility traces of each car every 100 ms (10 Hz),
recording the key information of vehicle movements, such as position, speed, acceler-
ation, and direction. With each obtained sample we created the corresponding CAM,
which was transmitted towards the eNB of the OAI cellular network and offloaded to
the CIM service.

The radio interface of the two UEs used in the testbed leveraged the standard OAI
UE implementation. Each UE was emulated by a computer, equipped with an octa-core
processor at 2 GHz and 16 GB RAM, connected to a USRP B210 RF board [38]. The
over-the-air communication was improved with the use of a pass-band filter, which
reduced undesired interference at the receiver. On both UEs, the software for transmit-
ting CAMs and receiving DENMs (the latter being alert messages sent by the CA VNF

This means that vehicular UEs use the (local) MEC DNS to resolve the domain name of the CIM.
However, this is a reasonable assumption because the UE DNS server is assigned by the mobile network
and MEC operator.

59

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

to the vehicles) was installed. This software has been called VehicleSimulator and it is
a C++ standalone Linux application. An overview of the VehicleSimulator architecture
and its main components is depicted in Figure 4.3.

VehicleSimulator

CAMs (encoded UPER)

>

CAMTransmitter

|

CAMsgCodec

B
‘

% DENMSs (encoded UPER)

H

=]
m
7
<
- O
o
o
o
o
(o]
al

:.) libMSG Grrrmmmanaan 1

- p—

Figure 4.3: VehicleSimulator architecture.

The main class of the VehicleSimulator software is the CAMTransmitter, which, as
the name suggests, is in charge of transmitting CAMs. In order to perform such an
operation, the CAMTransmitter receives as input a CSV file, in which each line corre-
sponds to a CAM. Each CAM is stored in the RAM in order to guarantee a faster access
to the information. When it is time? to generate a CAM, the CAMTransmitter starts a

new thread with which manages its creation. This thread calls the CAMsgCodec class,
which:

creates the CAM structure?, allocating memory to each CAM field;

parses the CSV line passed by the CAMTransmitter;

updates the CAM structure with the acquired information;

checks the consistency of the CAM structure with the standard [33];

encodes the CAM structure according to the Unaligned Packet Encoding Rule
(UPER) to obtain the byte array.

*Each row of the CSV file also contains the time at which the CAM should be transmitted.
“The CAM structure is provided by the library libMSG of the open-source compiler ASN1 [83].

60

4.2 — Testbed implementation

After that, the CAMTransmitter forwards the CAM via UDP socket towards the OAI-
based eNB and stores the time instant at which such a transmission took place. Observe
that, since the CAMTransmitter features a multi-thread structure, it is able to encode
CAMs at the millisecond time-scale, and therefore, it can transmit messages generated
by multiple vehicles.

When a collision between two cars is detected, the CA service has to transmit a
DENM towards the involved vehicles, i.e., towards the UEs emulating the two vehicles.
To send the DENM to the correct UE, the CA VNF needs to know the UEs’ IP address.
This information is obtainable from the CIM VNF, which stores also the IP address
of each vehicle in the system. At VehicleSimulator side, the DENMs are received (at
a specific UDP port) and encoded by the DENMCollector class. To guarantee better
performance, the latter exploits two different threads. The first listens to the UDP socket
used by the CA service and it performs the decoding and storing of the DENMs in
a dedicated queue in the RAM. The second thread, instead, processes the information
contained in such a queue and records the time spent by the VehicleSimulator to decode
each DENM. The socket operations and the management of the queue structure have
been optimized by using the boost C++ libraries.

4.2.4 The automotive MEC service

The MEC safety service implemented on the testbed had two core functions: the CIM
VNF, in charge of receiving and storing CAMs from the vehicles in the monitored area,
and the CA VNF, which ran the CA algorithm presented in Chapter 3 and forwarded
DENMSs to vehicles involved in a detected collision. In this section, we describe in detail
their design and implementation within the MEC testbed.

The CIM VNF

All CAMs originated by the simulated vehicles (i.e., the two UEs) are redirected by
the MEC-enabled EPC towards the CIM VNF. The CIM is an evolved version of the
Local Dynamic Map (LDM), a system standardized by ETSI that maintains road traffic
information that are consumed by various I'TS. Data can be received from a wide range
of sources, such as vehicles, infrastructure units, personal I'TS stations, and so on. The
LDM ensures high security to the stored data. For instance, it can provide information
on the surrounding vehicles and RSU to any authorized application. The CIM is based
on the same concept, it is a data storage located in a MEC host, able to receive all
information relevant to the CA service from vehicles moving in a given region. As
mentioned, the structure of the CIM can be split into the following two main blocks: the
CAM Receiver and the Information Manager (IM). In our testbed, the CIM was virtualized
in a VM with 2 cores at 2 GHz each and 4 GB RAM.

The first block, i.e., the CAM Receiver, is a C++ standalone application, whose struc-
ture is represented in Figure 4.4. The main performed operations are the following:

61

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

« the reception of the encoded UPER CAM messages from the vehicles;
« the decoding of the CAMs and the extraction of the vehicle data;

« the transmission of the extracted data to the IM.

CAMReceiver
CAMSs (encoded UPER)
CAMCollector
CAMInfo CIMRequest _—
‘ CIM Communication

Y ibMISG

,(........... j

Class |

Figure 4.4: CAMReceiver architecture.

The most important class of the CAMReceiver is the CAM collector class, which is
responsible of receiving, over a UDP socket, the CAM messages from the vehicles. In
addition, after having decoded them, it sends the received information to the IM via the
CIM Request object. The decoding of CAMs is provided by the CAM Info class. Upon
the reception of each CAM, a new thread is started: a specific message is created and
prepared for a UDP/TCP connection to the IM and the computation time of the CAM
reception operation is recorded.

The second fundamental block of the CIM is the IM, a standalone application im-
plemented as a JAVA 8 runnable JAR file, whose structure is shown in Figure 4.5. The
IM does not have a user interface but it is provided by a separated Web Portal based on
Tomcat 9. The IM presents a single input port and an arbitrary number of output ports.
The input port can manage multi-thread connections and is used to receive the CAMs
from the CAM Receiver. The CIM can be configured in order to manage only the CAMs
coming from vehicles in a specific area, while all the other are ignored. Such an area is
a circle, and it can be defined by specifying the latitude, longitude of the center and the
radius. Also the Web Portal uses the input port, in order to configure the Information
Manager.

The output ports of the CIM can be added or removed from a previously defined
list while the CIM is running. Each output port is managed by a module called CAM

62

4.2 — Testbed implementation

%///ﬁ/ﬁ% socket

CAMs

CIM Manager

CAMs (obj) CIM — Java 8

—
%,
—)‘ CAM Manager #1 i

xR

%

CAMs (obj)

DB Manager

-

PostGIS
2.4

Figure 4.5: Information Manager architecture.

=4

WEB Portal %

Jomcat 9

Manager in charge of satisfying the queries of a specific CAM consumer (i.e., a particular
CA instance). All CAM Managers receive a copy of the CAMs collected by the IM, from
a module called CIM Manager. Each CAM manager is configured to manage a specific
circular sub-area inside the whole monitored region (i.e. a crossroad under the control
of a particular CA instance) and only the CAM messages generated inside such a sub-
area are provided to the corresponding CAM consumers (look at Figure 4.6).

The IM can manage two storage mechanisms. The first is a volatile mechanism,
used by the CAM Managers, that allows the storage of the received CAM messages in
the RAM memory. On the contrary, the second one is a persistent storage mechanism,
in which CAMs are stored in a PostgreSQL relational database. Clearly, the volatile
mechanism guarantees a faster access to the acquired CAMs. As can be easily guessed,
the amount of memory needed to store CAMs is directly proportional to the number
of vehicles traveling in the region monitored by the CIM. Therefore, the volatile mech-
anism satisfies the requirement of readiness, which is of utmost importance for a CA
algorithm, but it is not suitable for other needs, such as the statistical analysis on the
messages collected by the CIM. Through the use of a PostGIS extension, the persistent
storage mechanism can support statistical analysis through searches of messages inside
geographical regions. With these results, for example, we can improve either the CA
algorithm or the definition of the area controlled by the algorithm, i.e., the area un-
der the CAM Manager control. In order to avoid a worsening of the IM performance
owing to the high workload of the persistent storage, the DB Manager module imple-
ments a multi-thread storage mechanism. In particular, a queue for storage sessions
is implemented and served when it is more convenient. This approach has the effect
that persistent storage mechanism is performed with delay and with the requirement

63

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

CIM - Show CAM's on map

¥ MEC area (lat: 45.0584981°, lon: 7.659713613°, radius: 1100 m)
Found 2 CAM Managers:
¢/ CD 1 (lat: 45.033405%, lon: 7.657997°, radius: 500 m) | ¥ CD 2 (lat: 45.062347°, lon: 7.663501°, radius: 400 m)

@

Found 0 CAMs of 0 vehicles:

. Coy, A A
Map Satellite Vg, Ba %ac, CENTRO -
o) 3
& i S
g q?a’?bef Piazza Solférino o
CENISIA S
STRADA Cb’s,, Palazz
- A
& Cae,
e,
£ e Movie theater @
(= Multisala Reposi
=3
&
5 2 Catholit
Ck
3 Mz
5 s e
3 -
7%%_ BORGO & Catholic a&'
%
%}‘ Park SAN PAOLO Monte dei Capp
2, Parco Ruffini
%]
z
Vi f Parl; i
* Tin arco de
&5 Valentino -
SAN SALVARIO %
o
E Borgo Medievale @
: +
:é\ o
S
(]
K) Park
. 8 SANTA RITA Parco Cavalieri —
G] o b{f\éﬂ?:cm University hospital
Doge g S A — Map dats 2010 Google Terms of Use Report amap error

Figure 4.6: Screenshot of the CIM Web Portal: example of the map used for selecting the area
monitored by the CAM manager.

of additional available memory.

The CA VNF

The scope of the CA VNF is to detect imminent collisions between vehicles on a specific
portion of the scenario controlled by the CIM. In our design, the CA VNF has been
developed as a standalone C++ application. It was deployed in the MEC host on a
dedicated VM with 1 core at 2 GHz and 2 GB RAM. An overview of the CA VNF is

shown in Figure 4.7.
One of the main components of the CA VNF is the CA Manager. The CA Manager

can query a set of, not necessarily all, CAM Managers at the CIM VNF, according to the
monitored area. This implementation choice was motivated by the assumption that the
CIM belongs to a third-party that does not run, but only responds to the CA VNF.

64

4.2 — Testbed implementation

Collision Avoidance

‘ CA Algorithm ’

—-I CA Manager DENM-Generatorl——>

Class

Figure 4.7: CA VNF architecture. The CA Algorithm is the one presented in Chapter 3 and
described in Algorithm 1.

Every 5 ms’, the CA Manager queries the latest CAMs to the CIM over a TCP con-
nection. The 5ms-threshold that we set represents an optimal trade-off between the
additional delay due to sequential queries to the CIM and the computational load of
the CA algorithm. The CIM provides CAMs in an aggregate form in JSON format to
the CA Manager. In turn, the CA Manager interprets the response and passes the new
CAMs, if any, to the CA algorithm. The latter updates the trajectories of the vehicles
whose CAMs have just been received, and compares them with the trajectories of all
known vehicles traveling in the monitored area. As described in Section 3.3.3, in order
to improve the system performance we introduced two enhancements in our algorithm:
(i) the range of action filter, to avoid the comparison of trajectories of vehicles far from
each other; (ii) the cancellation from memory of the information concerning all those
vehicles whose last CAM received is older than 0.8 s. Observe that, since the CA VNF
queries the CIM at a constant rate, the memory cleanliness from stale information hap-
pens only if the collision detection phase lasted less than the query cycle duration, i.e.,
5 ms.

Each time a pair of vehicles is detected on collision course, the CA algorithm creates
a JSON with the relevant information and passes it to the DENM-G module. The latter,
after the reception of such JSON data, prepares and transmits unicast DENM messages
to the involved vehicles. In order to avoid an excessive number of duplicated alerts, we
imposed to the DENM-G not to generate the same DENM message for a given collision®
more than twice every 100 ms. Once these messages reach the two candidate vehicles,
the HMI processes them and, through a sound for example, warns the drivers about the
imminent danger.

*Tt is possible to set a different value, according to the needs.

®A collision is identified by the couple of colliding cars and the location of the accident.

65

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

As far as the architecture of the DENM-G is concerned, its two main classes are
the DENManager and the DENMTransmitter. The former parses each JSON received by
the CA algorithm and prepares the DENMs (e.g., fills the messages fields); the latter
is in charge of transmitting the DENMs via the UDP socket. In order to transmit a
DENM message, the DENMTransmitter runs the DENMsgCodec class, the equivalent
of the CAMsgCodec previously described. Therefore, such a class creates the DENM
structure, updates it with the information contained in the JSON received by the CA
algorithm, checks the consistency with the standard, and finally encodes the DENM
obtaining a byte array ready to be transmitted.

4.2.5 Related work and MEC testbed implementations

An extensive body of works have studied MEC architectures (e.g., [96]), but concrete
MEC system implementations are scarce. In [93], Subramanya et al. present the design
and implementation of a MEC platform with the goal of requiring no modifications both
at the RAN and EPC. Their idea is to maintain the necessary UE context information
to carry out traffic steering by intercepting the S1 control plane traffic (S1-C) between
the eNB and the MME, during UE attachment and handovers. The work of Schiller et
al. proposes a similar approach, in order to avoid any interaction between the EPC and
the mobile edge system. However, we argue that currently it is not possible to have
full MEC functionality in a way transparent to the network, for two different reasons.
Firstly, if S1-C traffic is encrypted, this approach does not directly work, since it is not
possible to intercept the S1-C messages to monitor the necessary UE state at the MEC
platform level; secondly, one of the main MEC platform services is the RNIS: without
having an interface to the RAN (part of the Mp2 reference point), it is not possible to
retrieve real-time radio network information from the eNBs. Therefore, we opted for a
solution that requires a set of necessary extensions at the EPC and eNB levels in order to
implement the Mp2 interface, which tailors our solution to OAIL particularly regarding
the RAN part.

Our implementation bears more similarities with LL-MEC described in [74], a MEC
design also focused on OAIL As in our case, LL-MEC uses SDN techniques for control-
user plane separation, as well as the same southbound protocol [43] for retrieving RAN-
level information from OAI eNBs. Other implementation differences aside (e.g., differ-
ent Mp2 interface towards the EPC control/user planes), our MEC system further in-
cludes a standards-compliant implementation of the Mm1 reference point of the MEO
towards the OSS/BSS, an RNIS interface that fully complies with ETSI MEC 012 [37],
and platform components for MEC service discovery and registration.

66

4.3 — Performance metrics

4.3 Performance metrics

In this section, we present the different metrics we used in our experiments to assess the
performance of the MEC testbed and of the MEC CA service presented above. Specif-
ically, we present latency related metrics and metrics related to the ability of our road
safety service to detect collisions. Using such metrics, we then compare our MEC-based
solution against a cloud-based implementation of the CA service, i.e., without exploit-
ing the MEC traffic redirection rules and with the CA and CIM VNFs running on a cloud
data-center.

4.3.1 End-to-end delay and application processing times

To evaluate the ability of the CA service to alert a vehicle on a collision course with
real-time information, we used the end-to-end delay metric. The end-to-end delay is
computed only with CAMs that trigger a DENM, and it is defined as the time that elapses
between the transmission of a CAM by a vehicle and the reception, by the same vehicle,
of the DENM that such CAM triggered. Figure 4.8 depicts all the components constitut-

CIMVNF CAMready CAVNF Collision

«))CAM X reception for query query detected DENM TX
| ¢ ®:::: 9 >— >
UE Traverse Cellular Store CAMsin Algorithm search DENM CA service

| Network CAM manager for collisions preparation
™ | <

Traverse Cellular
Network

Figure 4.8: Components of the end-to-end delay.

ing this metric. It can be observed that the end-to-end delay comprises both network
delays and processing times. Specifically, as network delays, we considered the time
needed by a CAM to be delivered to the CIM and, on the return path, i.e., the time
needed by the DENM message to reach the vehicle that previously sent the CAM. As
processing time instead, we considered both the one at the CIM VNF and the one at
the CA VNF. As regards the CIM processing time, we took into account both the time
needed to decode CAMs and to present them at the CAM managers for the CA queries.
For the CA VNF instead, we considered the time needed by the algorithm to search for
collisions and the time to generate and transmit the DENM message to the correspond-
ing vehicles.

While network latency strongly depends on whether the CA/CIM VNFs run in the
cloud or in the MEC, their processing time depends only on the computational resources

67

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

assigned to the VMs running them and on the incoming traffic that they process. There-
fore, in order to profile the processing times of the two VNFs composing the automotive
service, we also performed tests varying the number of vehicles in the analyzed scenar-
10s.

4.3.2 CA service performance

To evaluate the performance of the CA service when implemented in our experimental
testbed, we first built a ground truth for the collisions. We prepared diverse mobility
traces and used each of them to run simulations. For each simulation we got a SUMO
error-log file reporting all the occurred collisions between vehicles if no CA service is
implemented. Since the same mobility traces are also used in our testbed, analyzing
the DENMs correctly received by the two UEs, we easily computed two fundamental
performance metrics: (i) the percentage of detected collisions, and (ii) the percentage
of false positives.

For each detected collision, according to the methodology illustrated in Section 3.3.4,
we assessed whether it has been detected in time or too late. Moreover, as regards
the false positive alerts, i.e., an alarm is raised but no collision occurs, we computed
the minimum distance between the trajectories of the two involved vehicles. In such a
way, it was possible to understand how far from an actual collision the involved vehicles
were.

4.4 Performance evaluation

In this section, we first present the scenario considered for our performance evaluation.
Then, we discuss the obtained results in terms of end-to-end and processing delays, and
collision detection performance of our CA service in its MEC and cloud implementation.

4.4.1 Reference scenario

The reference scenario is reported in Figure 4.9 and it is similar to the one described in
Section 3.3.2. The main difference is the absence of pedestrian areas since in this case we
focused entirely on collisions between vehicles at intersections. Vehicles, which were
emulated by two UEs, traversed the scenario from north to south (or vice-versa), and
from east to west (or vice-versa). In order to simplify the DENM transmissions towards
the pair of vehicles involved in a collision, we used one of the two UEs to emulate only
vehicles in the north-south direction, while the second UE to emulate the presence of
the vehicles traveling in the east-west direction. Finally, to evaluate how the number
of cars in the system affects the service performance, we used three different values of
vehicle density: (i) high, i.e., 20 vehicles/km, (ii) medium, i.e., 14 vehicles/km, and (iii)
low, i.e., 7 vehicles/km. The arrival times of cars into the system followed an exponential

68

4.4 — Performance evaluation

Figure 4.9: Screenshot (from SUMO) of the urban area monitored by the MEC CA service.

distribution, with mean set to the aforementioned values in the three different cases,
respectively. For each vehicle density, we performed 10 different runs of 300 seconds
each. According to the study presented in the previous chapter in Section 3.4.1, we set
the threshold r2¢; and s2¢; (which are key parameters to guarantee high performances
to our CA algorithm) to 4 s and 4 m, respectively.

4.4.2 End-to-end and processing delays

As described in Section 4.3.1, the end-to-end delay is composed of three main compo-
nents:

 The network latency;
« The CIM storage and processing times;
« The time to run the CA algorithm and prepare DENM messages.

Note that, the only difference between our CA MEC implementation and the cloud
counterpart is represented by the network latency. In order to account for the additional
delay required by the CAMs to reach the CIM when deployed in a cloud server, we ran
two measurement campaigns. With our OAI UE we first pinged 10,000 times the CIM
in the MEC and collected the measured network latency. Then, to evaluate the impact
of traversing a real cellular EPC to reach a cloud server, we pinged with a commercial
smartphone the Amazon data-center closest to Turin (where our testbed is located), i.e.,
the one in Paris [12]. Figure 4.10 shows the cumulative distribution function (CDF) of

69

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

1.0
0.9+
0.8+
0.7
0.6

CDF

0.5 1
0.4 1
0.3 1

0.2 1
— MEC
—— CLOUD

0.1+

0.0 T T r :
0 20 40 60 80 100
Time [ms]

Figure 4.10: CDF of the network delays measured in the MEC and in the cloud experiments.

the obtained network latency in the two cases of MEC and cloud-based implementation.

Interestingly, the delay difference between cloud and MEC approximates a Gaussian
distribution, with mean 44.24 ms and standard deviation 8.36 ms. Thanks to this result,
we leveraged NetEm [73] to mimic the effects of the cloud in our testbed. Specifically,
when evaluating the performance of the CA service in the cloud, we introduced a Gaus-
sian distributed additional delay both at the ingress and the egress port of the CIM and
CA VNFs, respectively. The distribution of the total delay added to each packet was
consistent with the measured difference between MEC and cloud in our measurement
campaigns. For what concerns the processing times, which statistically are the same in
the cloud and the MEC case studies, we report in Figure 4.11 the CDF of the CA VNF
processing time for the three vehicle densities we selected. A higher number of vehicles
in the system clearly affects the performance of the CA VNF (mainly, the CA algorithm
it runs). Indeed, times increase on average by 50% between the three vehicle densities.
This is mainly due to the fact that the number of trajectory comparisons performed
by the algorithm increase, and so does the processing time. Nevertheless, even for the
highest value of vehicle density, in 99.9% of the cases, the CA VNF processes all CAMs
and, when needed, triggers the required alarms, within 5 ms, i.e., before querying again
the CIM.

For what concerns the CIM VNF processing times, they are barely affected by the
increase of vehicles in the monitored area. Even in the case of high density, the worst-
case processing time at the CIM is below 0.5 ms. This is due to the fact that the CIM
handles (theoretically) more vehicles than the CA and, to mimic a real deployment, we
assigned to the CIM VM twice the capacity (in terms of RAM and CPU) of the CA VM.

70

4.4 — Performance evaluation

1.0

0.9+
0.8+
0.7
0.6

CDF

0.5 1
0.4 1
0.3 1

0.2 1 —— 7 veh/km
—— 14 veh/km

0.1 1
—— 20 veh/km

0.0 T T T r :
0 1 2 3 4 5 6
Time[ms]

Figure 4.11: CDF of the processing time of the CA VNF.

Finally, Fig.12a and Fig.12b depict the experimental CDF of the end-to-end latency
of our MEC and cloud-based implementations, respectively. Each curve is obtained
considering all the DENMs received by the vehicles in the 10 different runs performed
for each vehicle density. In each test, the average number of collisions is 91 for the
high-density case, 44.6 for the medium density, and 11.2 for the low density. Given
the algorithm used and the parameters setting (i.e., the thresholds r2¢, and s2¢,), the
maximum number of DENMs that can be generated for a given collision is 80. Indeed,
in the best case, two cars on a collision course start receiving DENMs 4 s before the
expected impact, once for every CAM they transmit, i.e., two CAMs every 100 ms.

In both end-to-end latency distributions, we can notice a discrepancy between the
summation of the three components we presented above and the total latency. Such
discrepancy is mainly due to two reasons: (i) the CA Manager does not query the CIM
as soon as a CAM is logged into the corresponding CAM manager, but only once every
5 ms; (ii) each CAM has to flow from a VM to another and such latency is not taken into
account in any of the components we presented. On average, the observed discrepancy
is 4.34 ms for both implementations, which is in line with the two components we
cannot measure.

In our MEC-based implementation, for any vehicle density considered, the 99.9% of
the end-to-end latency values we obtained was below 50 ms. In particular, the average
end-to-end latency measured was 29.55 ms for the low-density case, 29.89 ms for the
medium density, and 30.5 ms for the high density. As regards our cloud-based imple-
mentation, instead, the end-to-end latency has never fallen below 50 ms. On average,
the latter were 44 ms larger than the end-to-end delays in the MEC-based implementa-
tion, which exactly corresponds to network latency differences.

71

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

1.0
0.9 1
0.8 1
0.7 -
0.6 1

CDF

0.5 1
0.4 1
0.3

0.2 —— 7 veh/km
—— 14 veh/km

0.1 -
—— 20 veh/km

0.0 ; ' ! ! ! I I
10 15 20 25 30 35 40 45 50
Time [ms]

(a) MEC-based implementation.

1.0
0.9 1
0.8 1
0.7 1
0.6 -
0.5 1

CDF

0.4 1
0.3 1

0.2 1 —— 7 veh/km
—— 14 veh/km

0.1 -
—— 20 veh/km

0.0 T T T .
50 60 70 80 90 100
Time [ms]
(b) Cloud-based implementation.

Figure 4.12: CDF of the end-to-end delay as a function of the vehicle density.

In order to evaluate if the end-to-end latency achieved by our implementation is
good enough, we can consider as a reference the cycle time of LiDAR sensors on board
of a vehicle [30]. These sensors typically update their information every 60 ms so data

72

4.4 — Performance evaluation

carried by a DENM are consistent with on-board sensors, only if the maximum end-
to-end latency does not exceed that value. As shown in Figure 4.12a, our MEC im-
plementation is well within the cycle time of a LiIDAR sensor, even for the worst-case
end-to-end latency in the high density case. On the contrary, the cloud-based imple-
mentation of the CA service does not guarantee the 60 ms bound, meaning that the car
can potentially act upon obsolete information.

4.4.3 CA service performance

Thanks to the ground truth we built with the SUMO error-log, we checked the per-
formance of our CA service in terms of timely detected collisions. The results of our
experimental measurements are reported in Figure 4.13. We can see that both MEC-

Il Detected [Detected too late I Not detected
100] ZMEC “CLOUD MEC CLOUD MEC CLOUD

80

60

Collisions [%]

40+

20+

7 veh/km 14 veh/km 21 veh/km
Vehicle density

Figure 4.13: Percentage of collisions detected and undected: MEC vs. cloud.

and cloud-based service could alert in time all vehicles on a collision course, and that
all crashes were avoided, under all the vehicle densities considered. We hence demon-
strated, also through a hardware-in-the-loop simulation technique, the effectiveness of
our CA algorithm, which showed excellent reliability.

We then analyzed the number of alarms raised unnecessarily by the CA service.
It is worth stressing that false positives can be harmful to the effectiveness of the CA
service; indeed, too many false positives annoy the drivers and increase the likelihood
they will not react appropriately to future warnings. The analysis of the false positive
cases are shown in Figure 4.14. In particular, the percentage of false positives obtained
by the MEC and the cloud implementation of the CA service is reported in Figure 4.14a.
For the low and medium vehicle density, the number of unnecessary DENM:s is similar

73

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

Il Detected [Detected too late [False positive

100] MEC “CLOUD MEC CLOUD MEC CLOUD
— 801
9
(2]
e
S 60
©
e
el
]
o 40
(9]
o
x
w
201
7 veh/km 14 veh/km 21 veh/km
Vehicle density
(a) Percentage of false positives: MEC vs. cloud.
1.0 1
0.8 1
0.6
L
o
@]
0.4 1
0.2+
— MEC
0.0 0.5 1.0 15 2.0

Minimum distance between vehicles [m]

(b) Distances between vehicles receiving false positive alert messages:
MEC vs. cloud.

Figure 4.14: Analysis of the false positives: MEC vs. cloud.
for the two case studies, around 10%. On the contrary, when many vehicles populate
the monitored area, with the MEC-based solution we obtained a significantly smaller

number of false positives. Figure 4.14b instead, depicts the minimum distance between
vehicles involved in situations that led to false positives. Indeed, we were interested

74

4.5 — Field tests with real vehicles

in figuring out whether false positives referred to potentially dangerous situations (i.e.,
vehicles do not collide but pass very close), or they were due to incorrect detection
of the CA algorithm code. As noticeable, each false positive case refers to situations
where the vehicles reached a minimum distance lower than 2.1 m. In particular, for the
MEC implementation, such a value falls to 1 m. This difference is due to the network
latency because the additional delay suffered by the cloud version of our service causes
a greater inaccuracy on the calculation of vehicles trajectories.

4.5 Field tests with real vehicles

In order to prove the effectiveness of the CA service in real-word scenarios, several
tests with actual cars were performed. These trials were conducted in a test circuit
located in the headquarters of CRF-FCA in Beinasco and involved two vehicles and
expert drivers, who were instructed to simultaneously approach a junction, creating a
collision risk situation.

Firstly, we deployed our CA service in a host, located in a RSU within the test circuit,
and, on a separate device, the OAl-based eNB. The equipment of the two vehicles is
represented in Figure 4.15. The two cars were equipped with a Uu interface, used for

CA \
M ’ ‘ Application GPS

Emergency Data ‘ Uu
Brake X M
Actuator Fusion j nterface
Rolling
Sensor
CAN

Figure 4.15: Vehicle equipment used in the field tests [6].

o

communicating with the eNB, and thus to send CAMs and receive DENMs. Position,
speed and acceleration are the main inputs to our CA algorithm, and they were provided
by a high-accuracy GPS module and coded inside each transmitted CAM.

When a DENM was received, it was decoded and processed by the on-board com-
puter. In our case, the DENM was an alert sent to report an imminent danger, therefore,
via the Controller Area Network (CAN) bus, a message was sent toward the emergency
brake actuator, which triggered an autonomous braking operation to stop the vehicle.

75

Implementation of a MEC-based Collision Avoidance Service in an Experimental Testbed

The reception of an alert message was also displayed to the driver thanks to the vehicle
HMI.

In each test, vehicles approached the intersection at a speed around 13.89 m/s (i.e.,
50 km/h) and they transmitted CAMs at a frequency of 10 Hz. These messages, through
the MEC-enabled EPC, were then redirected toward the CIM. Our algorithm was hence
always aware of the speed and position of the two vehicles. Once the algorithm evalu-
ated that in a time lower than ¢2¢, the two vehicles would have reached a distance lower
than s2¢,, it generated and forwarded a DENM to both vehicles. As described above,
the reception of DENMs activated the emergency braking system making the vehicles
stop before a potential collision.

The outcome of these test sessions was excellent, as all the collisions were avoided
thanks to the timely reception of the DENM messages. Further details together with
the collected metrics cannot be reported in this manuscript since they are under non-
disclosure agreement.

4.6 Final remarks

In this chapter, we presented the implementation of our C-V2I CA service in a MEC-
based architecture. The service showed high reliability and effectiveness in all the sce-
narios considered, being able to detect each occurred collision. We compared two di-
verse service implementations: at the MEC platform and in a cloud data-center.

Given the automotive ultra-low latency requirements, we have confirmed that the
MEC is undoubtedly one of the main key enablers for delay sensitive applications. We
have seen that sensors usually refresh their information every 60 ms, and, with a cloud-
based service implementation, it is impossible to guarantee a maximum end-to-end de-
lay lower than this value. This means that the information contained in the DENM is
not coherent with data collected by on-board sensors.

Furthermore, recently automotive companies are leaning towards an even more
stringent end-to-end latency for the road safety applications, i.e., 20 ms [26]. Such
latency is clearly hardly achievable with legacy 4G networks, even with the support of
a MEC (see Figure 4.10). Therefore, as already pointed out, only 5G networks can fully
enable this kind of critical applications. As a matter of fact, 5G is expected to provide
end-to-end latency below 2 ms [8].

76

Chapter 5

Service Instantiation, Arbitration and
Scaling in the 5G-Transformer
Architecture

While the previous chapters have described the design of a trajectory-based CA algo-
rithm and the implementation of the corresponding service in a MEC testbed, in this
chapter we present the third and last step of our work, i.e., the deployment of the ser-
vice inside the 5GT platform, together with the evaluation of two of its key network
functions.

The 5GT architecture facilitates the instantiation of services by vertical industries
and provides runtime management functions to ensure the fulfillment of the require-
ments throughout the whole lifecycle of the applications. By interacting with the 5GT-
VS, a vertical user can request the instantiation of services, which, through the 5GT-SO,
can be deployed on the 5GT-MTP. In our case, the 5GT-MTP is represented by the MEC
platform, the vertical user is represented by an automotive industry, while the services
deployed on the platform are a high priority service, i.e., the CA application, and a low
priority one, i.e., a video streaming application.

In the next sections, we describe the service instantiation in the 5GT architecture
and we focus on two key network functions available as part of the platform, namely,
the service arbitration and the service scaling.

5.1 Vertical service instantiation

Whenever a vertical industry needs to deploy a service on the 5GT platform, it inter-
acts with the 5GT-VS, which is the system entry point. The 5GT-VS provides a frontend
through which verticals can request services and specify their composition in terms of
VNFs and performance requirements, by filling in the vertical service descriptor (VSD).
Such a VSD is then translated by the 5GT-VS into a network service descriptor (NSD),

77

Service Instantiation, Arbitration and Scaling in the 5G-Transformer Architecture

which is a service graph composed of VNFs chains and other pivotal instantiation pa-
rameters (e.g., deployment flavor). Then, the 5GT-SO interacts with the 5GT-MTP and,
by means the NSD, it instantiates the service. The 5GT-MTP is hence responsible for
managing the computing, storage and networking resources used to implement the
VNFs, and the required transport resources to interconnect the different VNFs of a ser-
vice placed in diverse points of presence (PoPs), as demanded by the 5GT-SO.

5.1.1 CA service instantiation

In this section we describe the automated deployment of the CA service in the 5GT
platform. Figure 5.1 presents the setup used for this demonstration, which was split

Vertical User i Vertical
NEXTWORKS | Service
Request
5GT-VS User GUI |
5GT Service Prowd(ir 5GT-VS Admin GUI |
5GT-SOGUI -~ I
CTTC- 7 Fcomm
2 openstack.
MTP GUI Openstack GUI I

Edge £ openstack.
host _

VEPC VNF

CAVNF
CIM VNF B
DENM-G VNF | CTTC
S— ’ Barcelona
OPEN Ai (Italy) | (Spain)

== INTERFACE

Figure 5.1: Experimental setup used to instantiate the CA service on the 5GT platform.

in two geographical sites, namely, Barcelona (Spain) and Turin (Italy). The 5GT-VS,
the 5GT-SO and the 5GT-MON were placed in Barcelona; the 5GT-MTP (i.e., the OAI-
based MEC platform), on which the CA service was deployed, in Turin. Differently
from the implementation described in the previous chapter, here the DENM-G module
was separated from the CA VNF and constituted a third virtual function. As a result,
the CA service was composed of the following VNFs:

« CIM VNEF: it was in charge of receiving, decoding and storing CAMs;

« CA VNF: it queried CAMs to the CIM, ran the CA algorithm and, in case of
danger, triggered the generation of DENMs to the DENM-G VNF;

« DENM-G VNF: it generated and transmitted DENMs messages.
78

5.2 — The service arbitration function

The information coded in the DENMs were sent to the DENM-G by the CA VNF in JSON
format. The VIM of the MEC platform was based on an OpenStack all-in-one Devstack
deployment, which was visible by the 5GT-SO thanks to a virtual private network (VPN)
that connected the two sites.

In order to deploy our CA service using the 5GT architecture, we interacted with
the graphical user interface (GUI) of the 5GT-VS (depicted in Figure 5.2) and made the
CA service instantiation request. Whenever a vertical user submits an instantiation

<« c @ © | # 192.168.200.3 &
©) = NEXTWORKS © .
1B SIEERSITIAN - ENGINEERING FORWARD =

VS Descriptors

Id Name Version Vsb Id Slice Service Tyy)e Managemen(Tyy)e
o o o N - PROVIDER_MANAGED
al URLLC ROV }_MANAGI
o provibER avices

Figure 5.2: 5GT-VS GUI list of services the automotive vertical can deploy.

request, it is forwarded to the 5GT-SO which calculates the appropriate placement of
the different VNFs (in our case, the MEC platform) to honor the requirement embedded
in the request and communicates with the MANO platform to launch the different VMs
at the underlying VIM (in our case, the Openstack environment). Then, it checks and
manages the need for setting up potential links for VNFs placed in different PoPs. In
addition to this, since our NSD contained monitoring parameters and autoscaling rules,
the 5GT-SO interacted with the 5GT-MON to create the appropriate exporters and alerts
to react in front of a violation of the service requirements.

We repeated this instantiation procedure several times and, on average, it took about
a couple of minutes to create the three VNFs composing the CA service and the neces-
sary virtual links (VLs). Figure 5.3 shows the virtual network (VN) of the CA service
created on our 5GT-MTP (overview provided by the GUI of the 5GT-SO).

5.2 The service arbitration function

In this section, we focus on the arbitration capability of the 5GT platform. In this con-
text, arbitration refers to handling the various services, belonging to a same vertical
customer, according to their (i) SLA requirements, (ii) service priorities, and (iii) re-
source budget available to the vertical. In particular, we present a case in which, a low
priority video service of the automotive vertical is terminated, when a high priority

79

Service Instantiation, Arbitration and Scaling in the 5G-Transformer Architecture

© | #Z 10.0.200.233 80% w

View of NS: NFV-NS-ca

VNFD @
VLD
PoP_3

vCIM

\.VDENMgenerator

vCA

vl

Figure 5.3: 5GT-SO GUI: VN of the CA service.

road safety service needs to be instantiated and there are not enough resources to run
both services in parallel.

5.2.1 The 5GT Arbitrator model

One of the main components of the 5GT-VS is the Arbitrator. The Arbitrator regulates,
for each vertical, how its services get access to the available resource budget, and de-
cides how services are mapped to isolated or shared 5GT slices. The Arbitrator does
not have a complete view of the resources available at the infrastructure but works
with limited information. It knows the SLAs among the verticals and it may balance
the resources assigning probabilities to the services to be deployed based on the SLAs of
the verticals [25]. Furthermore, when resources are overused and new services cannot
be instantiated, the Arbitrator reassigns the resources among the verticals, according
to their SLAs.
The main tasks of the Arbitrator can be summarized as follows:

« Making decisions about how to map new vertical services in network slice is-
tances (NSIs), allowing multiple vertical services to share one or more NSIs or
network slice subnet instances (NSSIs);

+ Determining the deployment flavor (DF) of each service, ensuring the vertical’s
quality of service (QoS) requirements, while taking into account the services’
priority level.

80

5.2 — The service arbitration function

Finally, note that, upon each new instantiation request, the Arbitrator may need to
update the DFs of previously allocated VSIs.

5.2.2 Service arbitration demonstration

In this section, we demonstrate how the 5GT Arbitrator is able to ensure the automated
fulfillment of the established business SLAs between a vertical and the provider of the
5GT platform. For this demonstration we used the 5GT platform and the setup shown
in Figure 5.4. The latter is a bit more complex than the one previously presented, since

|
[Vertical User i S]
NEXTWORKS |
|
|

109)

5GT-VS User GUI
Pisa / <
(Italy) © = openstack. (Control plane VPN ﬁ o AN\
—n 3 CTTC
(Control plane VPN ﬂ 3 Barcelona
VS_1 service T 1 (Spain)
VS_2 service
ack.
Turin 3
(Italy) “egee

VvEPC VNF m

NFVI-Pop #3 L~

CA CA VNF 5GT Service Provider
service || CIMVNF 5GT-SOGU| G
DENM-G VNF —
CTTC-MTP ™ i o
aul : 5GT-VS Admin GUI

VS_1 service | Video Control 1 l

+ RNIS ©0PEN AIR
NFVI-Pop #1 N AR, |

Figure 5.4: Experimental setup used to evaluate the arbitration function of the 5GT platform.

a third NFV infrastructure (NFVI) PoP is added. Again, the 5GT platform (except the
5GT-MTP) is placed in Barcelona, while services are deployed in the NFVI of Turin
and Pisa. The three sites are interconnected through VPNs, which are used for both
the control and data plane. Each of the three NFVI-PoPs is managed by its own VIM,
based on an OpenStack all-in-one Devstack deployment. The Wide Area Infrastructure
Manager (WIM) leverages the Ryu open source SDN Controller [87].

For this demonstration we considered two types of vertical services: the well-known
CA service and a video streaming service. As described in Section 4.2.3, two UEs acted
as applications consumers and the communication between them and the services hap-
pened through an OAI eNB. On a dedicated machine, connected to the eNB, we devel-
oped a VM running the RNIS. From the eNB, it periodically received the CQI of each
active flow and shared this information with the running applications. The OAI-based
testbed was deployed in the site of Turin.

81

Service Instantiation, Arbitration and Scaling in the 5G-Transformer Architecture

The CA service enhances road safety, while the video streaming provides multime-
dia content to vehicular users. The latter service was designed with two different DFs,
having different priorities, specified at the moment of on-boarding through the 5GT-VS:

« The high priority DF: it consisted of a single VNF (i.e., a video server), holding
both the web-server and a cache of videos. It is indicated as Video Server 2 in
Figure 5.4;

« The low priority DF: it was composed of two VNFs, namely, a video server VNF
(Video_Server_1) and a video controller VNF (Video_Control_1). The latter inter-
acted with the RNIS to retrieve the per-UE CQI in order to adjust the quality of
each video streaming flow.

The second flavor has lower priority because we considered the primary goal of the
automotive vertical to offer the video streaming service, no matter which quality can
be provided. The CA service, instead, was composed of the well-known VNFs. Clearly,
being a safety service, the CA application has high priority.

The first service instantiated on the 5GT platform was the entertainment service.
Through the 5GT-VS GUI we hence made the request for the instantiation of both video
streaming service flavors. According to the procedure described in the previous section,
the 5GT-SO processed the request and deployed the video streaming services in the un-
derlying infrastructure while satisfying their constraints embedded in the descriptors.
The low priority instance was deployed between two PoPs: the two video servers ran in
Pisa, whereas the video controller was placed in Turin, close to the RNIS as it needed to
leverage low-latency channel quality measurements. Completed the instantiation, the
videos hosted in the cache of the two video servers could be consumed by the simulated
vehicles (i.e., the two OAI UEs).

We then requested the instantiation of our second service, i.e., the CA service. For
each new request, the Arbitrator module of the 5GT-VS checks the resource budget
available for the vertical user that made the request. In this particular case, we consid-
ered our automotive vertical with a very limited budget of resources, and, as a result,
the three services could not be run simultaneously. Therefore, according to the priority
of the current deployed services and the new incoming request, the Arbitrator decided
to terminate the low priority video streaming service, in order to release resources for
the CA application. When the Arbitrator takes the decision to terminate a service, the
5GT-VS waits for the confirmation of the termination and then proceeds with the in-
stantiation of the new service.

The status of vertical services can be monitored via the 5GT-VS GUI at any time, as
depicted in Figure 5.5. In particular, the latter refers to our arbitration demonstration:
Figure 5.5a shows the impossibility for the 5GT-VS to instantiate the CA service owing
to the lack of available resources; Figure 5.5b represents the following phase, i.e., the
low priority service is terminated and the CA service is instantiated.

82

5.3 — The service scaling function

© | £ 192.168.200.3 | - oy

= NEXTWORKE £ -

VS Instances

Id Name Description Vsd Id Status

ACionk 51 vs-small video streaming service “ NSTANTIATED

Home

Bl Vs Blueprints

[B vs pescriptors
55 c collision avoidance serv 3¢ WAITING_FOR_RESQURCES
[vs instances
53 vs-big video streaming with controller TERMINATING
Action v ? N

(a) The CA service cannot be instantiated until resources are released.

© | # 192.168.200.3, [E o

SEBASTIAN = NEXTWORKS ©

ENGINEERING FORWARD =

VS Instances

Id Name Description Vsd Id Status
51 vesma video streaming service [S
Home
VS Blueprints
53 vs-big video streaming with controller TERMINATED
Action = N N
VS Instar
55 ca collision avoidance servic NSTANTIATED

(b) The low priority video streaming service is terminated and the CA service instantiated.

Figure 5.5: 5GT-VS GUI: status of the services.

5.3 The service scaling function

The service scaling is a runtime management function necessary to guarantee the ser-
vice quality requirements during the whole service lifecycle, under any network op-
erational conditions. In particular, in this section, we show an example of scaling out
operation.

Due to the stringent latency constraints imposed to road safety services, the pro-
cessing time of the VNFs has to be as low as possible. For our CA service, as described
in Section 4.4.2, the higher the number of vehicles in the monitored area, the higher the
processing time of the VNF running the CA algorithm (i.e., the CA VNF). On the con-
trary, the processing time of the CIM VNF is not very sensitive to the density of vehicu-
lar traffic, as well as the DENM-G VNF which, as it was conceived, has a low workload.

83

Service Instantiation, Arbitration and Scaling in the 5G-Transformer Architecture

Therefore, when the number of vehicles increases significantly, the processing time of
the CA VNF may exceed our threshold of 5 ms, risking to violate the maximum end-to-
end delay. To address this kind of issue and guarantee to the service provider the SLAs
at any time, the platform offers the automated service scaling function. In particular,
in this demonstration, a second CA VNF is automatically created in order to reduce the
workload on the first instance and, consequently, the overall end-to-end delay.

5.3.1 Criteria for the automated scaling out

As discussed above and shown in Figure 4.11, the processing time of each CA VNF
depends also on the number of active users, since a higher number of vehicles corre-
sponds to a higher number of comparisons between cars trajectories, and thus to an
increase in the processing latency. The processing time of the CA VNF is strongly cor-
related to the CPU consumption, since, as can be easily guessed, the higher the CPU
consumed by the VM running the CA algorithm, the higher its processing time. By
analyzing the relationship between the processing time and the CPU consumed by the
VM, it is possible, by monitoring only the latter, to determine whether the scaling oper-
ation is needed. With this aim, we ran several tests with different vehicle densities (e.g.,
16 veh/km, 18 veh/km, etc.) with a twofold purpose: (i) measure the CPU consumption
of the VM running the CA VNF; (ii) collect the processing times of the CA algorithm.
By combining the gathered data, we could obtain the plot reported in Figure 5.6. We

ot - o
N o ®® o
f !

Processing time [ms]

»
o

w
o)
,

—— 99.9th percentile
-=-- Maximum value

w
o
)

12 14 16 18 20 22 24
CPU load [%]

Figure 5.6: Processing time of the CA VNF at different CPU loads.

84

5.3 — The service scaling function

were interested in the 99.9th percentile, i.e., 99.9% of occurrences for which the CA al-
gorithm is faster than 5 ms when processing the needed car trajectories. As we can see,
this could be ensured only if the maximum VM! CPU consumption did not exceed 23%.

The monitoring platform of the 5GT architecture (5GT-MON) is based on Prometheus
[84] to collect information and Graphana [52] to display the monitored information in
custom and dynamic created dashboards. The 5GT-MON can monitor several metrics,
including CPU consumption, RAM usage, and amount of exchanged data. In our scaling
out demonstration, the 5GT-MON generated an alert message to the 5GT-SO to create
anew CA VNF only when both these conditions were true: (i) the overall percentage of
CPU usage by the CA VM exceeded the threshold c,, (ii) it remained above the threshold
for an amount of time at least equal to ¢, seconds. In particular, as soon as the threshold
was violated, the 5GT-MON activated an alarm which was turned off only when the
CA VNF CPU consumption was again lower than c,. If this alarm remained active for
t, seconds, then the 5GT-MON sent an alert to the 5GT-SO which managed the scaling
out operation.

It was difficult to find the optimal values for the two thresholds ¢, and #,. Indeed,
high values do not allow to scale in time (i.e., before the CPU consumption exceeds
23%), whereas low values can trigger a scaling out operation even when not needed.
After exhaustive tests, the values that best suited our needs were 15% and 40 s for ¢,
and 7,, respectively.

5.3.2 Service scaling out demonstration

In this section, we demonstrate the scaling capability offered by the 5GT platform. Our
purpose was to increase the workload of the CA VNF so that the latency constraint
could not be met, and more resources had to be allocated to the algorithm. In our
case, the 5GT platform triggered a scaling out operation, i.e., the instantiation of one
additional CA VNF. In this way, the coverage region assigned to each instance was
smaller, the number of processed CAMs lower, and thus the overall service end-to-end
delay reduced.

For this demonstration, we used the setup depicted in Figure 5.1. Once instantiated
the CA service through the 5GT-VS, we ran a test similar to the ones described in Sec-
tion 4.2. We hence used two different OAI UEs to generate the transmission of CAMs
coming from vehicles traveling in the monitored region. CAMs were processed by the
CA algorithm in order to detect in advance possible collisions and generate the corre-
sponding DENMs. In parallel, the CPU consumption of the CA VNF was continuously
monitored by the 5GT-MON platform to guarantee the low latency requirement of the
service, that is, as the reader knows, verifying that the processing time of the CA VNF
is below the 5ms-threshold.

'The CA VNF was virtualized in a VM with 1 core at 2 GHz and 4 GB RAM.

85

Service Instantiation, Arbitration and Scaling in the 5G-Transformer Architecture

The input traces used by the two VehicleSimulator instances were prepared so that
the number of simulated vehicles grew over time. In this way, as the test progressed,
the number of CAM messages parsed by the CA algorithm increased, so its CPU con-
sumption. When the latter exceeded the threshold ¢, for ¢, seconds, the 5GT-MON sent
an alert to the 5GT-SO to trigger the scaling out operation. The 5GT-SO hence deployed
a new instance of the CA VNF on our NFVI-PoP in Turin.

After the autoscaling operation, the CA service included two CA VNFs and the
monitored scenario was split in two areas: one under the control of the first instance,
the other under the control of the second. The center of the two areas coincided with the
center of the two crossroads (see Figure 4.9). In this way, the CPU load of both instances
guaranteed a processing time lower than 5 ms, satisfying our service requirements.
Figure 5.7 shows the CPU consumption of the two CA VNFs: the chart at the top refers
to the first instance, the one at the bottom right to the second. The second CA VNF starts
at 19:18:30%, and, at the same time instant, it is possible to see that the CPU consumption
of the first CA VNF starts decreasing, dropping from 20% to 12%.

<« c o ® localhost: 154

{Q 18 Dashboard -

CA1 CPU load

Q& ® O N+

91638 19.1840 191642 1971844 191846 191648 191850 191652

CA2 CPU load

Figure 5.7: Grafana GUI: percentage of CPU consumption of the two CA VNF instances.

2100% of CPU consumption before this time instant is due to operations performed by the CA VM at
boot.

86

5.4 — Final remarks

5.4 Final remarks

In this section, we described the instantiation of our CA service on the 5GT architecture,
and the assessment of two of the most important network functions for 5G and next
generation mobile networks, namely, arbitration and scaling.

In our tests, the platform has confirmed to be very effective in enabling vertical
users to easily deploy their tailored services. The service instantiation has proven to be
very simple thanks to the easy-to-use interface provided by the 5GT-VS, as well as fast
(in the case of our CA service, about 2 minutes were required).

The runtime management functions offered by the platform are pivotal for sup-
plying safety-critical services, such as road safety applications, which have stringent
requirements. In our tests, the arbitration capability of the 5GT-VS always guaranteed
the provision of the services with high priority, terminating the ones at lower priority
when the resources were not sufficient to run all of them in parallel. We also tested the
automated scaling capability, focusing on the scaling out operation. It allowed to au-
tomatically deploy a new instance of the CA VNF when the workload (i.e., the number
of CAMs to be processed) could not be efficiently handled anymore by a single VNF,
without causing an unacceptable increase in the end-to-end latency. The instantiation
of the second CA VNF was triggered by the increase in the CPU consumption of the
first instance, which was continuously monitored by the 5GT-MON component.

Finally, it is worth emphasizing an aspect. On the 5GT platform, the CIM, the CA
and the DENM-G VNFs were virtualized as VMs within the Openstack environment.
They could be virtualized through Docker containers since, as shown in our study,
Docker guarantees excellent performance and a low virtualization overhead. However,
since the only VIM compatible with the 5GT architecture was Openstack, which does
not handle Docker containers, we were forced to select the hypervisor-based technol-
ogy to virtualize our CA service.

87

88

Chapter 6

Conclusions

Network Function Virtualization (NFV), network slicing and Multi-access Edge Com-
puting (MEC) are three pillar technologies for 5G and for the next generation of mobile
networks. They enable ultra-high data rates, ultra-low latency, and guarantee support
to a wide range of vertical services with strict and heterogeneous requirements.

In this thesis we have presented a particular automotive service, i.e., a (cellular-
V2I-based) collision avoidance (CA) service. It leverages the exchange of periodic and
anonymous Cooperative Awareness Messages (CAMs) between road users and a CA
algorithm hosted in the network infrastructure. The latter, by combining the informa-
tion contained in these messages, is able to detect in advance any imminent danger that
may result in a collision, and warn the involved drivers. In order to guarantee the low
latency required by safety services, we were interested in a MEC-based implementation
of the CA application.

The core of our automotive service is the CA algorithm presented in Section 3.2. It is
a trajectory-based algorithm, suitable for the detection of any type of possible collisions,
including the ones involving vehicles and vulnerable road users, such as pedestrians
and bikers. It takes as input position, speed, acceleration and heading of two road
users and determines whether they are on a collision course. After having designed the
algorithm, due to the lack of suitable simulation tools, we built our simulator (based
on the well-known and open-source SimuLTE-Veins) in order to asses its effectiveness.
The algorithm provided excellent results, being able to timely detect both vehicle-with-
vehicle and vehicle-with-pedestrian collisions.

By leveraging the CA algorithm, we then built a first real-word testbed of a CA
application on an OAI architecture including MEC functionalities. The CA service was
composed of two main VNFs running on top of the MEC host: the so-called Cooperative
Information Manager (CIM) VNF, decoding and storing the CAMs sent by the vehicles,
and the CA VNF, gathering the CAMs from the CIM, running the CA algorithm and
transmitting the Decentralized Environmental Notification Messages (DENMs) in case

89

Conclusions

of possible collisions. In Section 4.4 we have presented our service performance assess-
ment through a hardware-in-the-loop simulation technique. We compared our MEC-
based solution against a cloud-based implementation of the CA service, i.e., with the
two VNFs running in a cloud data-center. Both service implementations have proven
to be reliable, timely detecting all the collisions.

However, a couple of points are worth mentioning. First, in highly congested traffic
scenarios, we have noticed a higher number of false positives when the service was
running in the cloud. False positives can negatively affect the effectiveness of the CA
service as much as false negatives; indeed, too many false positives may annoy the
drivers and increase the likelihood they will not react appropriately to future warnings
or disable the system altogether. Second, LiDAR sensors typically refresh their informa-
tion every 60 ms. This means that the information contained in the DENM:s is coherent
with on-board sensors data only if the end-to-end latency does not exceed such a value.
Our measurements have demonstrated that the MEC implementation can guarantee a
latency which is well within the cycle time of LiDAR sensors, even for the worst-case
end-to-end latency, in the high density traffic scenarios. On the contrary, the cloud-
based approach has constantly violated the 60 ms bound. In other words, when the CA
service is running in the cloud, a vehicle cannot correctly process together the infor-
mation collected by the ADAS sensors and the one received with the DENMs, as the
latter becomes obsolete.

Given that, in the scenarios considered for the evaluation, the totality of the colli-
sions was timely detected and considering the analysis described above, we have proven
how reliability and latency requirements can be successfully met when the automotive
domain is assisted by the cellular network. This is especially true when such a network
includes the availability of computational capabilities at the edge, which enables a sub-
stantial reduction in network latency. Moreover, as detailed in Section 3.4, our central-
ized approach allows to extend the service also to vulnerable road users, which, through
their smartphones, can send CAMs and receive DENMs. This is indeed not possible with
traditional distributed systems (owing to the reduced capabilities of smartphones when
compared to vehicular on-board units), which are not able to quickly process all the
CAMs they may receive and, timely warn the road users in case of danger.

Due to the growing interest in safety applications, our CA service was selected
as one of the use cases within the 5G-Transformer (5GT) European project. The 5GT
project has proposed and developed an open and flexible 5G transport and computing
platform tailored to support the heterogeneous service requirements of several industry
segments. With our CA service, we tested both the capability of the platform in terms
of deploying services when required by vertical industries, as well as two fundamental
management functions provided at service runtime, i.e., arbitration and scaling. The
platform, through its easy-to-use interface, allows vertical users to quickly instantiate
their services. Furthermore, both service arbitration and scaling are able to guarantee
the fulfillment of the requirements of the CA service, throughout its whole lifecycle.
In conclusion, the 5GT platform perfectly addresses the need for a flexible network

90

Conclusions

architecture, on which vertical industries can deploy services with strict requirements,
which will be, in turn, always guaranteed.

In our experimental tests, due to hardware and software availability, we leveraged
the LTE technology to enable the communication between the simulated vehicles and
the CA service. A potential extension of this work could be the implementation of
this service in a full 5G standalone testbed, or even better, in a heterogeneous scenario
where both the 4G and 5G networks are supported. In such a way it could be possible
to directly compare the service performances when the two different technologies are
used, or make analysis considering enabled at the same time both the access technolo-
gies. It is worth emphasizing that both the CA application and the 5GT architecture
are independent of the underlying communication technology: they are ready to be
ported to a full 5G standalone implementation, without any modification. Clearly, we
expect from a 5G network, higher and better performance than the one assessed in this
work, thanks to a sharp reduction in the latency between the CAM transmission and
DENM reception, and a very high reliability (at least 99.999%), which is currently hardly
achievable with 4G. This consideration is also tightly related to the fact that automo-
tive companies are leaning towards a very stringent end-to-end latency, within 20 ms,
which cannot be ensured by the LTE technology, neither with the support of the MEC.

Other future research directions could involve the design, implementation and per-
formance assessment of other road safety applications, such as Emergency Vehicle
Warning and Cooperative Lane-Merging. We believe that, among the wide range of ve-
hicular applications, safety services are undoubtedly the most important and the ones
on which, academia and research centers, should invest a great deal of attention. Ve-
hicular communication has the potential to enable many safety applications, which
would have a great impact on our lives, as they could dramatically reduce the number
of fatalities and serious injuries in road accidents (halving this number, according to a
recent study of the European Commission [14]). Therefore, the development and anal-
ysis of mobile safety applications and the design of 5G ready systems play a crucial role
for the scientific community, which has the opportunity to revolutionize the way we
travel, making it much safer.

91

92

Appendix A

Published and Submitted Content

Below, the list of my published papers during my Ph. D. program:

[17] Giuseppe Avino, Marco Malinverno, Francesco Malandrino, Claudio Casetti,
Carla Fabiana Chiasserini. “Characterizing Docker Overhead in Mobile Edge Comput-
ing Scenarios”. Published in Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems, p. 30-35, 21-25 August 2017, Los Angeles, CA, USA.
https://doi.org/10.1145/3094405.3094411

[18] Giuseppe Avino, Marco Malinverno, Francesco Malandrino, Claudio Casetti,
Carla Fabiana Chiasserini, Giovanni Nardini, Salvatore Scarpina. “Poster: A Simulation-
based Testbed for Vehicular Collision Detection”. Published in the IEEE Vehicular Net-
working Conference (VNC), 27-29 November 2017, Turin, Italy. https://ieeexplore.ieee.
org/document/8275655

[65] Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Salvatore Scarpina. “Performance Analysis of C-V2I-based Au-
tomotive Collision Avoidance”. Published in the 19th IEEE International Symposium on
“A World of Wireless, Mobile and Multimedia Networks” (WoWMoM 2018), 12-15 June
2018, Chania, Greece. https://ieeexplore.ieee.org/abstract/document/8449772

[15] Giuseppe Avino, Marco Malinverno, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Marco Rapelli, Giuliana Zennaro. “Support of Safety Services
through Vehicular Communications: The Intersection Collision Avoidance Use Case”.
Published in the IEEE International Conference of Electrical and Electronic Technologies
for Automotive, p. 1-6, 9-11 July 2018, Milan, Italy. https://ieeexplore.ieee.org/abstract/
document/8493191

[62] Francesco Malandrino, Carla Fabiana Chiasserini, Giuseppe Avino, Marco
Malinverno, Scott Kirkpatrick. “From Megabits to CPU Ticks: Enriching a Demand
Trace in the Age of MEC”. Published in IEEE Transactions on Big Data (2018). https:
//ieeexplore.ieee.org/document/8447497

93

https://doi.org/10.1145/3094405.3094411
https://ieeexplore.ieee.org/document/8275655
https://ieeexplore.ieee.org/document/8275655
https://ieeexplore.ieee.org/abstract/document/8449772
https://ieeexplore.ieee.org/abstract/document/8493191
https://ieeexplore.ieee.org/abstract/document/8493191
https://ieeexplore.ieee.org/document/8447497
https://ieeexplore.ieee.org/document/8447497

Published and Submitted Content

[56] Giada Landi, Pietro Giardina, Marco Capitani, Koteswararao Kondepu, Luca
Valcarenghi, Giuseppe Avino. “Demo: provisioning and automated scaling of net-
work slices for virtual Content Delivery Networks in 5G infrastructures”. Published in
Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing, p. 397-398, 2-5 July 2019, Catania, Italy. https://dl.acm.org/doi/abs/
10.1145/3323679.3326613

[16] Giuseppe Avino, Paolo Bande, Pantelis A. Frangoudis, Christian Vitale, Clau-
dio Casetti, Carla Fabiana Chiasserini, Kalkidan Gebru, Adlen Ksentini, Giuliana Zen-
naro. “A MEC-based Extended Virtual Sensing for Automotive Services”. Published in
IEEE Transactions on Network and Service Management, pp.1450-1463, July 2019. https:
//ieeexplore.ieee.org/abstract/document/8781832

[20] Jorge Baranda, Giuseppe Avino, Josep Mangues-Bafalluy, Luca Vettori, Ri-
cardo Martinez, Carla Fabiana Chiasserini, Claudio Casetti, Paolo Bande, Marina Gior-
danino, Marco Zanzola. “Automated deployment and scaling of automotive safety ser-
vices in 5G-Transformer”. Published in the IEEE Conference on Network Function Virtual-
ization and Software Defined Networks (NFV-SDN), p. 1-2, 12-14 November 2019, Dallas,
TX, USA. https://ieeexplore.ieee.org/abstract/document/9039990

[64] Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini,
Francesco Malandrino, Salvatore Scarpina. “MEC-based Collision Avoidance for Vehi-
cles and Vulnerable Users”. Published in IEEE Vehicular Technology Magazine, vol. 15,
no. 1, pp. 27-35, March 2020. https://doi.org/10.1109/MVT.2019.2953770

[19] Jorge Baranda, Josep Mangues-Bafalluy, Luca Vettori, Ricardo Martinez, Giuseppe
Avino, Carla Fabiana Chiasserini, Corrado Puligheddu, Claudio Casetti, Juan Brenes,
Giada Landi, Koteswararao Kondepu, Francesco Paolucci, Silvia Fichera, Luca Valcarenghi.
“Demo Abstract: Arbitrating Network Services in 5G Networks for Automotive Ver-
tical Industry”. Published in the IEEE Conference on Computer Communications Work-
shops (INFOCOM WORKSHOPS), p 1318-1319, 6-9 July 2020, Toronto, ON, Canada. https:
//ieeexplore.ieee.org/document/9162679

94

https://dl.acm.org/doi/abs/10.1145/3323679.3326613
https://dl.acm.org/doi/abs/10.1145/3323679.3326613
https://ieeexplore.ieee.org/abstract/document/8781832
https://ieeexplore.ieee.org/abstract/document/8781832
https://ieeexplore.ieee.org/abstract/document/9039990
https://doi.org/10.1109/MVT.2019.2953770
https://ieeexplore.ieee.org/document/9162679
https://ieeexplore.ieee.org/document/9162679

List of acronyms

3GPP Third Generation Partnership Project
5G Fifth Generation Mobile Networks
5GT 5G-Transformer

ADAS Advanced Driver-Assistance Systems
API Application Programming Interface
AppD Application Descriptor

BS Base Station

BSS Business Support System

CA Collision Avoidance

CAM Cooperative Awareness Message
CDF Cumulative Distribution Function
CFS Customer Facing Service

CPU Central Processing Unit

CQI Channel Quality Indicator

CUPS Control and User Plane Separation
C-v2I Cellular-V2I

C-v2Xx Cellular-V2X

DENM Decentralised Environmental Notification Message
DENM-G DENM-Generator

DF Deployment Flavor

EHF Extremely High Frequency

eNB Evolved Node B

EPC Evolved Packet-Core

ETSI European Telecommunications Standards Institute
GPRS General Packet Radio Service

95

List of acronyms

GPS
GTP
HMI
HSS
HTTP
M

ISG

IT

ITS
ITU
KPI
LDM
LiDAR
LoS
LTE
LTE-A
LXC
MANO
ME
MEC
MEMS
MEP
MEPM
MME
mmWave
MNO
MON
MTP
MVNO
NF
NFV

Global Positioning System
GPRS Tunneling Protocol
Human-Machine Interface
Home Subscriber Server
HyperText Transfer Protocol
Information Manager
Industry Specification Group
Information Technology

Intelligent Transport Systems

International Telecommunication Union

Key Performance Indicator

Local Dynamic Map

Light Detection And Ranging
Line-of-Sight

Long Term Evolution
LTE-Advanced

LinuX Containers

MANagement and Orchestration
Mobile Edge

Multi-access Edge Computing
Micro-Electro-Mechanical Systems
MEC Platform

MEP Manager

Mobility Management Entity
Millimiter Wave

Mobile Network Operator
MONitoring platform

Mobile Transport Platform
Mobile Virtual Network Operator
Network Function

Network Function Virtualization

96

List of acronyms

SP
STDERR
STDIO
S/P-GW
S/P-GW-C
S/P-GW-U
ucC

UE

UPER

VA

VF

VIM

VL

VN

VNF
VNFD
VNFFG

Network Function Virtualization Infrastructure
Network Service Descriptor
Network Slice Istance

Network Slice Subnet Instance
Operating System

Operating Support System
Process IDentifier

Point of Presense

Quality of Service

Radio Access Network
REpresentational State Transfer
Radio Network Information Service
Service Level Agreement
Service Orchestrator

Service Provider

STandarD Error

STandarD Input-Output
Service/Packet-Gateway
S/P-GW- Control Plane
S/P-GW- User Plane

Use Case

User Equipment

Unaligned Packet Encoding Rule
Virtual Application

Virtual Function

Virtual Infrastructure Manager
Virtual Link

Virtual Network

Virtual Network Function

VNF Descriptor

VNF Forwarding Graph

97

List of acronyms

\'A
VSD
VPN
VRU
V2I
V2N
vap
V2v
V22X
WIM

Vertical Slicer

Vertical Service Descriptor
Virtual Private Network
Vulnerable Road User
Vehicle-to-Infrastructure
Vehicle-to-Network
Vehicle-to-Pedestrian
Vehicle-to-Vehicle
Vehicle-to-Everything

Wide area Infrastructure Manager

98

Bibliography

[1]

(3]

8]

[9]

3GPP TR 21.914 V14.0.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 14 Description; Summary of Rel-
14 Work Items (Release 14). Technical Requirement. 3rd Generation Partnership
Project, 2018.

3GPP TR 21.915 V15.0.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 15 Description; Summary of Rel-
15 Work Items (Release 15). Technical Requirement. 3rd Generation Partnership
Project, 2019.

3GPP TR 21.916 V0.6.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 16 Description; Summary of Rel-
16 Work Items (Release 16). Technical Requirement. 3rd Generation Partnership
Project, 2020.

5G-Transformer. Visited on 2020-10-30. URL: http://5g-transformer.eu/.

5G-TRANSFORMER. D1.2, 5G-TRANSFORMER initial system design. Tech. rep.
May 2018.

5G-TRANSFORMER. Report on vertical requirements and use cases. Tech. rep.
Dec. 2017.

5T Open data repository. Visited on 2020-11-20. URL: http://www.5t.torino.it/
open-data/.

NGMN Alliance. “5G white paper” In: Next generation mobile networks, white
paper (2015), pp. 1-125.

NGMN Alliance. “Description of network slicing concept.” In: NGMN 5G P 1.1
(2016).

NGMN Alliance. “Perspectives on vertical industries and implications for 5G.
In: White Paper, Jun (2016).

NGMN Alliance. “V2X white paper.” In: White Paper 1 (2018).

Amazon Cloud. https://calculator.s3.amazonaws.com/index.html. Visited on
2020-11-24.

99

http://5g-transformer.eu/
http://www.5t.torino.it/open-data/
http://www.5t.torino.it/open-data/
https://calculator.s3.amazonaws.com/index.html

BIBLIOGRAPHY

[20]

[21]

[22]

Giuseppe Araniti et al. “LTE for vehicular networking: a survey.” In: IEEE com-
munications magazine 51.5 (2013), pp. 148-157.

GA Association et al. “An assessment of lte-v2x (pc5) and 802.11 p direct com-
munications technologies for improved road safety in the eu.” In: 5G Automotive
Association, Tech. Rep. (2017).

G Avino et al. “Support of safety services through vehicular communications:
The intersection collision avoidance use case.” In: 2018 International Conference
of Electrical and Electronic Technologies for Automotive. IEEE. 2018, pp. 1-6.

Giuseppe Avino et al. “A MEC-based extended virtual sensing for automotive
services.” In: IEEE Transactions on Network and Service Management 16.4 (2019),
pp. 1450-1463.

Giuseppe Avino et al. “Characterizing docker overhead in mobile edge com-
puting scenarios.” In: Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems. 2017, pp. 30-35.

Giuseppe Avino et al. “Poster: A simulation-based testbed for vehicular colli-
sion detection.” In: 2017 IEEE Vehicular Networking Conference (VNC).IEEE. 2017,
pp. 39-40.

J. Baranda et al. “Arbitrating Network Services in 5G Networks for Automo-
tive Vertical Industry.” In: IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). 2020, pp. 1318-1319. por: 10.
1109/INFOCOMWKSHPS50562.2020.9162679.

Jorge Baranda et al. “Automated deployment and scaling of automotive safety
services in 5G-Transformer.” In: 2019 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN). IEEE. 2019, pp. 1-2.

A. Bazzi et al. “On the Performance of IEEE 802.11p and LTE-V2V for the Co-
operative Awareness of Connected Vehicles.” In: IEEE Transactions on Vehicular
Technology 66.11 (2017), pp. 10419-10432. por: 10.1109/TVT.2017.2750803.

Alessandro Bazzi et al. “On the performance of IEEE 802.11 p and LTE-V2V
for the cooperative awareness of connected vehicles.” In: IEEE Transactions on
Vehicular Technology 66.11 (2017), pp. 10419-10432.

Alessandro Bazzi et al. “Survey and perspectives of vehicular Wi-Fi versus sidelink
cellular-V2X in the 5G era” In: Future Internet 11.6 (2019), p. 122.

Claudia Campolo, Antonella Molinaro, and Riccardo Scopigno. “Vehicular ad
hoc Networks.” In: Standards, Solutions, and Research (2015).

C. Casetti et al. “Arbitration Among Vertical Services.” In: 2018 IEEE 29th Annual
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC). 2018, pp. 153-157. pot: 10.1109/PIMRC.2018.8580852.

100

https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162679
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162679
https://doi.org/10.1109/TVT.2017.2750803
https://doi.org/10.1109/PIMRC.2018.8580852

BIBLIOGRAPHY

[28]

[29]
[30]

[32]
[33]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

Claudio Casetti et al. “Arbitration among vertical services.” In: 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC). IEEE. 2018, pp. 153-157.

Giammarco Cecchini et al. “Performance comparison between IEEE 802.11 p
and LTE-V2V in-coverage and out-of-coverage for cooperative awareness.” In:
2017 IEEE Vehicular Networking Conference (VNC). IEEE. 2017, pp. 109-114.

Junil Choi et al. “Millimeter-wave vehicular communication to support massive
automotive sensing.” In: IEEE Communications Magazine 54.12 (2016), pp. 160
167.

Cloudify Orchestrator Platform. Visited on 2020-10-30. UrL: https://cloudify.co/.

Commercial LIDAR sensor for vehicle. https://www.bosch-mobility-solutions.
com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/
driver-assistance-systems/predictive-emergency-braking-system/mid-range-
radar-sensor-(mrr)/. [Online; accessed 18-April-2019]. 2019.

Docker.com. The Docker Containerization Platform. Visited on 2020-10-28. URL:
https:https://www.docker.com/.

Christian Ehrhardt. “CPU time accounting.” In: Last accessed: Aug (2013).

EN ETSI. 302 637-2 (V1.3.1).(2014) Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; part 2: Specification of cooperative
awareness basic service. Tech. rep. Technical report. Draft ETSI TS.

NFVISG ETSIL. GS NFV-MAN 001 V1. 1.1 Network Function Virtualisation (NFV);
Management and Orchestration. 2014.

TCITS ETSL. “Intelligent transport systems (ITS); vehicular communications; ba-
sic set of applications; definitions.” In: Tech. Rep. ETSI TR 102 6382009 (2009).

Mobile Edge Computing (MEC); Mobile Edge Management; Part 2: Application life-
cycle, rules and requirements management. Group Specification. July 2017.

Mobile Edge Computing (MEC); Radio Network Information APL Group Specifi-
cation. Version 1.1.1. July 2017.

Ettus USRP B210 board. Visited on 2020-11-23. UrL: https://www.ettus.com/all-
products/ub210-kit/.

AE Fernandez, M Fallgren, and N Brahmi. “5GCAR scenarios, use cases, require-
ments and KPIs” In: Fifth Generation Communication Automotive Research and
innovation, Tech. Rep. D 2 (2017).

Gerhard P Fettweis. “The tactile internet: Applications and challenges.” In: IEEE
Vehicular Technology Magazine 9.1 (2014), pp. 64-70.

FFmpeg. Visited on 2020-11-12. UrL: https://ffmpeg.org/.
FFserver. Visited on 2020-11-12. URL: https://trac.ffmpeg.org/wiki/ffserver.

101

https://cloudify.co/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/
https:https://www.docker.com/
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://ffmpeg.org/
https://trac.ffmpeg.org/wiki/ffserver

BIBLIOGRAPHY

[54]

Xenofon Foukas et al. “FlexRAN: A Flexible and Programmable Platform for
Software-Defined Radio Access Networks.” In: Proc. ACM CoNEXT. 2016.

FreeBSD. Visited on 2020-11-10. UrL: https://www.freebsd.org/.
FRep support. Visited on 2020-11-12. URL: https://strai.x0.com/frep/.

Laurent Gallo and Jerome Haerri. “Unsupervised long-term evolution device-to-
device: A case study for safety-critical v2x communications.” In: IEEE Vehicular
Technology Magazine 12.2 (2017), pp. 69-77.

Genymotion. Visited on 2020-11-12. URL: https://www.genymotion.com/.

Marco Giordani, Andrea Zanella, and Michele Zorzi. “LTE and millimeter waves
for V2I communications: An end-to-end performance comparison.” In: 2019 IEEE
89th Vehicular Technology Conference (VIC2019-Spring). IEEE. 2019, pp. 1-7.

Marco Giordani et al. “On the Feasibility of Integrating mmWave and IEEE
802.11 p for V2V Communications.” In: 2018 IEEE 88th Vehicular Technology Con-
ference (VIC-Fall). IEEE. 2018, pp. 1-7.

Marco Giordani et al. “Performance study of LTE and mmWave in vehicle-to-
network communications.” In: 2018 17th Annual Mediterranean Ad Hoc Network-
ing Workshop (Med-Hoc-Net). IEEE. 2018, pp. 1-7.

Fabio Giust, Xavier Costa-Perez, and Alex Reznik. “Latency Critical IoT Appli-
cations in 5G: Perspective on the Design of Radio Interface and Network Archi-
tecture” In: IEEE 5G Tech Focus 1.4 (Dec. 2017).

Grafana. https://grafana.com/. Visited on 2020-11-26.

Michael R Hafner et al. “Cooperative collision avoidance at intersections: Al-
gorithms and experiments.” In: IEEE Transactions on Intelligent Transportation
Systems 14.3 (2013), pp. 1162-1175.

Yun Chao Hu et al. “Mobile edge computing—A key technology towards 5G.” In:
ETSI white paper 11.11 (2015), pp. 1-16.

A. Kivity et al. “kvm: the Linux virtual machine monitor” In: Proc. Linux Sym-
posium. 2007.

Giada Landi et al. “Provisioning and automated scaling of network slices for
virtual content delivery networks in 5G infrastructures.” In: Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting. 2019, pp. 397-398.

Xiaoying Lei and Seung Hyong Rhee. “Performance analysis and enhancement
of IEEE 802.11 p beaconing.” In: EURASIP journal on Wireless Communications
and Networking 2019.1 (2019), pp. 1-10.

Y. Li et al. “A Markov Jump Process Model for Urban Vehicular Mobility: Mod-
eling and Applications.” In: IEEE Transactions on Mobile Computing 13.9 (2014),
pp. 1911-1926. pOL: 10.1109/TMC.2013.159.

102

https://www.freebsd.org/
https://strai.x0.com/frep/
https://www.genymotion.com/
https://grafana.com/
https://doi.org/10.1109/TMC.2013.159

BIBLIOGRAPHY

Linux Container 1xd Webpage. https://linuxcontainers.org/lxd/. [Online; ac-
cessed 2020-11-22]. 2019.

Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO.” In: The
21st IEEE International Conference on Intelligent Transportation Systems. IEEE,
2018. URL: https://elib.dlr.de/124092/.

Zachary MacHardy et al. “V2X access technologies: Regulation, research, and
remaining challenges” In: IEEE Communications Surveys & Tutorials 20.3 (2018),
pp. 1858-1877.

Francesco Malandrino et al. “From megabits to cpu ticks: Enriching a demand
trace in the age of mec.” In: IEEE Transactions on Big Data (2018).

Francesco Malandrino et al. “Verification and inference of positions in vehic-
ular networks through anonymous beaconing.” In: IEEE transactions on mobile
computing 13.10 (2014), pp. 2415-2428.

Marco Malinverno et al. “Edge-based collision avoidance for vehicles and vul-
nerable users: an architecture based on MEC.” In: IEEE vehicular technology mag-
azine 15.1 (2019), pp. 27-35.

Marco Malinverno et al. “Performance analysis of C-V2I-based automotive col-
lision avoidance.” In: 2018 IEEE 19th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE. 2018, pp. 1-9.

Josep Mangues-Bafalluy et al. “5G-TRANSFORMER Service Orchestrator: de-
sign, implementation, and evaluation.” In: 2019 European Conference on Networks
and Communications (EuCNC). IEEE. 2019, pp. 31-36.

Mobile Edge Computing (MEC); Framework and Reference Architecture. Group
Specification. Jan. 2019.

Rashid Mijumbi et al. “Network function virtualization: State-of-the-art and
research challenges” In: IEEE Communications surveys & tutorials 18.1 (2015),
Pp- 236-262.

R. Miller and Qingfeng Huang. “An adaptive peer-to-peer collision warning sys-
tem.” In: Vehicular Technology Conference. IEEE 55th Vehicular Technology Con-
ference. VTC Spring 2002 (Cat. No.02CH37367). Vol. 1. 2002, 317-321 vol.1. por:
10.1109/VTC.2002.1002718.

Zeeshan Hameed Mir and Fethi Filali. “LTE and IEEE 802.11 p for vehicular
networking: a performance evaluation.” In: EURASIP journal on Wireless Com-
munications and Networking 2014.1 (2014), pp. 1-15.

Antonella Molinaro and Claudia Campolo. “5G for V2X Communications.” In:
5G Italy White eBook (2019).

Adrian Mouat. Using Docker: Developing and Deploying Software with Containers.
” O’Reilly Media, Inc”, 2015.

103

https://linuxcontainers.org/lxd/
https://elib.dlr.de/124092/
https://doi.org/10.1109/VTC.2002.1002718

BIBLIOGRAPHY

[83]

[84]
[85]

Network Emulation (netem) Linux tool. https://wiki.linuxfoundation.org/networking/
netem. Visited on 2020-11-24.

Navid Nikaein, Xenofon Vasilakos, and Anta Huang. “LL-MEC: Enabling Low
Latency Edge Applications.” In: Proc. IEEE CloudNet. 2018.

Yong Niu et al. “A survey of millimeter wave communications (mmWave) for
5G: opportunities and challenges” In: Wireless networks 21.8 (2015), pp. 2657-
2676.

OMNeT++, Discrete Event Simulator. Visited on 2020-11-20. URL: https://omnetpp.
org/.
Open Source MANO (OSM). Visited on 2020-10-30. URL: https://osm.etsi.org/.

OpenAirlnterface - 5G software alliance for democratising wireless innovation. Vis-
ited on 2020-11-05. URL: https://www.openairinterface.org/.

OpenAirlnterface, 5G software alliance for democratising wireless innovation. http:
/Iwww.openairinterface.org. Visited on 2020-11-22.

OpenStack Devstack. https://docs.openstack.org/devstack/latest/. Visited on
2020-11-25.

Openstack Webpage. https://www .openstack.org/. [Online; accessed 2020-11-
22]. 2019.

Crash Avoidance Metrics Partnership and Vehicle Safety Communications Con-
sortium. Vehicle safety communications project: Task 3 final report: Identify intelli-
gent vehicle safety applications enabled by DSRC. Tech. rep. Nat. Highway Traffic
Safety Admin., U.S. Dept. Transp., Washington, DC, USA, Rep. DOT HS 809 859,
2005.

Ppen source ASN1 compiler. http://lionet.info/asnlc/compiler.html. Visited on
2020-11-24.

Prometheus. https://prometheus.io/. Visited on 2020-11-26.

5GPPP Programme Management Report. 5G PPP Phase I KPIs (Annex). Tech. rep.
2018.

Z Riaz, DJ Edwards, and A Thorpe. “SightSafety: A hybrid information and com-
munication technology system for reducing vehicle/pedestrian collisions.” In:
Automation in construction 15.6 (2006), pp. 719-728.

Ryu SDN Controller. https://ryu-sdn.org/. Visited on 2020-11-25.

Eryk Schiller et al. “CDS-MEC: NFV/SDN-based Application Management for
MEC in 5G Systems.” In: Computer Networks 135 (2018), pp. 96—-107.

Peter Schmitt, Bruno Landais, and Frank Yong Yang. Control and User Plane Sep-
aration of EPC nodes (CUPS). Tech. rep. 3GPP, July 2018. URL: http://www.3gpp.
org/cups.

104

https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://omnetpp.org/
https://omnetpp.org/
https://osm.etsi.org/
https://www.openairinterface.org/
http://www.openairinterface.org
http://www.openairinterface.org
https://docs.openstack.org/devstack/latest/
https://www.openstack.org/
http://lionet.info/asn1c/compiler.html
https://prometheus.io/
https://ryu-sdn.org/
http://www.3gpp.org/cups
http://www.3gpp.org/cups

BIBLIOGRAPHY

[90] SIMUlte: LTE User Plane Simulation Model for INET & OMNeT++. Visited on 2020-
11-04. UrL: https://simulte.com/add_veins.html/.

[91] Christoph Sommer, Reinhard German, and Falko Dressler. “Bidirectionally Cou-
pled Network and Road Traffic Simulation for Improved IVC Analysis.” In: IEEE
Transactions on Mobile Computing (TMC) 10.1 (Jan. 2011), pp. 3-15. po1: 10.1109/
TMC.2010.133.

[92] Christoph Sommer et al. “How shadowing hurts vehicular communications and
how dynamic beaconing can help” In: IEEE Transactions on Mobile Computing
14.7 (2014), pp. 1411-1421.

[93] Tejas Subramanya, Giovanni Baggio, and Roberto Riggio. “lightMEC: A Vendor-
Agnostic Platform for Multi-access Edge Computing.” In: Proc. 14th International
Conference on Network and Service Management (CNSM ’18). 2018.

[94] Heikki Summala. “Brake reaction times and driver behavior analysis.” In: Trans-
portation Human Factors 2.3 (2000), pp. 217-226.

[95] SUMO - Simulation of Urban MObility. Visited on 2020-11-20. URL: https://www.
eclipse.org/sumo/.

[96] Tarik Taleb et al. “On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration.” In: IEEE Communica-
tions Surveys and Tutorials 19.3 (2017), pp. 1657-1681.

[97] IT Union. “Imt traffic estimates for the years 2020 to 2030.” In: Report ITU (2015),
pp- 2370-.

[98] Vutha Va et al. “Beam design for beam switching based millimeter wave vehicle-
to-infrastructure communications.” In: 2016 IEEE International Conference on Com-
munications (ICC). IEEE. 2016, pp. 1-6.

[99] Veins framework. Visited on 2020-11-21. URL: https://veins.car2x.org/.

[100] A.Virdis, G. Stea, and G. Nardini. “SimuLTE - A modular system-level simulator
for LTE/LTE-A networks based on OMNeT++." In: 2014 4th International Confer-
ence On Simulation And Modeling Methodologies, Technologies And Applications
(SIMULTECH). 2014, pp. 59-70. por: 10.5220/0005040000590070.

[101] Antonio Virdis, Giovanni Nardini, and Giovanni Stea. “Cellular-Networks Sim-
ulation Using SimuLTE” In: Recent Advances in Network Simulation. Springer,
2019, pp. 183-214.

[102] Antonio Virdis, Giovanni Stea, and Giovanni Nardini. “Simulating lte/lte-advanced
networks with simulte.” In: Simulation and Modeling Methodologies, Technologies
and Applications. Springer, 2015, pp. 83-105.

[103] VirtualBox. Visited on 2020-11-09. URL: https://www.virtualbox.org/.
[104] VLC media player. Visited on 2020-11-12. URL: https://www.videolan.org/.

105

https://simulte.com/add_veins.html/
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://www.eclipse.org/sumo/
https://www.eclipse.org/sumo/
https://veins.car2x.org/
https://doi.org/10.5220/0005040000590070
https://www.virtualbox.org/
https://www.videolan.org/

BIBLIOGRAPHY

[105]
[106]

[107]

[108]

[109]

[110]

VMware. Visited on 2020-11-09. URL: https://www.vmware.com/.

VMware ESXi: The Purpose-Built Bare Metal Hypervisor. Visited on 2020-11-09.
URL: https://www.vmware.com/products/esxi-and-esx.html.

John Paul Walters et al. “A comparison of virtualization technologies for HPC”
In: 22nd International Conference on Advanced Information Networking and Ap-
plications (aina 2008). IEEE. 2008, pp. 861-868.

Jules White et al. “Wreckwatch: Automatic traffic accident detection and no-
tification with smartphones” In: Mobile Networks and Applications 16.3 (2011),
pp. 285-303.

Miguel Gomes Xavier, Marcelo Veiga Neves, and Cesar Augusto Fonticielha De
Rose. “A performance comparison of container-based virtualization systems for
mapreduce clusters.” In: 2014 22nd Euromicro International Conference on Paral-
lel, Distributed, and Network-Based Processing. IEEE. 2014, pp. 299-306.

Xen project. Visited on 2020-11-09. URL: https://xenproject.org/.

106

https://www.vmware.com/
https://www.vmware.com/products/esxi-and-esx.html
https://xenproject.org/

This Ph.D. thesis has been typeset by
means of the TgX-system facilities. The
typesetting engine was LualdIgX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TgX-system
installation.

