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4. Simulation and Experimental Results

In this section, the harmonic attenuation achieved by the designed LCL filter and the
current control performance of the AFE converter are verified by means of simulation and
experimental testing.

The converter-side and grid-side inductors share the same design (i.e., L = L¢), which
is obtained from an internally developed optimization procedure taking into account a
wide database of core geometries, core materials and wire formats/sizes [57]. The adopted
loss and thermal models are described in [58].

The resulting inductor design features two stacked EE 6527 cores in XFlux 60p pow-
der material from Magnetics [59], with an 18-turn winding of enameled round wire,
as illustrated in Figure 12a. The powder material simultaneously provides high saturation
flux density and low relative permeability (i.e., ur = 60 in the present case), enabling
an extremely compact inductor realization. In particular, the low permeability property
allows to drastically reduce or even eliminate the air gap between the two core halves.
In this way, the inductance value is no longer affected by the gap mechanical tolerance
and the unwanted high-frequency winding losses caused by the air gap fringing field (e.g.,
present in ferrite core implementations) are avoided. However, the complete flux density
range of the material (i.e.,, 0-1.6T) is not exploited, due to the intrinsic soft saturation
characteristics of powder materials [59]. In the present case the inductor is designed to
operate between 191 nH in no-load conditions and 151 pH at Imax = 61.5 A, as illustrated in
Figure 12b, utilizing only a 0-0.6 T interval to avoid excessive inductance variation during
the fundamental line cycle. As a further note, a round wire with large cross-section is used
since winding losses are completely dominated by the low-frequency (i.e., 50 Hz) current
component. Therefore, the inductor optimization procedure aims to minimize the overall
wire DC resistance, clearly avoiding winding arrangements with low window utilization
such as litz wire implementations.
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Figure 12. Schematic representation of the designed inductor (L = L) (a) and differential inductance
value dependence on the DC-bias current (b), which highlights the soft saturation characteristic of
the selected powder core material.

The AFE converter prototype, including the 3-level unidirectional T-type rectifier and
the LCL filter, is shown in Figure 13. The rectifier (see Figure 7) employs 650 V Si MOSFETs
switching at 20kHz and 1200V Si fast-recovery diodes. The AFE also includes an EMI
filter consisting of a three-stage differential-mode filter (including the LCL stage) and a
two-stage common-mode filter. Figures 13a,b provide a closer view of the realized filter
inductors (L = L¢) and the selected filter capacitors (C¢), highlighting the size difference
between them.

It is worth noting that the converter prototype is a 60 kW unit consisting of two three-
phase sub-units in parallel. In the present case, only one 30 kW three-phase unit is operated
and the boost inductors of the other unit are exploited as grid-side filter inductors (Ly).
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Figure 13. Overview of the active front-end (AFE) prototype utilized for the experimental tests, with
highlight of (a) the realized inductor (L = L¢) and (b) the selected capacitor (Cy).

4.1. Filter Transfer Functions

The only LCL filter transfer function that can be directly measured is Y(s), which
represents the inverse of the filter impedance seen from the converter side. This impedance
is measured with the setup illustrated in Figure 14, where a Hioki 5352-50 LCR meter is
adopted for the task.

L, L LCR Meter

Figure 14. Experimental setup utilized to measure the value of Y = 1/Z (see Figure 15a).

The transfer functions Y, Y. and Y; of the designed LCL filter are analytically calculated
with the parameters reported in Figure 10 according to (1), (2) and (3), respectively. These
transfer functions are illustrated in Figure 15 for both the undamped (Rf = 0) and the
damped (R¢ = 0.8 Q) cases. The measurement results of Y are reported in Figure 15a
for comparison purposes, where a close match with the analytical model is observed.
A slight asymptotic deviation between the two transfer functions is mainly attributable to
the inductance value of 191 pH at zero DC-bias current (i.e., the measurement condition),
which differs from the design value of 175 uH. Another discrepancy is observed around
the two resonance frequencies f; and fy, where the experimental results show a stronger
damping of the resonance peaks. This is caused by the unmodeled parasitic AC resistance
of the filtering elements, mostly given by the inductors (i.e., winding and core losses).
In particular, this high-frequency resistance contribution helps to damp the filter resonance,
thus improving the converter closed-loop current control stability without generating
additional losses at the grid frequency, as opposed to R;.
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Figure 15. Analytical LCL filter transfer functions (a) Y, (b) Y. and (c) Y}, with and without passive
damping (i.e., Ry = 0.8 Q in the damped case). The value of Y measured experimentally is reported
for comparison purposes in (a).

4.2. Filter Attenuation

The filter attenuation performance is verified experimentally by measuring the current
injected into the grid and assessing its harmonic distortion.

The experimental setup consists of a grid emulator connected at the input of the
LCL filter, emulating the European low-voltage grid (i.e., U = 230Vrms, f = 50Hz),
and an electronic load connected at the output of the DC-link, emulating the DC/DC
stage of the battery charger (i.e., the load). Since the AFE is directly connected to the grid
emulator, this setup emulates a stiff grid with negligible inner impedance (i.e., SCR ~ ),
representing a worst case scenario from the filtering perspective.

The measurements are performed with a Teledyne LeCroy 500 MHz, 12-bit, 10 GS/s,
8-channel oscilloscope, employing isolated high-voltage differential probes for voltage
measurements and standard current probes for current measurements.

The experimental grid-side and converter-side current waveforms in nominal station-
ary conditions (i.e., I = 61.5A and V3. = 800V) are illustrated in Figure 16. The ripple
attenuation provided by the LCL filter is evident, achieving a current THD of 1.2%. A slight
distortion of the grid-side current is observed in proximity of the current zero crossings,
as the T-type rectifier briefly enters the discontinuous conduction mode. This distortion
is limited by the converter closed-loop control, which must be tuned to achieve high
disturbance rejection performance [10].
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Figure 16. Experimental converter-side current i (a) and filtered grid-side current i¢ (b) at I = 61.5A
and V. = 800 V. Zero mid-point current modulation (ZMPCPWM) is adopted [20].

The filtered grid current spectrum is calculated by means of a DFT and the results are
reported in Figure 17. It is observed that all harmonics comply with the IEEE 519 limits.
In particular, the worst-case current harmonic at the design frequency fq4 = 19.6kHz is
attenuated with a 20% margin.

The slight current distortion related to the converter unidirectional operation gener-
ates several low-frequency harmonics, nevertheless they are limited by the closed-loop
current control. Moreover, a group of harmonics is visible around the resonance frequency
fo = 4.39kHz, as the filter transfer function Y; tends to amplify the local harmonics (see
Figure 15c). These harmonics are effectively limited by the filter passive damping.
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Figure 17. Experimental filtered grid-side current i¢ spectrum compared with IEEE 519 odd-order
(black) and even-order (blue) harmonic limits. The worst-case harmonic at the design frequency is
indicated and the amplification effect around the filter resonance frequency fj is highlighted.

It is worth noting that with increasing grid impedance (i.e., Lg > 0), the high-frequency
filtering results can only improve, as the filter corner frequency fy reduces and the asymp-
totic attenuation increases. Moreover, the high-frequency current harmonics are inde-
pendent on the load, as they only depend on the PWM voltage harmonics. Therefore,
the high-frequency (i.e., asymptotic) attenuation performance of the designed LCL filter
can be considered successfully verified in all operating conditions.

The low-frequency harmonic distortion, highlighted in Figure 17, depends on the
converter load and is thus analyzed further. In particular, when operating at light load,
the closed-loop current control is not able to perfectly compensate the large zero-crossing
distortion related to DCM operation. This phenomenon leads to higher current THD at
lighter loads, as illustrated in Figure 18a. It is important to keep in mind that the LCL filter
is designed to comply with the operational constraints reported in Section 3, taking advan-
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tage of the AFE modular structure shown in Figure 7. Specifically, the converter modularity
allows to turn-off selected modules at light load (i.e., Pmin = 0.5 P), thus ensuring the high-
power operation of the remaining modules. Figure 18b shows that the current THD is
limited below 5% between 20% and 100% of the nominal power (i.e., 6-30 kW), achieving
acceptable distortion over the complete design operating range of the converter module.

Another quantity affected by the converter load is the power factor, as illustrated in
Figure 18b, where both the displacement power factor (cos ¢) and the total power factor
(PF) are shown. The relation between the two is straightforward:

cos @
1+ THD?

The adopted control strategy, schematically represented in Figure 19, does not compensate
for the reactive current generated by the filter capacitors, thus leading to non-unity cos¢
operation. This feature, already taken into account during the design phase (i.e., see
constraint (§), is directly related to the unidirectional operation of the active rectifier, which
is not able to produce/absorb any significant amount of reactive power without affecting
the input current distortion. Additionally, in this case, the adopted modular structure
allows to maintain high power factor values at light load by turning off selected modules
and ensuring the high-power operation of the remaining modules. Overall, Figure 18b
shows that the total power factor stays above 0.995 between 40% and 100% of the nominal
power (i.e., 12-30 kW), thus complying with the design restriction (6.

PF = (16)
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Figure 18. Experimentally measured grid-side current total harmonic distortion (THD) (a) and power
factor (b) as functions of the transferred power. The maximum THD limit and the minimum power
factor requirement are indicated.

4.3. Converter Control Stability and Dynamic Response

The performance of the converter closed loop control is assessed experimentally with
the hardware setup previously described. A conventional voltage-oriented control scheme
is adopted [10,22,23,30] and is schematically illustrated in Figure 19.
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Figure 19. Simplified overview of the converter closed-loop current control: the digital controller
schematic is highlighted in grey.

The rotating dq frame is exploited to obtain zero stationary error with a simple PI
controller. The PCC voltages are measured to achieve the reference frame synchronization
with the grid, which is performed by a phase locked loop (PLL). These voltages are passed
through a resonant filter (i.e., the PLL itself) and are then fed forward in the current
control loop, to unburden the integral part of the PI regulator. The digital sampling and
update process is performed once per switching period (fs = fsw = 20kHz), however the
current feedback values are obtained by means of oversampling (32 samples per switching
period) and averaging, in order to improve the measurement reliability and thus the
control performance around the current zero-crossings. In fact, conventional sampling
does not yield the correct average current value when discontinuous conduction mode
is encountered [60], thus inhibiting the accuracy of the current control and leading to
increased low-frequency distortion.

The digital implementation of the control introduces three main delay components,
which reduce the achievable control bandwidth and/or decrease the closed-loop stability
margin [23]. The first delay contribution is directly related to the digital processing, which
generates one sampling period delay (Ts = 1/ fs) between the measured quantities and
the control signal output. The second component is linked to the PWM modulator, which
introduces a zero-order hold (ZOH) effect with a Ts duration . Finally, the last contribution
derives from the current oversampling and averaging process, which results in a moving-
average delay of Ts/2. The complete dq current control block diagram is illustrated in
Figure 20.
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Figure 20. Complete block diagram of the iy and iq current control loops [10], including the plant
transfer function Y(s).
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Since the LCL filter transfer function Y behaves as a pure inductance (i.e., Liot =
L + L¢ + Lg) up until the first resonance frequency f; (see Figure 4a), the current control
tuning can be performed in a conventional way. The PI regulator is tuned to achieve a 60°
phase margin [10], setting the open-loop cross-over frequency f. to 850 Hz and positioning
the PI zero five times lower (f, = f./5) to achieve good disturbance rejection capabilities.
Since the grid inductance Lg is not known in general, the tuning is performed as

{kp =2mfe(L+Lly) W
kI =2 7'L'fZ kp

The current control open-loop transfer function is derived analytically and its mag-
nitude and phase Bode plots are illustrated in Figure 21, for different values of grid in-
ductance Lg. Three situations are considered, namely an infinitely stiff grid (Lg = 0 pu,

SCR = o), a typical grid for an EV fast charging connection (Lg = 0.01 pu, SCR = 100)
and a reasonably weak grid (Lg = 0.05 pu, SCR = 20).
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Figure 21. Bode plots of the analytical iy and iq compensated loop gains for different values of grid
inductance Lg. The PI controllers are tuned according to (17).

In general, to achieve the closed-loop current control stability, the magnitude of the
open-loop system transfer function has to be lower than 0dB when its phase crosses
—180° (Nyquist criterion) [25]. From Figure 21 it is observed that the system gain margin
decreases for higher values of Lg (i.e., lower SCR), as the system resonance frequency fy
reduces and the peak magnitude increases. Theoretically, the stability limit is reached
around Lg ~ 0.05 pu (SCR = 20). Figure 21 also shows that a larger Lg simultaneously
reduces the converter bandwidth and the distance between f; and f;, thus decreasing the
low-frequency phase margin and leading to a more nervous control response.

To experimentally verify the closed-loop control stability, the converter response
to a reference current step is tested. Different values of grid inductance are emulated
by inserting three-phase power inductors between the converter and the grid emulator,
approximately achieving Ly = 0 pu (i.e., no inductor), Lg ~ 0.01 pu and Lg ~ 0.05 pu.
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The results of the tests are illustrated in Figure 22, where the reference step response
of both the converter-side current i and the grid-side current i¢ are reported. It is observed
that the control loop is stable in all conditions, however the converter-side current shows a
damped high-frequency oscillation for large values of Lg.
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Figure 22. Experimental current control loop step response between 50% and 100% load for different
values of grid inductance Lg: (a) converter-side current i and (b) grid-side current ig.

This is better highlighted in Figure 23, where the step response of the converter-side
currents is reported on the d-axis of the rotating dq frame. The value of iy is obtained
from the digital-to-analog converter (DAC) of the microcontroller unit (MCU), therefore
it is discretized in time (i.e., with a T periodicity) and is characterized by a large noise
content. Figure 23 shows that higher grid inductance values cause at the same time a
slower response (i.e., lower bandwidth), a higher overshoot (i.e., lower phase margin) and
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an increased high-frequency oscillation (i.e., lower gain margin at the phase cross-over
frequency). All of these aspects could already be observed from the open-loop control
transfer functions analysis previously reported (see Figure 21), nevertheless they have been
verified experimentally.

The current reference step responses reported in Figure 23 show that the stability
margin is still not reached for Lg = 0.05 pu, as expected instead from the small-signal
transfer function analysis. This is mainly due to the unmodeled AC resistance components
of the system, which increase the damping of the resonance peaks (see Figure 15a) and
thus lead to a wider control stability range.

In conclusion, the closed-loop current control stability is achieved for all grid SCR
values up to 20 (i.e., weak grid connection). Therefore, the proposed LCL filter design and
optimization procedure can be considered successfully validated.

CH 3 ~ 1/f0
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Figure 23. Experimental d-axis current control loop step response between 50% and 100% load for
different values of grid inductance. The value of i4 is obtained from the DAC of the MCU (i.e., as a
voltage value between 0 and 3.3 V) and then rescaled, thus showing a high amount of noise.

5. Conclusions

This work has presented a complete analysis, design and optimization procedure of
a three-phase LCL filter for the active front-end unit of a modular EV ultra-fast battery
charger. The proposed novel design methodology is based on the graphical representation
of the filter design space in the (C¢, Liot) plane. By translating the constraints on the
filter parameters into analytical equations, the design space boundaries are identified and
the LCL filter design minimizing the total required inductance (i.e., optimizing the filter
size/loss trade off) can be selected.

This design procedure has been applied to the AC-side filter of a 30 kW, 20kHz T-
type unidirectional rectifier for ultra-fast charging applications. The functionality of the
selected optimal LCL filter has been first verified in simulation, by checking the filter
transfer functions and their effect on the current harmonic attenuation and the system
stability. In particular, the LCL filter impedance (seen from the converter side) has been
experimentally measured, showing an accurate matching with the analytical expectations
and thus providing a preliminary validation of the attenuation capabilities of the filter.
Then, the LCL filter has been tested together with an active rectifier prototype, to verify
both the filter attenuation performance and the converter closed-loop current control
stability. The current spectrum at full load has been shown to comply with the international
technical standards, achieving results well within the prescribed limits, both for even and
odd harmonics. The system stability has been finally verified with different values of
grid impedance, emulating various grid point connections. Therefore, the proposed novel
design methodology has been successfully validated.
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