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Abstract: Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from
different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was
varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The
catalysts were tested for the steam reforming of glycerol. One of the key problems for this application
is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni
dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2)
using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal
resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as
La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further
key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the
overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable
catalysts at least for 20 h on stream with very limited coke formation.

Keywords: glycerol steam reforming; H2 production; flame spray pyrolysis; Ni mixed oxide cata-
lysts; coking

1. Introduction

Hydrogen is gaining increasing importance as an energy vector, as a means to store
energy and to convert it through highly efficient devices, such as fuel cells. However,
H2 is not present as such in nature and it has to be produced [1,2]. Industrially, it is
mainly obtained from the steam reforming of hydrocarbons, but currently, the research is
attempting to adapt this process to renewable sources [3]. Among these, bioethanol, coming
from the fermentation of biomasses, and glycerol, a by-product from the trans-esterification
of triglycerides for biodiesel production (Figure 1), are among the most studied [4,5].

The current worldwide production of biodiesel is ca. 702 thousand barrels/day [6].
The reaction leaves ca. 10 wt% glycerol as a byproduct per unit weight of biodiesel
produced [7–10]. However, crude glycerol contains mineral impurities (phosphorous,
calcium, alkali metals, unreacted fatty acids and methanol), which impose expensive
purification to achieve practically exploitable purity for the conventional glycerol market
(food and pharma industry). Furthermore, the latter market is unable to sustain the
increasing availability of glycerol. The development of glycerol transformation routes
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that have a large potential volume of production and do not require heavy purification of
the feed is envisaged and, among these, the production of hydrogen by steam reforming
appears promising [11].
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Glycerol steam reforming (GSR) occurs through the following stoichiometry:

C3H8O3 + 3 H2O→ 3 CO2 + 7 H2 ∆H = +128 kJ/mol

which may be seen as the combination of syngas production and the water gas shift
reaction:

C3H8O3 → 3 CO + 4 H2 ∆H = +251 kJ/mol

CO + H2O � CO2 + H2 ∆H = −41 kJ/mol

Undesired parasitic reactions may also occur, among which those leading to carbon
deposition are of particular concern.

Hydrogen yield depends on operating conditions, the nature of active metal, and the
catalyst support. The most studied catalysts for steam reforming of glycerol are based
on noble (Rh, Ru, Pt, Pd) and non noble (Ni, Cu) metals. Among them, Ni catalyst is the
most attractive for its own ability in the cleavage of the C-C, C-H, and H-O bonds [12–19].
Besides, it is cost-effective, but suffers deactivation in long-term operations due to coke
formation and metal sintering [20]. Therefore, synthesis of suitable catalysts is addressed
towards the suppression of coke formation and sintering of the metal particles during
reforming. Nowadays, these limitations are not yet overcome and the preparation of a
stable catalyst for glycerol steam reforming is still a challenge.

Different approaches have been employed to improve the performance of nickel-
based catalysts, most of them based on tailoring the physical properties. High surface area
with suitable nickel dispersion along with small particle size and a strong metal–support
interaction are seen as the key factors for the synthesis of highly active catalysts. From this
point of view, supports play an important role in terms of hydrogen selectivity and catalyst
stability.

Alumina is one of the most used supports for its mechanical and physical properties.
Lima et al. [12] studied the effect of Mg addition to decrease the acid character of alumina
reported to favor coke formation. The presence of Mg also led to a better Ni dispersion
through the formation of a spinel structure, Mg(Ni)Al2O4. The authors also demonstrated
the non-negligible influence of the preparation method by comparing impregnated and
co-precipitated samples: the partial replacement of Ni with Mg had a greater effect on the
co-precipitated samples with respect to impregnated catalysts.

A different approach was proposed by Yancheshmeh et al. [13], who exploited the
activity of NiAl2O4-based catalysts. The better dispersion achieved embedding Ni in a
spinel structure encounters the difficulty of a limit reduction with respect to a supported
NiO. To overcome this limitation, the authors investigated the effect of a novel solvothermal
method achieving high H2 yields (76%) and 95% glycerol conversion into gaseous products.

Another promising candidate as catalytic support is ZrO2 in name of its thermal
stability and surface properties [21]. The effect of the crystalline polymorphs on the steam
reforming of glycerol was studied by Dahdah et al. [14]; nickel was impregnated on synthe-
sized tetragonal zirconia and on commercial monoclinic zirconia. Ni-(monoclinic)zirconia
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showed enhanced nickel reducibility, which positively affected hydrogen yields and glyc-
erol conversion.

The replacement in crystalline lattice of Zr4+ with lower valence cations (Mg2+, Ca2+,
Y3+, La3+) produces oxygen vacancies [22,23]. The concentration of oxygen defects and the
extent of oxygen mobility are crucial in many applications of doped zirconia. Charisiou
et al. [15] tested yttria-stabilized zirconia as catalytic support in the GSR process. Y2O3
modified ZrO2 led to more reducible NiO, less sintering phenomena, and higher stability.
Moreover, whereas graphitic structures are identified on unpromoted zirconia, amorphous
carbon was deposited on Ni/YZr, which are more easily oxidized during the reaction.
The effect of a highly defective La2O3-ZrO2 support was also tested by Veiga et al. [16].
Here, 15% Ni-La-Zr was used as catalyst for GSR using a feedstock of glycerol obtained
directly from an industrial biodiesel plant as a by-product. The authors observed a strong
correlation between the calcination temperature and the amount of carbon deposits. The
lowest amount of carbon deposits for the catalyst calcined at 850 ◦C was correlated with
the formation of a pyrochlore-type structured La2Zr2O7 with a partial substitution of nickel
ions into Zr sites. The presence of defects and the subsequent formation of mobile oxygen
vacancies favored the oxidation of carbon deposits during the reaction.

The effects of various supports, different promoters (K, Ca, Sr, Ce, La, Cr, Fe), and
process conditions were, recently, illustrated by a review of Saeidabad et al. [17]. Among
the different catalytic formulations, perovskite type oxide appears intriguing for their
unique crystal structure, which promotes the formation of metallic particles with high
dispersion, enhanced hydrogen production, and improved coke resistance.

In addition to the structural and physicochemical properties of the support, the
adopted synthesis approach is also a powerful tool for obtaining highly active and stable
catalysts. A valuable and intriguing synthesis route is represented by the use of metal–
organic frameworks as precursors of metal oxides-based materials [24–26].

Among the possible active phases, Pt and other noble metals are effective for this
reaction and are used for aqueous phase reforming, but they are prone to deactivation and
expensive. Ni offers the advantage of a reasonable activity and selectivity, coupled with
smaller cost with respect to noble metals for this application. However, Ni readily forms
carbon nanotubes from carbide intermediates and we have previously demonstrated that,
during the steam reforming of bioethanol, this may lead to the detachment of Ni particles,
with irreversible catalyst deactivation [27–38]. We have already demonstrated that a strong
metal–support interaction also helps keep Ni well dispersed under the working conditions
for the steam reforming of bioethanol.

Acidic supports such as alumina, the most used for methane steam reforming, are more
prone to coking for this application, as dehydration and condensation may occur over the
acidic sites. Therefore, different strategies may be developed to limit this phenomenon, e.g.,
the addition of basic oxides (Mg, La, Ce, Zr) [20,39,40] or the use of supports intrinsically
characterised by high oxygen mobility, such as CeO2 or Ce1−xZrxO2.

In order to improve the dispersion of Ni over these oxides, mixed oxide formulations
can be used, such as La1−xCexNiO3 (with x = 0, 0.1, 0.3, 0.7), to achieve a suitable activity
and resistance, at least for a limited time-on-stream [41–43].

Therefore, in the present work, we have prepared and characterised a set of Ni-
based catalysts supported over mixed oxides. The selected synthesis procedure was flame
spray pyrolysis (FP), which should guarantee suitable thermal resistance thanks to the
high temperature reached during the synthesis. The Ni active phase was added directly
during the flame preparation, possibly in form of mixed oxide, and then reduced. The
FP method already proved effective for the steam reforming of bioethanol to improve the
ni dispersion and therma resistance for a set of LaNiO3 samples [44]. Alternatively, we
tested the impregnation of Ni over the same supports prepared by FP. The performance
and resistance to deactivation were tested for the steam reforming of glycerol.



Materials 2021, 14, 652 4 of 19

2. Experimental
2.1. Materials’ Preparation

The catalysts were prepared by flame spray pyrolysis (FP) [44,45]. The precursors of
the oxide catalysts were dissolved with 0.1 M concentration in a 1:1 (vol/vol) solution of
propionic acid pur. 97% (Aldrich-Merck Life Science S.r.l., Italy) and o-xylene pur. 97%
(Aldrich-Merck Life Science S.r.l., Italy), acting as a fuel for the flame and the solution
injected through a syringe pump (Harvard, mod. 975, Harvard Apparatus, Holliston, MA,
USA) through a needle with a liquid flow of 2.2 mL/min. The needle is inserted in a
self-designed burner, where it is surrounded by a coaxial flow of 5 NL/min of O2, with a
1.5 bar pressure drop across the nozzle, and the mixture is ignited by a ring of flamelets
(CH4 and O2 with flowrate of 0.5 and 1 L/min, respectively). Gas flows are regulated by
means of MKS, mod. 1259 massflowmeters (MKS Instruments, Inc., Andover, MA, USA).
The powder is collected on a pyrex bell surrounding the burner.

The precursors used were as follows: La(CH3COO)3·H2O pur. 99.9% (Aldrich-Merck
Life Science S.r.l., Italy), Ni(CH3COO)2·4H2O pur. 98% (Aldrich-Merck Life Science S.r.l.,
Italy), Zr(C5H7O2)4 pur. 99% (Aldric-hMerck Life Science S.r.l., Italy), Sr(CH3COO)2
pur. 99.9% (Aldrich-Merck Life Science S.r.l., Italy), and Ce(CH3COO)3·H2O pur. 99.9%
(Aldrich-Merck Life Science S.r.l., Italy).

The catalyst formulations prepared are reported in Table 1. The samples with the
symbol 10 wt% Ni/Oxide were prepared by impregnation of the metal, from the same
precursor, over the FP-synthesised oxide, used as support. Here, 10 wt% metal loading
was selected from a previous investigation [28]. The formulations where Ni is included
in the oxide formula were prepared as mixed oxides. The metallic Ni active phase was
achieved upon reduction in the activation step.

Table 1. Composition and textural properties of the catalysts prepared by flame spray pyrolysis (FP).
SSA = specific surface area, evaluated through the Brunauer Emmet Teller model. Micropore SSA
evaluated from the t-plot method.

Composition Code BET SSA
(m2/g)

Micropore SSA
(m2/g)

Crystal Size
(nm)

La0.3Zr0.7NiO3 a 63 11 28

10 wt% Ni/(0.3La2O3–0.7ZrO2) b 44 4 35

La0.8Sr0.2NiO3 c 56 13 17

CeNiO3 d 62 14 22

La0.3Ce0.7NiO3 e 57 14 20

10 wt% Ni/(0.3La2O3–0.7CeO2) f 46 7 27

LaNiO3 g 53 9 14

2.2. Catalysts’ Characterisation

The catalysts (0.1 g) were characterised by temperature programmed reduction
(TPR) with a Micromeritics Pulse Chemisorb 2700 (Norcross, GA) with TCD (Thermo-
Conductivity) detector, by heating 8 ◦C/min up to 950 ◦C. The catalysts were pretreated in
oxygen flow at 250 ◦C and then analysed in 20 mL/min of a 5 vol% H2/Ar mixture.

The specific surface area of the catalysts was determined with by N2 adsorption/
desorption with a Micromeritics ASAP2010 instrument (Norcross, GA) after outgassing the
sample overnigth at 300 ◦C.

The catalysts were characterized by X-ray diffraction (XRD) on a Philips PW3020
powder diffractometer (Philips, Eindhoven, NL).

Morphologic analysis, obtained by Scanning Electron Microscopy (SEM) was carried
out with an Electron Scanning Microscope Philips XL-30CP (Philips, Eindhoven, NL).
Elemental composition was determined using the Energy dispersive X-ray analysis (EDS)
with an EDAX/DX4 detector.
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Trasmission Electron Microscopy (TEM) images were obtained using a Philips 208
Transmission Electron Microscope (Philips, Eindhoven, NL). The samples were prepared
by putting one drop of an ethanol dispersion of the catalysts on a copper grid pre-coated
with a Formvar film and dried in air.

Thermal Gravimetric Analysis (TGA) analysis was carried out on 10 mg of spent
sample (resolution 0.001 mg) with a Perkin Elmer TGA7 apparatus (Perkin Elmer Italia,
Milano, Italy), by heating 2 ◦C/min from 50 to 1000 ◦C to quantify the amount of carbon
residuals over the catalyst.

2.3. Catalytic Activity Testing

Activity testing was performed in a quartz tubular reactor, with 0.9 cm inner diam-
eter, loaded with 0.200 g of catalyst, diluted 1:1 (wt/wt) with quartz of the same size
(354–500 µm). The catalyst bed is separated by quartz wool from the top fillers, where,
in the evaporative zone, metal beads are used (1.2–4.8 mm). The reactor is heated by
an electric oven, controlled by a Eurotherm mod. 2408 (Eurotherm, Worthing, UK) TIC,
Temperature Indicator and Controller, for the reactive zone, while the upper evaporative
zone is heated separately with an Eurotherm mod. 808 (Eurotherm, Worthing, UK ) TIC.
The reactor is connected with gas lines that can feed either He (30 mL/min during ac-
tivity testing) or H2. A 10 wt% aqueous solution of glycerol is pumped with a KNF-Lab
Stepdos 03S (KNF, Stockholm, Sweden) with a flow rate of 0.060 mL/min. The liquid
products are condensed at the reactor outlet through a cryogenic bath (1.5 ◦C), while the
gaseous products pass through a flowmeter (Bios 530 L) and then are directly fed to a Gas
Chromatograph (Agilent mod. 6890N, Palo Alto, CA, USA) for periodic samplings.

The catalyst is activated in 30 mL/min of H2 by heating by 10 ◦C/min up to 700 ◦C,
and kept for 1 h. The temperature is then decreased to 650 ◦C in the reaction zone, while
the evaporating zone is maintained at 250 ◦C. The tests were typically carried out for 20 h
on stream, if not specified otherwise. The results report glycerol conversion; hydrogen
yield; and the selectivities to CO, CO2, and CH4 if relevant. When needed, the condensed
products were analysed with a GC-MS Hewlett Packard 5971 Series (Agilent, Palo Alto,
CA, USA) at the end of the reaction. Replicates were reproducible within 5% error.

3. Results and Discussion
3.1. Catalysts’ Characterisation

The specific surface area of the catalysts was between 44 and 63 m2/g (Table 1), with
very limited micropores contribution, because the FP procedure leads to the formation of
dense nanoparticles.

SEM and TEM analysis revealed uniform nanoparticles with size lower than 20 nm
(Figure 2). Some bigger agglomerates were visible only for sample 10 wt% Ni/(0.3La2O3–
0.7ZrO2), for which bigger hollow spheres were evident in some TEM pictures (Figure 2).

The nominal composition of the samples was checked through EDS analysis, consider-
ing the atomic% (at%). Mapping the sample surface revealed quite uniform distribution
of all the elements over the surface of the catalyst. When considering spot analysis, the
average composition of the samples was in general confirmed.

For instance, for sample La0.3Ce0.7NiO3 (La = 6.61 at%, Ce = 15.36 at%, Ni = 21.39 at%),
the atomic ratio La/(La + Ce) was 0.301, while (La + Ce)/Ni was 1.03. Similarly, for sample
La0.8Sr0.2NiO3 (La = 21.4 at%, Sr = 5.1 at%, Ni = 23.7 at%), the atomic ratios were Sr/(Sr +
La) = 0.19 and (La + Sr)/Ni = 1.12.

On the contrary, the Zr-containing samples revealed an unbalanced composition of
the oxide, as the mixed phase was not formed and phase segregation occurred (see XRD
results), resulting in a local composition different from the nominal one. For instance,
the EDS analysis of sample 10 wt% Ni/(0.3La2O3–0.7ZrO2) (La = 5.8 at%, Zr = 70.7 at%,)
revealed that the atomic ratio La/Zr was 0.08 instead of the nominal 0.42 and Ni content was
4.2 wt%. Similar results were evident for sample La0.3Zr0.7NiO3 (La = 4.4 at%, Zr = 52.5 at%,
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Ni = 17.6 at%), for which the La/Ni average atomic ratio was 0.25 instead of 0.3, but La/(La
+ Zr) was 0.08 with respect to the nominal 0.3.
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The particle size distribution statistics are reported in Figure 3. The average parti-
cle size is similar for all the samples and sufficiently sharp, except for sample 10 wt%
Ni/(0.3La2O3–0.7ZrO2). The latter showed a narrow distribution centre as well on ca. 8 nm
when excluding the bigger particles, while, when including the widest hollow particles, a
broader distribution was obtained.
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La0.8Sr0.2NiO3; (d) 10 wt%Ni(0.3La2O3–0.7ZrO2); (e) 10 wt%Ni(0.3La2O3–0.7ZrO2).

The nature of the phases formed was investigated by XRD (Figure 4) and phase
attribution was done through comparison with powder diffraction files (PDF, Centre for
Diffraction Data, ICDD, charts [46]). The samples with formal formula La0.3Zr0.7NiO3 and
10 wt% Ni/(0.3La2O3–0.7ZrO2) were confirmed to be constituted of a heterogeneous phase
mixture mainly containing ZrO2 and NiO. The latter phase was predominantly evident in
the former sample owing to the higher Ni content than the latter sample, where Ni was
added by impregnation in a lower amount.
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Moreover, the samples with nominal formula CeNiO3, La0.3Ce0.7NiO3, and 10 wt%
Ni/(0.3La2O3–0.7CeO2) showed the main reflection peaks of CeO2 and NiO, the latter
hardly visible in the impregnated sample, due to the lower concentration. On the contrary,
LaNiO3 and the same sample partially substituted with Sr revealed the typical reflections
of the LaNiO3 phase. All the samples showed quite broad and poorly intense reflections, as
a measure of the low crystal size and nanostructuring, typical of the FP synthesis method.

Temperature programmed reduction (TPR, Figure 5) was carried out on the samples to
determine the temperature range for the activation of the active phase, metallic Ni, in some
samples available in the form of mixed oxide, and in other cases as NiO or as impregnated
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precursor salt. As already widely discussed elsewhere, the reduction temperature for the
same oxide can be correlated to its dispersion and to the strength of the interaction with the
support. The higher the reduction temperature, the stronger such interaction and typically
the higher the metal oxide dispersion. Sharp reduction patterns also testify to the presence
of homogeneous types of sites.
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In the present samples NiO reduced between 200 and 600 ◦C, with broader reduction
peaks when the supporting oxide was based on La/Zr than when supported over La/Ce
(pattern a compared with e and pattern b compared with f ). A reduction peak at high
temperature (ca. 800 ◦C) appeared for CeNiO3 due to the partial reduction of the CeO2
support, while ZrO2 and La2O3 did not reduce under the present conditions.

The highest was the amount of NiO included as mixed phase into the support oxide,
determined by XRD, the highest was the average reduction temperature of NiO. For
instance, for the samples La1−xSrxNiO3, three or four reduction peaks were present, with
the highest temperature ones above 600 ◦C. For LaNiO3, curve g, differently reducible Ni2+
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species were present and the predominant ones were reducing between 300 and 600 ◦C. By
contrast, for sample La0.3Zr0.7NiO3 (curve a), the highest intensity peak appeared between
500 and 750 ◦C, underlining the presence of a higher concentration of less reducible Ni2+.

Furthermore, curves d and e, corresponding to similar Ce-containing samples, with or
without La2O3, were practically overlapping, but with a very slight shift towards higher
temperatures for the sample containing lanthanum oxide.

The direct incorporation of Ni during the synthesis led to a generaly higher reduction
temperature (curves a vs. b for La-Zr and e vs. f for La-Ce) with respect to the samples
obtained by impregnation of Ni, though maintaining a similar reduction profile.

Summing up, the highest Ni dispersion and strength of interaction with the support is
shown for the La1-xSrxNiO3 and La-Zr-Ni samples, especially when the latter are prepared
as mixed oxides with Ni incorporation during the support synthesis. This, in princible,
would ensure higher thermal resistance towards sintering and higher robustness towards
the coking features. Indeed, coking implies carbides’ accumulation in the metal and overall
leads to the formation of C nanotubes, as widely discussed in the literature [38,47,48].
This mechanism is inhibited when Ni is well dispersed and strongly interacting with the
support.

3.2. Catalytic Activity

The catalysts were tested for the steam reforming of glycerol, focusing mainly on the
characterisation of the gas phase products and on the stability with time-on-stream.

Reactant conversions were referred to glycerol, i.e., the limiting reactant, calculated as
in Equation (1), where in represent the molar florates entering (in) or outflowing (out) the
reactor. The selectivity to each detected product (Equation (2)) was calculated with respect
to the reacted glycerol, taking into account the stoichiometric coefficient νi while the yield
(Equation (3)) is given by the product of conversion and selectivity.

Glycerol conversion (%) =

(
nglycerol

)
in
−
(

nglycerol

)
out(

nglycerol

)
in

× 100 (1)

Selectivityi (%) =
(ni)out

νi

[(
nglycerol

)
in
−
(

nglycerol

)
out

] × 100 (2)

Yieldi (%) =
Glycerol conversion (%) × Selectivityi (%)

100
=

(ni)out

νi

(
nglycerol

)
in

× 100 (3)

The results of catalytic activity testing at 650 ◦C are compared for all samples reporting
glycerol conversion (Figure 6), hydrogen yield (Figure 7), and selectivity to CH4 (Figure 8).
Only a single temperature was considered, on the basis of previous investigations [49,50].
The latter is a common byproduct, which is hardly reformable except at a very high
temperature (750–800 ◦C) over Ni catalysts, and decreases hydrogen yield. An example of
the selectivity patterns for two interesting samples is also reported in Figure 9.
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Figure 6. Glycerol conversion at 650 ◦C, feed 10 wt% glycerol in water: (a) La0.3Zr0.7NiO3; (b) 10 wt% Ni/(0.3La2O3–
0.7ZrO2); (c) La0.8Sr0.2NiO3; (d) CeNiO3; (e) La0.3Ce0.7NiO3; (f) 10 wt% Ni/(0.3La2O3–0.7CeO2); (g) LaNiO3.
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Figure 7. Hydrogen yield at 650 ◦C, feed 10 wt% glycerol in water. (a) La0.3Zr0.7NiO3; (b) 10 wt% Ni/(0.3La2O3–0.7ZrO2);
(c) La0.8Sr0.2NiO3; (d) CeNiO3; (e) La0.3Ce0.7NiO3; (f) 10 wt% Ni/(0.3La2O3–0.7CeO2); (g) LaNiO3.
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The selectivity to hydrogen was close to 100%, leading to a yield pattern very similar
to the conversion one (Figures 6 and 7). This indicates the absence of significant amounts
of hydrogen containing byproducts. The carbon containing products were mainly CO2
(predominant) and CO, with a limited amount of CH4 for some catalysts only.

The less active samples were La1−xSrxNiO3, which revealed initial glycerol conversion
between 80 and 90%, but very rapidly deactivated to ca. 20% residual conversion after only
20 h on stream. CeNiO3 also demonstrated insufficient stability. The mixed formulation
La0.3Ce0.7NiO3 showed higher initial conversion and a little better stability with time-
on-stream, though still unsatisfactory. Worse long-term results were obtained with Ni
impregnated on the La2O3-CeO2 mixed support compared to when it was added with the
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other precursors in mixed oxide synthesis The latter sample reached a ca. 65% plateau
conversion with respect to ca. 40% for the impregnated sample.

The best results in terms of both initial conversion and, above all, optimal resistance
with time-on-stream were achieved with the La0.3Zr0.7NiO3 sample. Also for this system,
the introduction of nickel by impregnation worsened the catalytic performance, in terms of
glycerol conversion.

A similar profile is evident for hydrogen yield, given its selectivity is almost quantita-
tive in the gas phase products. Some methane may be present and incompletely reformed
under the selected reaction conditions (Figure 8). Methane can form through direct decom-
position of glycerol, but more likely by methanation of CO (R2) and CO2 (R3), as Ni is a
well-known methanation catalyst [51].

CO + 3 H2 � CH4 + H2O (R1)

CO2 + 4 H2 � CH4 + 2 H2O (R2)

Moreover, in this case, worse performance is exhibited by the La1−xSrxNiO3 samples,
leading to ca. 1% selectivity, while CeNiO3 gave rise to a steadily increasing methane
selectivity, possibly meaning a progressive deactivation of the active phase, less able to
complete the further conversion of this byproduct. Again, the best performing sample was
the La0.3Zr0.7NiO3, showing nil selectivity to methane for the whole duration of the test.

The trends of CO and CO2 selectivities are reported in Figure 9 for some of the best
performing samples. The predominant product was CO2, with selectivity always higher
than 90%, while CO ranged below 10%. This is a positive feature as further hydrogen
purification is carried out to remove CO and its limited selectivity implies easier removal
thorugh water gas shift reaction or pressure swing adsorption. Moreover, in this case,
perfectly stable data were attained for sample La0.3Zr0.7NiO3, while a slightly decreasing
selectivity to CO with time-on-stream is shown by the other two samples.

The two most critical features identified for catalyst deactivation are, operating at
high temperature, the metal sintering, and the deposition of coke. The presence of a mixed
oxide precursor phase promotes a greater dispersion of Ni and a high interaction with
the support. Both these features should ensure suitable resistance to sintering. On the
other hand, coking is related to different aspects. In this work, support acidity, catalysing
the formation of olefins and their olygomers, was tuned by selecting intrinsically basic
support (La2O3, possibly added with Sr). Given its quite low melting temperature, it
was mixed with ZrO2, a high melting point non-reducible oxide, whose acid features are
in turn limited by the presence of La2O3. On the other side, CeO2 was used as support
characterised by high oxygen mobility at the reaction temperature, in principle helping to
prevent coke accumulation by oxidation of the forming nuclei of coke.

The CO disproportion reaction is mainly responsible for the formation of C deposits,
while the condensation of hydrocarbons, e.g., olefins, due to acidity of the support (or
Lewis acidity due to the active metal itself), could lead to coke species with a different C/H
ratio. The different coke formation mechanisms are sketched in Figure 10, considering the
pathway from CO and from hydrocarbons’ condensation [52].

Overall, different C species are expected on the catalyst surface, with specific reference
to Ni containing ones: (i) adsorbed, atomic surface carbide forming between 200 and 400 ◦C
(Cα); (ii) polymeric, amorphous films, or filaments, forming between 250 and 500 ◦C (Cβ);
(iii) C filaments and nanotubes, forming between 300 and 1000 ◦C (Cv); (iv) bulk NiC,
forming between 150 and 250 ◦C (Cγ); and (v) graphitic platelets or films, forming between
500 and 550 ◦C (Cc). The different species form preferably in the indicated temperature
ranges and only some metals are able to form stable carbides and nanotubes/whiskers,
among which Ni is one of the most active. The different C species are also characterised
by different stability in the reaction environment, as they can react with steam and H2 to
form CO and CH4. For instance, Cα reacts with H2 at ca. 200 ◦C, Cβ at 400 ◦C, and Cv
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between 400 and 600 ◦C. On the contrary, graphitic carbon reacts only at a much higher
temperature, between 550 and 850 ◦C, allowing it to accumulate over the catalyst.
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with kind permission of Elsevier from [52].

TGA in air was carried out by heating up to 1000 ◦C to determine the possible weight
loss due to the combustion of C-containing species deposed over the catalyst surface;
Table 2. The temperature range of C oxidation is also correlated with the stability of the
coke, and thus allows one to formulate hypotheses on its nature.
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Table 2. Results of TGA. ∆wt represents the normalised weight loss.

Sample ∆wt
(%) T ◦C ∆wt

(%) T ◦C ∆wt
(%) T ◦C ∆wt

(%) T ◦C ∆wt
(%) T ◦C

La0.3Zr0.7NiO3 5.7 100–400 −1.4 500–650

10 wt%
Ni/(0.3La2O3–

0.7ZrO2)
1.0 200–400 −2.3 400–600

La0.8Sr0.2NiO3 −1.5 250–300 4.9 300–500 −2.5 650–700 −1.5 700–750 −1.5 800–850

CeNiO3 4.9 200–400

La0.3Ce0.7NiO3 5 100–400

10 wt%
Ni/(0.3La2O3–

0.7CeO2)
1.6 150–400

LaNiO3 −0.6 260–310 3.9 310–600 −1.5 600–750 −0.5 850–900 −0.3 950–1000

All the samples showed a positive peak (weight increase) due to the oxidation of
reduced Ni. Indeed, it was roughly proportional to Ni content. CeO2 containing samples
did not reveal any weight loss attributed to coke combustion,. supporting the hypothesis
that the widely known oxygen mobility and buffering properties of this oxide may be an
effective prevention of coke accumulation over the catalyst. The La1−xSrxNiO3 samples
showed many different negative peaks, appearing atvery different temperature ranges.
Being composed of non reducible oxides (except NiO), the high temperature peak cannot
be attributed to oxygen loss from the support. The lowest temperature weight loss can be
ascribed to adsorbed, unstructured C, while the high temperature ones to more structured
C, such as the whiskers or graphitic one. By looking at the catalytic activity tests, these were
the samples more rapidly deactivating, which indeed suggests the fast coke accumulation
over the Ni surface and possibly over the support. The latter is also involved in water
activation, so the coverage of its surface by coke hinders this part of the reaction mechanism.

On the contrary, sample La0.3Zr0.7NiO3 showed one weight loss feature, quite limited
(−1.4 wt%) occurring at a relatively high temperature.

This result, together with the exceptional stability of this sample during the test, leads
to exclude the accumulation of coke on Ni or the formation of nanotubes. It is possible
that the TGA peak may correspond to some coke accumulated over some residual acidic
ZrO2 sites, which irreversibly deactivate. Slightly greater weight loss and lower oxidation
temperature were obtained for the 10 wt% Ni/(0.3La2O3–0.7ZrO2) sample. This can be
ascribed to Ni coking (possibly with formation of nanotubes) to explain the progressive
catalyst deactivation observed in Figure 6.

By comparing these results with the performance of the catalyst, taking into account
the results of the structural characterization, it can be confirmed that the greater dispersion
of Ni obtained by adding Ni during FP synthesis is effective in increasing its dispersion
(lower reducibility) and thermal stability towards the sintering

Almost 100% conversion of glycerol was similarly reported for 15% Ni/La2O3-ZrO2
and 12%Ni/CeO2-ZrO2, tested under similar conditions [17]. However, most catalytic
systems showed a decreasing conversion trend with time-on-stream, underlying deactiva-
tion issues mainly related to coking. Perovskite-based catalysts were also tested for this
application. For instance, LaNiO3 tested at 650 ◦C led to 58 to 72% conversion, depending
on the preparation method and conditions [53,54]. Moreover, when the Ni precursor was
in the form of hydrotalcite, better performance and most of all stability was reported,
attributing deactivation by coking to sintering of the Ni nanoparticles [17], in line with
recent findings.

To sum up, the steam reforming of glycerol can be a valuable option to valorise this
byproduct of biodiesel production in the same commercial compartment, i.e., the energy
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sector, better matching the increasing production volume. Despite the promising prelimi-
nary results in terms of activity, two main issues needed solutions: (i) the employment of
noble metals in most of the best performing catalyst formulations; (ii) insufficient catalyst
stability. Therefore, in the present work, we successfully focused on the application of Ni
as active phase, which was already demonstrated to be active for many different substrates
and is less expensive than noble metals. As for the second point, the key problem to be
addressed is catalyst coking, which can be ascribed to two main issues—the acidity of the
catalyst and the possible formation of carbon nanotubes due to the subsurface accumulation
of carbides at the Ni/support interphase.

To cope with these pointswe have applied different strategies. On one hand, we have
confirmed that the Ni dispersion and the interaction with the support is a good strategy to
limit the growth of carbon over the metal particle. Therefore, we have directly incorporated
Ni in mixed oxide formulations with the precursors of the support. This improved the Ni
dispersion after reduction and tightened the strength of the interaction with the support.
These materials were compared with samples obtained by wet impregnation of Ni over
the support. TPR was selected as a tool to interpret the strength of the metal–support
interaction, i.e., the higher the reduction temperature of Ni, the stronger the metal–support
interaction and/or the higher the metal dispersion (in principle, improving the resistance
to both sintering and coking).

Finally, the flame pyrolysis technique adopted for the oxides synthesis was able to
impart sufficient thermal resistance and to favor the Ni dispersion inside the precursor
oxide material. The main challenge of this research work, the adopted strategies, and the
results are summed up in Scheme 1.
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4. Conclusions

The steam reforming of glycerol was studied as a mean to valorise a byproduct of
biodiesel production for the production of hydrogen. The catalysts were designed based on
Ni as active phase, supported over basic or oxygen conducting oxides. In order to favour
a strong metal-support interaction, which ensures good metal dispersion and stability to
sintering, mixed oxide formulations were designed with varying nominal formulation. A
really stoichiometric mixed oxide was achieved only in the case of La1−xSrxNiO3 catalysts,
which, however, were revealed to be very poorly stable during activity testing and prone to
coking. On the contrary, formulations containing CeO2 were not really active, but they did
not accumulate coke during testing. The incorporation of Ni during the FP synthesis, even
in a high amount, was beneficial to improve its dispersion and interaction strength with the
support, testified by lower Ni reducibility. By contrast, the addition of Ni by impregnation
led to worse performing samples, less active and more prone to coking.

Overall, the best results were obtained with catalyst La0.3Zr0.7NiO3, which led to full
glycerol conversion, stable for 20 h on stream and with very limited coke deposition, likely
covering the not-titrated most acidic sites of ZrO2 that, once deactivated, were completely
ruled out.
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