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Abstract—Having multiple data stores that can potentially
serve content is common in modern networked applications. Data
stores often publish approximate summaries of their content to
enable effective utilization. Since these summaries are not entirely
accurate, forming an efficient access strategy to multiple data
stores becomes a complex risk management problem.

This paper formally models this problem, and introduces
practical algorithms with guaranteed approximation ratios, and
in particular we show that our algorithms are optimal in a variety
of settings. We also perform an extensive simulation study based
on real data, and show that our algorithms are more robust than
existing heuristics. That is, they exhibit near optimal performance
in various settings whereas the efficiency of existing approaches
depends upon system parameters that may change over time, or
be otherwise unknown.

I. INTRODUCTION

Having access to multiple network connected data stores is
common in modern network settings such as 5G in-network
caching [1], [2], content delivery networks (CDN) [3], [4],
information centric networking [5], [6], wide-area networks [7],
as well as in any multi data center Internet company. Data
stores can be cache enabled network devices, memory layers
within a server, virtual machines, physical hosts, remote data
centers or any combination of the above examples. In such
settings, each data store acts as a network cache by holding a
potentially overlapping fraction of the entire data that may be
accessed by applications and services hosted in the network.

Accessing a data store incurs a certain cost in terms of
latency, bandwidth, and energy. Hence, smart utilization of
data stores may reduce the operational costs of such systems
and improve their users’ experience. Naturally, knowing which
item is stored in each data store at any given moment is a key
enabler for efficient utilization, but maintaining such knowledge
may not be feasible. Instead, it is more practical to occasionally
exchange space efficient indicators for the content of the data
stores [7]. Bloom filters [8] are a common implementation for
such indicators, but many other space-efficient approximate
membership representations can also be used [3], [9]–[14].

The shortcoming of relying on such indicators is that they
may exhibit false positives, meaning that they may indicate
that a given item is held by a certain data store while it is
actually not there. Indeed, the work of [13] formally showed
that naively relying on indicators for accessing even a single
data store may do more harm than good. In this work, we
are interested in the general case of accessing multiple data
stores. The difference is that we require an access strategy

(a) The client is looking for item x and needs to select which data stores to
access. Data stores provide an indication (I(x)) if they store x. The grayed
content (C(x)) indicates if they actually store x. Notice the false positive in
Data store 1. The client pays the cost for the selected data stores, and in case
of a failure to find x in any of the accessed data stores, it incurs a miss penalty.
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(b) An example of the average access cost of different strategies (lower is better),
when varying the cache hit ratio. The number of data stores here is 20, the access
cost to each of them is 1 while the miss penalty is 100 and the false positive
ratio is 0.02.

Fig. 1. Motivation for the access strategy problem.

that selects a subset of the data stores to access per request.
Existing strategies for this problem include: (i) the Cheapest
Positive Indication (CPI) [10], [15] strategy that accesses the
cheapest data store with a positive indication for the requested
item, and (ii) the Every Positive Indication (EPI) [7] strategy
that accesses every data store with a positive indication. The
access is considered successful if the item is stored in one of
the accessed data stores, and incurs no further cost. Otherwise,
we pay a miss penalty for retrieving the requested item, e.g.,
due to the need to fetch it from an external remote site.

In the example of Figure 1a, CPI accesses only data store 1,
which is the cheapest with a positive indication (captured by
I(x) = Yes), and incurs a cost of 1 for this. However, since x
is not in data store 1 (captured by C(x) = No), this indication
is a false positive, and an additional miss penalty of 100 is
incurred for the request, for a total cost of 101 imposed on CPI.
Alternatively, the EPI policy accesses every data store with a
positive indication (data stores 1, 2, and 3). This implies an



access cost of 1 + 2 + 5 = 8. In this case, no additional miss
penalty is incurred, since item x is indeed available in one of
the accessed data stores, e.g., in data store 2. One can also
consider an ideal strategy equipped with a perfect indicator
with no false positives. Such an ideal strategy would require a
cost of merely 2 incurred for accessing data store 2 alone.

Figure 1b provides a numerical example motivating this work
(see Section IV for the exact settings). The figure illustrates
the expected access cost for varying strategies with a false
positive ratio of FP = 0.02. The strategies are compared to the
performance of two baseline scenarios. The No Indicators (blue)
line illustrates the best that can be obtained without indicators
(which can be viewed as using indicators with FP = 1, or
equivalently, using indicators that always return ’Yes’). In
contrast, the Perfect Indicators (red) line corresponds to having
no false positives (FP = 0) in any of the indicators.

The area between the plots describing the performance of
the two baseline scenarios (blue and red) exhibits the potential
gains of employing indicator based access policies. Specifically,
we observe that EPI is near optimal when the per data store
hit ratio is low but becomes highly inefficient when it is high.
In fact, even the No Indicators approach outperforms EPI once
the hit ratio is above a certain threshold (in our plot, this occurs
at a hit-ratio of around 0.45). In contrast, CPI is near optimal
when the hit ratio is very high but performs poorly when it is
low. Between these two extremes, there is a gap where both
strategies are inefficient, as highlighted in the magnified area
of Figure 1b. Our proposed strategies, described in Sections IV-
V, aim at providing near-optimal performance, independent
of the actual hit ratio. In particular, the performance of our
false-positive-aware optimal policy, FPO, depicted by the pink
line, comes extremely close to the Perfect Indicators (red) line
despite relying on indicators whose FP = 0.02.

Our Contribution: As mentioned, despite the popularity of
indicators, the problem of efficiently working with indicators
and of forming a successful access strategy has remained
unexplored. Our work formally models this problem in very
general and heterogeneous settings with varying access costs,
per data store hit ratios and miss penalties. We show that
previously suggested strategies are too simplistic and implicitly
rely on specific assumptions about the workload, or the
underlying system. Thus, in general, an access strategy that
works well in one scenario may be inefficient for another.

Our work suggests and analyzes two practical approximation
algorithms that work in polynomial time. Through an extensive
evaluation with varying system parameters, we show that our
algorithms are more stable than existing approaches. That is,
they outperform or achieve very similar access costs to the
best competitor for any tested system configuration.

II. RELATED WORK

A. Approximate Set Membership

Approximate set membership is about encoding a set of items,
such as the content of a data store, in a space efficient manner.
Intuitively, an accurate representation requires storing all
identifiers which may be prohibitively expensive. Alternatively,

TABLE I
LIST OF SYMBOLS

Symbol Meaning
N All data stores
n Number of data stores, n = |N |
Nx Data stores with positive indications for requested datum x
nx Number of positive indications for requested datum x (|Nx|).
Sj The set of data items in data store j
phj Hit ratio of data store j
Ij(x) Indication of data store j for datum x.
qj Probability of positive indication by Ij : Pr(Ij(x) = 1)
FPj False positive ratio for Ij : FPj = Pr(Ij(x) = 1|x /∈ Sj)
ρj Misindication ratio for a data store j
ρD Misindication ratio for a set of data stores D
ci Access cost for data store i.
cD Total access cost (sum of costs of all data stores in set D)
φ Cost function: φ(D) =

∑
i∈D ci + β

∏
i∈D ρi

β Miss penalty

M M = min
{∑

j∈Nx
cj , β

}
.

Hk(Lk) Access cost for the k highest (lowest) data stores in Nx.

space can be conserved by allowing a small number of false
positives. Bloom filters [8] offer space-efficient encoding but
do not support the removal of items. Other works [7], [11],
[12], [14], [16] improve on them in various aspects, such as
support for removals [12], [17], [18], a more efficient access
pattern [11], [14], and lower transmission overheads [19].

B. Applicability Examples

Bloom filter variants are extensively used in multiple
domains [9], [10]. Most notable is their use in front of a
cache or a slow memory hierarchy. Such usage leverages that
Bloom filters do not exhibit false negatives. Thus, there is no
need to access the data store on a negative indication.

The work of [7] suggests an architecture for distributed
caching on wide area networks. In this solution, caches share
an approximation of their content. Clients use this information
to only contact the caches with positive indications (EPI). A
similar architecture is also considered in [10], [15]. There,
clients access the cheapest cache with a positive indication
(CPI). Let us note that the impact of the access strategy and
its optimization is overlooked in previous works.

The work of [13] considers the special case of a single data
store, equipped with a Standard Bloom Filter [8] or a Counting
Bloom Filter [20]. They identify cases where following a
positive indication may increase the overall cost. Thus, they
suggest that in those cases the data store should be ignored,
regardless of its indicator value. We, on the other hand, address
the more general problem, which involves any number of data
stores, equipped with any kind of indicators.

III. SYSTEM MODEL AND PRELIMINARIES

This section formally defines our system model and notations.
For ease of reference, our notation is summarized in Table I.
We consider a set N of n data stores, containing possibly
overlapping subsets of items. We denote by Sj the set of items
stored at data store j. Given a sequence of requests for items
σ (with possible repetitions), the hit ratio of a data store j is



the fraction of requests in σ that were available in data store
j (when requested). Our work assumes that past hit ratio is a
good indication for the near future [21], [22]. We denote by
phj the hit ratio of data store j, i.e., the probability that the
next accessed item x is stored in Sj .

Each data store j maintains an indicator Ij , which approxi-
mates Sj ; given an item x, Ij(x) = 1 indicates that x is likely
to be in Sj while Ij(x) = 0 indicates that it is surely not in Sj .
These are referred to as a positive indication and a negative
indication, respectively. Our model assumes indicators that may
exhibit only one-sided errors, i.e., they never err when providing
a negative indication1. In practice, most implementations satisfy
this assumption [7], [11], [12], [14]. The false positive ratio
of Ij is defined by FPj = Pr(Ij(x) = 1|x /∈ Sj). It captures
the probability that given a uniformly random item that is not
in Sj , the indicator would mistakenly indicate that it is in Sj .
For every data store j, given its indicator Ij , we let ρj ∈ [0, 1]
denote its misindication ratio ρj = Pr(x /∈ Sj |Ij(x) = 1),
where x is uniformly selected from the entire domain Sj .

Given an item x within sequence σ, a query for x triggers
a data access which consists of selecting a subset of the
data stores D and accessing this subset in parallel. The data
access is considered successful, or a hit, if the item x is
found in at least one of the data stores being accessed and is
considered unsuccessful, or a miss, otherwise. Since by our
assumption all indicators might have a one-sided error, we focus
our attention only on subsets of data stores which all provide
a positive indication. Given such a subset of the data stores
D all providing a positive indication, we denote by ρD the
misindication ratio of D, i.e., the probability that an item is not
available in any of the data stores in D, in spite of their positive
indications. Note, that if D = ∅, then ρD = 1. We make no
assumptions on the sharing policy among the data stores. Yet,
in the analysis sections we assume that the misindication ratios
are mutually independent, that is, ρD =

∏
j∈D ρj . Under this

assumption our analysis provides a baseline for understanding
the performance of such systems.

Each data store has some predefined access cost, cj , which
is incurred whenever data store j is being accessed. These
access costs induce the overall cost for accessing a set D of
data stores, defined by cD =

∑
j∈D cj . We assume without

loss of generality that minj cj = 1. In case the data access
results in a miss, it incurs a miss penalty of β, for some β ≥ 1.
For a subset of data stores D, which all provide a positive
indication, we define its (expected) miss cost by β · ρD.

For any query item x, let Nx ⊆ N denote the sub-
set of data stores with a positive indication, i.e., Nx =
{j ∈ N |Ij(x) = 1}, and denote the size of this set by nx =
|Nx|. The expected cost of accessing any D ⊆ Nx is defined
to be the sum of its access cost and its expected miss cost, i.e.,

φ(D) = cD + β · ρD. (1)
When misindication ratios are mutually independent we have

φ(D) = cD + β · ρD =
∑

j∈D
cj + β

∏
j∈D

ρj . (2)

1This means having no false negatives, i.e., Pr(Ij(x) = 0|x ∈ Sj) = 0.

The Data Store Selection (DSS) problem is to find a subset
of data stores D ⊆ Nx that minimizes the expected cost φ(D).

We denote by qj the probability that indicator j positively
replies to a query for an item x. This happens when either
x ∈ Sj ; or x /∈ Sj , and a false positive occurs. Therefore,

qj = Pr(Ij(x) = 1) = phj + (1− phj ) FPj . (3)
Using Bayes’ theorem and Eq. 3, the misindication ratio ρj is

ρj ≡ Pr(x /∈ Sj |Ij(x) = 1)

= FPj(1− phj )/[phj + (1− phj ) FPj ]. (4)

IV. THE FULLY HOMOGENEOUS CASE

To gain some insight about the challenges in developing an
access strategy, we start with a simplified fully-homogeneous
case. In this setting, the cost of accessing each data store is the
same (c = 1). The per data store hit ratios and false positive
ratios are uniform, i.e., for each j, phj = ph and FPj = FP,
for some constants ph,FP ∈ [0, 1]. Consequently, the per data
store misindication ratios, captured by Eq. 4, are also uniform,
i.e., for each j, ρj = ρ for some constant ρ ∈ [0, 1]. Recall that
our objective is to pick a subset of data stores with positive
indications, D ⊆ Nx, so as to minimize the overall expected
cost of a query, φ(D) =

∑
j∈D cj + β

∏
j∈D ρj . In the fully-

homogeneous case considered here, the expected cost reduces
to φ(D) = |D| + βρ|D|, which merely depends on the size
of the chosen set D of data stores to be accessed. The task
of choosing which subset of data stores to access is reduced
to deciding on the number 0 ≤ k ≤ nx of data stores one
should access. For any such potential number k, we denote
the expected cost of accessing k data stores by

φ̃(k) = k + βρk, (5)
and focus our attention on studying the cost φ̃(·) incurred by
different data store selection schemes.

The size of the selected subset is clearly upper-bounded
by the number of positive indications, nx. So we start by
calculating the distribution of nx. Ideally, one can interpret
each positive indication as a result of an independent Bernoulli
trial with success probability q. By Eq. 3, q = ph+(1−ph) FP.
Hence, nx is binomially distributed such that

Pr(nx = k) =

(
n

k

)
qk(1− q)n−k. (6)

Using equations 5 and 6 we now derive the expected costs
of several selection schemes, where we let DX denote the set
of data stores selected by selection scheme X .

The EPI policy accesses all the data stores with positive
indications, and therefore its expected overall cost is

φ(DEPI) =

n∑
k=0

[
Pr(nx = k) · φ̃(k)

]
=

n∑
k=0

[Pr(nx = k) · k] + β ·
n∑
k=0

[
Pr(nx = k) · ρk

]
= E[nx] + β · PGFnx(ρ) (7)
= n · q + β (1− q + q · ρ)n ,



where PGFX(t) denotes the probability generating function
for random variable X at point t.

CPI accesses either a single data store with a positive
indication, if one exists, or no data store if there are no positive
indications. The expected overall cost of CPI is therefore

φ(DCPI) = Pr(nx = 0) · φ̃(0) + Pr(nx > 0) · φ̃(1)
= (1− q)nβ + [1− (1− q)n] (1 + βρ).

(8)

We now turn to analyze the false-positive-aware optimal
policy, FPO, which minimizes the expected overall cost, given
the false positive ratio, FP. In the fully homogeneous case,
this translates to finding argmink φ̃(k). Consider φ̃(y) defined
in Eq. 5 as a function defined over the reals. This function
is convex since its second derivatives is non-negative, and
it obtains its minimum at y∗ = − ln(−β ln(ρ))/ ln(ρ) for
0 < ρ < 1. In practice, the number of data stores accessed
must be an integer between 0 and nx. The optimal number
m∗(k) of data stores to access given that there are k positive
indications satisfies m∗(k) ∈ {0, k, by∗c, dy∗e}, where by∗c
and dy∗e should be considered only if y∗ ∈ [0, k]. Hence, The
expected overall cost of FPO is

φ(DFPO) =

n∑
k=0

[(
n

k

)
qk(1− q)n−km∗(k)

]
. (9)

Having studied the overall cost of the above policies, we may
revisit Figure 1b. The expected costs of each of the policies
are presented as a function of ph, using Equations 7-9. In
particular, in the special case where FP = 0, the expected
overall costs of CPI, FPO and the perfect indicators benchmark
are identical. This fits our intuition that when there are no
false indications, the optimal policy is to access a single data
store among those with positive indications if such a data store
exists. At the other extreme, we have the case where FP = 1,
in which we always have nx = n, i.e., all the indicators are
positive. This extreme case renders the indicators useless and
is thus equivalent to not having indicators at all. In particular,
note that depending on the values of n and β, EPI might end
up being worse than not having any indicators at all.

V. THE HETEROGENEOUS CASE

In the previous section, we addressed the fully homogeneous
case, in which minimizing our objective function φ(D) was
made tractable due to the uniformity of the settings. In general,
many systems are heterogeneous, making the minimization of
φ(D) a much more challenging task.

Recall that our goal is to select a subset D ⊆ Nx of data
stores with positive indications minimizing the expected cost

φ(D) = cD + βρD =
∑

i∈D
cj + β

∏
j∈D

ρj ,

as defined in Eq. 2. This can be viewed as a combined bi-
criteria optimization problem, of minimizing two objectives
simultaneously: (i) cD, which is monotone non-decreasing as
we pick more data stores to include in D, and (ii) ρD, which
is monotone non-increasing as we pick more data stores to
include in D, where the latter objective is “regularized” by β.

In this section, we describe several algorithms for solving
the DSS problem in fully heterogeneous settings and provide

Algorithm 1 DSPot(Nx,c,ρ,β)
1: `1, . . . , `nx ← Nx in non-decreasing order of ρj
2: for k = 1, . . . , nx do
3: Dk ← {`1, . . . , `k}
4: end for
5: return D = argmink

{
P (k) = Lk + β

∏k
j=1 ρ`j

}

a rigorous analysis of their performance. In particular, we
also study trade-offs between the time complexity and the
performance guarantees of our proposed solutions.

A. A Potential-based Algorithm

In the special case where the non-decreasing orderings of
data stores by access costs and by misindication ratios are
the same, a simple substitution argument shows that a greedy
approach will yield an optimal solution D which consists of a
prefix of this ordering.

In what follows we generalize the above observation and
suggest an algorithm for the general case based on the special
case described above. We denote by Lk and Hk the sum of the
k smallest access costs of data stores in Nx and the k largest
access costs of data stores in Nx, respectively. Our algorithm,
DSPot, described in Algorithm 1, considers the data stores
ordered in non-decreasing order of miss-ratio, `1, . . . , `nx , such
that ρ`j ≤ ρ`j+1

for all j = 1, . . . , nx − 1. The algorithm
iterates over all prefixes of indices in this order, and picks a
subset of data stores corresponding to a prefix which minimizes
the potential function P (k) = Lk + β

∏k
j=1 ρ`j .

We now turn to analyze the performance of our proposed
algorithm DSPot. In particular, we show the following theorem:

Theorem 1. Let D∗ be an optimal set of data stores for the
DSS problem, and let D be the solution found by DSPot. Then
φ(D) ≤ H|D|

L|D|
φ(D∗).

Proof. Let k = |D|. We therefore have

φ(D) =
∑k

j=1
c`j + β

∏k

j=1
ρ`j ≤ Hk + β

∏k

j=1
ρ`j

≤ Hk

Lk

(
Lk + β

∏k

j=1
ρ`j

)
=
Hk

Lk
P (k), (10)

where the penultimate inequality follows from the definitions of
Lk and Hk, and the last equality follows from the definition of
the potential function P (k). Let k∗ = |D∗|. Since data stores
are ordered in non-decreasing order of misindication ratio, it
follows that

∏k∗

j=1 ρ`j ≤
∏
j∈D∗ ρj , and by the definition of

Lk∗ as the sum of the k∗ smallest access costs of data stores
in Nx, it follows that

P (k∗) = Lk∗ + β
∏k∗

j=1
ρ`j (11)

≤
∑

j∈D∗
cj + β

∏
j∈D∗

ρj = φ(D∗).

Since D is chosen to be the set of data stores that minimizes
P (k), where k is the length of the prefix Nx considered in
non-decreasing order of miss-ratio, we have P (k) ≤ P (k∗).
Combining this with Eqs. 10 and 11, the result follows.



Since for every k we have Hk
Lk
≤ maxj {cj} and the running

time of DSPot is dominated by the time required to sort the
data stores, we obtain the following corollary:

Corollary 2. DSPot is a (maxj {cj})-approximation algo-
rithm, running in time O(nx log nx).

In particular, Corollary 2 implies that for the case where all
accesses costs are equal, DSPot yields an optimal solution to
the DSS problem.

B. A Knapsack-based Algorithmic Framework

In this section, we develop an alternative algorithm for
the DSS problem and provide guarantees on its performance.
We begin by recalling that the main difficulty in solving
the DSS problem stems from the fact that our objective
function is composed of a linear component (the access
cost) and a multiplicative component (the miss cost). The
algorithmic framework we propose in the sequel is based on
carefully linearizing the multiplicative component, and defining
a collection of knapsack problems for which their solution space
contains a good approximate solution to the DSS problem.

We associate each data store j with its log-hit weight, defined
by wj = − log(ρj). We therefore have for every subset of
data stores D ⊆ N , − log(ρD) =

∑
j∈D wj . Therefore, any

set of data stores has a minimal miss cost if and only if it
has a maximal log-hit weight. In what follows we define a
collection of Knapsack problems, where the Knapsack problem
is defined as follows: Given a budget B, and collection of
items U , such that each item j ∈ U has some profit πj and
cost γj , the goal is to find a subset of items S ⊆ U such that∑
j∈S γj ≤ B and

∑
j∈S πj is maximized. We refer to such

an instance as the (B,U, π, γ)-Knapsack problem, and denote
by AKnap(B,U, π, γ) the set of items produced as output by
an algorithm AKnap for the Knapsack problem. The Knapsack
problem is known to be NP-hard, but it can be solved exactly
by dynamic programming in pseudo-polynomial time, and can
be approximated to within a (1 + ε) factor in polynomial time
by an FPTAS [23].

We now turn to define our collection of knapsack problems,
to be used by our algorithm for solving the DSS problem.
We recall that given a query x, Nx ⊆ N denotes the subset
of data stores for which their indicator is positive. In the
following we let M = min

{∑
j∈Nx cj , β

}
. Clearly, M is an

upper bound on the access cost of any optimal solution for
the DSS problem. For any B ∈ {0, 1, . . . ,M}, consider the
(B,Nx, w, c)-Knapsack problem, i.e., the Knapsack problem
with budget B over a collection of items Nx, such that each
item j ∈ Nx has profit wj (the log-hit weight of data store j)
and cost cj (the access cost of data store j).

Our algorithm named DSPP, formally defined in Algorithm 2,
makes use of a (1 + ε)-approximation algorithm AKnap for
the knapsack problem, for some ε ≥ 0. The complexity and
performance guarantee depends upon the value of ε. DSPP

essentially iterates over all possible values for the access cost,
and solves the associated Knapsack problem using the algorithm
AKnap as a subroutine for each such value. DSPP then selects

Algorithm 2 DSPP(Nx,c,ρ,β, (1+ε)-approximation algorithm
AKnap for Knapsack)

1: wj ← − log(ρj) for all j ∈ Nx
2: for B ∈

{
0, 1, . . . ,min

{∑
j∈Nx cj , β

}}
do

3: . cj in this algorithm is assumed to be an integer
4: DB ← AKnap(B,Nx, w, c)
5: end for
6: return D = argminB {φ(DB)}

the subset of data stores D ⊆ Nx which minimizes φ(D) over
all Knapsack solutions calculated by AKnap in all iterations.

We first show that if AKnap finds an optimal solution to the
Knapsack problem in each iteration, then our algorithm finds
an optimal solution to the DSS problem. In terms of running
time, since the best exact algorithm for the Knapsack problem
over n items with budget B runs in pseudo-polynomial time
of O(nB) [23], our algorithm also runs in pseudo-polynomial
time. These properties are formalized in the following theorem:

Theorem 3. When using the pseudo-polynomial algorithm
AKnap which finds an optimal solution to the Knapsack problem
over n items with budget B in time O(nB), DSPP is a pseudo-
polynomial algorithm that finds an optimal solution to the DSS
problem in time O(nxM

2).

Proof. We first show that DSPP, defined in Algorithm 2, finds
an optimal solution to the DSS problem. Consider an optimal
solution D∗ ⊆ Nx for the DSS problem, and let B∗ = cD∗ .
Since by optimality B∗ ≤ M , we are guaranteed that DSPP

considers B = B∗ in one of the iterations of the for-loop in
lines 2-5. Let DB denote the solution of the knapsack problem
being solved in that iteration, where the knapsack budget is
B. Since algorithm AKnap finds an optimal solution for the
knapsack problem in this iteration

DB = arg max
D⊆Nx|cD≤B

{∑
j∈D

wj

}
.

By the definition of wj and the monotonicity of the log function,
such a DB also satisfies

DB = arg min
D⊆Nx|cD≤B

{ρD} . (12)

Assume by contradiction that DB is not optimal for the DSS
problem, i.e., that φ(DB) = cDB + βρDB > cD∗ + βρD∗ =
φ(D∗). Since cD∗ = B∗ = B ≥ cDB , it must follow that
ρDB > ρD∗ , for cD∗ ≤ B, which contradicts Eq. 12.

Running time: DSPP performs M iterations, where in
each iteration it solves a knapsack problem using an algorithm
which runs in O(nxM) time. It follows that the running time
of DSPP in this case, is O(nxM

2), as required.

In many cases, the value of M = min
{∑

j∈Nx cj , β
}

is
polynomially bounded by nx. The following is an immediate
corollary of Theorem 3 in such cases:

Corollary 4. If M = min
{∑

j∈Nx cj , β
}

is polynomially
bounded by nx, then DSPP solves the DSS problem in
polynomial time.



We now turn to study the tradeoff between the running
time of DSPP and its performance guarantee, when using a
polynomial time approximation algorithm for Knapsack instead
of the pseudo-polynomial time exact algorithm. We first show
in Theorem 5 how the approximation guarantee of an algorithm
for Knapsack translates to an approximation guarantee for the
DSS problem, while still in pseudo-polynomial time.

Theorem 5. If there exists some constant δ such that ρj ≤ δ
for all j ∈ Nx and algorithm AKnap is a (1 + ε)-polynomial
time approximation algorithm for Knapsack running in time
O(f(nx, ε)), then DSPP is a pseudo-polynomial algorithm that
finds an O(β

ε
1+ε )-approximate solution for the DSS problem

in time O(f(nx, ε) ·M).

Proof. First, note that by its definition, the running time of
DSPP is as required since it makes M iterations, and in every
iteration solves an instance of Knapsack in time O(f(nx, ε)).
It remains to bound the approximation ratio of DSPP.

Consider an optimal solution D∗ ⊆ Nx to the DSS problem,
and let B∗ = cD∗ and ` be an integer such that

2−(`+1) ≤ ρD∗ ≤ 2−`. (13)
By our assumption there exists some constant δ such that for
all j ∈ Nx we have ρj ≤ δ. We are therefore guaranteed
to have ` = O(log β), since for ` > log1/δ β we have
ρD∗β < 1, in which case the optimal solution would not
benefit from accessing more data stores than it currently does.
By the definition of the log-hit weight, we therefore have
` ≤

∑
j∈D∗ wj ≤ `+ 1.

Consider the iteration of DSPP where B = B∗, and let
DB denote the solution obtained by algorithm AKnap for
solving the Knapsack problem in this iteration. Since AKnap

is a (1 + ε)-approximation algorithm we are guaranteed to
have

∑
j∈DB wj ≥

1
1+ε

∑
j∈D∗ wj since D∗ is an optimal

solution with an access cost of B∗, and therefore maximizes
the objective function in the Knapsack problem being solved
in this iteration. It follows that∏

j∈DB
ρj ≤

∏
j∈D∗

ρ
1

1+ε

j ≤ 2
−`
1+ε (14)

= 2−`+
ε`

1+ε = 2−(`+1)+(1+ ε`
1+ε )

≤ 21+
ε`

1+ε

∏
j∈D∗

ρj ≤ O
(
β

ε
1+ε
)∏

j∈D∗
ρj ,

where the first inequality follows from our Knapsack ap-
proximation guarantee, the following two inequalities follow
from Eq. 13, and the last inequality follows from the fact
that ` = O(log β). For B = B∗ we are guaranteed to have∑
j∈DB cj ≤ B

∗. Hence,

φ(DB) =
∑

j∈DB
cj + β

∏
j∈DB

ρj

≤ B∗ +O
(
β

ε
1+ε
) (
β
∏

j∈D∗
ρj

)
=
∑

j∈D∗
cj +O

(
β

ε
1+ε
) (
β
∏

j∈D∗
ρj

)
≤ O

(
β

ε
1+ε
) (∑

j∈D∗
cj + β

∏
j∈D∗

ρj

)
= O

(
β

ε
1+ε
)
φ(D∗)

(15)

which completes the proof.

Algorithm 3 DSKnap(Nx,c,ρ,β)
1: wj ← − log(ρj) for all j ∈ Nx
2: for u ∈ {cj |j ∈ Nx} do
3: Nu

x ← {j ∈ Nx|cj ≤ u}, let nux = |Nu
x |

4: k1, . . . , knux ← Nu
x in non-increasing order of wj/cj

5: for all 1 ≤ t ≤ nux do
6: Du

t ← {k1, . . . , kt}
7: D̃u

t ← {kt}
8: end for
9: end for

10: return D = argminD∈{Dut }∪{D̃ut }∪{∅} {φ(D)}

In what follows, we present a polynomial-time approximation
algorithm, DSKnap for the problem, formally defined in
Algorithm 3. The algorithm is based on DSPP but avoids
the need to iterate over all possible budgets. In particular,
DSKnap does not make use of a general (1+ ε)-approximation
algorithm for solving the Knapsack problem. Instead, DSKnap

incorporates within its design the specifics of a 2-approximation
algorithm for the Knapsack problem, the details of which are
presented and discussed in the proof of Theorem 6.

Theorem 6. If there exists some constant δ such that ρj ≤ δ for
all j ∈ Nx, then Algorithm DSKnap is a polynomial O(

√
β)-

approximation algorithm running in time O(n2x log nx).

Proof. The algorithm is based on the 2-approximation algo-
rithm for Knapsack [23], which works as follows: given budget
B, prune all elements with a cost greater than B. Order all
elements in non-increasing order of their profitability, captured
by their profit-to-cost ratio. Greedily add elements to the
solution, starting from the most profitable one, as long as
their overall cost does not exceed the given budget. Once
adding an additional element causes a violation of the budget
constraint, pick the best out of two candidate solutions: the set
of elements accumulated which satisfy the budget constraint,
and the first element that caused the violation of the constraint.2

The remainder of the proof draws its intuition from the
proof of Theorem 5, combined with the properties of the 2-
approximation algorithm for Knapsack.

Given some budget constraint B on the access cost of a
solution, consider the 2-approximation algorithm for knapsack
when given B as its budget constraint.

The algorithm first prunes all elements with cost greater
than the budget. In particular, there exists some element j such
that cj is the maximal cost of an element not violating the
budget. DSKnap simulates the same prunning by iterating over
all potential values for this maximal cost, and maintaining
only the data stores with cost not exceeding this maximal cost
(lines 2-3). It follows that there is a u ∈ {cj |j ∈ Nx} for which

Nu
x = {j ∈ Nx|cj ≤ B} . (16)

2Most common implementations consider the element with maximum profit
instead of the first element causing the violation of the budget constraint.
However, such an amended choice has no effect on the analysis of the
algorithm’s performance.



Now that the knapsack approximation algorithm only con-
siders items with cost not violating the budget B, it orders the
items in non-increasing order of wj/cj , and scans the items
in this order, starting from the most profitable, until reaching
the first item in this order, ktB , such that

∑tB
j=1 ckj ≤ B, but∑tB+1

j=1 ckj > B. The algorithm then picks the best between
two possible candidate solutions: the set {1, . . . , ktB}, and the
set {ktB+1}.

Our algorithm iterates over all potential candidates of this
form, namely, all sets of data stores {1, . . . , kt}, and all sets of
data stores {kt}. Consider an optimal solution D∗ ⊆ Nx to the
DSS problem, and denote by B∗ the access cost contributing
to the overall cost of D∗. Consider the iteration of DSKnap

where Nu
x = {j ∈ Nx|cj ≤ B∗} (as shown in the argument

leading to Eq. 16 such a cost u necessarily exists).
Consider the items in Nu

x ordered in non-increasing order
of wj/cj , and let tB∗ be the first item in the order for
which

∑tB∗
j=1 ckj ≤ B∗, but

∑tB∗+1
j=1 ckj > B∗. The algorithm

will choose either {1, . . . , ktB∗}, which is candidate Du
t in

the iteration where t = tB∗ of lines 5-5; or it will choose
{tB∗ + 1}, which is candidate D̃u

t in the iteration where
t = tB∗ + 1 of lines 5-8. By the proof of Theorem 5, the
best of these two candidate solutions is an O(β

ε
1+ε ) = O(

√
β)

approximate solution for the DSS problem, since we are using
a 2-approximation algorithm for knapsack, implying ε = 1.

Since DSKnap picks the candidate solution with minimal
overall cost, the solution returned by the algorithm is itself
an O(

√
β)-approximate solution for the DSS problem. The

running time of the algorithm is dominated by the outer
for-loop in lines 2-9 which has nx iterations, wherein each
iteration we order all elements in Nu

x , which takes O(nx log nx)
time. Hence, the overall running time of the algorithm is
O(n2x log nx), which completes the proof.

VI. SIMULATION STUDY

This section uses a real access trace and a real content
distribution network topology to provide insights into the
performance of various access strategies in versatile settings.

A. System Topology and Costs

We use the topology of the OVH [24] content distribution
network. The OVH network [24] includes 19 Points of Presence
(PoPs) in Europe and North America along with the available
bandwidth between PoPs. We interpret each PoP as containing
both a data store and a co-located client. Queries are generated
at clients and each such query triggers an access to a subset
of the data stores according to the prescribed policy.

We assume that clients use the shortest hop-count path
between their location and the data store they access. Ties
are broken by picking the path with maximal bottleneck link
bandwidth. The cost for a client located at node i to access a
data store at node j is:

ci,j = d1 + α · dist(i, j) + (1− α) · T

BW(i, j)
e, (17)

where (i) dist(i, j) is the hop-count between node i and node j,
where dist(i, i) = 0, (ii) BW(i, j) is the maximum bottleneck
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Fig. 2. Histogram of ci,j values for the OVH network, based on Eq. 17,
using α = 0.5 and T = 500.

bandwidth of a minimum length path from node i to node j,
where BW(i, i) =∞, (iii) T is a design parameter satisfying
T ≥ maxi,j BW(i, j), that relates the increased cost of having
a smaller bandwidth with the increased cost due to having
a higher hop-count. Lastly, (iv) α is a design parameter that
helps balance the effects of hop-count distance and bottleneck
bandwidth on the cost. In particular, for α = 1 the cost is
fully dominated by the hop-count distance and for α = 0 it
is fully dominated by the bottleneck bandwidth, regularized
by the parameter T . Unless stated otherwise, throughout our
simulations we set T = maxi6=j BW(i, j). Specifically, T =
500 for the OVH network.

Figure 2 presents the histogram of the default access cost
used in our evaluation between all pairs of clients and data
stores in the OVH network.

B. Data Store Characteristics

Data stores are initially empty, and each can contain a
maximum of S data elements. Once an item is added to a full
data store, it evicts an item according to the Least Recently
Used (LRU) policy. The indicators are implemented using
Counting Bloom Filters [20], each consisting of B(S) 8-bit
counters and 5 hash functions, where B(S) is chosen as the
number of counters required to obtain a target false positive
ratio of 0.02 [9]. For example, in most of our simulations
we set S = 1000, which implies B(S) = 8181. We assume
that up-to-date indicators are available at all time as can be
efficiently realized by compressed Bloom filters [19], or by
only transmitting the changes as in [3].

Each data store estimates its own misindication ratio by
evaluating an exponential moving average over epochs of R
requests made to the data store. Formally, let mj(s, t) denote
the number of misses occurring at data store j during the
requests s + 1, . . . , t made to data store j3. For any t ≤ R
we let the estimated misindication ratio after handling request
t be ρj(t) =

mj(0,t)
t . For t > R, we let ρj(t) be the most

recent estimate over epochs of R requests, ρj(bt/Rc · R),
where for every non-negative integer k this estimate is updated
after handling request (k + 1)R such that ρj((k + 1)R) =
δ ·mj(kR, (k+1)R)/R+(1− δ) ·ρj(kR). In our simulations,
we take δ = 0.1 and R = 100, as we found this configuration

3Recall that we only access a data store if it has provided a positive
indication.



TABLE II
OVH NETWORK SIMULATION. RESULTS PRESENT FOR EVERY SCENARIO AND EVERY POLICY THE NORMALIZED COST OF THE METRICS:

NON-COMPULSORY MISS PENALTY (NCMP), ACCESS COST (AC), AND TOTAL COST (TC). THE VALUES FOR NCMP AND AC ARE NORMALIZED BY THE
AC OF THE PERFECT INDICATORS POLICY AND THE VALUES FOR TC ARE NORMALIZED BY ITS TC.

β Policy 1 location 3 locations 5 locations
NCMP AC TC NCMP AC TC NCMP AC TC

102

CPI 1.32 1.08 1.21 1.12 1.31 1.12 0.81 1.27 1.09
EPI 0.00 1.58 1.09 0.23 5.65 1.39 1.72 7.29 1.56

DSKnap 0.35 1.31 1.10 0.21 2.05 1.11 0.17 2.06 1.09
DSPot 0.02 1.56 1.09 0.02 4.43 1.28 0.01 4.91 1.28

103

CPI 13.20 1.08 1.23 11.15 1.31 1.11 8.09 1.27 1.07
EPI 0.00 1.58 1.02 0.00 5.93 1.06 0.00 9.55 1.08

DSKnap 0.01 1.58 1.02 0.10 4.11 1.04 0.17 3.64 1.03
DSPot 0.00 1.58 1.02 0.01 5.61 1.05 0.02 6.38 1.05

104

CPI 132.00 1.08 1.24 111.50 1.31 1.11 80.86 1.27 1.07
EPI 0.00 1.58 1.01 0.00 5.93 1.02 0.00 9.55 1.02

DSKnap 0.00 1.58 1.01 0.01 5.66 1.02 0.24 5.22 1.02
DSPot 0.00 1.58 1.01 0.00 5.89 1.02 0.02 7.89 1.02

to yield a stable ρ at each data store and to work well in
practice.

C. Traffic Trace, Metrics, and Simulated Scenarios

We used a publicly available Wikipedia trace [25] consisting
of 357K read requests to Wikipedia pages during a 5 minute
period4. Each request in this trace is assigned to a random
client issuing the request, and requests appear according to
their order in the trace. For handling the requests, we consider
the following access policies applied by the clients for choosing
the set of data stores to access: (i) CPI, (ii) EPI, (iii) DSKnap,
and (iv) DSPot. The evaluation factors the total cost, where all
clients are running the same algorithms. We also considered the
benchmark performance provided by using perfect indicators
(PI). This benchmark is used to normalize the costs of the
various policies considered.

In terms of metrics, we measure the following three metrics:
First and foremost, the total cost (TC) incurred by each access
strategy for serving the entire trace, normalized by the total
cost of PI. This is further refined into the total access cost
(AC) and the Non Compulsory Miss Penalty (NCMP). These
two measures are normalized by the total access cost of PI.
The former (AC) captures the cost of accessing the data stores
and is likely to be higher for access strategies that access
multiple data stores for each item request. The latter (NCMP)
accounts for miss penalties incurred by an access strategy
despite the fact that the item already exists in one of the data
stores. This can happen due to the combined effect of false
positives and strategies that do not access all data stores whose
indicator is positive, such as CPI. We note that normalizing
these performance measures by the total access cost of PI
allows us to compare the performance in various settings,
while alleviating some of the exogenous effects specific to the
scenario being evaluated.

D. Heterogeneous Case (OVH network)

Our first experiment considers a system-wide request dis-
tribution policy where an item can only be placed in k data

4The trace includes requests made on Sep. 22, 2007, from 06:12 to 06:17

stores that are chosen by a hash function based on the requests’
content. Such a policy is inspired by ideas such as replication
and partitioning to increase the hit ratio [26]. The outcome of
this evaluation is provided in Table II, where we present the PI
normalized results for various β and k values. We increased
k up to 25% of the 19 data stores in the system. Notice that
CPI has the minimal AC in all scenarios, as could be expected
by its definition. However, CPI is extremely sensitive to false
positives, which are translated to a high NCMP value. EPI, on
the other hand, is very effective for k = 1 but becomes less
attractive as we increase k, due to the fact it ends up accessing
too many data stores. It has the minimal NCMP but pays too
much for access costs. Note that for β = 100 and k = 5
EPI has NCMP > 0 as the total access cost of all positive
data stores is often larger than β and thus EPI would rather
avoid accessing any of the data stores and reverts to paying
the miss-penalty β. The DSPot strategy is the most efficient
(by a very small margin) for β = 100 and k = 1, and is equal
or inferior to DSKnap in all other cases. Intuitively, DSPot
optimizes for reducing the miss penalty which in turn results
in an increased AC. It always outperforms EPI but is inefficient
in cases where the access cost is the dominant part of the cost
(similarly to EPI). In contrast, DSKnap exhibits the all-around
best performance. It is the best strategy in most scenarios, but
most importantly it is never a bad strategy. Thus, even when it
underperforms compared to some other strategy, the differences
tend to be marginal. Furthermore, when considering the costs
incurred by its potential errors (i.e., its AC and NCMP costs),
it demonstrates the best performance compared to the other
policies in almost all scenarios, and by a significant margin.

E. Homogeneous Case: Varying Data Store Size

Figure 3 shows an experiment with 19 locations, where
we vary the data store sizes. The results are shown for
k = 1, k = 3 and k = 5 data stores, with homogeneous
access costs throughout the network. In these homogeneous
cost settings DSKnap and DSPot are equivalent to the scheme
which minimizes the expected overall cost, FPO. Furthermore,
their performance is very close to the one achieved with perfect
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Fig. 3. Homogeneous network with varying data store size. The miss penalty is set to β = 100, and the target false positive ratio is 0.02.

indicators. When k = 1, DSKnap and DSPot behave like EPI,
while CPI is inefficient. When k increases, CPI improves (due
to fewer non-compulsory misses) while EPI worsens (due to
higher access cost). This shows that the existing heuristics are
too simplistic to fit all system configurations, thus motivating
the need for our algorithms.

VII. DISCUSSION

Our work closes an important knowledge gap concerning
indicator based caching in network systems. Namely, it answers
the fundamental question of providing a stable access strategy
that achieves near-optimal results in a wide variety of scenarios.

Our work starts by showing that the access strategy problem
was roughly ignored until now and that the existing solutions
are only attractive for some system parameters. That is, their
effectiveness is determined by uncontrolled variables that may
change throughout the system’s life, and may not be known
in advance. In contrast, the algorithms suggested in this work
provide provable approximation ratios to the optimal solution
and are shown to be near optimal in a variety of system settings.
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