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Abstract— Multiparametric magnetic resonance imaging 

(mpMRI) is emerging as a promising tool in the clinical 

pathway of prostate cancer (PCa). The registration between a 

structural and a functional imaging modality, such as T2-

weighted (T2w) and diffusion-weighted imaging (DWI) is 

fundamental in the development of a mpMRI-based computer 

aided diagnosis (CAD) system for PCa. Here, we propose an 

automated method to register the prostate gland in T2w and 

DWI image sequences by a landmark-based affine registration 

and a non-parametric diffeomorphic registration. An expert 

operator manually segmented the prostate gland in both 

modalities on a dataset of 20 patients. Target registration error 

and Jaccard index, which measures the overlap between masks, 

were evaluated pre- and post- registration resulting in an 

improvement of 44% and 21%, respectively. In the future, the 

proposed method could be useful in the framework of a CAD 

system for PCa detection and characterization in mpMRI.  
 

I. INTRODUCTION 

In European Union, prostate cancer (PCa) is the most 
common cancer in men and about 450’000 cases are 
estimated for 2018 [1]. Currently, the standard technique to 
diagnose PCa is transrectal ultrasound (TRUS) guided core 
biopsy which is invasive and with relatively low diagnostic 
accuracy [2]. 

In the last decade, multiparametric-Magnetic Resonance 
Imaging (mpMRI) has had an increasing role in the PCa 
clinical pathway. MpMRI is defined as the integration of 
structural MRI, T1-weighted (T1w) or T2-weighted (T2w) 
volumes, with functional imaging, such as diffusion-weighted 
imaging (DWI) or dynamic contrast-enhanced imaging. 
Previous studies showed that T2w imaging improves the 
detection of PCa especially in the peripheral zone [2] and 
DWI images have proven to be useful to characterize PCa 
and tumor aggressiveness [3]. 

The integration of multiple modalities in a single system, 
specifically DWI and T2w imaging, increases the accuracy in 
PCa detection and characterization, when compared to a 
unique MRI modality or to TRUS-guided biopsy alone [2]. 

However, the development of a mpMRI-based computer-
aided diagnosis (CAD) system for PCa strongly requires a 
robust and accurate method to register images from different 
modalities, which is not a trivial task due to: i) different 
appearances of the prostate gland (PG); ii) presence of 
physiological motion; iii) nonlinear geometric distortions 
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caused by susceptibility artifacts and echo-planar imaging 
(EPI) sequence, which is the standard sequence used to 
acquire DWI images [4]. 

In most of the current CAD systems, the registration is 
semi-automatic where the operator manually places control 
points in the images resulting in a high inter-operator 
variability. Automatic multimodal registration algorithms 
mainly consist of nonrigid transformations where the moving 
image is deformed iteratively to maximize a similarity 
criterion such as mutual information, mean squared error or 
cross correlation. In a previous study, five state-of-the-art 
nonrigid registration algorithms were tested on a dataset of 
20 patients with cancerous lesions or cysts, acquired with a 
3T MRI Scanner [4]. However, the results of these methods 
are strongly dependent on the initial deformation between the 
images, hence, the parameter selection could be hard if a 
good initial transformation is not provided. An automatic 
method was proposed to align the PG in T2w and DWI 
images [5]. The method was based on a deformation field 
decreasing along the phase encode direction, linearly with the 
distance from the endorectal coil. However, such method 
presents two major limitations: i) the same transformation is 
applied for each slice of the PG volume, which may lead to 
an overestimation of the deformation in the slices far from 
the coil center, ii) the decreasing rate of the vertical 
displacement is chosen by maximizing the registration 
accuracy on a training set which may not be representative of 
every prostate. 

In this study, we propose an innovative and automatic 
algorithm to align the PG in DWI and T2w image sequences. 
The methodology is able to: i) extract a region-of-interest 
enclosing the PG, ii) correct physiological motion 
deformation by estimating an affine transformation and iii) 
correct nonlinear geometric distortions using the 
diffeomorphic demons registration algorithm. 

II. METHODS 

A. Image Dataset 

Twenty patients were enrolled in this study: age, 63 ± 5 

y.o. and prostate volume, 35.3 ± 7.2 cm3. For each patient, 

peripheral zone PCa was histologically confirmed after 

radical prostatectomy. For each patient, a T2w and a DWI 

(b-value = 0 and 1000 s/mm2) axial volume were acquired 

using the same acquisition parameters adopted in a previous 

work [5]. The field of view was 160 x 160 mm for both 

modalities and voxel size was 0.3125 x 0.3125 x 3 mm in 
T2w volumes and 0.625 x 0.625 x 3 mm in DWI volumes. A 

1.5 T scanner (Signa Excite HD, GE Healthcare, Milwaukee, 

Wisconsin, USA) with a four-channel phased- array coil and 

an endorectal coil (Medrad, Indianola, Pa) was used. The 

local ethics committee approved the study. 
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An expert operator (D.R. with 9 years of experience in 

MRI prostate examination) contoured the PG in each volume 

in both modalities using the open-source software 3DSlicer. 

A set (approximately 30 points per PG) of landmarks was 

defined by the same operator. These landmarks were visible 

in both modalities and positioned in anatomical points, as 

suggested in [4]. 

B. Automatic Registration Algorithm 

The proposed algorithm automatically aligns the PG in 

DWI and T2w images. The algorithm involves four major 

steps: i) region-of-interest extraction; ii) key points 

extraction and key points matching; iii) affine transformation 

estimation and iv) non-parametric diffeomorphic 

registration. Since the voxel resolution along z is 

significantly lower compared to the in-plane resolution, the 

first two steps are designed to work on 2D. Following 

paragraphs will describe in more detail each processing step.  
 

First, a 2-D median filtering with a window size equal to 

3 mm x 3 mm is applied in the DWI (b-value = 0 s/mm2) 

image (Fig. 1A) followed by a contrast enhancement 

saturating the bottom 1% and the top 1% of all pixel values 

(Fig. 1C). Next, a binary mask including the prostate and the 

endorectal coil artifact in the DWI image is obtained using 

an object-based detection algorithm which was adapted to 

these images (Fig. 1E) [6].  Morphological closing 

(structural element: disk, radius 3 mm) was performed to 

remove spurious holes in the mask. Antero-posterior and 

medio-lateral bounds of the PG are estimated by scanning 
the binary mask with a vertical and a horizontal line passing 

by the mask centroid (Fig. 1G). A rectangle passing by the 

estimated bounds is drawn, and a ROI is obtained by 

rescaling this rectangle with a scaling factor equal to 1.2 to 

ensure that the ROI will cover the entire gland (Fig. 1I). 

Regarding the T2w image (Fig. 1B), as first step the image is 

resized to match the DWI image size. Then, the same 

median filtering and contrast enhancement used in DWI is 

performed (Fig. 1D). The image is Otsu thresholded to 

obtain a binary mask in which the rectum is a black circle 

(Fig. 1F). To identify the rectum, the Otsu binary mask is 
morphologically closed (structural element: disk, radius 3 

mm) and the dark object with the largest area is defined to 

be the rectum (Fig. 1H). Next, the rectangle passing by the 

estimated bounds in DWI is positioned in the T2w image so 

that the lower bound of the ROI coincides with the upper 

bound of the rectum. The rectangle is then 120% rescaled to 

obtain a ROI including the entire PG (Fig. 1L).  

 

At this point, both images (DWI and T2w) are cropped 

in correspondence to their ROI, as shown in Fig.2A and 2B, 

and filtered with a multiscale Laplacian-of-Gaussian (LoG) 

filter. This filter is commonly used in image processing to 

enhance blob-like structures. As the standard deviation of 

the LoG kernel ( ) governs the size of the blobs detected, 

we performed LoG filtering at five different values of σ (4, 

6, 8, 10 and 12) using a kernel size of 2σ × 2σ and then sum 

up the four output images to obtain a unique image. As 

observable in Fig. 2C and 2D, the application of this filter 

highlights similar structures within the two images, 

neglecting the different fine-textures peculiar of the two 

sequence modalities. 
 

Scale-invariant feature transform (SIFT) algorithm is 

then used to extract key points in the filtered images [7]. 

This computer vision algorithm involves multiple steps: i) 

detecting candidate key points at different scales; ii) 

discarding points with low contrast with respect to the 

neighbourhood or localized along an edge; iii) for each 
point, computing a descriptor which is a 128-element vector 

derived from the local image gradient magnitude and 

orientation. Fig. 2E and 2F show the key points extracted 

respectively in the DWI and the T2w image. Given a key 

point in the DWI image, represented by its SIFT descriptor, 

key points matching means finding the best partner point in 

the T2w image. This can be addressed as a linear assignment 

problem. In our application, the assignment cost is defined 

as the Euclidean distance between the two descriptors and 

Kuhn-Munkres algorithm, also known as Hungarian 

algorithm, is used as it provides an optimal solution to the 

linear assignment problem in polynomial runtime 
complexity. Under the assumption that geometric distortions 

occur mainly along the phase encode direction [5], that 

corresponds to the antero-posterior direction, matching key 

points which are distant more than 3 mm along the 

Figure 1.  Automatic ROI extraction in a DWI (top panels) and a T2w (bottom panels) slice. (A,B) Original images; (C,D) Median smoothing and 

contrast-enhancement; (E) DWI binary mask obtained with the object-detection; (F) Otsu thresholding in T2w; (G) antero-posterior (green points) 

and medio-lateral (yellow points) bounds estimation; (H) EC profile (red line) identification; (I,L) final ROI (solid line) extraction, the dashed lines 

represent the rectangles obtained using the estimated bounds. 

 



  

mediolateral direction are discarded, as illustrated in Fig. 2G 

and 2H. 
 

Then, every pair of matching points obtained throughout 

the entire volume is used to estimate a 3D affine 

transformation between the two volumes (DWI and T2w) by 

linear least squares fitting. This step is used to correct for 

physiological motion, further, to provide an accurate 

initialization for the non-parametric diffeomorphic 

registration which mainly corrects EPI-specific geometric 
distortions. 

 

Finally, the DWI affine corrected volume is registered 

to the T2w volume using the demons deformable registration 
algorithm. The basic idea of this algorithm is to apply the 

diffusing models to the image matching problem by 

considering the contours of an object in an image as semi-

permeable membranes and deforming, in an iterative 

scheme, the second image to diffuse through these 

membranes. Before applying the nonrigid registration, 

volumes are cropped considering the largest ROI obtained 

throughout the slices and images are filtered with the 

multiscale LoG filtering. Mutual information is used as 

similarity measure, the number of iterations is 300. 

B. Performance metrics and statistical analysis 

Target registration error was evaluated by computing 

the mean euclidean distance between the anatomical 

landmarks defined by the expert in T2w and in DWI before 

and after the automated registration. 
 

Mutual information (MI) values of the T2w and the 

DWI volumes before and after the registration were 

computed within a volume-of-interest defined by an expert. 

MI is a measure of the amount of information that two 

images share [8]. This metric is assumed to be higher when 

the images are aligned. This is defined as: 
 

 (1) 

 

where  and  are the marginal entropies of image 

 and image  respectively and  is their joint 

entropy. 

 

Further, we performed a similarity analysis between the 

3D masks manually drawn by the operator in DWI and in 

T2w pre- and post- registration. The Jaccard index (JI) was 

used to measure the overlap between two masks computed 

as the intersection over union of the two masks. 
 

For each metric, two-tailed paired sample t-test was 

performed to test whether the mean difference between the 

metric values pre- and post- registration was zero. The 

significance level was set to 0.05. 
 

The algorithm was also tested separately in the slices 

belonging to the base (defined as the cranial 1/3 part of the 

prostate volume) and apex (caudal 1/3 part of the prostate 

volume) of the PG to evaluate the robustness of the 
methodology in the different gland zones.  

III. RESULTS 

The algorithm took less than 24 minutes to process the 

entire image dataset (20 patients), thus the average 

computational time per patient was approximately 72 

seconds on a Intel(R) Core(TM) i7 with 2.2 GHz, 16 GB 

RAM memory. 
 

Fig. 3 shows registration results for three representative 

images of base, mid-gland and apex of the prostate. 
 

Table 1 reports mean and standard deviation values of 

TRE, MI and JI pre- and post- registration at different gland 

zones. Paired t-test shows the presence of a statistically 

significant improvement of all the three metrics and for 

every gland zone (p < 0.001) with the automatic registration. 
 

Table 1. Mean (standard deviation) values of target registration error 

(TRE), mutual information (MI) and Jaccard index (JI) pre- and post- 

automatic registration for apex, base and whole prostate gland (PG). % 

represents the patient-wise mean percentage of increasing/decreasing of the 

metric.  

 

Metric Zone 
Pre-

registration 

Post- 

registration 
% 

TRE 

(mm) 

Base 3.38 (1.25) 2.02 (1.11) -36 

Apex 2.40 (0.97) 1.75 (0.88) -29 

PG 3.12 (1.19) 1.69 (1.18) -44 

MI 

Base 0.56 (0.28) 0.63 (0.19) 11 

Apex 0.64 (0.22) 0.70 (0.14) 8 

PG 0.66 (0.20) 0.71 (0.18) 9 

JI 

Base 0.66 (0.14) 0.76 (0.11) 20 

Apex 0.71 (0.13) 0.79 (0.12) 14 

PG 0.68 (0.11) 0.81 (0.06) 21 

Figure 2.  Key points extraction and matching in a DWI (top panels) and a T2w (bottom panels) slice. (A,B) cropped images; (C,D) Multiscale LoG 

filtering output images; (E,F) SIFT key points (blue points) extracted; (G,H) Key points matching, red line represent a discarded match where the 

matching points have a difference higher than 3 mm between the medio-lateral coordinates while green lines represent good matches. 

 
 



  

 

IV. DISCUSSION AND CONCLUSIONS 

In this study, an automatic algorithm for prostate gland 

(PG) registration in DWI and T2w images was proposed. 

Most of the current registration methods are manual or semi-

automatic leading to high inter-operator and intra-operator 

variability.  
 

In our previous work, we used as transformation model 

a piecewise linear with the deformation decaying linearly 

along the phase-encode direction. However, the decay 

parameter was chosen on a training set, thus leading to poor 

reproducibility and generalization. The method proposed in 

this study yields a mean percentage of JI increase equal to 

21% compared to 17% obtained in [5]. We believe that the 

increased performances are due to the combination of the 

two registration steps (affine and diffeomorphic) which 

gives more adaptability and robustness to the methodology. 

The proposed method was compared to five state-of-the-art 
registration algorithms [4]. Our registration results, in terms 

of TRE and computational time, are comparable or better 

than the results of four of these algorithms (mean TRE from 

1.53 to 2.05 mm, average computational time per patient 

from 36 to 216 s), while the “fast elastic image registration” 

method yielded the most accurate alignment (mean TRE: 

1.07 mm, average computational time per patient: 11 s). 

However, the mean TRE computed before registration was 

2.21 mm (compared to 3.12 mm in our dataset), further, the 

authors tested the algorithms on an image set acquired with a 

3T MRI scanner, which results in a better signal-to-noise 
ratio, compared to the 1.5T scanner used in this study.  

 

In every patient, the automatic registration improved the 

overlap between the masks and the distance between the 

anatomical landmarks annotated by the expert. In the same 

way, the affine transformation estimated through the SIFT 

key points produced an improvement of the alignment 

between the volumes ( TRE: -40%, MI: 3%, JI: 20%).  

 

However, the methodology presents some limitations. In 

the prostate’s apex, the performances of the proposed 

registration algorithm are lower than in the whole PG 

( TRE: -29% vs -44%, MI: 8% vs 9%, JI: 14% vs 21%). 

Indeed, being the PG smaller in apex slices, the number of 

SIFT key points extracted is often lower thus the estimation 

of the affine transformation produces worse results in this 

zone.  

 

In the future, the algorithm will be improved by 

implementing a new strategy for the apical portion of the 

gland. Further, the methodology will be validated on a larger 
dataset with multiple configurations of acquisition 

parameters to assess its robustness to different image 

characteristics. 

 

In conclusion, the proposed method could be a powerful 

tool to enable the development of CAD systems for PCa 

detection and characterization in mpMRI. 
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Figure 3.  Qualitative automatic registration results for different prostate 

zones. Left column panels represent the fused images pre-registration 

while right column ones are the fused images post-registration. (A,B) base 

slice; (C,D) mid-gland slice; (E,F) apex slice. White and green points 

represent the axial projections of some anatomical points annotated by the 

expert in the DWI and in the T2w image, respectively. 

 
 


