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Summary

Nowadays, the increase in traffic congestions, land consumption, and pollution emis-
sion due to private car ownership makes the rise of shared mobility possible. One of the
most spread implementations of shared mobility is Free Floating Car Sharing (FFCS). It
is a car rental model where the users can pick and release the car everywhere within an
operative area. The customers can reserve (and return) the vehicle using a web-based
application. With just a simple tap, the users can unlock and lock the smart vehicle.
Usually, the provider bills the users only for the time spend driving, with time-minute
based fares. All the other costs, like petrol, insurance, and maintenance, are in charge
of the provider.

This service’s flexibility fills the urban mobility gap between public transport’s rel-
ative cheapness and the comfort and capillarity of private car ownership. Indeed, FFCS
allows people to travel and commute faster than the standard public bus but avoiding
all the fixed and variable costs related to private car ownership.

Given the recent electric cars market increase and all the benefits those vehicles
carry, replacing FFCS fleet with electric-powered cars may still improve urban centers’
quality of life. The setup and management of an electric FFCS require ingenuity to
minimize the users’ discomfort due to car plugging procedures.

In my thesis, I present a methodology to address, in different cases of studies, all
the challenges related to the conversion of combustion engine cars to electric vehicles
in FFCS. In particular, my research’s main driver is to propose a methodology to build
a profitable and technically sustainable system setup, able to guarantee a flexible and
appealing mobility service to an increasing customer audience.

In the first part of my thesis, I describe the software I developed to scrape from the
web real combustion engine FFCS, from two providers: car2go and Enjoy. The car2go
data collection lasted from December 2016 to January 2018, collecting more than 27
million users’ bookings spread in 23 cities. The Enjoy data collection phase started in
May 2017 and lasted until June 2019, recording about 6 million bookings in 6 cities.

Then, I characterize both datasets in Turin, one of the cities in which both FFCS
providers work. I detect the outliers, filter them out from the dataset, and extract geo-
temporal users’ travel patterns.

After that, I compare the car2go customer’s pattern with the one-way and two-way
car-sharing system. The results show how users prefer more flexible services like FFCS
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or one-way car sharing.
Once the data are consolidated, I develop: A methodology to place a charging sta-

tion in a city by looking at users’ patterns. System policies to manage the fleet when
the vehicle state of charge may not guarantee a trip. Via an event-based trace-driven
simulator able to replicate the recorded trips in an electrified scenario evaluating each
configuration’s feasibility.

Via accurate simulation in Berlin, Milan, Turin, and Vancouver, I study different
electric FFCS setup. By placing the charging station in the most frequented areas, by
offering an incentive to the users to plug the car when the battery state of charge is
below a safety threshold, and balancing the spread of poles, it is possible to obtain a
sustainable system covering with charging station only the 8-10 % of zones.

To reduce the number of charging stations to have a sustainable electric FFCS, I
compare several optimization algorithms. The results show how a Genetic Algorithm
can find a better solution to shrink the minimum amount of resources to sustain the
same mobility demand.

After that, I move my attention to the users’ rentals’ demand predictability. The
main goal is to understand how different open-data sources could impact the recorded
FFCS users’ rental. Initially, I compare several time-series forecasts to predict the users’
demand in the short and medium-term. Random Forest regression produces better ac-
curacy and results in terms of interpretability. Then I correlate the socio-economics
features characterizing each city neighborhood to FFCS demand, and again, the Ran-
dom Forest regression outperforms other algorithms.

Finally, I question the system scalability figuring out several scenarios having in-
creasing demand. I use a model to synthesize users’ demand by looking only at the
geospatial users’ rentals. By varying the electric FFCS setup and simulating the new
scenario, I point out how a linear increase in the demand intensity requires a fleet sub-
linear increase. Finally, I project those considerations in euros, proofing how electric
FFCS has room for economic growth.
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Chapter 1

Introduction

Nowadays, the 55% world population is mainly concentrated in urban centers, and the
authors of [1] forecasted, in 2018, an increase of this estimate until 68% before 2050.
In this scenario, one of the problems that afflict big conurbations is mobility. Indeed,
population growth as well as the mobility demand. In Europe, this effect is particularly
emphasized, and the past flourishing automotive industry satisfied the demand letting
the users buy their own car [2].

The increase of private vehicles derived from the growing mobility demand leads to
a higher probability of traffic congestion, especially in rush hours. A lot of past and
recent studies demonstrated how traffic jams have a negative effect on public health.
For example, [3] showed how the micro dust concentration is strongly related to traffic,
measuring air pollutant before and during a truck strike. Moreover, [4] computed the
monetary impact due to PM2.5-related emission attributable to congestion. The results
are shocking: public health may cost up to $17 billion in 2030 in the United States.
Another aspect that contributes to a decrease in the quality of life in a congested city
is noise pollution. In particular, [5] and [6] demonstrate how intense noise emissions
can cause permanent damages to people living close to congested areas. Finally, the
problem of land use related to car presence is another critical point that must be taken
into account.

Several different regulatory boards addressed the traffic congestion problem in the
past years, increasing and optimizing the road network. According to several works like
[7, 8, 9], adding more resources attracts more car, actually feeding the traffic congestion
and thus increase related the damages.

The recent rise of shared economies made possible a groundbreaking revolution in
mobility too. In particular, this paradigm allows a customer to access goods and services
through a peer-to-peer instance. More in detail, the shared economy is characterized
by the shared creation, production, distribution, trade, and consumption of goods and
services by different people and organizations. In other words, an instance of a good or
service can be use used by different customers.
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Thanks to this particular business view, the so-called car sharing born. The first im-
plantation was a shared car purchase among people who could not afford it. During the
economic growth after WWII, the shared cars increasingly appeal, and a lot of business
started across all Europe, like [10], and [11] tells.

With Internet advent, car-sharing still improved the users’ experience. In particular,
the providers’ IT infrastructure made it possible to reserve and release the car using a
web-based applications run on smartphones. In contraposition with the classical car
rental model, with per-day fares, the new technologies made possible to bill the users’
with new fares based mainly on time spent driving.

Finally, it is possible to define what is intended as car sharing today: it is a car
rental model, where the users pay only for the time spent driving, all the other costs, like
petrol, insurance andmaintenance are in charge to the provider. The reservation and return
producers are possible without the customer’s physical presence in the provider front-end
crew office.

During the years, several implementations of car-sharing were born. A definition
of all car-sharing typologies is needed to highlight the differences among them. In the
first approach, It is important to introduce the concept of operative area (common to
all the car-sharing typologies): the portion of city area over which the users can release
the car. Usually, it is as big as the municipality where the users commute.

The main typologies of cars-haring are:

• Two-way car sharing: The users can reserve a car in one of the several ad-hoc
spots spread around the operative area, but they are forced to return it in the same
spot. It allows the providers to limit the fleet management operations to meet the
demand but heavily limits the service flexibility reducing the freedom degree of
the users.

• One-way car sharing: The user can reserve a car in one of the company-owned
parking stations, but contrary to the previous one, she/he can return the car in
a different parking station. This approach increases the service flexibility, but it
requires more fleet load balance by the provider.

• Free-floating car-sharing (FFCS): The users can pick and release the car ev-
erywhere within an operative area. It means that shared cars can be parked in
common parking like private cars. In this case, the provider does not build and in-
frastructure, and consequently, the fleet management is fundamental to maximize
the match between users’ demand and current car position.

Since the primordial implementation of car-sharing intended as a business model
become operative, the debate on this service’s environmental sustainability was very
spirited. In particular first studies at the beginning of the millennium, like [12] analyzed
the benefits costs of car sharing set up in the UK. It points out how the environmental
benefits due to the decrease of private cars circulation like 𝐶𝑂2 emission and land use
were achieved, with a fraction of the cost needed to design new road scheme.
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Later, [13] investigates the possible public transport abandon by customers due to
the presence of this new alternative in urban mobility. Counter-intuitively the author
proved that car-sharing fills the users’ mobility demand between public transport and
private car driving, reaching thus the condition in which it is possible to give users the
benefits of both transport modes. Thus, by including car-sharing in the ecosystem of
urban mobility offers, the users will be more prone to avoid to travel on their own car
and finally incrementing the audience of public transport users.

The milestone event in shared motility was the launch of car2go in 2008 in Germany.
This was one of the first completely automatized Free Floating Car Sharing providers.
As previously mentioned, Free Floating Car Sharing allows users’ to pick and return the
car without any constraint. This flexibility attracted more customers: car2go started in
few cities in Germany, extended its services in 2017 in more than 26 cities in Europe and
North America. Recent studies, like [14], still confirm that the presence of free-floating
car-sharing, like car2go, leads to a decrease of car ownership and the consequent in-
crease of life quality in urban centers.

However, it is possible to think a step forward in environmental sustainability. In-
deed, the majority of the cars belonging to car2go have an internal combustion engine.
The electric revolution we are living nowadays may lead to several improvements to
this service too. The benefits due to mobility electrification are well known. In partic-
ular, some works like [15] and [16] confirms that electric vehicles can still reduce the
concentration of the pollutant in big cities.

The electrification of shared mobility is at the basis of this work, whose main re-
search question is:

It is possible to design an electric car-sharing system keeping the
free-floating paradigm, namely without forcing the users to park the

car in a proper charging station at the end of each ride?

In electric mobility and particularly in an electric shared mobility scenario, the bur-
den of the recharging operations plays a fundamental role in terms of service attractive-
ness. For example, a Telsa Model S can require between 13 and 17 hours for a complete
recharge if plugged into a domestic power supply 1, which is an unacceptable time if
compared to the few minutes that petrol fills up requires.

It follows that free-floating car-sharing providers have to carefully design their elec-
tric infrastructure. In particular, the amount and the electric charging station placement
play a key role in this scenario. If the system is correctly sized, it will make it possible to
have a more customer-centric service able to provide to the customers a flexible shared
mobility experience.

In order to tackle this problem, in this thesis, I designed a methodology able to repli-
cate the sharedmobility demand in a scenario with electric cars defining the Key Perfor-
mances Indicators (KPIs) that evaluates the sustainability and profitability of an electric

1https://www.tesla.com/it_IT/support/home-charging-installation
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Free Floating Car Sharing System. Thus, the complete pipeline will provide useful in-
sight into the charging station placement, the perceived users’ discomfort related to the
plugging operation and customers management policy, and the whole system’s prof-
itability.

The structure of this thesis reflected the pipeline flow to design an electric shared
system. More in details, in chapter 2 I described the software architecture through
which I collect about 35million users’ rides from two Free FloatingCar Sharing Provider.
Then, in chapter 3 I characterized the two services and the users’ habits using a Turin
as a case of study city. After that, in chapter 4 I compared the different implementa-
tion of car-sharing to understand different users’ patterns. In chapter 5 I describe the
core of the whole thesis. It is an ad-hoc trace-driven electric free-floating simulator. It
takes into input the lists of users’ ride and replicates the same demand in a scenario
with electric vehicles. Here I define as well all the KPIs that measure the system ef-
ficiency. Chapter 6 discusses the charging station placement algorithm driven by the
collected data comparing the performances of those placements with the simulation
outputs. Chapter 7 compares different optimizations algorithms the charging station
placement pointed out by the previous chapter. Then, chapter 8 studies the predictabil-
ity car-sharing users’ demand, discussing which temporal and socio-economic features
may influence the Free Floating Car Sharing Demand. Subsequentally 9 compares the
system performances tuning some key inputs like the demand intensity, the fleet size,
and the infrastructure projects the results on the profit plan from a business point of
view. Finally 10 concludes the thesis.
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Chapter 2

Data Acquisition Pipeline

This chapter refers mostly to my paper ” UMAP: Urban mobility analysis platform to
harvest car sharing data [17], presented at the 2017 IEEE SmartWord conference. My
contribution is mainly related to the design and the implementation FFCS providers’
web scrapers.

2.1 Introduction
This chapter describes how the Urban Mobility Analysis Platform (namely, UMAP ) col-
lects, processes, augments, and stores real FFCS data and makes the them available for
further analyses. In particular, I build two crawlers to collect data from the car2go and
Enjoy platforms1. Every minute, the crawler checks which cars are currently available.
Every time a given car “disappears”, it records the booking start time. The same book-
ing ends when the crawler sees the car available back on the system. Some booking is
actual “rental” in case the carmoved from the prior parking position to another. Ingenu-
ity must be used, e.g., to filter GPS fix issues (which may erroneously let a car “move”),
or to handle possible data collection issues (e.g., the website going down, or some cars
undergoing maintenance), or platform design (e.g., synchronous or asynchronous up-
dates).

In total, UMAP collected about 27 million trips in 23 cities for car2go, working from
2017 to 2018. Instead, considering Enjoy, I get about 6.6 million rides from 6 cities from
May 2017 to June 2019. The source code of UMAP for research purposes.2

The remainder of this chapter is structured as follows: section 2.2 describes in detail
the raw data structure and the data flow from the providers’ API to the middle stage.
Section 2.3 describes how the software implements the raw data elaboration to trip

1www.car2go.com, enjoy.eni.com
2github.com/MobilityPolito/
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records and their storage into the data lake. Section 2.4 introduces the final stage of the
data collection pipeline: a model able to perform several statistics on the collected data.
Finally, section 2.5 concludes the chapter.

2.2 Data Acquisition

Data 

Normalization & 

Integration 
Spatial Analysis

Route length

Users’ Habits

1st Stage

Data Collection

Driving Habits

Temporal Analysis

3rd Stage

Data Analysis

2nd Stage

Data Storage

Data Lake

Others

Figure 2.1: UMAP overview

In this section, I provide a description of UMAP structure. Figure 2.1 depicts the
architecture of UMAP , composed of a first module for the data acquisition, a second
module for data normalization and integration, and then a third module for the data
analysis.

The first module consists of the data acquisition from the car-sharing platforms of
interest. These typically expose information about cars’ location when available for
rental through a web-service approach.

For this module, I design two crawlers, one for the car2go and one for the Enjoy
car-sharing platforms. They retrieve, at each time instant, which cars are available in a
given city.

While car2go offers public APIs [18], Enjoy does not provide to users such a service.
For this reason, I reverse engineer the Enjoy web portal. By leveraging the Chrome
Developer Tools, I investigate the information exchanged with the Enjoy web portal
while asking for the list of available cars. Through this analysis, the software obtains
both the URL used to request the list of available cars and how to fetch the data for a
specific city. Both systems return the currently available cars using a JSON file.

Each time the system downloads a JSON, a snapshot describingwhich cars are parked
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and ready for rental. Basically, the snapshot is a list containing all cars and their at-
tributes.

In a nutshell, a car is described by the car-sharing web-service as an object annotated
by several information, like the plate, vehicle identification number (VIN), location, fuel
level, model, etc. All the data represented in this object is useful for the customers, e.g.,
to choose which car to rent. This object is only present if the car is available, i.e., it is
parked and free for a rental. Its state changes over time. In particular, a car disappears
when a customer reserves and rents it, and then it reappears when the customer ends
the rental (likely in a different location).

At each time 𝑡, the software gets the JSON snapshot 𝑆 listing the available cars. The
sampling period has been set to one minute to balance the aggressiveness of the crawler
and a reasonable time resolution. 𝑆 describes each available car with several fields, some
of them being in common between the considered companies, but in general with a
different format. For this study, I collect each car’s unique identifier and the current geo-
location indication. These are obtained from the VIN or plate field, and the coordinates
field which describes the longitude and the latitude of the in-car GPS used to localize it
when parked.3 In addition to these fields, the car-sharing JSON descriptionmay provide
other information, e.g., the street address corresponding to the coordinates, the fuel
level, the car interior status the engine type, etc. Since each platform uses its own data
and format, I design a data integration step to have common names for fields containing
the same information, if present.

2.3 Data Normalization and Integration
In this second module, I illustrate how UMAP processes and consolidate each snapshot
to obtain parking and bookings periods for each car. A parking is the time where the
car is available for a user ride. On the other hand, a bookings is the time between
two parking where the car is not tracked by the system. The intuition is to track the
availability of each car on the car-sharing platform, and rebuild the historic parking
and booking periods over time: when a customer books a car, the latter “disappears”
from the system. UMAP records this event, with the initial time and position of a new
booking. When the customer ends the booking, the car “reappears” in the system.
UMAP records this event, deriving the final time and position of the booking. For the
same car, a new parking period starts.

Harvested data is unstructured and may grow large. Thus I leverage MongoDB, a
NoSQL document-based database. A MongoDB database includes set collections, i.e.,
groups of documents. Each document is a set of key-value pairs, organized in a JSON

3The GPS coordinates are only available if a car is parked and available. There is no risk for users’
privacy during rentals. In addition, no user’s identifier is exposed. Therefore data is totally anonymized
as there is no means to know who booked a car.
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structure. The schema-less structure of MongoDB fits well in this work because it can
handle the same collection documents defined with different key-value pairs. I decide
to rely on such a system as I can easily manage the different field structures of providers,
car2go and Enjoy in this use case. In addition, MongoDB offers great integration with
Python through the pymongo module.

Four different collections compose the MongoDB data lake: ActiveBookings, Ac-
tiveParkings, PermanentBookings, and PermanentParkings. ActiveBookings andActivePark-
ings are collections used to store information about the current status of cars (currently
booked or parked respectively). These are temporary structures that make it easier to
query each car’s last observed status and update it. These are also instrumentals for
real-time analysis of the system, e.g., to count how many cars are currently booked or
available. PermanentBookings and PermanentParkings collections store the history of a
past state of cars, for past bookings and parking, respectively.

For the documents in the bookings collections, I augment information by also in-
serting the expected route driving time and the public transportation duration on the
same origin-destination pair. These two pieces of information are obtained through the
Google Directions API using the initial and the final coordinates as an indication of the
path.

The most important fields in the ActiveBookings, and the PermanentBookings collec-
tions are:

• CarID: the unique identifier of the car;

• InitTime: the initial time of the booking;

• FinalTime: the final time of the booking;

• InitCoords: the GPS coordinates of the booking star location, i.e., where the users
picked up the car;

• FinalCoords: the GPS coordinates of the parking locationwhere the carwas dropped
at the end of the booking;

• DrivingTime: The duration of the trip, expressed in seconds, as estimated byGoogle
Directions API, following the best path;

• PublicTransportTime: The duration is expressed as arrival time of the best public
transport trip, as estimated by Google Directions API, minus the InitTime;

Instead, the ActiveParkings and the PermanentParkings collections are characterized
by the following fields:

• CarID: the unique identifier of the car

• InitTime: the initial time of the parking

• FinalTime: the final time of the parking

• Coordinates: the GPS coordinates of the parking spot

8
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Algorithm 1: Data acquisition at time 𝑡
Input : 𝑡 - Current timestamp
Input : 𝑆 - Available Cars (crawling result)

1 𝐴𝑃 = 𝑅𝑒𝑎𝑑(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑠) // Get previous available cars
2 for 𝑐𝑎𝑟𝑗 in 𝑆 do
3 if (𝑐𝑎𝑟𝑗 in 𝐴𝑃) then
4 del 𝐴𝑃[𝑐𝑎𝑟𝑗];
5 end
6 else
7 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑠.𝑎𝑑𝑑(𝑛𝑒𝑤 𝑃𝑎𝑟𝑘𝑖𝑛𝑔(𝑐𝑎𝑟𝑗, 𝑡));
8 if (𝑐𝑎𝑟𝑗 in 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝑠) then
9 𝐹 𝑖𝑛𝑎𝑙𝐶𝑜𝑜𝑟𝑑𝑠 = 𝑐𝑎𝑟𝑗[𝑐𝑜𝑜𝑟𝑑𝑠];

10 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔[𝑐𝑎𝑟𝑗][𝐹 𝑖𝑛𝑎𝑙𝑇 𝑖𝑚𝑒] = 𝑡;
11 𝐼 𝑛𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑠 = 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝑠[𝑐𝑎𝑟𝑗][𝐼 𝑛𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑠];
12 if (checkCarMovement(𝐼 𝑛𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑠,𝐹 𝑖𝑛𝑎𝑙𝐶𝑜𝑜𝑟𝑑𝑠)) then
13 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔[𝑐𝑎𝑟𝑗][𝑑𝑟 𝑖𝑣 𝑖𝑛𝑔_𝑡 𝑖𝑚𝑒] = 𝐺𝑜𝑜𝑔𝑙𝑒𝐴𝑝𝑖(𝑑𝑟 𝑖𝑣 𝑖𝑛𝑔, 𝐼 𝑛𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑠, 𝐹 𝑖𝑛𝑎𝑙𝐶𝑜𝑜𝑟𝑑𝑠);
14 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔[𝑐𝑎𝑟𝑗][𝑃𝑢𝑏𝑙𝑖𝑐𝑇 𝑟𝑎𝑛𝑝𝑜𝑟 𝑡𝑇 𝑖𝑚𝑒] = 𝐺𝑜𝑜𝑔𝑙𝑒𝐴𝑝𝑖(𝑝𝑢𝑏𝑙𝑖𝑐, 𝐼 𝑛𝑖𝑡𝐶𝑜𝑜𝑟𝑑𝑠, 𝐹 𝑖𝑛𝑎𝑙𝐶𝑜𝑜𝑟𝑑𝑠);
15 end
16 𝑀𝑜𝑣𝑒𝑅𝑜𝑤(𝑐𝑎𝑟𝑗,𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔, 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡𝐵𝑜𝑜𝑘𝑖𝑛𝑔);
17 end
18 end
19 end
20 for 𝑐𝑎𝑟𝑗 in 𝐴𝑃 do
21 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔[𝑐𝑎𝑟𝑗][𝐹 𝑖𝑛𝑎𝑙𝑇 𝑖𝑚𝑒] = 𝑡;
22 𝑀𝑜𝑣𝑒𝑅𝑜𝑤(𝑐𝑎𝑟𝑗,𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔, 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡𝑃𝑎𝑟𝑘𝑖𝑛𝑔);
23 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔.𝑎𝑑𝑑(𝑛𝑒𝑤 𝐵𝑜𝑜𝑘𝑖𝑛𝑔(𝑐𝑎𝑟𝑗, 𝑡));
24 end

Figure 2.2: Pseudocode of the data acquisition algorithm

I implemented an algorithm to extract booking and parking periods from snapshots,
whose workflow is described in the pseudocode in Figure. 2.2. Here I describe each step.

I consider as inputs the snapshot 𝑆 and the current timestamp 𝑡. Then I create a
copy in the list 𝐴𝑃 of parked cars observed in the previous snapshot (as stored in the
𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑠 collection) – line 1. I need the𝐴𝑃 list to detect the cars that disappeared,
i.e., have been booked at time 𝑡. This will be back explained later.

For each car 𝑐𝑎𝑟𝑗 in the current snapshot 𝑆, I check if the car is present in the 𝐴𝑃 list.
If so, it means that it did not change its status, i.e., it is still parked. Therefore, the car
is removed from the 𝐴𝑃 list, and nothing is changed – lines 3-4. Otherwise, either the
car has been parked in this snapshot, and the previous booking has finished, or the car
is a new car added to the fleet. In both cases, a new parking starts, and I create a new
document in the 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑠 collection – line 7. The new Parkings function creates
a new document, sets the 𝐼 𝑛𝑖𝑡𝑇 𝑖𝑚𝑒 and 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 keys as current timestamp and car
GPS coordinates.

I next check if 𝑐𝑎𝑟𝑗 is present in the 𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝑠 collection. If so, the car was
booked until the previous snapshot, and now it is back available. I thus finalize the
previous booking and update its statistics. In particular, the toolsets the 𝐹 𝑖𝑛𝑎𝑙𝐶𝑜𝑜𝑟𝑑𝑠
and 𝐹 𝑖𝑛𝑎𝑙𝑇 𝑖𝑚𝑒 fields using the current car 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and timestamp – line 9-10. Next,
I check if this booking includes an actual rental by checking if the initial position and
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Data Acquisition Pipeline

final position differ – line 11-12. Recall indeed that customers may simply book a car
but not finalize the rental. Specifically, Enjoy (car2go) offers a grace period of 15 (20)
minutes, during which no charge is applied for a booking.

In case of an actual rental, I fetch the best path by i) car and ii) public transport from
the 𝐼 𝑛𝑖𝑡𝑃𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 to the 𝐹 𝑖𝑛𝑎𝑙𝑃𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 of the rental. I leverage the Google Directions API
for this – line 13-14.4 It is important to take into account that, while querying the public
transportation time, the Google Directions API returns two pieces of information: how
long the public transport takes to go from the initial to the final position and the esti-
mated arrival time. It is fundamental to use this second information because it includes
the time the user spends to reach the bus stop and wait for the bus. This is crucial, e.g.,
at night, when the first public transport solution may be available only several hours
later.

After having processed all cars in the current snapshot, I iterate over the remaining
cars in the 𝐴𝑃 list. Those are the ones that were present in the previous snapshot, but
not in the current, i.e., the ones the new bookings. Finally, the software adds to the
previous parking period by setting the 𝐹 𝑖𝑛𝑎𝑙𝑇 𝑖𝑚𝑒 in the 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑘𝑖𝑛𝑔 collection – line
21-22. At last, the tool creates a new booking via the new booking function – line 23.

I let UMAP scrape car2go’s data from December 2016 to January 2018. In total it
is possible to count about 27 million bookings spread in 23 cities. The same scraping
procedure runs for Enjoy as well, from May 2017 to June 2019. The table 2.1 reports a
brief resume of all the car2g bookings present in the data lake, while table 2.2 reports
the same information for Enjoy.

2.4 Data Analysis
The third and final stage is the data analysis phase in which analytics modules query
the MongoDB and obtain statistics. I rely on the Python programming language with
Pandas and the GeoPandas libraries to deal with the data, the city zone definitions, pro-
vided by transport engineers as a shapefile, a popular geospatial vector data format, and
the Geographical Information Systems (GIS) for the spatial analyses. I choose Python
as it offers a large number of libraries that easily interact with different technologies
like GIS, maps, and MongoDB. In particular, the usage of GeoPandas allows me to eas-
ily perform geographic analysis and split the city into many areas (or zones) of any
possible shapes. I present more detailed characterization in chapter 3.

4https://enterprise.google.com/intl/it/maps/products/mapsapi.html
5wikipedia.org
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2.4 – Data Analysis

Table 2.1: Overview of car2go’s data sorted by number of bookings

City City Size [𝑘𝑚2]5 Population 5 Avg. Fleat Bookings
Columbus 583 892k 187 186k
Florence 102 372k 220 333k
Denver 401 727k 312 348k
Austin 704 964k 315 377k
Frankfurt 248 701k 242 505k
Toronto 630 3120k 400 536k
Amsterdam 219 854k 314 573k
Montreal 431 1704k 429 606k
New York City(Manhattan) 59 1629 500 739k
Turin 130 874k 396 868k
Munich 310 1464k 478 916k
Washington DC 177 705k 563 919k
Stuttgart 207 632k 486 1001k
Seattle 217 744k 710 1134k
Calgary 825 1239k 552 1176k
Rome 1287 2837k 582 1240k
Rheinland - 1688k 648 1421k
Vienna 414 1915k 688 1702k
Madrid 604 3233k 424 2092k
Milan 181 1396k 776 2223k
Hamburg 755 1833k 812 2561k
Vancouver 115 631k 977 2701k
Berlin 891 3769k 1009 3091k

Table 2.2: Overview of Enjoy’s data sorted by number of bookings

City City Size [𝑘𝑚2]5 Population 5 Avg. Fleat Bookings
Bologna 140 390k 72 47k
Catania 182 311k 78 205k
Florence 102 372k 82 279k
Turin 130 874k 251 983k
Rome 1287 2837k 601 2031k
Milan 181 1396k 755 3107k
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2.5 Conclusions
In this chapter I described the software pipeline, named UMAP I used to harvest and
store data from real FFCS providers.

The first stage explains the data structures and how I take snapshots of the system,
getting all the cars ready for a ride.

The second step illustrates the algorithm that compares consecutive snapshots de-
tecting car status variation. Here I introduced the two fundamental car status I use to
describe each car history: parkings and bookings.

The third briefly opens several scenarios on the analyses of this data.
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Chapter 3

Dataset Characterization

Thiswork refersmostly tomy paper ”UMAP: Urbanmobility analysis platform to harvest
car sharing data, presented in at 2017 IEEE SmartWord conference [17]. My contribution
is focused on data analyses and presentation.

3.1 Introduction
Mobility is one of the challenges to solve in our society and in cities, where eco-sustainability
is becoming more and more important. Regulators and policymakers are positively
looking into “smart” approaches to improve the current status of their urban network.
The ability to inspect data is the first step to making informed decisions.

Car sharing refers to a car rental model where customers rent a car for a short period,
usually for a few hours or less. One of its most exciting systems is the so-called Free-
Floating Car Sharing (FFCS) system. This system’s peculiarity is that customers can pick
and drop the car wherever in a geo-fence area. The most famous company is car2go,
which is present in 25 cities and 8 different countries, both in Europe andNorth America
1.

To rent a car in a modern FFCS system, users check on their smartphone or on the
FFCS website which cars are available in the neighborhood. With a simple tap, they can
book a car and start/end the rental. The FFCS app contacts a web-based backend server
to fetch data about available vehicles, perform booking and accounting operations. Typ-
ically for this purpose, web APIs are used, some of which are publicly documented [18].
The same website and app offer information about the status of the car rental systems,
and the same web API can be used to collect this information for free. In the past, this
approach has been successfully used to obtain data for specific mobility studies – see
section. 3.2 for more details. This chapter relies on the UMAP, the software described in

1The service is discontinued in North America since February, 29𝑡ℎ 2020, https://www.
share-now.com/ca/en/important-update/
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Dataset Characterization

chapter 2. In particular, I analyze the first chunk of data I collected. I let the crawlers run
for 52 days, from December 10th, 2016 to January 31st, 2017. In total UMAP collected
more than 104,000 bookings for car2go and 93,000 bookings and for Enjoy.

With these datasets, after a first cleaning phase where I detected entries correspond-
ing to trips where the users made a ride, I characterize the FFCS service utilization to
observe how people use these services, where they typically go, when, for how long
the rental last, etc. Some observations are quite intuitive, e.g., people appear to be will-
ing to use more the FFCS during weekdays and during peak-time. Counterintuitively,
the rental duration and the driving distance show marginal changes over the day and
weeks.

I complement the analysis by comparing the ride duration with the driving duration
as suggested by Google Directions application, which UMAP can collect in real-time
for each rental. This analysis highlights that 8.5% of bookings last less than the Google
driving time. This may be due to Google Directions overestimating the driving duration
or recalling that bookings include reservation time and the time to look for a parking
spot. This may suggest that the time-based tariffs were adopted FFCS systems may
encourage fast driving styles to reduce the rental cost. Next, I compare the booking
duration with the equivalent trip duration by public transport as returned by Google
Directions. I discover that rentals are 36% shorter on average than public transport time,
but rentals start to be preferred when public transport time is higher than 10 minutes.

UMAP may represent an important support tool for the investigation of car-sharing
users’ habits. The scalable design of UMAP allows the policymaker to collect data
from many FFCS providers and integrate it with other sources. This eases the anal-
ysis when taking into consideration trends and provider comparison. UMAP allows the
Transportation Authority to make informed decisions when planning public transport
systems. This characteristic strengthens the potentiality of UMAP for economic and
sociological prediction and analysis. The data-driven approach, combined with other
more traditional tools like surveys, represents an interesting observation point for un-
derstanding potential service improvements, both for car-sharing and public transport
systems. The source code of UMAP is available for research purposes.2

The remainder of this chapter is structured as follows: section 3.2 discusses the re-
lated works. Section 3.3 presents the in the following order: first, car2go and Enjoy
car usage over time characterization. Then, section 3.4 depicts how customers drive
the cars and how they move in the city; finally, users’ driving habits and the correlation
between booking time and the public transport time. Section 3.5 concludes the chapter.

2github.com/MobilityPolito/
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3.2 – Related works

3.2 Related works
Since the diffusion of the new form of car-sharing based on a free-floating approach,
many researchers from different fields have been dedicating increasing attention to
these systems’ analysis. The high demand for car-sharing has opened new challenges
and perspectives in research.

One of the main topics is the study of fleet relocation policies [19, 20, 21]. On the
one hand, concerning station-based car sharing, the free-floating system’s flexibility
may limit the operator’s control over the drop-off zones. On the other hand, it allows
for smarter strategies.

Herrmann, Schulte, and Voß [19] conducted a survey to understand how the avail-
ability of cars, and so the fleet relocation, affects the utilization of the service, and to
develop and evaluate user-oriented relocation strategies. Those strategies were studied
again by Schulte and Voß [20], who introduced an approach to support the decision of
the vehicle relocation method to reduce costs and emissions in FFCS. Those kinds of
investigations may result in instrumental support for the providers. In this direction,
Wagner, Brandt and Neumann [21], analyzed the use of car sharing in Berlin, using
indicators of attractiveness of specific areas, to develop a methodology that can help
in business strategies, the expansion of the operative regions and to react to shifts in
demand. In these works, the authors used data collected from car-sharing providers,
using the car2go API [19, 20] or by a direct cooperation [21].

The study of the customers’ behavior has been addressed by different researchers [22,
23, 24, 25, 26]. Schmöller et al. [22] studied factors that may influence car-sharing de-
mand, carrying out an empirical analysis, considering FFCS in Berlin and Munich.

Kopp et al. [23] inspected the behavior of two categories of users, the members of an
FFCS service (DriveNow), and the people who do not use car-sharing (NCS users), look-
ing for different and distinctive mobility patterns. The impact of car sharing on people’s
mobility was addressed by Firnkorn [24], who proposed in his work a triangulation of
two methods applied in the same survey to provide more precise measurements. An-
other approach was proposed by Ciari et al. [25], where a simulation tool, built on
MATsim, an open-source project, was used to estimate travel demand for car sharing in
the urban area of Zurich. An important question that can be addressed is how this new
paradigm of transport is accessible to people. Tyndall [26] combined data of FFCS usage
in ten US cites with demographic information, studying neighborhood infrastructures,
population distribution, and their mobility habits. It has been showed that benefits of
FFCS are distributed unequally, with a shift in usage in favor of advantaged populations.

Eco-sustainability is another essential asset for car-sharing services. Firnkorn and
Müller [27] studied the environmental effects of FFCS in Ulm, registering lower pollu-
tion levels, and reducing private vehicle ownership.

This work aims to address all these challenges from the local administration’s per-
spective to develop new transport and mobility policies. A study of this kind was re-
cently conducted byWang et al. [28] for the city of Seattle, where car2go was compared
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with public transport service. Kortum et al. [29] remark the necessity of using data-
driven approaches to help decision making due to the lack of empirical data about free-
floating car-sharing usage. They use a dataset obtained by InnoZ (Innovationszentrum
für Mobilität und gesellschaftlichen Wandel) and containing the activity in 33 cities
from 2011 to November 2015, to study the evolution in time of this mobility service.
Those data, combined with demographic information, offered an aggregated point of
view, over different cities, of the car-sharing service’s growth and an understanding of
the main characteristics. To the best of my knowledge, in the context of this case study,
the only work on free-floating car-sharing was conducted by Ferrero et al. [30] from
an economic point of view.

The majority of the previous works [19, 20, 21, 22, 23, 28, 29] leverage data col-
lected in real-time or using surveys and interviews. Thanks to car2go APIs, which
easily make available car-sharing data, a more data-driven approach is attractive for
many researchers that start facing the problem of FFCS mobility analysis. Remarkably,
only [29] seems to use data collected actively by different car-sharing providers. While
authors use the information only for a specific purpose, i.e., analyzing the trend of car
sharing through the years, I want to provide a broader perspective. The intent is indeed
to offer a general-purpose methodology, both scalable and easy to interact with, to help
researchers and local administrations analyze the mobility, harvesting data collected
from FFCS platforms and other online systems, like mapping and direction services.

3.3 Temporal Analyses
In this section, I show several analyses to discover and characterize how the FFCS are
used. In the first part of the section, I analyze the characterization of the temporal
system to understand if FFCS are actually used and when.

I consider a period from December 10th 2016, to January 31st 2017, the first reliable
collected data chunk. The system observed 125,000 snapshots, about 104,000 bookings
for car2go and 93,000 for Enjoy. In Turin, the fleet of car2go was composed of 394 cars,
and the fleet of Enjoy consisted of 172 cars.

In order to make clear the rest of the book, it necessary to univocally define the
basilar entities related to the car status in the data lake described in the chapter 2, section
2.3.

Definition 1. the Parking is the time period in which the car is present in, at least, two
consecutive snapshots. Therefore, that car is available for a user reservation that may
evolve in a user’s ride.

Definition 2. the Booking is the time period in which the car is NOT present in, at least,
two consecutive snapshots. Therefore a user booked the vehicle, or the provider made it
temporarily unavailable for maintenance.
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3.3 – Temporal Analyses

3.3.1 System Utilization
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Figure 3.1: Total number of bookings and of rentals per day for car2go and for Enjoy

The providers, in this case, study, allows the users to reserve a car before the ride.
More in detail, the provider makes the reserved car unavailable for the other users
without billing the customer who reserved the car. When the reservation time (that
changes for each provider), the billing mechanism starts even if the engine is still off.
The customer can cancel the reservation without any expense if it happens before the
reservation time. With this mechanism, the providers would let the possibility to the
users to reach the cars by foot.

Given that, it is now possible to define:

Definition 3. Reservation A reservation is a booking where the initial and final desti-
nation matches and the duration is lower than the provider’s reservation time.

Definition 4. Rental A rental it is a booking where the initial and final destination are
different.

Starting from December 10th, figure 3.1 plots the total number of bookings and the
total number of rentals recorded on each day, for car2go (blue curves) and for Enjoy (red
curves). Obviously, being the latter a subset of the first, its number is always smaller.
However, during some days, the discrepancy is well visible; that means that the opera-
tion of booking cancellation is not so rare.

Interestingly, firstly, both car2go and Enjoy follow a similar behavior with the num-
ber of bookings and rentals decreasing in the Christmas period and increasing again
after the Epiphany.

Secondly, despite the fact that the car2go fleet has more than twice as many cars as
Enjoy (394 vs. 172), the number of car2go bookings does not show such a higher value
with respect to Enjoy. Enjoy having more bookings in some snapshots, e.g., December
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10th and 11th. Moreover, at some points (December 19th, January 24th), it is possible
to detect a huge drop due to the crawler failures.

Moreover, some drops in bookings’ values are noticeable. Those sudden changes can
be addressed to some failures, in the crawlers (e.g., when all curves suddenly drop) or
in the operators’ web services(e.g., when only one system suffers a sudden drop).
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Figure 3.2: Mean number of bookings in weekdays and weekends for car2go and Enjoy

Looking at the data with finer granularity, it is noticeable that the car-sharing adop-
tion changes during the day. To better characterize this, I separate weekdays and week-
ends. The figure 3.2 points out the trend over the day. The curves report the average
number of bookings over the entire period in each hour of the day.

Firstly, it is possible to see that weekdays and weekends have a quite different trend.
During the weekend, FFCS systems are more used at night with respect than weekdays,
with on average at midnight of 80 and 60 bookings per hour for Enjoy and car2go.
Instead, the figure shows how during the weekdays, both car2go and Enjoy have their
peak of usage at 8 am and between 5 pm and 7 pm. This trend can be easily explained
as, during that time slots, FFCS customers use cars to go and return from work. As
previously indicated, despite car2go has twice the number of cars than Enjoy, the system
utilization of the latter is higher, with peak utilization topping 60%, versus 30% of car2go.

Even in the absolute number of rentals, Enjoy shows a higher number of bookings
after 8 pm during theweekdays, and always during theweekends. This can be explained
by the car models adopted by the two companies. While car2go uses the compact-two
seats Smart, Enjoy fleet is composed of Fiat 500, which are four-seat cars. Rentals prices
are instead comparable (0.24€/min Enjoy vs 0.25€/min car2go). Data suggests that Enjoy
looks more appealing during the times when people prefer to share the ride and during
weekends when families and groups move.
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3.4 Rides characterization
In this section, I give a detailed look at driving habits. In particular, I compare driving
distances versus rentals and parking duration. Finally, I conclude with some insights
about the variation of spatial demand, characterizing which and because some zones
attract or generate more rentals with compared to another one.

3.4.1 Driving patterns
jNow, I show how users tend to use FFCS systems during weekdays and weekends. I
study three different aspects of users’ behaviour:

• for how long users reserve the car before cancelling a booking (figure 3.3)

• for how long users rent a car (figure 3.4)

• how far users drive (figure 3.5)
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Figure 3.3: ECDF of the booking duration when the booking does not produce a rental.
Weekdays and weekends

First, I check if and for how long users reserve a car, and they cancel a booking.
Interestingly, only a small subset of Enjoy bookings are affected by cancellation with
respect to car2go bookings. In particular, the dataset presents 14.9% of car2go and 2.9%
of Enjoy bookings cancellation. This again hints at people preferring to use the Fiat 500
offered by Enjoy, so that they hardly cancel a booking when they reserved an available
vehicle. On the contrary, the car2go cars’ availability is higher, and so it looks more
comfortable to find a closer car. People may thus cancel a previous booking when they
see a closer vehicle. Another hypothesis is that car2go may be used as a “backup” until
an Enjoy vehicle becomes free in the user’s area.

Looking at when people cancel the reservation, figure 3.3 shows the CDF of reser-
vation time. Indeed, car2go tends to have a smaller percentage of cancellation within 5
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minutes, with a massive step at about 20 minutes. While the first ramp can be explained
as a communication error or as some sudden cancellation, the latter can be explained
by the maximum free-of-charge reservation time of car2go. Indeed, users may reserve
a car for up to 20 minutes without paying any fee. The same trend is not present for
Enjoy, which offers a maximum free-of-charge reservation time of 15 minutes. Instead,
the curve shows a peak at 2 minutes and then a decreasing trend after 15 minutes, when
almost all the cancellations are already made. One last important aspect that this pic-
ture shows is how the Enjoy curves have some steps instead of being as smooth as the
car2go ones. This hints at periodic updates on the web system so that a time granularity
emerges. To shed some light on this phenomenon, I performed some active experiments
with the Enjoy web portal. The experiment consists of making a new reservation and
find when the crawler detects that the car actually disappears from the set of available
vehicles. Then, as soon as I spot the car disappearing, I cancel the reservation to de-
tect when the car reappears in the system. Surprisingly, I discover that when the users
make the reservation, the car immediately disappears from the system. Instead, when I
cancel the reservation, the system takes between 1 and 4 minutes to actually show the
car again. The presence of such an offset causes the steps in the Enjoy curves, which
are affected by an artificial delay. To take into account, this offset all Enjoy duration
have been decreased by 2.5 minutes, i.e., the average delay the Enjoy system adds.
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Figure 3.4: ECDF of the rental duration. Weekdays and weekends

I next move to characterize the rental duration. Figure 3.4 depicts the Empirical
Cumulative Distribution Function (ECDF) of the booking duration for Enjoy and car2go
during the weekdays and the weekends. The plot shows how the trend tends to be equal
during the weekdays and the weekends. This demonstrates that, despite the different
pattern of utilization shown before, the booking duration time results similar. Secondly,
the ECDFs of car2go and Enjoy are almost overlapped, highlighting how these two
services tend to be used in a similar way. Indeed, most of the rentals last less than 1
hour, with 80% of them lasting less than 30 minutes. It is important to remark that these
times also include the reservation time, i.e., the time the user can reserve a car for free
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before driving it, and the time to find a parking place. Therefore the actual driving time
may be significantly smaller.
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Figure 3.5: ECDF of the rental driven distance. Weekdays and weekends

I repeat the same analysis, considering the driving distance, as reported in Figure 3.5.
To determine the driving distance of each trip, I exploit the Google Direction APIs to get
the shortest path from the origin to the destination. Similarly, for the driving duration,
car2go and Enjoy show comparable behavior and marginal changes during weekdays
and weekends. Interestingly, the graphs point out that 90% of the trips last less than
5 km, demonstrating that most of the rentals are used for short trips both in terms of
time and in terms of distance. Lastly, the car2go curves saturate many km later than
the Enjoy ones, as highlighted by the circles. This is due to the possibility to reach the
airport of Turin with the car2go cars, which is about 20 km far.

3.4.2 Spatial Analysis
In the previous section, I analyzed car2go and Enjoy only from a temporal point of view.
In order to have a complete scenario, it is necessary to study recurrent spatial patterns.
To do that, I projected the initial and final coordinates on the Turin’s neighbor map.
Then I computed the attractiveness of each neighbor. Figure 3.6 shows the attractive-
ness of the zones in Turin by analyzing the departure and arrival zones. For each zone,
I compute the difference between bookings ended in the evening [5 pm - 9 pm] and
bookings ended in the morning [7 am, 12 am]. Red areas are those more attractive dur-
ing the evening, while blue areas are more attractive in the morning. It is clear that the
city center is the most popular destination for car-sharing during office hours, while
the trips are sparsely ending in the suburbs during the evening.
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9 pm

3.4.3 Users’ Habits
I now characterize how users drive andwhat is the correlation between public transport
usage and availability.

To observe users’ driving habits, I use the driving time returned by the Google Di-
rections APIs to obtain the estimated driving time from initial rental position to the
final rental position. Intuitively, the rental time is longer than the driving time as it
takes into account also the reservation time and the time to find a final parking spot.
Figure 3.7a shows a heat map where the X-axis represents the Google estimated driving
time and the Y-axis the actual booking time. Each cell counts the number of observed
trips for each (x,y) pairs. For ease of representation, the values are rounded by the
minute. The diagonal line separates the area where the booking time is lower/greater
than the driving time. As expected, most of the trip falls in the area where the booking
time is greater than the driving time. However, a nonnegligible number of trips (12.1%)
falls in the area where the booking time lasts less than the driving time.
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Figure 3.7: Users’ driving habits

This may be due to several factors: Google Directions possibly overestimating the
average trip duration, or users driving faster than expected. To better quantify how
much faster users drive the car in those cases, I computed the difference between the
driving time and the actual booking time. I show the Empirical Cumulative Distribution
Function of such values in figure 3.7b. It is possible to see that most of these trips are
only 5 minutes faster than the estimated driving time, with Enjoy users who seem to
drive faster than car2go ones. Indeed, if the trip is more than 10 minutes faster, Google
suggested a longer path to the destination, e.g., suggesting to take the highway, which
was much longer with respect to crossing part of the city.

This analysis hints that the current pricing policy, which depends only on the book-
ing time, may have some drawbacks as it may encourage users to drive fast. A hybrid
pricing policy, which takes into account both the time and the distance, may be effec-
tive in solving this problem, e.g., by increasing the price in case of a user drive faster
than expected or by reducing the fee in case of traffic congestion.

Another aspect that Google Direction data can help to resolve is to estimate the
actual traveled distance. In particular, the system computes the Euclidean / Haversine
3 distance between starting and final position to which I add the Google Direction path
estimation (see section 2.3 for more details) for each ride present in the dataset. Given
that it is possible to track in real-time cars, I study how to derive the total amount of
traveled kilometers correlating only the straight and Google distances.

Figure 3.8 reports the ECDF of the ratio between theGoogle Distance and the straight
distance. The plot shows how, in the 95% of rides, the Google distance is about twice

3https://en.wikipedia.org/wiki/Haversine_formula#cite_note-Brummelen_
2013-1
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tance

time as long as the straight distance. However, on average, it is possible to observe a
multiplicative factor of 1.5 for and enjoy. Anyway, in the following chapters and in
particular in chapters 5, 6 and 7 I used the median value, of 1,4. Notice that the bigger
values in car2go are due to a bigger operative area. Table 3.1 resumes the main ECDF
values.

Table 3.1: Statistics on corrective factor for car2go and Enjoy

Provider Mean Std Min 25% 50% 75% 90% 95% 99%
car2go 1.5 0.54 0.53 1.27 1.40 1.59 1.90 2.21 3.47
Enjoy 1.48 0.52 0.87 1.26 1.37 1.54 1.81 2.12 3.38

At last, I leverage Google Directions APIs to extract public transport travel informa-
tion for each vehicle’s trip. I want to analyze another way of mobility in the urban area
and compare car sharing usage with respect to public transport. Results are shown in
figure 3.9. As one could expect, the majority of trips last less than public transport. The
higher density is for bookings that last between 10 and 20 minutes. For longer trips,
the discrepancy in terms of duration is higher, probably due to the longer path and
the higher number of stops of public transport. Conversely, I can interpret the points
where the booking time is greater than the public transport duration as trips where the
customers spent a lot of time reaching the car or finding a parking spot for the drop-off.

To help to visualize the juxtaposition of car-sharing and public transport, I extract
from the data the probability of booking a car, conditioned to the public transport travel
time. Figure 3.9b, reports on the X-axis the public transport duration (as predicted by
Google) in intervals of 5 minutes, and on the Y-axis, the probability of booking a car
for each interval. The distribution of probability is similar for both car2go and Enjoy.
Higher values are reported for trips that can be covered by public transport between 15
and 35 minutes. Interestingly, car-sharing mobility is not preferred for very short trips,
while the distribution shows a significant tail for a duration greater than 30 minutes.
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Figure 3.9: Public transportation vs car sharing

This behavior can be justified by the significant amount of time that can be saved with
cars-haring with respect to public transport.

Finally, to globally understand how users tend to use the different services, I report
in figure 3.10 the average time for the Enjoy rentals (red curve), the car2go bookings
(blue curve), the driving time (green curve), and public transport time (orange curve).
To compute this value, for each hour, I take all the rentals of interest, and then I compute
the average value and report it. The first interesting aspect is that the average time of
Enjoy is always greater than the car2go ones and for the pure driving time. Secondly,
both show a similar trend with a decreasing average duration during the night. As a
consequence, it is unjustifiable to ascribe this trend to traffic jams, instead, but more
likely with an increased time in the reservation time and in the parking time. Finally,
it is possible to appreciate how during the night the public transport takes more than 1
hour for trips which last less than 20 minutes by car. Instead, during the daytime, the
average public transport time gets close to the car-sharing time.

3.5 Conclusions
In this chapter, I presented some analyses made possible through UMAP , a platform I
designed and described in chapter 2 to collect and store data, and able to extract higher
level information from FFCS provider.

By analysing the data, I highlighted different aspects related to the system utilization,
howusersmove in the city in different periods of the day, andwhat are the users’ driving
habits.

This study points out the significant amount of information that it is possible to
extract from well designed data collection pipelines. More in details, by looking the
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Figure 3.10: Average Time per transport solution per hour

system utilization, I demonstrated that FFCS cars are frequently used for short trips
which last less then 30 minutes and 5 km. Moreover, despite Enjoy has a smaller fleet,
its system utilization is frequently higher than car2go one due to the more appreciated
car model it offers. Exploiting the spatial analysis, I highlighted how users tend to move
during different time periods. Finally, the users’ driving habits showed us that current
charging policy may encourage users to drive fast.
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Chapter 4

Characterizing Client Usage
Patterns and Service Demand
for Car-Sharing Systems

This chapter refers mostly the paper Characterizing client usage patterns and service
demand for car-sharing systems [31], published on the Journal Information Systems,
available online since October 11, 2019. My contribution is mainly focused in all the
aspects about car2go analyses.

4.1 Introduction
Urban mobility is a key research area, attracting several academic studies and private
investments. It is intrinsically connected to a wide number of urban activities, such as
the demand for communication resources. Understanding urban mobility, specifically
the traffic-related mobility with motorized vehicles, is currently acquiring more impor-
tance in order to improve the people’s quality of life studying, for example, road mesh
planning and communication resources allocation [32, 33].

The first step in understanding urban mobility patterns is the proper acquisition of
data. Data can be obtained in several ways, e.g., by observing vehicles passing through
sensors or fixed/mobile radars, acquiring traffic data from cameras, or by the active par-
ticipation of users (crowdsourcing). However, large and heterogeneous data acquisition
is still a challenge. Indeed, only a few companies have access to them, and usually, they
embed some random components to protect the users’ privacy [17]. Therefore, it is im-
portant to collect and study the available open data and generate models that can help
understand urban mobility and people’s social interactions in the urban environment.

Many alternative transport modes contribute to urban mobility. Among them, the
car-sharing paradigm is quickly growing [34, 17, 35]. In a car-sharing system, people
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can drive a vehicle without worrying about buying it and paying for maintenance, fuel,
and parking fees. By 2015, more than 1.5 million users and 22 000 shared vehicles have
been counted in the Americas, and growth in usage is still expected [36]. Overall, car-
sharing services are classified into three categories:

• the one-way services, where the vehicles are available in specific stations and the
user can move a car from a station to another;

• the two-way services, where the user must return the vehicle to the same station
she/he picked up the vehicle;

• the free-floating service where vehicles are not tied to stations. In this case, the
users are able to start and finish their trips everywhere within an operative area
and in public parking spots [34];

.
This chapter proposes a comparison between free-floating and different station-

based car-sharing paradigms. More in detail, we characterized those services in or-
der to outstanding different users’ habits. We take a case of study the city of Vancou-
ver that hosts several car-sharing providers. Our characterization relies on data we
gathered for more than a year from Modo, Evo, and car2go 1 car-sharing services —a
two-way, a one-way, and a free-floating service, respectively—. The chapter illustrates
the users’ demand and usage patterns of vehicles from these services and, at a glance,
the contributions are twofold: first, a characterization of three important car-sharing
paradigms and, second, a demand model for their vehicles, providing statistical distri-
butions which describe their busy and idle periods. This study is important to highlight
particular situations where car-sharing services are attractive and, together with data
from other transport modes, to uncover trends and mobility patterns. Moreover, we
also believe the collected data and the developed models can be used to generate an
accurate synthetic workload. Consequently, these can contribute to the development
of better capacity planning models for car-sharing systems and a better plan of public
transport systems.

The remainder of this chapter is structured as follows: section 4.2 describes related
work; section 4.3 describes details of the three car-sharing paradigms; section 4.4 dis-
cusses the data collection and analysis methodology for all services; section 4.5 presents
the results of the characterization for each model and the comparison of them, whereas
section 4.6 concludes the chapter.

1service dismissed on February 29, 2020
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4.2 Related Works
Prior works on one-way car-sharing services revealed some important characteristics
of these services as its usage patterns and their impact on the urban centers [35, 37, 38,
34]. For example, one-way car-sharing systems are mostly used in dense urban areas
with good public transportation system [39]. Young people with a higher education
level are more attracted to use this service [40]. Moreover, several works also confirm
positive impacts on the actual transport system, such as the reduction on traffic and
emission of pollutants [41, 38], the increase of free parking spots and in the use of
public transport [42]. These prior works also reveal that one-way car-sharing services
are used for long journeys and shopping [37]. In most cases, at least two passengers use
the vehicle [35]. Finally, these works also reveal interesting features about the fleet of
electric cars. For instance, vehicles remain parked in central regions for lower periods
than in suburban regions, directly impacting the autonomy of the vehicles [34].

Previous works also point out the differences between the free-floating and the one-
way model services. Indeed, the free-floating vehicles are often used for shorter peri-
ods, presenting commuting trips and a considerable number of trips to airports [37],
[35] [43]. Typically, free-floating vehicles carry a single user [35] and this user presents
fast driving habits [17]. Finally, the free-floating model also presents a periodical usage:
during the mornings, central areas of the city are the main destination, while during
the evening, suburban areas are reached more [17]. Despite the flexibility of the free-
floating and one-way model, previous works have not observed a clear difference in
users’ preferences between them [37]. On the other hand, some works have identi-
fied that these services attract different user classes, exposing the fact that free-floating
models and station-based models must be treated separately [35].

To the best of our knowledge, only our prior works characterize the two-way car-
sharing service model [44, 45]. More precisely, in [44] we first characterize the usage
patterns and the demands of Modo,2 a car-sharing service that operates in Vancouver
(Canada) and nearby regions. We present a simple model that represents the demand
for vehicles in this car-sharing system, presenting statistical analysis to parametrize
this model. Then, in [45], we further explore this two-way car-sharing service model
by evaluating two distinct periods and also present a spatial analysis of the vehicle
demands. Our results evidence long travel duration and many cancellations, which
produce a low utilization factor of the system. Moreover, the two-way system usage
presents a strong relationship with the public transport system, as well as with regions
nearby points of interests, such as public universities and commercial centers [45].
In [46, 43] we analyzed free-floating car-sharing data in different cities and propose
models and optimization methods in order to efficiently use electric cars.

2http://www.modo.coop/
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4.3 Car-sharing systems
The car-sharing systems might be implemented according to two paradigms: station
based and free-floating. The station-based paradigm can be divided into one-way ser-
vices and two-way services. Both Station-based models require that a user picks up the
vehicle she/he will use at a defined parking spot, i.e., charging station for electric ve-
hicles or providers’ parking spots. The user, in turn, may leave the vehicle at any of
the base stations scattered throughout the service coverage region (i.e., one-way car-
sharing service), or she/he may be obliged to return the vehicle to the station of origin
(i.e., two-way car-sharing service). On the one hand, the two-way model requires sim-
pler logistics and infrastructure compared to other models. Its implementation can be
performed faster and at a lower cost. On the other hand, the one-way model may be
more flexible and cost-efficient to users than a classical rental. For example, in case
there is a base station near the final user destination, she/he may leave the car at the
station while performing other tasks. The time the vehicle is parked is not charged,
incurring lower costs to users. However, a parked vehicle may be reserved by another
user. The free-floating model does not require any fixed station. In other words, users
reserve a car, parked in non-reserved spots in the streets. By the end of the use, users
may leave vehicles at any location in a predefined area. Notably, the free-floating model
eliminates the limitations that station-based models hold, making the experience more
flexible and closer to private-owned vehicles [37].

Figure 4.1 presents an abstract model that describes the possible states of a vehicle in
any of the three car-sharing systems. Intuitively, a car can be in use (i.e., busy) or idle.
A busy vehicle is rented, meaning that someone is paying for it during this period. On
the other hand, idle vehicles may be unavailable (i.e., during a maintenance process),
available, which means someone can reserve or it, or reserved.

The state in which the car is ready for a customer is available. In this situation, the
user can reserve the car and subsequently begins the ride or start to drive the vehicle
instantaneously. In the first case the state changes from reserved and then rented while
in the second case the state switches into rented directly. When the customer concludes
the rent the vehicle state moves from rented to available returning ready for another
rent. Notice that if a user reserves the car and then cancels the reservation, the vehicle
state moves from reserved to available without assuming the state rented. If a vehicle is
not in one of the previous three states, then it is unavailable, e.g., it is out of service. As
we will see in the next Section, not always the data contains plain information about
which of the four states the vehicle is. We will need to infer it by making some assump-
tions deducing the car state by filtering the rentals according to the duration and the
possible driven distance.
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Figure 4.1: Possible states of a vehicle in a car-sharing system.

4.4 Datasets and crawling methodology
This work relies on usage data from three car-sharing services: Modo, Car2Go, and
Evo. These services operate in several cities and countries. We focus on data from
the Vancouver area, where all these three services operate. Modo fleet is composed of
combustion, electric, and hybrid cars; Car2go offers combustion cars, and finally, Evo
supplies only hybrid vehicles. For each service, we collected both users’ trips and fleet
composition. In total, we observed more than 680 cars for Modo, 1 200 for Car2go, and
1 000 for Evo.

For all the three services, we collected vehicle status minute-by-minute, through
public Application Programming Interfaces (APIs) or, directing accessing their service
information web-page. From those requests, it is possible to scrape also a unique ID
and position of each car present in the dataset. In short, through the Modo API3 re-
turns the station and vehicle IDs. Modo provides vehicle status, too: a car indeed may
be available, reserved, or running. Evo’s data4 information page allow to check the re-
maining vehicle fuel (in percentage) and its location. Finally, Car2go APIs5. Data from
Evo and Modo comprises five months, ranging from March 1st, 2018 to July 16th, 2018.
Car2Go data comprises thirteen months, ranging from December 31st, 2016 to January
31st, 2018. It is important to notice that, to not violate the users’ privacy, the providers
do not expose any users’ personal information. Moreover, the companies do not track
the cars during a trip, so we do not know exactly the travel path, but only the start/end
positions and the duration of travel.

All measurements used in our analyses are publicly available in the following trace

3Modo API, http://modo.coop/api/
4Evo public portal, https://www.evo.ca/api/Cars.aspx
5Car2go API, https://www.car2go.com/api/tou.htm, last access February 2018
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repository: http://netlab.ice.ufjf.br/index.php/carsharingdata/

4.4.1 Modo crawling methodology and data summary
TheModo data collection process was conducted with a crawler that uses its public API.
First, we request to the Modo API the list of all vehicles of the service. Then, minute
by minute, we request the status of each of these vehicles. Each request returns the
schedule of a vehicle, informing the periods it will be available for the next 24-hours.
Moreover, it returns the vehicle location, i.e., the station, with its identifier. Note that
Modo API does not return specific vehicle status, nor any information that could be
used to identify users of the system. We uncover if a vehicle is busy or idle based on its
reservation period and the current observation time. In other words, we collect several
vehicle schedules and compare each other. Figure 4.2 illustrates the process of collecting
data for a given vehicle. Each data sample corresponds to a request to the API in the
order they occur. Data sample #1 is the result of the API request at minute 1 (𝑡 = 1),
data sample #2 is the result of the API request at minute 2 (𝑡 = 2), etc. At each data
sample, the blue dot represents the time a vehicle will be available. We highlight three
possible situations:

• First, as shown in figure 4.2(a), at 𝑡 = 1 a given vehicle is shown reserved up to
𝑡 = 5. At 𝑡 = 2, the new request to the Modo API still show us that the vehicle
will be available only at 𝑡 = 5. Each of the following requests to the API confirms
the booking period. At the time 𝑡 = 6, we perform a request to the API, and the
vehicle is no longer booked. In sum, we are able to infer that someone booked the
vehicle before or at 𝑡 = 1, and returned it to the station at 𝑡 = 5.

• Second, as shown in figure 4.2(b), at 𝑡 = 1 the Modo API returns that a given
vehicle is reserved up to 𝑡 = 6. However, in this case, a request at 𝑡 = 5 shows
the vehicle is no longer reserved. In this case, we can infer that the user returned
the vehicle earlier to the station, which means she/he used the vehicle only up to
𝑡 = 5.

• Finally, as shown in figure 4.2(c), the user may extend the booking period. More
precisely, at 𝑡 = 1 the given vehicle is reserved up to 𝑡 = 5. At the third request, we
note that the vehicle will no longer be available at 𝑡 = 5 but 𝑡 = 6. The following
API requests confirm the use of the car until 𝑡 = 6.

Besides, we also collect base stations location, vehicle models, and whether the ve-
hicle is electric or hybrid. Table 4.1 summarizes the data we have collected from Modo.
We stored 134 million records in 5 months, from a fleet of 682 vehicles distributed in
528 stations, each of them with one or more cars. The stations are located in Vancou-
ver, Canada, and neighboring cities. This data allows us to analyze more than 98 000
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Figure 4.2: Possible vehicle status during the Modo crawling. In (a) a normal booking
and usage situation; (b) a cancellation situation; (c) a consecutive booking situation.

travels.6

# of Collected Records ≈ 134 000 000
# of Booking Records 149 732
# of Travels Records 98 915
# of Stations 528

# of Vehicles
- Common 530
- Hybrids 148
- Electrical 4

Table 4.1: Summary of the Modo dataset.

4.4.2 Evo crawling methodology and data summary
Evo does not offer a public API to researchers. For this reason, we collect data that is
publicly available at its web portal. Minute by minute, we retrieve a list of all system
vehicles. Moreover, we request service snapshots describing which vehicles are parked,
where they are parked, and if they are available to travel. We process all snapshots of
the system to infer the moments a vehicle is busy (rented) or idle (parked at a station).
During a snapshot, if a vehicle is listed among the system vehicles, but it is not parked
at any station, we infer it is in use. Then, we set-up the travel starting point as the last

6Data are available on http://netlab.ice.ufjf.br/index.php/carsharingdata/
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station the vehicle was parked. Analogously, the travel ending point will be the next
station the vehicle appears in a future snapshot. The total travel time is accounted for
as the difference between these snapshots times. For each travel we identify, we also
record the end-to-end path, according to the Google Maps API. In this way, we are also
able to calculate the estimated travel, taking into account the local traffic conditions.
Clearly, this estimation does not take into account the car-sharing client behavior and,
as a consequence, differs from the real travel time we also store. One may reserve
a car in Evo and cancel this reservation, within a thirty minutes range, without any
charges. Thus, we infer the number of cancellations in Evo by filtering short travels
(i.e., < 30 minutes) where the start and endpoints are the same. To accommodate GPS
imprecision, we consider a 3 meters threshold. Table 4.2 summarizes the data we collect
from Evo. Note that this service does not need a large number of stations because the
user can park the car in some public park spots in the service area that is called home
zone (Vancouver and neighboring cities).

# of Collected Records 142 853 500
# of Travels Records 644 887
# of Stations 130
# of Vehicles 1 237

Table 4.2: Summary of the Evo data collection.

4.4.3 Car2Go crawling methodology and data summary
The car2go data collection is widely described in chapter 2.

Recalling that the software is able to detect two events, corresponding to the car
status change, clearly observable from the data. Indeed considering the current time
instant 𝑡𝑖:

• if in 𝑡𝑖 the car is present in the API reply and at time 𝑡𝑖+1 it is not, that car passes
from available to rent.

• if in 𝑡𝑖 the car is not present and at time 𝑡𝑖+1 it reappears in the API reply, that
car passes from rented to available. It represents a booking finish and a parking
beginning. For privacy constraints, the position of the car during a booking is not
available.

Moreover, the straight distance (computed with the Haversine formula) between the
ride starting and final points is not the real driven distance hidden for privacy issues.
For this reason, the software attaches for each ride the distance provided by the Google
Maps API in order to have a better estimation of the driven pattern.

Table 4.3 summarizes Car2go dataset used in this chapter. We have more than one
million travels in thirteen months of data. As a free-floating service, Car2Go does not
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have stations, but it has an operation zone that covers a large area of Vancouver city
and North-Vancouver.

# of Travels Records 1 095 577
# of Vehicles 1 077

Table 4.3: Summary of the Car2Go data collection.

4.5 Car-sharing services characterization
In this section, we first present temporal characterization of the three services (sec-
tion 4.5.1). Then, we describe the services spatial-temporal characteristics (section 4.5.2).
Finally, we present users’ behavior (section 4.5.3).

4.5.1 Temporal characteristics
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(a) Two-way Modo Weekdays
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(b) Two-way Modo Weekends

Figure 4.3: Modo Minute-by-minute mean value (plus/minus standard deviation) for
the percentage of busy (blue curve) and reserved cars (red curve), for weekdays and
weekends

Figures 4.3, 4.4 and 4.5 show the service daily demand pattern. In all plots, the blue
and red solid lines refer to a minute-by-minute mean value over the studied period for
the percentage of busy and reserved cars, respectively, for each service. The plots show
also the standard deviation from themean as the smoothed gray and orange background
areas around the mean. On the left of each pair of figures (figures 4.3a, 4.4a and 4.5a)
is presented the demand pattern during working days, while on the (figures 4.3b, 4.4b
and 4.5b) is shown the demand for weekends (Saturdays, Sundays, and festivities).

All three services present two peaks of demand during weekdays and only one dur-
ing theweekends. Duringweekdays, for Evo andCar2Go, the one-way and free-floating
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(a) One-way Evo Weekdays
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(b) One-way Evo Weekends

Figure 4.4: Evo Minute-by-minute mean value (plus/minus standard deviation) for the
percentage of busy (blue curve) and reserved cars (red curve), for weekdays and week-
ends
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(a) Free floating car2Go Weekdays
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(b) Free floating car2Go Weekends

Figure 4.5: car2go Minute-by-minute mean value (plus/minus standard deviation) for
the percentage of busy (blue curve) and reserved cars (red curve), for weekdays and
weekends

services, the peaks of demand occur about 8 AM and 6 PM, whereas for Modo, the two-
way service, these peaks occur around 2 PM and 7 PM. Moreover, note that for Evo
and Car2Go, weekdays demand is higher than during weekends. On the other hand,
for Modo, we observe just the opposite. Mostly, Modo users are regulars and present
weekly/daily/hourly subscription. In this sense, they tend to reserve cars at the same
hour, for regular periods, which explains Modo’s lower variation. For a given moment,
we consider the relative difference between the reserved and busy cars as the cancel-
lations of the system. Modo presents up to 60% of cancellations, while the other two
services present no more than 5%.

Figure 4.6 presents the Empirical Cumulative Distribution Function (ECDF) of vehi-
cles’ busy time, i.e., the rental duration, during load peaks of the day. In this case, we

36



4.5 – Car-sharing services characterization

101 102 103

Busy Time [minutes]

0.0

0.2

0.4

0.6

0.8

1.0
EC

DF
 o

f r
en

ta
l d

ur
at

io
n

11AM to 4PM
7PM to 8PM
All day

(a) Two-way Modo
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(b) One-way Evo
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(c) Free floating Car2Go

Figure 4.6: Cumulative distribution function of vehicle busy time during a weekday.

evaluate the load periods from 7 AM to 10 AM and from 4 PM to 8 PM for free-floating
and one-way, from 11 AM to 4 PM and 7 PM to 8 PM for two-way, and also all-day data
for the three services.

As for the demand, Evo and Car2Go present similar behavior, which is different
from Modo. For Modo, it is possible to observe at least 80% of vehicle rentals present
more than 1 hour of occupation, with more than 10% of rentals that last for more than 15
hours. On the other hand, Evo andCar2Go usually present shorter rentals, with nomore
than 10% of vehicles busy for more than one hour. In sum, the most notable differences
between these services occur due to their business model. Indeed, Modo presents a
strict policy, where users must pick-up a car and leave it at the same station. However,
Modo presents a flexible policy regarding cancellations. The other two services only
allow users to cancel the rent of a vehicle up to 30 minutes after its booking.
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Figure 4.7: Spatial-temporal service demand for two-way service Modo.
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Figure 4.8: Spatial-temporal service demand for one-way service Evo.
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Figure 4.9: Spatial-temporal service demand for free-floating service Car2Go.

4.5.2 Spatial-temporal characteristics
Figures 4.7, 4.8 and 4.9 present heat-maps of the hourly7 mean number of busy vehicles
in a given location, considering analyzed period. In the case of Modo, a location refers
to a fixed station. In the case of the other two services, the maps present clustered travel
records where users pick-up or leave a vehicle. To cluster these points, the algorithm
uses a 400m radius as a reference, forming a region close to a neighborhood. Ranging
radius from 100m to 1000m, leads to similar results.

First, all three services present a great demand in the downtown area and the univer-
sity zone. Note that the demand downtown for all three services is low during the night,
starts increasing at 4-5 AM, reaches its peak during office working hours, and reduces
by the end of the day. In this case, users usually pick-up cars for their daily tasks, as
go to work and shopping. During the night, usage increases in the surroundings of the
city, the university zone, and neighborhoods with leisure facilities (such as bars). Modo
presents a distinct demand pattern. Indeed, Modo has fixed stations located along with
the existing public transport system, especially the Expo Line andMillennium Line. For
this reason, it is possible to highlight a strong relationship between the existing public
transport system and the car-sharing system demand. On the other hand, the other two
services are more flexible. Users can rent a car almost anywhere. In this sense, despite
the major demand downtown, it is present a widespread demand all over the city.

7Due to space constraints, we only show one-hour period every four hour.
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Figures 4.10 and 4.11 detail the spatial-temporal demand for Evo and Car2Go by
presenting their origin-destination matrix mapped on 31 city areas as defined by the
metropolitan city of Vancouver. To enhance the visual effects, we normalized the pre-
vious heat-maps values to a scale between 0-1, using the min-max method. Moreover,
due to space constraints, this work shows the origin-destination matrix at a specific
hour, i.e., at 4 PM. In general, the users tend to start and end a trip at the same location.
It appears that during working days, users tend to use a shared car returning it to the
same region where they start (likely where they are working or living). However, for
both services, a non-negligible probability of spreading services along all city areas is
noticeable. Moreover, it is possible to note that some regions serve as hubs. This is
more notable for Evo’s service. As shown in figure 4.10, the downtown area serves as
a hub to start trips to almost all other regions. The opposite (a high tendency to start
a trip ending downtown) trend is not present. As a consequence, service may become
unbalanced, and, from time to time, service maintenance should relocate vehicles from
a region to another to accommodate the daily demand.

Figure 4.10: Origin-destination matrix for one-way service Evo (from 4 PM to 5 PM).
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Figure 4.11: Origin-destination matrix for free-floating service Car2Go (from 4 PM to
5 PM).

4.5.3 User behavior characteristics
Vehicle’s busy and idle periods direct impacts service revenue. Indeed, the longer the
busy period is, and the lower the idle period of a vehicle is, the more profitable the car
will be. Therefore, the work characterizes the busy and idle periods of vehicles for all
three services. In this analysis, are considered all the vehicles and all the trips lasting
less than 90 minutes, which corresponds to more than 99.5% records. For each service,
we identified the statistical distribution that best fits the actual data (busy and idle pe-
riod). For this purpose, we tested more than 40 well-known statistical distributions.
More in-depth, for each component of the model, the parameters of the distribution
that most closely approximate the data are determined using the Maximum Likelihood
Estimation (MLE) method. After defining the parameters of each component of the
model, the ten distributions with shorter Kolmogorov-Smirnov distance (continuous
distributions) or lower least square error (discrete distributions) concerning the data
are chosen. Finally, we chose the top three common distributions to each car-sharing
service. These choices are also validated with a visual assessment of the curve fitting.

Figure 4.12 shows the Cumulative Distribution Function of vehicle busy time. Modo,
Evo and Car2Go busy time and their best statistical distribution fitting are shown in
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blue, red and yellow, respectively. For all three services, the Inverse Gamma8, the Burr9,
and Mielke’s Beta-Kappa10 distributions present a good fitting to the empirical data,
with similar MLEs. Table 4.4 summarizes the parameters of the distributions of the
busy time for each statistical distribution. Despite all three services present the same
statistical distribution fitting, the two-way service (i.e., Modo), presents a clear shift to
right on its curve when compared to the other two services, as shown in Figure 4.12. As
we previously discussed, the median busy time on Modo is more than one hour longer
than the median busy time for the other services. Users in Modo must return cars to
the same station they originated travels. As a consequence, they tend to perform longer
tasks. On the other hand, with the other two services users tend to do a longer number
of shorter travels.

Finally, figure 4.13, presents vehicle idle periods distribution. Power log normal11,
Burr and Mielke’s Beta−Kappa distributions best fit the idle data, for all three datasets.
Table 4.5 presents the distribution parameters. Again, Modo presents a distinct behav-
ior from the other two services. The longer idle period for Modo vehicles corroborates
the previous observations. Indeed, the demand for car-sharing varies over the city dur-
ing the day. While users in Evo and Car2Go can park anywhere, they contribute to
spreading cars over the city. For example, at least 75% of cars in Modo remains idle for
periods longer than 2 hours. For the other two services, no more than 20% of vehicles
remains idle for the same period.

In sum, the analysis shows that the free-floating and one-way car-sharing systems
have similar characteristics. They are mostly used for short/medium period travels,
while the two-way system is mostly used for medium to long travels. Moreover, Evo
and Car2Go dynamically spread car over the city, turning the car’s idle periods shorter.
The longer number of shorter travels, associated with the shorter idle periods, may
indicate a more profitable service.

4.6 Conclusions
This chapter characterizes three distinct car-sharing systems that operate in Vancouver
(Canada) and nearby regions. The study, using data of more than one year of real trips,

8Cumulative distribution function (CDF) of the Inverse Gamma distribution: 𝐹(𝑥, 𝑎, 𝛽, 𝛿) =
1

Γ(𝑎)
∫∞1/((𝑥−𝛽)/𝛿) 𝑡

𝑎−1𝑒−𝑡𝑑𝑡
9Cumulative distribution function (CDF) of the Burr distribution: 𝐹(𝑥, 𝑐, 𝑑, 𝛽, 𝛿) =

(1 + ((𝑥 − 𝛽)/𝛿)−𝑐)−𝑑

10Cumulative distribution function (CDF) of the Mielke’s Beta-Kappa distribution: 𝐹(𝑥, 𝑘, 𝑠, 𝛽, 𝛿) =
((𝑥−𝛽)/𝛿)𝑘

(1+((𝑥−𝛽)/𝛿)𝑠)(𝑘∗
1
𝑠 )

11Cumulative distribution function (CDF) of the Power log normal distribution: 𝐹(𝑥, 𝑐, 𝑠, 𝛽, 𝛿) = 1 −
( 1
√2𝜋

∫−𝑙𝑜𝑔((𝑥−𝛽)/𝛿)/𝑠−∞ 𝑒−𝑡2/2𝑑𝑡)
𝑐
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Figure 4.12: Cumulative distribution function of vehicle busy time.

Modo
Inv.Gamma a = 1.7032, 𝛽 = -38.5120, 𝛿 = 278.8487
Burr c = 1.5651, d = 1.0327, 𝛽 = -1.8893, 𝛿 = 163.0525
Mielke k = 1.59745, s = 1.5687, 𝛽 = -1.6713, 𝛿 = 164.9877

Evo
Inv.Gamma a = 2.0674, 𝛽 = -4.7928, 𝛿 = 63.4382
Burr c = 1.8332, d = 1.5078, 𝛽 = -0.1855, 𝛿 = 23.5794
Mielke k = 2.7305, s = 1.8336, 𝛽 = -0.1125, 𝛿 = 23.7291

Car2Go
Inv.Gamma a = 2.7688, 𝛽 = -4.9702, 𝛿 = 75.2494
Burr c = 2.3869, d = 64.2072, 𝛽 = -12.5240, 𝛿 = 5.7419
Mielke k = 37.8163, s = 2.3450, 𝛽 = -10.9187, 𝛿 = 9.6407

Table 4.4: Distributions parameters of the busy time fit curves. The 𝛽 and 𝛿 are key
parameters to adjust the location and scale of the distributions.

uncovers patterns of users’ habits. We provided a characterization of the different car-
sharing services, including spatial-temporal usage. Finally, we highlighted the main
differences and the common characteristics of these services.

The analyses point out how in Vancouver in 2017, the one-way and free-floating ser-
vices were used similarly. They present shorter travels when compared to the two-way
service. All three services present peaks of demand during the day. During work-
ing days, these peaks occur at around 8AM and 6 PM, while on weekends, peaks are
distributed in the afternoon. The analyzed two-way service presents a considerable
number of booking cancellations and a higher vehicle idle time. This indicates a low
utilization of the vehicles, likely due to their business model. Indeed, one-way and
free-floating services allow users to pick-up a car and leave it anywhere in the city, dy-
namically satisfying the floating demand. A strong relationship with the public trans-
portation system, as well as with points of interest, such as public universities and
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Figure 4.13: Cumulative distribution function of vehicle idle time

Modo
PLogNorm c = 118.7142, s=3.6088, 𝛽=0.7191, 𝛿=3780209.5149
Burr c = 1.9865, d = 0.3860, 𝛽 = -7.7229, 𝛿 = 1105.5853
Mielke k = 0.8898, s = 1.5390, 𝛽 = -1.4862, 𝛿 = 860.6790

Evo
PLogNorm c = 0.0723, s = 0.7003, 𝛽 = -0.6723, 𝛿 = 1.8246
Burr c = 0.6931, d = 3.7574, 𝛽 = -0.4881, 𝛿 = 2.3713
Mielke k = 2.7161, s = 0.5882, 𝛽 = -0.2800, 𝛿 = 0.9725

Car2Go
PLogNorm c = 4.8747, s = 3.3741, 𝛽 = 0.7134, 𝛿 = 1334.7243
Burr c = 0.7714, d = 0.7337, 𝛽 = 0.7166, 𝛿 = 53.9727
Mielke k = 0.5743, s = 0.8826, 𝛽 = 0.7166, 𝛿 = 68.1029

Table 4.5: Distributions parameters of the idle time fit curves. The 𝛽 and 𝛿 are keyword
parameters to adjust the location and scale of the distributions.

commercial centers, is present.
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Chapter 5

Electric Free Floating Car
Sharing Mobility Simulator

5.1 Introduction
In the previous chapters, I widely described the dataset I collected and characterized
it with quantitative analyses. However, the collected data refers to only to internal
combustion engine cars. Recalling that the main research question of in this work: It is
possible to design an electric Free Floating Car Sharing System?, it is now fundamental to
introduce a tool to replicate the same FFCS customers’ habits in a customizable model of
electric FFCS system having both fully electric cars and ad-hoc charging station. In the
rest of the thesis I will refer to this particular scenario as FFCS electrified scenario.

In this chapter, I describe the core-tool of my research: an event-driven trace-based
electric FFCS simulator. In a nutshell, this software is able to (i) extract users pattern
from data collected in chapter 2; (ii) replicate the users’ patterns in an electrified sce-
nario tunable and parametrizable by the client; (iii) return several performance metrics
describing the inputted electric FFCS setup.

In order to give themain idea, the simulator takes as input a real trace composed of an
ordered set of rentals. More in details, the simulator creates the event-trace composed
by Event events. Each one of them carries temporal and spatial coordinates (when
the Event triggers), and it can represent a rental start or rental end. In this way, the
simulator is able to mirror the exact FFCS trips.

Another input is the operative area composed of adjacent squares zones of 0.025
𝑘𝑚2. Then, each zone may be equipped with a charging station. Therefore, the set of
charging stations and their placement is the third input. Complete the input set, the car
model, and fleet size.

The simulator detects the closest car to users’ requests and moves it from the initial
to the final point by consuming the trace. At the same time, it computes the amount of
energy needed to afford the trip and properly updates the remaining capacity.

45



Electric Free Floating Car Sharing Mobility Simulator

During the simulations, the software computes several metrics in order to measure
the proper size of the charging infrastructure, and it impacts on the user discomfort,
i.e., in terms of the number of vehicle plugging operations.

Those users’ related metrics are heavily influenced by the environmental parameters
like the number and the distribution of the charging station. For this reason, the main
intuition I followed is to design three placement strategies related to users’ driving
patterns studying how a given system infrastructure can influence the global system
performances.

Moreover, an electric vehicle fleet needs a proper return policy tomanage the battery
state of charge. Indeed, the long charging time implies a smart car release, especially in
zones having a charging station. The simulator takes into account this aspect too and
compares different car return strategy.

This chapter is organized as follow: section 5.2 describes the the algorithm behind
the simulator, section 5.3 illustrates the charging stations placement, section 5.4 ex-
plains how I modelled the provider return policed that customers have to follow, sec-
tion 5.5 explains the metrics taken in account andmeasured by the simulator and finally
5.6 concludes the chapter proposing a work resume. More implementation details are
reported in appendix A.

5.2 Electric car sharing simulator
The goal is to study different design choices for the electric car-sharing system. For
this, I developed a flexible event-based simulator that allows us to compare different
algorithms and tune their parameters while collectingmetrics of interest. The simulator
consumes a trace composed of a subset of rentals collected in chapter 2. In this way,
by implementing a module that maps a given car consumption, I can model an electric
FFCS provider that exactly replicate customers’ temporal and spatial demand.

5.2.1 Simulation model
The simulator replicates the behavior of a fleet of electric cars, which are moving in
the city. Each car is characterized by its location and the current status of the battery
charge. The simulator takes as input a pre-recorded trace of rentals characterized by
the start and end time and initial and final geographic coordinates.

In more details, let is define each trip:

𝑖 ∈ ℐ (5.1)

Each trip is characterized by its start and end time, defined as:

𝑡𝑠(𝑖) (5.2)

𝑡𝑒(𝑖) (5.3)

46



5.2 – Electric car sharing simulator

and origin and destination coordinates defined as:

𝑜(𝑖) (5.4)

𝑑(𝑖) (5.5)

For simplicity, I divide the city area into squared zones, of side 500m. Then, I asso-
ciate with each position one and only one zone with an unique association defined as
follow;

𝑂(𝑖) = 𝑧𝑜𝑛𝑒(𝑜(𝑖)) (5.6)

𝐷(𝑖) = 𝑧𝑜𝑛𝑒(𝑑(𝑖)) (5.7)

We assume a charging station 𝑐𝑠, composed of 𝑘 poles, can be placed at the center of a
given zone such that

𝑧 ∈ 𝒵 (5.8)

so either:

𝑐𝑠(𝑧) = {
1, if 𝑐𝑠 is present
0, if 𝑛 otherwise

(5.9)

The total number of zones equipped with charging stations is defined as follow:

𝑁 = ∑
𝑧∈𝒵

𝑐𝑠(𝑧) (5.10)

with 𝐾 = 𝑁 ⋅ 𝑘 the total number of poles.
Additionally, it is present a set 𝒜 of cars, with its cardinality |𝒜| obtained by the

trace. More in details, let it define each car

𝑎 ∈ 𝒜 (5.11)

at time 𝑡 is characterized by its position:

𝑝(𝑎, 𝑡) (5.12)

and its zone:
𝑃(𝑎, 𝑡) = 𝑧𝑜𝑛𝑒(𝑝(𝑎, 𝑡)) (5.13)

and the residual battery capacity:

𝑐(𝑎, 𝑡) ∈ [0, 𝐶] (5.14)

with 𝐶 being the maximum nominal capacity.
Generally speaking, the simulator processes each rental event 𝑖 in temporal order.

When a rental-start event 𝑖 is processed at time 𝑡 = 𝑡𝑠(𝑖), the simulator chooses randomly
one of the most charged available car in the closest zones to the initial position zone
𝑂(𝑖). In formulas, we get a car ̄𝑎 ∈ 𝒜 such that:
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𝑐( ̄𝑎, 𝑡) ≥ 𝑐(𝑎̂, 𝑡) ∀𝑎̂ ∈ argmin
𝑎∈𝐴

𝑑𝑖𝑠𝑡(𝑂(𝑖), 𝑃(𝑎, 𝑡)). (5.15)

The simulator mimics the normal behavior of FFCS customers that use their smart-
phone to rent the closest car from their position and areworried about vehicle range [47].
Notice that this behavior is independent of whether the car is at a pole being charged or
not. Then, the simulator schedules the event rental-end, and it makes the car unrentable.
When the rental ends fires, all the statistics about the rented car are updated (like bat-
tery consumption and new destination). Obviously, the simulator is able to manage all
the events, like battery depletion or unavailable cars nearby the rental starts.

In the output, the simulator produces several statistics about system usage and user-
related discomfort metrics related to the electric vehicle plugging procedures.

5.2.2 Modelling of rental event
When a rental-start event 𝑖 is processed at time 𝑡 = 𝑡𝑠(𝑖), and the simulator looks for
a car in the initial position zone 𝑂(𝑖). If one or more cars are present, it selects (one
among) the most charged car, i.e, get the car 𝑎 ∈ 𝒜 such that

𝑃(𝑎, 𝑡) = 𝑂(𝑖) ∧ 𝑐(𝑎, 𝑡) ≥ 𝑐(𝑎′, 𝑡) ∀𝑎′ ∣ 𝑃(𝑎′, 𝑡) = 𝑂(𝑖), (5.16)

independently whether the car is at a pole being charged or not.1

If any car is available, the simulator selects the closest zone to 𝑂(𝑖) containing an
available car, mimicking the normal behavior of FFCS customers that use their smart-
phone to rent the closest car from their position. If any vehicle is present in the 8
eight neighboring zones, the rental is marked as infeasible. A rental-end event is then
scheduled using the trace final time 𝑡𝑒(𝑖) and location 𝑑(𝑖).

When car 𝑎 rental-end event is processed at time 𝑡𝑒(𝑖), the simulator makes as avail-
able the car in the real position 𝑝(𝑎, 𝑡𝑒(𝑖)). The arrival zones might correspond to the one
present in the rental-end event, or it might be necessary to manage a slightly user’s re-
routing due to vehicle plugging procedures. The policies which regulate when and how
plug the car are described in section 5.4. Once the car is released, the simulator updates
the battery State of Charge (SoC) by consuming an amount of energy proportional to
the real trip distance:

𝑐(𝑎, 𝑡𝑒(𝑖)) = max (𝑐(𝑎, 𝑡𝑠(𝑖)) − 𝐸𝑛𝑒𝑟𝑔𝑦(𝑝(𝑎, 𝑡𝑠(𝑖)), 𝑝(𝑎, 𝑡𝑒(𝑖))), 0) (5.17)

with 𝐸𝑛𝑒𝑟𝑔𝑦(⋅) that models the energy consumed to go from the car origin 𝑝(𝑎, 𝑡𝑠(𝑖))
to the car destination 𝑝(𝑎, 𝑡𝑒(𝑖)). In case 𝑐(𝑎, 𝑡𝑒(𝑖)) = 0, the trip 𝑖 is declared infeasible.
The discharged car 𝑎 still performs further trips, all marked as infeasible, until it reaches
a charging station.

1We choose this policy because people are worried about vehicle range [47].
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5.3 Meta-Heuristic Charging Stations Placement
In this section, I explain the charging station placement algorithm. The output of this
algorithm is one of themost relevant environmental variables thatwill be deeply studied
and analyzed in chapters 6 and 7. Themain idea behind this algorithm to rank each zone
(defined in section 5.2) according to the users’ traveling patterns and, then equip zones
having the highest values.

5.3.1 Problem formalization
Given a number of charging station 𝑁, the first objective is to place them in the city
area to let all rentals feasible, i.e., to find a charging stations placement so that

𝑐(𝑎, 𝑡𝑒(𝑖)) > 0 ∀𝑎 ∈ 𝒜, ∀𝑖 ∈ ℐ (5.18)

Since I do not make any assumption on the set of trips ℐ, I cannot know a-priori
if a solution exists and provide a general analytical solution. Moreover, the number of
candidate solutions increases as the binomial coefficient (|𝒵|

𝑁), making it ineffective to
numerically compute all possibilities. Instead, I will provide a class of greedy algorithms
and analyze the performance in our specific cases of ℐ. In details, each zone 𝑧 ∈ 𝒵 is
assigned a likelihood 𝑙𝑧 ≥ 0. We then solve the problem of finding the subset of 𝑁 zones
that maximizes the total likelihood. In formulas,

max ∑
𝑧∈𝒵

𝑐𝑠(𝑧)𝑙𝑧 (5.19)

subject to:
∑
𝑧∈𝒵

𝑐𝑠(𝑧) = 𝑁 (5.20)

𝑐𝑠(𝑧) ∈ {0,1}, ∀𝑧 ∈ 𝒵 (5.21)

The above optimization problem can be solved by greedily choosing the top𝑁 zones,
ordered in decreasing likelihood. We compare the performance of different placement
algorithms based on a different definition of the likelihood.

• Random placement: 𝑙𝑧 is an independent and identical distributed random uniform
variable so that charging stations result placed at random;

• Average parking time: 𝑙𝑧 is the average parking duration in 𝑧 as recorded in the
trace;

• Total number of parkings: 𝑙𝑧 is the total number of parking events recorded in 𝑧 in
the trace;

• Total parking time: 𝑙𝑧 is the total parking time accumulated in 𝑧 by all cars recorded
in the trace. In each zone, it is the product of the two previous metrics.
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Those heuristics are driven by the intuition that placing charging stations in those zones
where cars are parked for a long time (average parking time) or frequently parked (total
number of parking) could improve system performance.

5 10 15 20 25
[h]

(a) Turin

5 10 15 20 25 30
[h]

(b) Vancouver

2 4 6 8 10 12 14 16
[h]

(c) Berlin

Figure 5.1: Distribution of average parking time in Turin, Vancouver and Berlin

I order to show the differences between the likelihoods 𝑙𝑧 criteria, figures 5.1 where 𝑙𝑧
is depicted for Turin (5.1a), Vancouver (5.1b) and Berlin (5.1c). The first two cities were
deeply characterized in chapters 3 and 4, while Berlin, as I will show, presents some
interesting spatial distribution. In all the figures, the more the zone is red, the higher is
𝑙𝑧. It means that the redest zones will be the first to host a charging station.

In first approach, it is possible to see how, in all figures, the heuristicAverage parking
time is mainly spread in city peripheries. It means that cars spend a lot of time parked
far from the city center. This peculiarity can be imputed to commuting patterns: as
figure 3.2 points out, two peaks are present in the users’ demand. In particular, the
evening peak catches the back-home commuting which, usually is directed to the high-
density residential area located in the periphery. This, joint with the low business-days
night demand, leads to users to leave cars parked in those areas all night long.

Figure 5.2 depicts the number of parking in each zone, for Turin (5.2a), Vancouver
(5.2b) and Berlin (5.2c). Reminding that more parkingmeans higher zone attractiveness,
it is possible to notice how the zones with the highest number of parking concentrations
are delimited in particular areas. For example, figure 5.2a shows how most frequented
areas are downtown in correspondence of the two main train stations and the airport.
A similar pattern can be spot in figure 5.2b. Contrary, Berlin presents at least three
attractive areas. This is mainly due to the biggest operative area and, probably, to the
differentiation of business areas.

For completeness, I report in figure 5.3 the Total parking time likelihood. It appears
to smooth the behavior of the previous two metrics.

This brief catheterization shows how different cities can have different spatial char-
acterization and, thus, different charging station placements. However, those charac-
terizations will be deepened in chapter 6.
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Figure 5.2: Distribution of number of parking in Turin, Vancouver and Berlin
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Figure 5.3: Distribution of total parking time in Turin, Vancouver and Berlin

5.4 Car return policies
One of the most challenging points of electric FFCS is to deal with the discomfort
derived by plugin operations. This operation is more time-consuming compared to
the normal filling up procedure of internal combustion engine cars. Therefore, the
providers have to deal with users’ selfishness and trying to stimulate their willingness.

When returning the car, the customer may connect the car to a pole in a station,
hence charging the car battery and possibly deviating the real destination from the
desired one. I modeled the following policies:

• Free Floating: the customer must connect the car to a charging pole if and only if
it is available in the desired final zone 𝐷(𝑖);

• Forced: cars must be connected to a pole when the percentage of battery charge
at the end of the rental 𝑖 would go below a certain threshold 𝜋 as the following
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expression defines:

(𝑐(𝑎, 𝑡𝑠(𝑖)) − 𝐸𝑛𝑒𝑟𝑔𝑦(𝑝(𝑎, 𝑡𝑠(𝑖)), 𝑑(𝑖))) ⋅ 100/𝐶 ≤ 𝜋 (5.22)

This implies the customer can be rerouted to the closest zone to the desired one
𝑑(𝑖), if no free pole exists in the zone;

• Hybrid: the customers follow the forced policy; theymay also choose to connect to
a charging pole available in the desired ending zone𝐷(𝑖)with probability𝑤 ∈ [0,1];

The Free Floating policy never obliges the customer to bring the car far from the
desired ending location, even in case the battery is close to exhaustion. It benchmarks
the other policies in order to understand until when the users might rent a car without
any restriction/ Forced mandates to connect cars to a charge station only when energy
runs low, thus trying to protect from battery exhaustion. Hybrid introduces the level of
customerswilling to collaborate, namedwith𝑤. 𝑤 = 0 is equivalent to the Forced policy,
while 𝑤 = 1 adds to the Forced policy the Free Floating policy, thus always connecting
the car to a charging pole if available in their final position zone. The users’ willingness
should be 𝑤 should be intended as the probability that a user can collaborate with the
provider, dropping the car in a charging station. The 𝑤 variability can be justified like
provider incentive bonus like car2go free minutes after a car filling up.

5.5 Key Performance Indicators and Simulation Sce-
nario

In this section, I describewhich are the simulation outputs and the scenariowithwhich I
performed the analyses. In particular, I focused the attention onminimum requirements
to system sustainability and measuring users’ discomfort.

5.5.1 Performance metrics and parameters
The simulator measures metrics that are key to assess in the quality of experience for
the customers:

• Infeasible trip: measures if a trip 𝑖 performed by a car 𝑎 ends with a completely
discharged battery, i.e., when 𝑐(𝑎, 𝑡𝑒(𝑖)) = 0;

• Charge event : indicates a trip 𝑖 that ends with putting in charge the car, implying
the burden to drive to the pole position, and plug the car;

• Reroute event : a trip 𝑖 where the customer is rerouted to a zone different from the
desired destination because forced to charge the car 𝑎, i.e., 𝑃(𝑎, 𝑡𝑒(𝑖)) ≠ 𝐷(𝑖);

• Walk distance: distance between the desired final location 𝑑(𝑖) and the actual final
position 𝑝(𝑎, 𝑡𝑒𝑛𝑑(𝑖)).
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The number of infeasible trips is critical, and the system shall be engineered so that
they never happen. Other performance metrics shall be minimized. In addition to the
above metrics, the simulator collects statistics about car battery charge level 𝑐(𝑎, 𝑡), and
the fraction of time a battery stays undercharge.

5.5.2 Simulation scenario
I use this simulator to study the system feasibility of an electric FFCS at the varying
of the number of zones that are equipped with charging stations 𝑁, and the number of
poles 𝑘 of each charging station.

I consider in each city a fleet that has a number of cars equal to the one observed in
the trace. Electric cars have the same nominal characteristics as the Smart ForTwo Elec-
tric Drive, i.e., 17.6 𝑘𝑊ℎ battery, for 135 𝑘𝑚 of range, with a discharge curve 𝐸𝑛𝑒𝑟𝑔𝑦()
that is proportional to the traveled distance (12.9 𝑘𝑊ℎ/100 𝑘𝑚). 2 Charging stations
have 𝑘 = 4 low power (2 𝑘𝑊) poles each. These are cheap to install and a good compro-
mise between costs, power requested, and occupied road section. We model a simple
linear charge profile (complete charge in 8 hours and 50 minutes in our case). At last,
the initial car position, only affecting the simulation transient, is chosen randomly.

The simulator, written in Python, takes less than 5 seconds to complete a single
simulation for a given city and parameter set. Due to a large number of simulations, we
run them in parallel. Each simulation produces 100MB of detailed logs that we process
on a Big Data cluster of 30 nodes using PySpark.

5.6 Conclusions
In this chapter, I described a FFCS electric mobility simulator I developed. Starting
from the data collected with the software described in chapter 2 I created a trace of
rental events, describing the system allocated users’ demand.

More in detail, the simulator allocates a set of cars, characterized by battery capacity
and power consumption per kilometer. Then consumes the rental trace, marking the
car unavailable after a rental-start event and updating the final battery state of charge
when a rental-end event is processed. Moreover, the simulator is in charge of placing
the charging station according to three heuristics: random, preferring zones having a
greater parking time, and zones having a higher number of parking events. Finally, it
takes into account the different policies with which the users have to return the car.

When the trace is consumed, this simulator computes several key performance indi-
cators measuring the proper system infrastructure allocation and users’ discomfort to
deal with an electric vehicle.

2https://www.smart.com/uk/en/index/smart-electric-drive.html
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Chapter 6

A Data Driven Approach for
Electric FFCS System Design

This chapter refers mostly two works: ”Free floating electric car sharing in smart cities:
Data driven system dimensioning” published in the IEEE International Conference on
Smart Computing (SMARTCOMP) in July 2018 [48] and ”Free Floating Electric Car Shar-
ing: A Data Driven Approach for System Design” published in the IEEE Transactions on
Intelligent Transportation Systems journal in August 2019 [43]. I am main the main
contributor of this paper while other authors supervised the entire publishing process.

6.1 Introduction
Nowadays, mobility is a very important challenge for our society, with strong impli-
cations on pollution in large cities where more eco-sustainable solutions are positively
seen as a means to improve the current situation. Along with the usage of public trans-
port, sharing mobility such as bike-sharing, carpooling, and car-sharing can help to
address this problem. In this chapter, I focus on the design of an electric car-sharing
system, where customers rent a car for moving within the city limits for short peri-
ods of time. I focus on the so-called Free Floating Car Sharing (FFCS) system where
customers are free to pick and return the car wherever they like, inside a geofenced
area. Electric car-sharing systems need an infrastructure of recharging stations, whose
design requires ingenuity [49, 50, 51].

Data is fundamental to answer these design questions. In this work, I base the study
on the availability ofmillions of actual rentals I collected from currently in use FFCS sys-
tems as reported in chapter 2. In this chapter, I consider Turin and Vancouver (charac-
terized in chapters 3 and 4) plus Berlin(Germany) and Milan(Italy), which in the dataset
are the cities having the highest number of rentals. The data naturally factors the non-
stationarity of FFCS systems, including millions of actual rentals. Armed with this, I
study and compare the performance of a hypothetical equivalent car-sharing system
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based on electric vehicles. While in the past some works have proposed solutions for
the design of electric FFCS [52, 53] and for a smart placement of charging stations, this
work is among the first to take a data-driven approach for the design of electric car
FFCS systems [54, 51, 49, 50].

First, I characterize how customers actually use FFCS transport means in different
cities and countries. Results show a similar usage with a high utilization during a com-
muting time and very different spatial distributions. Rental duration and driving dis-
tance are quite short (less than 20-30 minutes, for less than 5 km in median). More
interestingly, it is possible to observe peripheral zones where cars are left parked for
a long time and busy areas where instead the parking duration is much short and dy-
namic.

Armed with these facts, I compare charging station placement policies introduced
in section 5.3 that exploit the knowledge of typical parking zones and duration. I first
assume a pure Free Floating system, where customers return the car in a charging sta-
tion only if present at their actual destination. Results show that placing the charging
stations in those areas where cars stay parked for a long time performs badly. Instead,
placing charging stations in those areas where cars are frequently parked and rented,
e.g., near train stations and working areas, guarantees much better performance. This
is consistent in all cities.

Next, I study different return policies introduced in section 5.4, where customers
are asked to return the car to a charging station in case the battery level decreases
below a minimum threshold. This collaborative policy reduces the cost of the charging
infrastructure by a factor of 2 or more with respect to pure opportunistic free-floating
solutions. Equipping just 8% of charging zones with 4 poles of 2 kWwould guarantee an
electric car FFCS equivalent to the one currently in use. This with minimal impact on
customer satisfaction, measured by the number of times customers are forced to drive
to a charging station and the distance they have to walk back to the desired destination.

At last, I compare system design alternatives to check whether it is better to place
a lot of charging poles in very few areas, or rather to spread a lot of charging stations
with few poles in many areas. Results demonstrate that both extreme solutions perform
badly, with the best performance when installing charging stations with 5 to 20 poles
in popular areas. This has benefits also on the power grid used to supply power to the
recharging areas.

After quickly discussing related work in section 6.2, I present and characterize data
in section 6.3, section 6.4 discusses the impact of charging stations placement policies,
while section 6.5 compares return policies. Section 6.6 presents the impact of concen-
trating or spreading charging stations in the city. Finally section 6.7 concludes the
chapter.
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6.2 Related work
The diffusion of the free-floating approach to car sharing led to increasing attention
by many researchers, with analyses of these systems and their extension to electric
vehicles. The studies performed in 2011 by Finkorn and Müller [27, 55] are the first
attempts to analyze the benefits of FFCS for the population. Their results on customers’
behavior, like traveled distances, are similar to what I exposed in chapter 3. Later works
[56, 57, 22] also collected data and analyzed the mobility patterns of customers and
differences among cities.

The introduction of electric vehicles for private and public transportation brought
the problem of placing the electric charging stations. Authors in [54] show the benefits
of placing charging stations with different power according to the customer parking
duration. Few data-driven studies address the charging station placement, either by
respectivelyminimizing the cost of installation, power loss, andmaintenance [49, 51], or
by minimizing the customers’ walked distances necessary to reach a charging pole[50].

After a survey among FFCS customers in Ulm (Germany), authors of [52] investigate
the positive influence and feasibility of electric FFCS systems. Lastly, authors of [53]
study the relocation of electric cars in FFCS since few charging stations may be blocked
by completely charged vehicles.

Previously, in [48], I performed several analyses about how to design an electrical
FFCS in the city of Turin. In [58] I introduced the first optimization of electric charging
stations placement. In this work, I extend bothworks by considering four cities as a case
study and studying a new set of return policies to observe the impact of the willingness
of customers to contribute to the system’s sustainability. I further extend this work by
discussing the benefits of using charging hubs.

In this work, I should be among the first to validate a data driven approach for di-
mensioning an electric FFCS system by analyzing and optimizing different metrics im-
pacting customer experience in different cities worldwide located.

6.3 Data collection and characterization
Here I characterize system usage in all the case of study cities, focusing on those metrics
that are instrumental for the design of FFCS systems based on electric vehicles and
highlighting the non-stationary patterns.

6.3.1 Temporal characterization
I collected the data with UMAP, described in chapter 2. Recalling that the basic dataset
entity is the bookings, formalized in definition 2. Not all bookings correspond to an
actual real user’s trip. Indeed it is possible to observe the booking dataset is composed
by reservations and rentals, defined respectively in definition 3 and definition 4. This
ambiguity is due to the high degree of freedom of an FFCS system:
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• a customer can book a car, and cancel the booking later on;

• the data collection may suffer from outages, so that some snapshots may miss
some available cars;

• cars may go in maintenance so that they disappear and never come back (or return
after a long time)

To tackle this problem, I developed data cleaning and filtering rules to extract actual
rentals from bookings date-set. A rental is identified when:

• it lasts at least 3 minutes;

• the ending position is at least 700m far from the starting position, with both po-
sitions inside the city operative area;1;

• its duration is smaller than 1 h. These thresholds have been selected by domain
knowledge of the data – see 3 for more details.

Bookings that do not correspond to rentals are then merged with parkings events (since
the car did not move).

In this work, I focus the analysis from September to November 2017 in four cities:
Turin (Italy), Milan (Italy), Berlin (Germany), Vancouver (Canada). Overall, the case
study dataset has more than 1 million rental events that describe the typical usage pat-
terns of FFCS customers.

To give the intuition of the system, I first provide a characterization of actual usage
patterns by current FFCS customers in each city. I focus first on temporal characteris-
tics. Figure 6.1 reports the rental trend. More in detail, figure 6.1a shows the number
of recorded rentals for each day in the considered period. Usage similarity is striking,
with Milan, Berlin, and Vancouver that have more rentals per day than Turin. This
intense usage justifies the difference in fleet size between the cities, with these three
having at least twice as many cars with respect to Turin (see table. 6.1). These first
results highlight the importance of extending the users’ pattern analyses of the same
provider in different cities. A second interesting aspect is the presence of a weekly pat-
tern: in correspondence with the weekends, the number of rentals drops by about 30%.
This is justified by the fact that during the working days’ cars are used for commuting.
Moreover, non-stationary events due to holidays or strikes are visible, e.g., October 6th
in Milan due to a public transport strike.2

To deeply analyze customers’ habits, I detail the average number of rentals per hour
in figure 6.1b, separately per working-days (WD, solid line) and per weekends (WE,

1This to account for possible errors in the GPS fixing, and to remove rentals started and ended in
different cities.

2The sudden fall around the October 2𝑡ℎ is due to a system outage that caused a lack of data.
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Figure 6.1: Rental trends in different cities.

dashed line). Each curve reports the number of rentals for each hour, considering the
average number over the same hour in the dataset. Firstly, notice the usage peaks dur-
ing commuting times. These happen at different times for different cities, e.g., 8 am for
Turin, Milan and Berlin vs 7am for Vancouver, following local commuting habits. Sec-
ondly, notice how the evening and night usage tend to be larger during weekends than
working days. This reflects the different usage patterns at night when cars are used to
reach areas dense with pubs and nightlife. At last, observe the different patterns again
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Figure 6.2: Car Sharing usage habit characterization.

in different cities. For instance, the average number of rentals in Vancouver and Berlin
during weekendmornings is higher than during working days. This does not happen in
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Figure 6.3: Heat map of average parking time and total number of parking. The warmer
the color, the higher the value.

Italian cities. The charging station placement design must thus weight these different
needs and non-stationary patterns.

Given the goals of deriving guidelines for charging station placement policies, I fo-
cus now on the characterization of three important metrics: (i) for how long customers
rent a car, (ii) how far they drive, (iii) how long cars usually stay parked. The former
two metrics guide the battery discharging properties, while the latter metric is funda-
mental to understand battery charging opportunities. Given the dataset does not have
any information on car position during a rental, I compute the travel distance by as-
suming the customer went directly from the origin to the destination. This is indeed
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compatible with the duration of rentals (see below). I used Google Map service to com-
pute a correcting factor to be applied on the euclidean distance as described in chapter
3.

Figure 6.2 reports the CumulativeDistribution Function (CDF) of the rentals duration
(top), driving distance (middle) and parking duration (bottom). The size of the city
has a clear impact, with Turin that has the shortest trips, and Berlin the longest. The
rental duration is, in general, very short, leading to the intuition that drivers tend to
minimize the rental time (and cost). Traveled distance is fundamental to understand the
battery consumption: The maximum driving distance sets the minimum battery charge
to sustain that trip. Looking at the middle plot in digure 6.2, I observe that in Berlin, the
longest trips are twice as long as the longest trips in other cities. Therefore, the same
battery constraints would not fit for all cities.

Overall, the limited traveled distance and rental duration suggest people use the car
just for the time strictly needed to reach their destinations. Trips are limited by the
service area and are thus typically within 15 km (25 km for Berlin).

At last, a bottom plot of figure 6.2 details the duration of the parking periods. Inter-
estingly, 50% of parking lasts less than 22 minutes in Berlin, testifying to a very high
system utilization. In Turin, the median grows to 42 minutes, still showing that most
cars are parked for a short time. Yet, the long tail of the CDF (note the log scale on
the x-axis) suggests that there are a sizeable fraction of parkings that last for 5 or more
hours. Cars parked in the periphery, typically at night, where the demand is lower,
belongs to this fraction.

Table 6.1: Main characteristics of data.

City Rental
Fleet

Rental Rental Parking
Zones

Size
Time [min] Dist. [km] Time [h]
Avg Med Avg Med Avg Med

Torino 125k 377 21 20 3.96 3.36 3:17 0:42 261
Milano 320k 739 25 24 4.15 3.66 2:21 0:24 549
Berlino 342k 900 29 28 6.22 5.24 2:23 0:22 833
Vancouver 317k 941 26 24 4.70 3.98 2:54 0:22 532

Takeaway: car sharing usage is time heterogeneous and non-stationary. However,
many patterns can be identified. FFCS customers tend to use the system mostly during
the commuting time and for short trips.

6.3.2 Spatial characterization
The choice of charging station placement has to balance two main factors: place them
where cars are (i) frequently parked – so to maximize the opportunity for charging; and
where cars (ii) stay parked for a long time – so to maximize the charging time. Knowing
the zones within the city where cars are left parked is fundamental. For this, I divide
the operative area described in section 5.3
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Figure 6.3 shows the above metrics for Berlin and Vancouver using a heat map –
with blue and red corresponding to the minimum and maximum values, respectively.
Focus on Berlin first - figure 6.3a. The left plot shows the average parking time. Results
clearly show that cars stay parked for a very short time in busy downtown areas, while
cars stay parked for a longer time in the periphery (corresponding to the head and tail
of the CDF in figure 6.2, respectively).

Conversely, the right plot depicts the total number of parkings recorded in each zone.
It clearly shows that areas where the majority of rentals/parkings occur correspond to
zones downtown where people frequently drive, drop the car, and then someone else
re-rent the same car.

In a nutshell, in busy areas, the average parking time is short, and the number of
rentals and parkings recorded is high. This reflects the specific usage of FFCS according
to which cars move to downtown areas in the morning, then are rented to move within
central areas, and finally are driven back to the periphery at the end of the day. Similar
results apply to all cities – see Fig. 6.3b which details Vancouver statistics.

In the following, I leverage this knowledge obtained by actual data to compare the
design of and optimize different charging station placement policies.

Takeaway: Periphery zones are characterized by a long parking time, while central
areas are characterized by many parkings which last a short time.

6.4 Impact of charging station placement

6.4.1 Simulation setup
In this section, I run several accurate simulations through the simulator described in
chapter 5. More in detail, for each city, I built the trace replicating the start and end for
each rental, with a fleet size reported in table 6.1. Those particular simulations deeply
studied the pro and cons of different provider settings like charging station placement
and car return policy.

In particular, themain provider side performances is the percentage of infeasible trips
(trips where the battery completely run out before to reach the destination). From a user
point of view, I measure the discomfort metrics, the metrics that may be seen as extra
work from the user side. They namely are the charge events, percentage of reroutings,
average plug time and the average walking distance.

The best configuration is the one that makes the infeasible trips close to 0% and
minimizes all the other metrics.

6.4.2 Results
I consider; initially, the Free Floating return policy (described in section5.4), and I study
the impact of different charging station placement policies. The aim is to check what

63



A Data Driven Approach for Electric FFCS System Design

0 5 10 15 20 25 30
Zones [%]

0

25

50

75

100

In
fe

as
ib

le
 tr

ip
s [

%
]

Avg time Tot time Num parking Mean Random

0 25 51 76 102 127 153
Number of charging stations

0 5 10 15 20 25 30
Zones [%]

0

25

50

75

100

In
fe

as
ib

le
 tr

ip
s [

%
]

Avg time Tot time Num parking Mean Random

0 13 26 39 52 65 78
Number of charging stations

(a) Turin

0 5 10 15 20 25 30
Zones [%]

0

25

50

75

100

In
fe

as
ib

le
 tr

ip
s [

%
]

Avg time Tot time Num parking Mean Random

0 27 54 82 109 137 164
Number of charging stations

(b) Milan

0 5 10 15 20 25 30
Zones [%]

0

25

50

75

100

In
fe

as
ib

le
 tr

ip
s [

%
]

Avg time Tot time Num parking Mean Random

0 41 83 124 166 208 249
Number of charging stations

(c) Berlin

0 5 10 15 20 25 30
Zones [%]

0

25

50

75

100

In
fe

as
ib

le
 tr

ip
s [

%
]

Avg time Tot time Num parking Mean Random

0 25 51 76 102 127 153
Number of charging stations
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Figure 6.4: Percentage of unfeasible trips as function of charging station number, for
different placement algorithms and city. Placing charging stations where cars are fre-
quently parked is much better than where cars stay parked for long time.

would be the minimum number of charging stations to install to sustain an FFCS system
based on electric vehicles that are equivalent to the one currently in use.

Figure 6.4 shows the performance of the different placement algorithms in terms of
percentage of infeasible trips with respect to the number of charging stations𝑁 for each
city. Each charging station has 𝑘 = 4 poles. The bottom x-axis reports the percentage of
equipped zones with respect to the total, while the top x-axis reports the actual number,
different for each city.

It is possible to observe notably different performance for different placement algo-
rithms. First, the average parking time placement policy (Avg time - purple line) has
very poor performance in all the cities. Even a simple random choice sometimes per-
forms better (Mean rnd - green line, obtained as the average of 10 random instances).
However, in Milan – figure. 6.4b – and Berlin – figure 6.4c, the random placement re-
sults the worst. This is due to the larger number of zones, which makes the space of
available solutions much larger.

Second, the total parking time (Tot time - black line) and the total number of parkings
(Num parking - red line) perform similarly and consistently better than other policies.
A 10% coverage in Turin, 11% in Milan, 23% in Berlin%, and 13% in Vancouver lead to
about 2% of infeasible trips. In all the cities but Berlin, it is possible to reach a negligible
percentage of infeasible trips with just 15-18% of charging zones. Instead, in Berlin, it
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is possible to still have some infeasible trips with 30% of charging zones. Recalling that
with the current car model it is possible to travel 135 km 5.5, the presence of infeasible
trip is explained by looking at the rental distance presented in 6.2. Trips in Berlin can
be as long as 39 km. Therefore, with only 4 long-trips that do not end in a charging
station area, the battery could run out the energy.

The overall trends confirm the intuition of why the recharging stations placement al-
gorithm is of primary importance. Avg time placement favours peripheral zones where
few trips end, and where cars stay parked for long time, sometime longer than the time
required for a complete charge, (see left heat maps figure 5.1c and figure 5.1b). On the
contrary, Num parking and Tot time favour city center areas, where cars are frequently
parked for short time (see right heat maps in figure 5.2c and figure 5.2b).

Figure 6.5 confirms this intuition. Indeed the Avg time placement generates much
longer plugged times, often much longer than the time needed for a full charge. There-
fore, many cars occupy the charging poles when they are already charged, preventing
other cars from using those poles and increasing the number of infeasible trips.

0 5 10 15 20 25 30
Plugged time [h]
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0.2
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Avg time
Num parking

Figure 6.5: CDF of the time spent by a car at a charging station (Z=40), for Num parking
and Avg time placement algorithms in Turin.

Takeaway: Placing charging stations in areas where cars stay parked for long time
is not convenient. Placing charging stations in areas which allow many cars to recover
the (little) energy consumed in the (short) trips results in a much better policy.

Given this, the total number of parking is the placement algorithm, and it will be
used for the rest of the chapter.

6.5 Impact of return policy
I now investigate the impact of the different return policies described in section 5.4. In
particular, I quantify the implications of asking customers to return the car to a different
zone than the desired one when the battery is below a critical level.
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Figure 6.6: Infeasible trips when comparing the Free Floating vs Forced return policies.
Forcing customer to charge when 𝑐 < 𝜋 drastically improves performance.
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Figure 6.7: Impact of customer willingness to cooperate 𝑤. Albeit the small impact, the
higher 𝑤 is, the better it is.

6.5.1 Impact on infeasible trips
Figure 6.2 has already shown that trips are typically limited. This is instrumental in
choosing a proper minimum charging threshold of 𝜋. In particular, 𝜋must guarantee to
cover the maximum trip distance and the corresponding energy being consumed. For
instance, a maximum distance of 20 km corresponds to about 15% of battery capacity for
the considered car model. In the following, I take a conservative approach and set the
minimum battery charge threshold 𝜋 = 25%. To make results comparable, I keep the
same threshold also for Berlin, where the maximum traveled distance grows to 39 km,
i.e., suggesting 𝜋 ≥ 30%. Here the choice is not conservative.
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(a) Turin
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(b) Milan
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(c) Berlin
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Figure 6.8: Charge events percentage (left), re-route events percentage (middle) and
walk distance averaged over re-routed trips (right), per city. Increasing 𝑤 benefits the
customers’ experience by reducing the re-routing events significantly, but increasing
the charging events.

As before, I focus on the percentage of the infeasible trip with respect to𝑁. I compare
the results for the Free Floating and the Forced policies. Figure 6.6 shows the results.
The Forced policy (solid lines) performs much better with respect to the original Free
Floating policy (dashed lines). In a nutshell, adopting a policy that mandates customers
to charge the car when the battery level gets below a threshold drastically reduces the
number of infeasible trips, even with a handful of charging stations. Indeed, in all cities
is present a negligible percentage of infeasible trips (< 0.1%) with more than 8% of zones
equipped with charging stations.

I now focus on the impact of the willingness 𝑤 in the Hybrid policy. I want to un-
derstand if the more altruistic the customers are, the higher are the benefits for the
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system.
Figure. 6.7 details the percentage of infeasible trips with a different willingness prob-

ability for Vancouver and Berlin. Turin and Milan are similar to Vancouver and not re-
ported for the sake of brevity. The figures show that increasing 𝑤 has very little impact
on the percentage of infeasible trips. Only by looking at the insets that offer a zoom in
log-scale, it is possible to observe that an increasing willingness reduces infeasible trips,
which are however, already a marginal percentage of trips. This is due to the higher
average battery level, obtained by supposing the Free Floating policy on the not of the
Forced one. In Berlin, some infeasible trips are still present even when 30% of zones
are equipped with charging stations. This is due to the maximum length of the trips,
confirming the need to increase the threshold 𝜋.

Takeaway: Asking customers to return the car to a charging station when the bat-
tery level goes below a minimum level drastically improves system efficiency. With
just 8% of the zones covered by charging stations, the systems become in all the cities
almost self-sustained.

6.5.2 Impact on customer experience
As there is no strong evidence that the overall system would perform better with cus-
tomers’ altruistic behavior, here I check benefits on the customer experience. Forcing
a customer to park in a charging station can be annoying because the customer has to
reach the charging station and lose time to plug and unplug the car to and from the
pole. Even worse, rerouting customers to other zones for charging increases the dis-
tances they have to walk to reach their desired destination. In the following, I measure
the customer’s experience through the KPIs described in 5.5.

Figure. 6.8 reports, for each city, and for different willingness the percentage of
charge events (left plots), the percentage of rerouting events (middle plots), and the
average walk distance when rerouted (right plots). In all graphs, the shaded area high-
lights the infeasible region, i.e., when infeasible trips are higher than 0.1% in at least a
case. The lack of charging zones creates artifacts here.

Focus first on the charge percentage - leftmost plots. When the number of charg-
ing stations is close to the minimum, most poles are occupied by cars that have been
forced to charge. This leaves little room for opportunistic charges, and there is little
impact of 𝑤. For the increasing number of charging stations, the opportunity to find a
free pole in 𝑜(𝑖) increases. Thus, the higher is 𝑤, the higher are the recharging events.
Correspondingly, the average battery charge increases – see Fig. 6.9a.

Interestingly, the charge percentage decreases for a selfish customer (𝑤 = 0), reach-
ing about 5-8% for the sufficiently large number of charging stations. This corresponds
to the average number of charges per car that guarantees a minimum battery charge of
25%. Indeed, given the average rental distance of 5 km (middle ECDF in figure 6.2) and
a battery range of 100.5 km (at the net of the safety threshold 𝜋), a car could sustain on
average 20 normal trips before needing to charge.
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Move now to the percentage of re-routing events - middle plots in figure. 6.8. Two
important effects are visible. First, rerouting probability decreases as expected: the
more the stations are, the more likely customers find a charging station at their desired
final zone. With selfish behavior (𝑤 = 0), the fraction of rerouting events remains
large even for large 𝑁. Second, the more collaborative customers are, the better it is
for the entire system. With half of the customers that return the car voluntarily to
charging station if present in their final destination, for Milan, Turin, and Vancouver,
the re-routings are less than 1% with 18% of charging zones. These can be handled
by a relocation policy, i.e., the system could take care to charge those less than 1% of
cars whose battery level is close to 𝜋. Note that this corresponds to a maximum of 53
relocation events per day. Instead, for Berlin, the number of rerouting remains larger
than 3%, mainly due to its larger size.

At last, focus on the average walk distance when the car is rerouted – rightmost
plots in figure. 6.8. When forced to charge to a different zone than the desired one,
customers would be asked to drive far, a likely unacceptable penalty unless mitigated
by offering incentives to customers, e.g., offering a free rental when re-routed.3 Notice
that by increasing the number of charging stations, the walked distance is reduced, but
not linearly. This is also due to the fact that charging stations are not placed uniformly
in space, following the number of parking heuristic.

Therefore, I would like to have 𝑤 = 1 to reduce (far) re-routings and infeasible trips,
and 𝑤 = 0 to reduce charging events. In an attempt to take into consideration both
aspects, I compute the (global) walk distance averaged overall trips. This considers the
penalty due to (i) the rerouting events and (ii) the walk distance when charging in a pole
of the desired final destination (pole distance would be 150m, on average). Figure. 6.9b
reports this general average walk distance for Vancouver. For more than 10% of zones
with charging stations, with all the policies, customers have to walk on average less
than 400m. When the number of charging stations is low, increasing 𝑤 reduces the
average walking distance since opportunistic charges reduce rerouting events. How-
ever, increasing the number of charging zones increases the cost of always driving to
a pole in the same zone. In the case of Vancouver, after 23% of zones, the best policy
switches from 𝑤 = 1 to 𝑤 = 0. Therefore, the policy to use may be different according
to the number of charging stations. Overall, for all the four cities and 10% of zones, and
choose the policy with 𝑤 = 1, customers on average walk less than 200m to reach their
desired destination.

Takeaway: Hybrid policy significantly reduces the number of times the customer
has to drive to a charging station in a different zone than the desired one. However, it
increases the number of times the customer parks at a charging station and has to plug
the car into the pole. Therefore, one must be cautious when weighing these results and
designing the return policies which impact the customers.

3The noise for large 𝑁 is due to the very small number of rerouting events.
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Figure 6.9: Details of the average battery charge status and global average walk distance
for Vancouver. Other cities have similar results.
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Figure 6.10: Impact of pole distribution among zones. Concentrating all poles in very
few hubs performs poorly, as well as placing single pole charging stations.

6.6 How to distribute poles in stations
In the previous sections, I assumed charging stations with 𝑘 = 4 poles each. Here, I
study the impact of installing the charging station with a larger or smaller number of
poles each. I keep the total number of charging poles 𝐾 = 𝑘𝑁 constant and equally
distribute them in a varying number of charging stations 𝑁. In other words, I check if
it is better to have (i) big charging hubs with many poles (one single hub corresponds
to 𝑁 = 1, with 𝐾 poles) or (ii) a very large number of charging stations, each with one
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pole (𝑁 = 𝐾, 𝑘 = 1). I call pole spread percentage the percentage of zones in which poles
are distributed among, i.e., 100𝑁/𝐾 = 100/𝑘. For example, pole spread percentage 5
corresponds to 20 poles per zone (𝑘 = 20), spread percentage 10 corresponds to 10 poles
per zones, etc., up to spread 100 that corresponds to a single-pole per each charging
zone (𝑁 = 𝐾 and 𝑘 = 1).

For each of the four cities, I pick a constant number of charging poles 𝐾, correspond-
ing to a percentage of 7% of charging zones when 𝑘 = 4.4 Then, I distribute the poles
evenly among different numbers of 𝑁 zones, chosen according to the highest number
of parkings (as in the previous Sections). I consider the Hybrid policy with 𝑤 = 0.5 and
simulate the resulting system.

From top to bottom, figure 6.10 reports the percentage of infeasible trips; the average
time cars are plugged into a charging pole (even if they are completely charged); the
percentage of re-routed trips, and the average walk distance for re-routed trips. Colors
refer to different cities and the x-axis reports the spread percentage. Note that with
𝑘 = 4, as in the previous experiments, we have a spread percentage of 25% for all the
cities.

Focus first on 6.10a. With spread percentage going below 5%, hence concentrating
poles in very few hubs, the number of infeasible trips quickly grows to non-negligible
values. Even Turing and Milan suddenly suffer of a sizable percentage of infeasible
trips. The lowest values are obtained with a spread between 5 and 20, meaning that
increasing the number of poles per charging station in the [5 − 20] range helps the
system to sustain. For instance, placing stations with 𝑘 = 6 poles lets Vancouver sustain
all trips. Conversely, spreading a lot of charging stations, each equipped with one pole,
is also not optimal. Poles are occupied for a long time by cars that customers tend to
not rent since located in non-popular areas, as can been seen by the (too) high plugged
time in figure 6.10b.

figure 6.10c shows the percentage of re-routings. Here I also observe that it is better
to have a low spread percentage. For the region where there are negligible infeasible
trips (spread between 5 and 20), the percentage of re-routings increase both because
poles start to be located in a less popular destination and because cars are charged for
less time (see figure 6.10b).

Lastly, I showwalk distance for re-routed trips in figure 6.10d. As expected, the walk
distance slowly decreases with the spread percentage. Indeed, when customers are re-
routed, they can return the cars in more areas, likely closer to their desired destination.
Only when single poles are used, the walk distance increases again. This is justified
by cars that stay attached to poles for (too) long time, reducing the availability of free
poles, thus forcing customers to drive further away.

Therefore, the best trade-off is hard to detect and depends from city to city. In gen-
eral, it looks better to concentrate poles only in those zones where cars are frequently

4Each city has a different 𝐾, producing a different number of infeasible trips.
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rented and returned so as to increase the chance to find a free pole and let the battery
quickly charge before the next rental makes the pole free again.

Note that both extreme solutions of pole spread percentage would also cause the
highest installation and operating expenditures. The single hub solution would require
to have a huge amount of power at disposal in a single location. In comparison, the
single-pole solutions would largely increase the installation cost and the occupied road
section.

Takeaway: Choosing the number of poles per zone must consider different factors.
Concentrating all charging poles in very few hubs or spreading them among all city
areas performs badly. The intermediate solutions look beneficial and must be carefully
weighted, also considering the cost of installing charging stations.

6.7 Conclusions
Designing an electric vehicle free-floating car-sharing system leads to many interest-
ing problems and trade-offs. In this chapter, I built on actual rental traces to study via
accurate simulations the impact of i) the charging station placement and ii) return poli-
cies. Considering charging station placement, I demonstrated that it is better to place
charging stations within popular parking areas (e.g., downtown), even if the parking
duration is short.

The analyses have shown that an FFCS solution with electric vehicles can almost
sustain itself, even with very few charging stations (8-10% of city zones). These results
are also obtained thanks to customers’ collaboration by returning the car to a nearby
charging station or whenever the battery level drops below a target threshold.

Car sharing providers shall consider the trade-off between usability, costs, and ben-
efits for the customers. The results hint at possible alternative design solutions, i.e.,
adopting simple relocation policies that would move cars that need a charge only, a
promising solution to limit discomfort for customers due to re-routing enforcement.
This could be achieved by considering giving incentives to customers.
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Chapter 7

Data-Driven Optimization of
Charging Station Placement in
Electric FFCS

This chapter is mostly taken from ”Data driven optimization of charging station place-
ment for EV free floating car sharing” published in the 21𝑠𝑡 International Conference on
Intelligent Transportation Systems in November 2018 ([58]) and ”Free floating electric
car sharing design: Data driven optimisation” published on Pervasive and Mobile Com-
puting journal in April 2019 ([46]). I am the main contributor of this paper while other
authors supervised the entire publishing process.

7.1 Introduction
Mobility and pollution are challenging problems in our cities. Private vehicles, still
important urban transportation means, are among the major contributors to both con-
gestion and air pollution. Because of this, smart and shared mobility are seen as a key
component to reduce emissions and traffic [27]. Given a fleet of cars, Free Floating
Car Sharing (FFCS) systems allow customers to pick and drop a shared car everywhere
inside an operative area, thus reducing the number of private cars and increasing the
number of available parking spots. The conversion from internal combustion cars into
Electric Vehicles (EVs) is seen as the next big opportunity to drastically reduce pollution
inside urban areas [52]. However, the design of a system based on electric cars entails
the deployment of a charging station network [59].

In this work, I tackle the design of an electric FFCS system. This is a challenging
problem, given charging constraints which impact car availability, and the cost of the
infrastructure setup and maintenance. The design of the charging station infrastruc-
ture requires thus ingenuity to maximise customers’ comfort, and minimise cost for the
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operator [49, 50, 51].
Two are the main problems that need to be faced: i) the charging station placement

problem, i.e., how many and where to install charging stations; and ii) the return policy
customers have to follow at the end of the rental, i.e., in which cases to ask the customer
to return the car to a charging station. In this chapter I face both the above problems.
Notice that the number of charging stations is directly related to system installation
costs.

Data is fundamental to answer these questions. While in the past some works have
proposed solutions for the design of electric FFCS [52, 53], this work is among the first
to take a complete data-driven approach [49, 50, 51, 54, 60, 61] in an electric FFCS.

I start by leverage the data collected frommore than 2 months of rentals in 2017 with
the software described in chapter 2. I remind to the characterization done in sections
3.3 on Turin and 5.3 studying in detail Turin, Vancouver and Berlin.

Then, relying on the simulator described in chapter 5, I replicate the exact same
events recorded in the traces to accurately mimic actual customers’ habits. It simulates
the usage of each EV, its battery consumption and charging, while considering different
design parameters. With this, I run thorough simulations to understand the implication
of the design choices, such as charging station placement algorithms, and car return
policies.

Reminding that section 6.4 shows that placing the charging stations in those areas
where cars stay parked for long periods performs worse than a totally agnostic random
placement. Instead, placing charging station in those areas where cars are frequently
parked even for short periods guarantees better performance.

Starting from that I gauge the benefits of considering collaborative car return poli-
cies, where customers voluntarily or forcibly return the car to a charging station in case
the battery level decreases below a threshold like the authors of [62] proposed. This
kind of return policies are inspired by the user-relocation model presented in [63, 64,
65, 66], where the relocation is driven by the presence of parking and charging stations
and not by the demand areas. It is possible to observe that this halves the number of
charging stations required to sustain the system. However, this increases customer’s
discomfort, in terms of number of times customers have to return the car to a charging
station, at the cost of additional distance from their desired final destination.

To solve this tension, I further optimise the placement of the charging station by
means of global optimisation algorithms. I, implement and validate two algorithms:
a hill-climb local search and a genetic algorithm, both tuned to minimise system cost
and customer’s discomfort. Results are surprising: just equipping 5% of the city area
with charging stations guarantees the system to self sustain, with no cars ever running
out of battery in two months of trips. This corresponds to install only 13 charging
stations in the whole city of Turin, which has 1 million inhabitants. Furthermore, the
placement found by the genetic algorithm guarantees only 4% of re-routing events,
with the customers parking the car, on average, within 90m from their desired final
destination.
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I believe results presented in this paper, guided by actual usage pattern for FFCS cus-
tomers, are very important for regulators, policy makers, car sharing providers, as well
as for researchers working in this area. This data driven approach provides novel op-
portunities to guide the design of electric car sharing system, where the realistic figures
provided by data allow investigating solutions that meet both customer requirements
and limit system costs.

After discussing related work in Section 7.2, I present the methodology I adopted to
collect data and characterise the data-set in Section 7.3. In Section 7.4 I describe the sim-
ulation model, its parameters and metrics of interest. Section 7.5 presents the different
placement heuristics and the algorithms I design to optimise the placement. Section 7.6
discusses the impact of simple charging stations placement policies and return policies,
while Section 7.7 reports the results of the optimisation and their validation. Section 7.8
discusses limitations and future work, before drawing conclusions in Section 7.9.

7.2 Related works
The diffusion of the free-floating approach to car sharing led to increasing attention by
many researchers, with many analyses of these systems and their extension to electric
vehicles. The studies performed in 2011 by Finkorn and Müller [27, 55] are the first
attempts to analyze the benefits of FFCS for the population. Their results on customers’
characterization, like traveled distances and rental duration, are similar to what was
pointed out in previous chapters.

Later works [56, 29, 22] also collected data and analyzed the mobility pattern of
customers and differences among cities. While providing insights on usage patterns,
these works do not discuss the implications on Electric Vehicles based FFCSs. I also
introduced UMAP, described in chapter 2, a system to harvest data by crawling FFCS
websites. Here I use, again, the traces collected with UMAP to drive the system design.

The introduction of EVs for private and public transportation brought the problem
of the design of the electric charging station infrastructure. After a survey among FFCS
customers in Ulm (Germany), authors of [52] investigated the positive influence and
feasibility of an electric FFCS system. Authors in [54] show the benefits of placing
charging stations with different capacity according to the car parking duration. Authors
of [67] presents a simulation study similar to ours but using randommodels to generate
random trips rather than actual traces. Their algorithms tend to place charging stations
along frequently used streets, so to let drivers top up the battery in 10 minutes.

Few data-driven studies address the charging station placement, by respectively
minimizing the cost of installation, power loss and maintenance [48, 49, 51], or by min-
imizing the customers’ walked distances necessary to reach a charging pole [50]. In
[49], authors study the impact on the power distribution grid, with limited focus on
FFCS performance. Authors of [51] instead of focus on charging station design to min-
imize customers’ anxiety. With compared to chapter 6, where I presented a study of
charging station placement based on actual data, while here I build upon this work,
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a more in-depth study that includes global optimization algorithms, never considered
before.

Other works focus on station-based car sharing systems. Authors of [60] present
algorithms to place the parking stations in a two-way scenario. They consider a com-
bustion engine fleet and solve the problem by considering real data from operative car
sharing systems. The same authors propose a similar methodology considering a one-
way scenario and electric vehicles [61]. Here they use synthetic data and other socio-
economic information to estimate the demand. Both works have similar goals but are
limited to station-based car sharing.

Considering return policies, interesting data-driven research is presented in [62].
The authors focus on the station-based car-sharing system with electric vehicles, find-
ing that the best policy is to charge a car only when its state of charge goes below t.a
minimum threshold. This is similar to the return policies I consider in this paper.

Other works focus on FFCS with EVs to study the revenue considering a demand-
supply scenario for energy [68], introducing policies to free charging stations when
occupied by fully charged cars [53], maximizing revenue by moving cars in areas of
high-demand [66], or providing incentives to customers to balance fleet [63, 64, 65].
These works are orthogonal to the one presented in this chapter.

To the best of my knowledge, this work is among the first to take a completely data-
driven approach for designing an electric FFCS system by optimizing different metrics
impacting the customer experience.

7.3 Methodology
In this section, I briefly recall the data collection pipeline and the simulation scenario
adopted in this chapter, which basically replicates what I described in chapter 6.

7.3.1 The dataset
The dataset I use for the following analyses is collected through the software described
in chapter 2. The subset sampling is the same performed in section 6.3. Figure 7.1 recalls
the main features of collected trips. In particular, in Turin, the 95% of rentals covers less
than 10 km, and the 95% of parking lasts less than 12 hours.

Now, I recall the spatial users’ behaviour, widely described in chapters 3, 4 and 5.
Figure 7.2a shows the heatmap of the total number of parkings in each city zone. The
warmer the color is, the more frequently cars are parked here. The hot areas corre-
spond to the city center, which exhibits the highest number of parkings. Customers
rely on car sharing for traveling and moving downtown, a working area full of shops
and restaurants. The zones with more parkings are close to the train stations, where 47
parking events per day are observed on average.

Figure 7.2b shows the heatmap of the average parking time for each zone. Peaks
are on the borders of the operative area, where parking events last more than 24 hours.

76



7.3 – Methodology

.7 1 5 10 20
Rentals Distance [km]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

(a) CDF of travelled distances. X-axis is log-
arithmic.

5 min 20 min 1 h 5 h 12 h 1 d 2 d
Parkings Duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDF of parking durations. X-axis is loga-
rithmic, and limited to 2 days.

Figure 7.1: Characteristics of the trips in our data-set.
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Figure 7.2: Heatmaps showing (a) number of parkings per zone and (b) average parking
time per zone. Warmer areas have larger values.

Few cars reach these peripheries and rest unused for a long time (see also rightmost
part of Fig. 7.1b). The lower values are registered in the downtown, where cars stay
parked only for 85 minutes on average.
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7.4 Simulation scenarios
The goal is to study different design choices for electric car-sharing systems based on
collected data. For this, we developed a flexible event-based simulator that allows us to
compare different algorithms and tune parameters while collecting metrics of interests.

7.4.1 Simulation parameters
Through the simulator widely described in chapter 5, I simulate a fixed fleet of elec-
tric cars. Each car is characterized by its parking location and the current status of
the battery charge. The simulator takes as input the pre-recorded data-set of rentals,
i.e., the trace, characterized by the start and end time, and initial and final geographic
coordinates.

Depending on the return policy, the customer may connect the car to a charging
pole. , namely Free Floating, Needed and Hybrid. The Free Floating policy never obliges
the customer to bring the car far from the desired ending location, even in case the
battery charge is close to exhaustion. Needed mandates to connect cars to a charge
station only if the battery runs low, thus trying to protect from battery exhaustion.
Hybrid mixes the two policies letting customers opportunistically recharge the battery
whenever they park close to a charging station. More information in section 5.4.

Notice that policies similar toNeeded have been introduced in [62], where the system
make the users charge the car considering the battery state of charge, the instantaneous
electricity cost, and the user’s range anxiety.

7.4.2 Key Performances Indicators
I measure the following metrics, defined in section 5.5 that I identify as having an in-
fluence on the customers’ quality of experience:

• InfeasibleTrips%: percentage of infeasible trips due to completely discharged bat-
tery observed during the whole simulation;

• Charges%: percentage of trips where the customer connects the car to a charging
pole, implying the burden to plug the car;

• Reroutings%: percentage of trips where the customers are rerouted to a zone dif-
ferent from their original destination because they are forced to charge the car;

• WalkedDistance: the walked distance from the desired destination.

Infeasible trips are critical, and the system shall be engineered so that they never
happen. Other performance metrics shall be minimized. In addition to the above met-
rics, the simulator collects statistics about car battery charge level and the fraction of
time a battery stays undercharge.
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The key design parameters that I focus on are (i) the number of zones 𝑍 which are
equipped with a charging station; (ii) the locations of charging stations within the city;
(iii) adopted return policies.

I consider the following scenario: the fleet has a constant number of cars equal to
377 (the same as observed in the trace). Electric cars have the same nominal charac-
teristics as the Smart ForTwo Electric Drive, i.e., 17.6 𝑘𝑊ℎ battery, for 135 𝑘𝑚 of range,
with a discharge curve that is proportional to the traveled distance (12.9 𝑘𝑊ℎ/100 𝑘𝑚).1

Charging stations have 4 low power (2 𝑘𝑊) poles each. These are cheap to install and a
good compromise between costs, power requested, and occupied road section. I model
a simple linear charge profile (complete charge in 8 hours and 50 minutes in the case of
study).

7.5 Strategies for charging station placement
The main objective of this work is to assess what is the best charging station placement.
Assuming a total of 𝑍 zones and 𝑁 charging stations, there are (𝑁𝑍) possible placement
solutions, which makes it prohibitive to find the optimal solution exhaustively. For this
reason, I evaluate different approaches. The first one uses domain knowledge acquired
by characterizing the data about current usage to propose heuristics. The second, in-
stead, uses two different data-driven simulation-based optimizers.

7.5.1 Heuristic placements
Recalling the tiling procedure described in chapter 5, I divide Turin into cells, computing
in each cell the likelihood 𝑙𝑧 that measures spatial users’ pattern usage in each zone.
This work takes in consideration the Total number of parking, Average parking time and
Random placement. Definitions and more details in are available in section 5.3. Figure
7.2 quantitative depicts the distribution of those likelihoods.

The first two heuristics are driven by the intuition to place charging stations in those
zones where cars are likely to be parked for a long time or frequently. The latter is
presented as a baseline for comparison. Referring again to Figures 7.2a and 7.2b, the
charging stations will be located in the zones with warmer colors, respectively for the
total number of parkings and average parking time policy.

7.5.2 Simulation based advanced optimisation strategies
Given the complexity of the optimization problem and the humongous space of possible
solutions, I investigate the adoption of meta-heuristics, a class of global optimization

1https://www.smart.com/uk/en/index/smart-electric-drive.html
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algorithms [69]. These algorithms explore the space of possible solutions in smart ways,
looking for better solutions while avoiding getting trapped into local minima.

In this case, the evaluation of a solution requires the simulation of two months of
rentals, which is performed in approximately 5 seconds on a high-end machine. It is
then important to consider that I have limited resources in the choice of meta-heuristics
to consider. The class of optimization problems where the number of solutions (i.e., fit-
ness evaluations) have to be limited as much as possible lies in the so-called expensive-
optimisation [69, 70].

In the literature, there are several architectures and algorithms suitable for global
optimization in tough numerical problems [70], with direct-search class algorithms that
explicitly target expensive-optimisation problems.

In this work, I consider a simple local-search algorithm based on a hill-climb method
and amore complex and powerful genetic algorithm. I explicitly design both algorithms
with the perspective of reducing the number of simulations.

I consider the single-objective case, i.e., algorithms have to minimise a single fitness
function 𝑓 defined as follow:

𝑓 = 𝑀 ⋅ 𝐼 𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑒𝑇 𝑟 𝑖𝑝𝑠% + 𝑊𝑎𝑙𝑘𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

As commonly done in linear programming, 𝑀 is a number big enough to make the
first addend always larger than the second. In this way, InfeasibleTrips% has to be min-
imized first. Secondly, the algorithms start minimizing the WalkedDistance%. In a nut-
shell, the algorithm looks for solutions that make all trips feasible, and only then it tar-
gets the customers’ discomfort, i.e., reducing the walked distance. As he next section
will show, reducing WalkedDistance will naturally help in reducing also Charges% and
Reroutings%. Indeed, in its definition, the walked distance weights both these metrics.

Hill-climbing local search

Hill-climbing methods belong to the family of local search algorithms and are a popular
choice because they are fast, simple to implement, and requires limited computational
resources. They are iterative algorithms that start with an arbitrary solution, then at-
tempt to find a better solution by making incremental changes to the solution. If the
change produces a better solution, it is selected as the current solution. Incremental
changes are then made to the latter until no further improvements can be found. For
non-convex problems, like the one here faced, these methods will find only local op-
tima, from which it would be impossible to escape. Local optima are not necessarily
the globally best possible solution.

This implementation of a hill-climbing algorithm is very similar to the coordinate
descent version [71]. The algorithm starts from the best configuration found among the
three heuristics. At each iteration, the algorithm randomly picks a charging station and
moves it in an empty neighboring zone, i.e., north, south, east, and west adjacent zones.
All other charging stations are left untouched. If there is a direction of improvement,
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it performs a line search along the best direction, i.e., it keeps moving the same station
in the same direction. When no improvement is possible, the algorithm takes another
charging station at random and try to move it as before. When no improvement is
found after a complete cycle of all charging stations, a local minimum is reached, and
the algorithm exits. A Maximum number of visited solutions stop condition is present
too.

In this implementation, I check multiple neighbors in parallel. Moreover, the algo-
rithm keeps the memory of all tested configurations, hence avoiding useless and expen-
sive simulations. In the experiments, on average, the optimization reaches convergence
within 1 500 maximum tested solutions.

Genetic optimiser

Genetic algorithms are a particular class of evolutionary algorithms inspired by the nat-
ural evolution [72]. They are known to work well when dealing with discrete variable
functions, as in this case.

Genetic algorithms start creating a random population of a given number of indi-
viduals. In this case, each individual corresponds to the random placement of charging
stations. A mating pool is created from the initial population, then the offspring is gen-
erated by crossover and mutation operations. Crossover mixes the genes from different
individuals picked at random, i.e., a child is created from the union of the genes of both
parents. To keep the number of genes (i.e., charging stations) constant, random genes
are removed so that at the end, 𝑍 are left. Mutation instead moves a single charging
station in a random empty zone. During crossover operation, some genes may mutate
with low probability (𝑃{𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛} = 0.02 in this case).

The presence of clones is avoided by the algorithm, which discards the copies, thus
encouraging the exploration of the search space and saving precious resources. The
algorithm estimates the quality of each new individual computing the fitness function
𝑓, i.e., by running an entire simulation.

As by natural selection, the best individuals survive to the next generation, while the
worst individuals are suppressed. The optimization loop continues until the maximum
number of generations is reached (200 in this case).

If the diversity of available genes, i.e., the total number of distinct charging stations
in the whole population, decreases too much without improvements, it is triggered
an increase of the population genetic diversity by increasing the mutation probability
(𝑃{𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛} = 0.2 in this case). This randomizes the evolution.

The algorithm is amenably suitable for parallel implementation since the fitness of
each individual belonging to a specific generation can be analyzed separately from the
others. Another advantage of genetic algorithms is the widespread exploration of the
solution space, while local search algorithms tend to explore only a limited portion of
the space.

In the experiments, I set the initial population to 100, with 50 new individuals created
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at each generation by crossover. Most of the optimizations ended within 100 genera-
tions, i.e., 5 000 overall solutions are evaluated through simulation.

7.6 Meta-heuristic optimisation of the charging sta-
tion placement

In section 6.4, I pointed out how Num Parking placement heuristic works better than
the other two. Weighting also charges and rerouting, the Hybrid policy shows better
performances than Needed. For this reason, in this section, I focus on the Hybrid return
policy with charging stations covering less than 15% of the zones. I further optimize
this scenario by running the meta-heuristic placement algorithms and comparing the
results with the Num Parking placement. Optimisation with Needed return policies are
briefly discussed in 7.7, where very similar results are obtained.

The hill-climbing local search, here abbreviated in Local Search, uses Num Parking
placement as initial solution. TheGenetic algorithm creates a totally new solution with-
out exploiting any previous knowledge. Recall that both algorithms are designed to find
the best charging stations placement that guarantees 0 infeasible trips and to minimize
the overall distance the customer has to walk to reach the final destination.
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Figure 7.3: Objective metrics to minimise - with Hybrid return policy.

Figure 7.3 reports the two target metrics, for all the optimised configurations. Firstly,
in figure 7.3a I compare the infeasible trip percentage. Num Parking solution (blue line)
has already good performance, reaching 0 with 4.2% of the equipped zones. The Local
Search (orange line) and the Genetic (green line) algorithms are able to further reduce
the minimum percentage of zone to equip to guarantee no infeasible trips: 3.8% by
the Local Search, and to 3.5% with the Genetic algorithm, 𝑍 = 10 and 𝑍 = 9 zones
respectively.
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Figure 7.4: Genetic and Local Search optimisation results for metrics of interests (Hybrid
return policy adopted).

Figure 7.3b reports the walked distance. Focusing in the feasible region, the Genetic
algorithm confirms the best performance, reducing the distance from more than 200m
to 136m when 4.2% of the zones are equipped with charging stations and reaching just
30m at 13%.

In figure 7.4 I further study the new solutions on other metrics. Figure 7.4a reports
the percentage of trips ending in a charging station. The more charges are performed,
the more time the customer has to spend time plugging/unplugging the car. By mini-
mizing the walked distance, I also reduce this metric since a trip ending with a charge
corresponds to 150m of penalty. Here, the Local Search follows the same trend as the
Num parking with a strong rise. The Genetic algorithm shows much better results,
from 9% to 14% of trips ending with a charge – half of those found with other solutions.
This improvement highlights the better placement of the charging stations. Focus now
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on figure 7.4b, which reports the average state of charge of the car battery. No major
differences are observed here, with all curves almost overlapping up to 7% of the zones.

In a nutshell, the solution found by theGenetic algorithm lets customers chargemuch
less frequently while keeping the average state of charge very similar. Consider next
figure 7.4c, which details the percentage of reroutes. It is possible to see how the trend
is the opposite with respect to the previous ones. Here, the Genetic optimised solution
show a little higher re-routing percentage than the Num parking. In particular, the
Genetic algorithm reaches 1.3% of reroutes, while Num parking decreases down to 0.2%
of reroutes. Indeed, theGenetic algorithm places charging stations not only where most
rentals end, but also so to decrease the customers’ average walked distance, i.e., in those
places where likely cars are not so frequently parked but that can be quickly reached
in case of rerouting. To understand the importance of this difference, in figure 7.4d I
evaluate the walking distance a customer has to walk because she suffered a reroute.
The Genetic algorithm is able to push the walked distance below 1 km, while the Local
Search generates marginal improvements. In a nutshell, despite customers are rerouted
more frequently, on average, they walk for a shorter, and more bearable, distance.

In conclusion, a smart placement of the charging stations is better under different
perspectives. The Genetic solution, tailored on the data of the usage behaviour, allows
us to improve both the system performance, and customers’ discomfort, in particular by
greatly reducing the number of times they have to charge, and the distance they have
to walk.

7.6.1 Charging station placement visualisation
+
−

Leaflet (http://leafletjs.com)(a) Number of Parkings.

+
−

Leaflet (http://leafletjs.com)(b) Local Search.

+
−

Leaflet (http://leafletjs.com)

(c) Genetic algorithm.

Figure 7.5: Different placement of 18 zones (7% of the total) for (a) Number of parkings
per zone, (b) Local Search and (c) Genetic solution. Darker areas have larger values.

To give a feeling about the differences in the solutions found by different algorithms,
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Figure 7.6: Performance of the optimised configuration, tested on other 2 months long
data-sets.

figure 7.5 reports the solutions obtained with 7% of the zones equipped with charging
stations (i.e., 𝑍 = 18 zones).

Num parking solution, figure 7.5a, places most of the charging stations in downtown
area and near the main train stations. Local Search, figure 7.5b, still has many zones in
common with Num parking, the solution it started from. It just spreads some charging
station to cover also some remote zones. The Genetic algorithm, figure 7.5c, shows very
few zones in common with Num parking. Charging stations are spread all over the city,
still with more density in the city centre.

7.6.2 Validation of optimised configurations
The optimised solutions presented in the previous section are built through data-driven
simulations. Hence they might over-fit the data of the specific considered period and
not be robust to customers’ habit changes. To validate those findings, I test the output
placement configurations by using independent test traces, different from the one used
to run the optimisation. I rely on two traces collected in Turin in two different periods
of the year: one in summer, from June to July 2017; the other in winter, from December
2017 to January 2018. I focus on these two periods since in summer and near Christ-
mas holidays the users may exhibit different habits (e.g., customers may rent the cars
to go to parks and swimming pools during summer). These anomalies may represent a
challenge for the optimised configurations. In the summer trace I record about 100 000
rentals, while in the winter one 128 000 rentals (respectively 8% less and 3% more with
respect to the September/October trace). I compute the best station placement consid-
ering the September and October 2017 trace, and test system performance using the
summer and winter traces.

Figure 7.6 compares results. I consider both Local Search and Genetic algorithms.
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In almost all cases, differences are negligible, showing that the solution is robust. For
example, for 13% of zones and considering Genetic algorithm, the walked distance on
the tests are just 2m above those in the trace used for optimisation. Notice how in
June and July the Local Search behaves worse than other cases: this is possibly due to
the different mobility patterns in summer, while the Local Search solution could still be
too related to the number of parkings in September-October. On the other hand, the
solution found by the global genetic algorithm is robust.

7.7 Placement optimisation for Needed return policy
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(b) Walked distance, averaged over all trips.

Figure 7.7: Objective metrics to minimise in the optimisation - with Needed return pol-
icy

Here I briefly report the results for the optimisation experiments of the Needed pol-
icy. I followed the same procedure explained in Sec. 7.6 for the Hybrid return policy. As
in that case, the genetic algorithm is able to largely optimise the solution, as reported
in figure 7.7, with local searches stuck in local minima. In particular, for the walked
distance (figure 7.7b), the genetic algorithm is able lower it from 136m to 45m at 13%
of zones. Still, it doesn’t reach the performance of the Hybrid policy, i.e., 30m at 13% of
zones.

Figure 7.8 reports the other user discomfort metrics. The two optimisation algo-
rithms reduce the charge events (Fig 7.8a). Since the car are recharged less frequently
with respect to the Hybrid policy it is interesting to evaluate the impact on the Average
Stage of Charge. figure 7.8b reports this metric for the different placement algorithms.
As we expected, the Average Stage of Charge is lower with respect to the Hybrid pol-
icy. Interestingly, for both optimized solutions this value saturate almost immediately
at 55% in the feasible region. However, the average state of charge (figure 7.8b) is al-
ways higher in the optimised solutions than in the Num parking configuration. This
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(d) Walked distance when rerouted.

Figure 7.8: Genetic and local search optimization results for metrics of interests (Needed
return policy adopted).

further demonstrates that a smarter placement allows the car to get more energy for
each charge. Figure 7.8c reports the re-routing percentage for the different algorithms.
As expected, the values are larger than with the Hybrid policy, since no opportunistic
charge is performed. This different is particularly evident when a few charging sta-
tions are present e.g., with 5% of charging stations the rerouting are 14% for the Num
parking heuristic, 14% for the Local search, and 6% for the Genetic algorithm. However,
the genetic algorithm is able to quickly reach a small value of re-routings, hence better
exploiting every charge possibility. Finally, I analyse the distance a user has to walk
when rerouted (Figure 7.8d). Here, with respect to the Hybrid policy case, the local
search shows larger deviations from the Num parking. The genetic algorithm reaches
values of about 800m, even below the ones reached with the Hybrid policy.

In conclusion, within this range of zones equipped with charging stations, a smart
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placement with the Needed policy approaches the Hybrid policy results.

7.8 Discussion and Implication
The mobility model I use for optimising the placement of charging station reflects cus-
tomers habits. However, there are other aspects of car sharing system design that one
could consider. In the following, I briefly discuss two of them.

7.8.1 Scalability
All the analyses I performed heavily rely on the events trace derived real rentals in the
analysed city. By using this data I use simulations to study placement solutions which
cope with the current amount of traffic and usage of the FFCS.While in a short term this
solution is optimal, there is no guarantee whether it will be valid in the future in case
of a strong increase in the car sharing usage, e.g., when popularity increases by orders
of magnitude. To tackle this problem, it is possible to still leverage rental data to infer
a model about car sharing usage patterns in time and space, where the demand can be
easily controlled by increasing the frequency of rentals. This model can then be used
to create synthetic traces with an increasing car sharing demand, and use simulations
to assess overall system performance. As such, the methodology I designed is generic
and could be used to study different What-If cases.

Directly linked to the scalability problem, another important aspect is the possibility
to add new charging stations when car sharing demand changes. By analysing the
data collected, this methodology can be used to consider the greedy placement of new
charging stations on the top of those already present.

7.8.2 Economical Aspects
Economical aspects play too a key role in the placement decision process. In this work, I
decided to study only the feasibility of the EV based FFCS system design by considering
as few charging stations as possible, leaving for a next step the detailed cost estimation.
The cost of the infrastructure creation and management can largely vary depending
on different variables such as country, city, incentives. Related to this first class of
costs, authors in [73] give a first estimation of installation cost, which can be of up to
5 500 USD per pole in the USA. While analysing these costs and developing a business
plan, it is also important to evaluate which parties could be interested on running a
business around it, e.g., either the municipality or a third party company could offer the
infrastructure as a service to FFCS providers and other customers with electric vehicles.

The second group of variables consider the earnings models and the variable costs
of the FFCS provider, like energy and cars. This kind of data requires a careful analysis
to get a reliable estimation. Authors in [66] suppose a marginal profit of 75% of the fare
considering a FFCS provider in the city of Vancouver. However, to correctly estimate
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the net profit several aspects need to be considered, such as the fee per minute, the
actual duration of the rental costs and incentives for reroutes.

7.9 Conclusions
Designing an electric free floating car sharing systems leads to many interesting prob-
lems and trade-off between usability, costs and benefits for the customers. In this work,
I built on actual rental traces to study via accurate simulations the impact of different
charging stations placement and charging policies. I selected Turin as a case study and
using 2 months of rentals recorded from a currently operational FFCS that I use to run
trace driven simulations.

I have shown that few charging stations are enough tomake the system self-sustainable.
Important is the customers collaborations, so that they voluntarily returns to the cars to
charging stations when available This data driven results show that just 5% of the city
zones that are equipped with charging stations (13 in total, 52 poles) make all trips fea-
sible with an electric car fleet. Moreover, through a charging station placement based
on a genetic optimisation algorithm, it is possible to minimise the discomfort for the
customers that would be (rarely) asked to bring the car for charging. For example, with
18 charging stations (72 poles in total), on average a customer would walk only 40m to
reach its desired destination. While these numbers will change in different cities, the
data driven approach I propose naturally fits the global optimisation algorithm that is
able to optimise placement while considering complex customers habits.

I leave for future work the simulations of scenarios with new technologies, such as
deployment of faster charging poles and larger batteries, and the scalability in terms of
number of customers and fleet size.
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Chapter 8

FFCS Usage Prediction with
Open Socio-Demographic Data

This work is mainly extracted from my paper On Car-Sharing Usage Prediction with
Open Socio-Demographic Data, published on the journal Electronics on January 2020
([74]). The entire work was carried in collaboration with the Universidade Federal do
Minas Gerais, Belo Horizonte, Brazil. My contribution are mainly related data collec-
tion, data augmenting and spatial analyses in sections 8.3, 8.4 and 8.6.

8.1 Introduction
Transportation in urban areas is among the top challenges to improve people’s qual-
ity of life and to reduce pollution. Historically, private vehicles have been the preferred
mode of transportation. Orthogonally, governments invest in public transportation sys-
tems to offer alternatives to reduce traffic and pollution. With the rise of the sharing
economy, we are now witnessing a transition towards new forms of shared mobility,
which have spurred the interest of both the research community and the private com-
panies.

Car sharing is an evolution of the classic car rental model. Here, users can rent cars
on-demand for a short period, e.g., a twenty-minute trip across town. In particular,
Free Floating Car Sharing (FFCS) services allow customers to rent and return the cars
everywhere inside a operative area in a city. Customers book, unlock and return the
car by using an application on their smartphones. One such service is Car2go 1, which
currently operates in several cities around the world. In the FFCS implementation, of
which Car2go is an example, the provider bills the user only for the time spent driving,
with simple minute-based fares which factors all costs. Some studies demonstrate that

1https://www.car2go.com/
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a massive adoption of car sharing service can improve mobility as well as reduce costs
and pollution [75, 27, 55].

To properly design andmanage a FFCS service, a provider needs to know the demand
for cars over different periods of the day, and over the different areas of the city. The
prediction of FFCS demand patterns is thus fundamental for an adequate provisioning of
the service. Armedwith good predictions, the provider can better plan long term system
management, e.g., whether to extend the operative area to those neighborhoods with
expected customer growth. Similarly, it can implement short term dynamic relocation
policies to better meet the demand in the next hours [76, 43, 46].

In this work we investigate the usage dynamics of a real FFCS service. We aim at
assessing how state-of-the-art machine learning algorithms can help FFCS providers
and policy makers in predicting the demand, both over time and across different spatial
regions. More specifically, we leverage a dataset of real rides from cities where Car2go
is offering its FFCS service. We consider as a case study the city of Vancouver, Canada,
the city with the highest demand for cars in our dataset. We rely on more than 1 million
rentals covering 9 months in 2017 [17]. We augment the dataset by exploiting a rich and
heterogeneous open dataset, namely the 2016 Vancouver Municipality census.2 This
second dataset comprises more than 800 features, which detail very diverse information
about shops in each neighborhood, weather conditions, residents, rate of emergency
calls throughout the day, etc. The goal is to first assess to which extent it is possible to
predict the FFCS demand over time and space, and second, which of the features have
a higher prediction power.

The work focuses on two scenarios. In the first scenario, we investigate how to pre-
dict the demand for cars in the future considering past usage. This is fundamental for
managing the FFCS fleet both in the short term (e.g., implementing relocation policies
during service peak time), and in the long-term (e.g., to properly match the fleet size
to the future system growth). To this end, we analyse machine learning algorithms
that are considered state of art, from simple Linear Regression and traditional Seasonal
Auto Regressive Integrated Moving Average (SARIMA) models, to Random Forests Re-
gression (RFR), Support Vector Regression (SVR) and latest approaches based on Long
Short-Term Memory Neural Network (NN) [77, 78]. With the increasing complexity of
these models, we aim at assessing not only how they perform in our target prediction
task, but also to which extent one would need to embrace a complexmodel (such as NNs
are) or rather simpler and more informative models (like linear regression and RFR are).

In the second scenario, I correlate socio-demographic indicators with FFCS demand.
I predict the demand of cars in a neighborhood without past data, using only socio-
demographic data. This problem is often referred to as a green field or cold start ap-
proach. In this case, the operator is interested in knowing what is the expected system
usage in a new neighborhood (or even a new city) based only on socio-demographic

2https://opendata.vancouver.ca/pages/home/
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data. We map the FFCS demand to Vancouver neighborhoods, and associate them to
the socio-demographic data coming from the official Vancouver census. I then use ma-
chine learning techniques to highlight the relationship between demographics and cus-
tomers’ mobility.

We aim at answering the following research questions: i) Using modern machine
learning methodologies, and armed with a rich socio-demographic data, would one be
able to predict the temporal mobility patterns in a city? And ii) which would be the
most important socio-demographic data to use for this task?

Through a series of experiments, we show that the temporal prediction of rentals
can be solved with errors as low as 10%. Interestingly, Random Forest Regression turns
out to perform stably better than the other models, including Neural Networks, for this
task. When considering the mobility prediction using only socio-demographic data,
we obtain errors in the 40-50% range. While this performance may not be accurate
enough for a precise planning, this prediction still would be useful for operators will-
ing to decide, e.g., to which new areas of the city to extend their service. Interestingly,
our models allow us also to observe what features are the most useful for the predic-
tion problem, a precious information for providers and regulators that wish understand
FFCS systems – to decide, for instance, in which new cities to start a service (green field
problem). This work suggests, for example, that the density of people commuting by
walk and the number of emergency calls in a neighborhood are important factors for
predicting the number of rentals that will start there. We note that emergency calls are
used as a proxy for human activity, i.e., the more human activity the larger the number
of emergency calls. Given this assumption, we can leverage the information about the
volume of emergency calls to improve prediction at different time of the day. AS for the
temporal prediction, knowing the weather conditions in the near future would improve
prediction too.

After overviewing the related work in Section 8.2, we describe the data collection
methodology we adopt in Section 8.3. Section 8.4 provides a characterization of the
datasets, while Section 8.5 and Section 8.6 provide details about the methodologies and
results for the temporal and spatial prediction, respectively. Finally, Section 8.7 sum-
marizes our findings.

8.2 Related work
With the easiness of collecting data and the ability to build and train off-the-shelf ma-
chine learning solutions, researchers have started applying data driven approaches in
the context of transportation. Previous work [79] addressed traffic modelling and pre-
diction with real traffic data, and proposes strategies to improve congestion prediction
using Kalman filters, showing how traffic is stationary in time. Other studies [80] pro-
posed new approaches, based on amultivariate extension of non-parametric regression,
to predict traffic patterns, with the goal of counteracting traffic congestion. While simi-
lar in spirit, this work focuses on FFCS services explicitly, and uses amuch richer dataset
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as well as more advanced machine learning algorithms.
Focusing on car sharing, early work focused on estimating demand using activity-

based micro-simulation to model how agents move around in a city [25]. Later on, as
data from operative car sharing platforms became available, researchers started using
real data to analyze mobility demand. For instance, previous work [81, 27] proposed
a demand model to forecast the modal split of the urban transport demand. Similarly,
other studies [24] investigated the Mobility-as-a-Service market, where FFCS is one of
the implementations, and pointed out how FFCS supply can push the users to avoid
purchasing a new car, which would lead to a reduction of 𝐶𝑂2 emission. Yet, none of
these prior studies focused on car sharing demand prediction.

Along the same lines, other studies [35]made a large survey covering a Swiss station-
based car sharing service. The results confirmed that FFCS is preferred as a fast alter-
native to public transportation and the subscription depends on the car sharing imple-
mentation (business model). Previous work [76] also proposed a simple binary logistic
model for predicting car sharing subscribers in Switzerland, considering the relation-
ship between potential membership and service availability. This relationship was then
used to identify areas with unmet demand, that is, areas where new car sharing stations
could be placed.

Other studies [82, 22] conducted a detailed characterization of a car sharing system
in Munich and Berlin. Similarly to this work, they identified features correlated with
the demand for shared cars in the target cities. However, this work differs from their in
the sense that we here analyze a much larger set of features, including demographics
and economic data, and consider multiple prediction models. We focus on demand
prediction, facing both time and space dimensions, and provide a thorough comparison
and guidelines for future directions.

In this previous work [31], we analyzed in depth the usage of different car sharing
systems in Vancouver. Based on this data, we developed a model of FFCS usage and
built a simulator to design new systems based on electric vehicles [43]. In particular, we
tackled the charging station placement problem, showing that the optimal placement
requires few stations to satisfy charging requests in different cities [46].

To the best of our knowledge, we are the first to face the demand prediction problem
in Free Floating Car Sharing Systems tackling both the temporal and spatial prediction
with a real world heterogeneous dataset. The demand prediction problem (or its varia-
tions) has been tackled in other domains [83, 84], we here focus on multiple prediction
tasks (long-term, short-term) accross different aspects (temporal and spatial) on the car
sharing domain.

Furthermore, while previous work [85] focused on the temporal prediction of car
sharing demand in a very short-term basis (demand prediction in the next fewminutes),
in this work we focus on the problem at different time scales. We also compare several
prediction strategies and analyze how the temporal prediction problem relates to the
spatial prediction one. Moreover, we are the first to use a very heterogeneous dataset
including dozens of features to tackle the prediction problems. This allows us to provide
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insights on which of those features are the most important ones to solve the prediction
problems as well as to have a broader perspective on the challenges involved in car
sharing prediction.

8.3 Data gathering methodology

8.3.1 FFCS data collection and Socio-demographic, weather and
other open data

In this work we used real car2go users’ data, a popular FFCS system that offers its
services in more than 25 cities and 3.6 million customers in 2019. A detailed description
of data collection is reported in chapter 2. In particular we focused our considerations
in Vancouver. A deep characterization is depicted chapter 4, but some brief key points
are reported later in this chapter.

In addition to information about rentals in the city of Vancouver, we also use socio-
demographic data as input to car usage prediction algorithms. Specifically, we consider
the Vancouver census open data, which divides the city in 22 official neighborhoods3.
This work uses this same spatial division. For each neighborhood, the census dataset
provides detailed socio-demographic information such as number of residents in a given
age range, their income, household compositions, and commuting habits. The cen-
sus also reports information about services that are located in the neighborhoods, e.g.,
shops, bus stops, and parking places. In total, the census presents more than 800 socio-
demographic and other spatial features. Among those, wemanually selected 83 features
that might be related to humanmobility.4 In addition, we also consider i) the distance to
downtown – computed as the distance from the neighborhood to the downtown neigh-
borhood (considered as the central area);5 ii) an indicator of human activity, measured
by the number of emergency calls per time bin (obtained from the Vancouver census);
and iii) the hourly weather for Vancouver – as directly available from the OpenWeather
project.6 For each of the 22 neighborhoods, we normalize each numerical feature by the
area of the neighborhood. Our goal is to include a superset of features possibly corre-
lated with human mobility and thus car rental prediction, so as to provide the machine
learning algorithms with an input dataset as rich and diverse as possible to learn from.

3https://opendata.vancouver.ca/pages/home/
4The list of features is available at https://opendata.vancouver.ca/pages/

census-local-area-profiles-2016-attributes/
5We use the neighborhoods central points for distance computation.
6https://openweathermap.org/history-bulk
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8.4 Dataset overview
In this section I first provide an overview of the data at our disposal offering insights
into the diversity and heterogeneity present both in the temporal and spatial FFCS usage
patterns as well as in the socio-demographic data.

8.4.1 FFCS temporal characterization
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Figure 8.1: Time series of starting rentals in September 2017 aggregated per hour. The
difference in the total number of time bins and the actual number of hours in the month
are due to missing data (crawler failures).

I start by showing the temporal evolution of rentals over time. Figure 8.1 shows the
total number of starting rentals per hour in the whole city during part of September
2017. Even if it is possible to spot some periodicity, there is a lot of variability that
makes the prediction problem not straightforward. For the analyses, from now on we
aggregate rentals both in time and in space. Specifically, given a neighborhood we con-
sider the fraction of rentals starting and ending there. We aggregate the time series of
rentals into 7 time bins per each day, namely from midnight to 6am (night period), and
then every 3 hours. This time granularity is typically used for system design and con-
trol [86]. The rationale is to provide the FFCS company that actionable information on
the demand for cars, e.g., to schedule car maintenance or implement relocation policies.
A one-hour period is often too short for the company to be able to respond to changes
in demand.

To give more details about the variability of the data, figure 8.2a shows boxplots of
the numbers of rentals starting in each time bin. Each boxplot represents the quartiles
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(a) Boxplots of number of rentals starting in each time bin
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(b) Boxplots of number of rentals starting in each day of the
week

Figure 8.2: Temporal characterization of number of rentals. Boxplots highlighting the
variability over the day for the same time bin of the day (top plots), and over different
days (bottom plots).

of the distribution, with outliers shown as points.7 The series shows large variability,
with peaks during early mornings (6am-9am) and afternoon (3pm-6pm and 6pm-9pm),

7We consider as outliers measures that are outside the mean ± 2.698 times the standard deviation
range.
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and with low values during nighttime (12am-6am). Figure 8.2b shows boxplots of the
total number of rentals grouped per day of the week. The number of rentals peaks on
Fridays, with significantly lower values registered on Sundays and Mondays. Again,
we observe a quite sizeable variability over the days, as observed by in the sizes of
the boxplots. Such variability in the number of rentals hints at the fact that prediction
models have to be able to deal with sizeable temporal variations in the demand for cars.

8.4.2 FFCS spatial characterization
I now provide an insight how these numbers vary across different areas of the city.
Rather than providing a complete characterization of the origin/destinationmatrix (which
is outside the scope of this work), I here focus on particular examples to showcase the
spatial variability in the demand for cars. I focus on the morning and afternoon peak
time bins (6am-9am and 6pm-9pm). For each neighborhood I compute the net flow
defined as the difference between the number of rentals starting from that neighbor-
hood, and the number of rentals arriving at that neighborhood during the specified
time period. I consider the cumulative net flow in September 2017. Figure 8.3 depicts
the results with a heat map. Darker red neighborhoods mean that arrivals exceed de-
partures, i.e., the neighborhood is attracting vehicles. Conversely, lighter colors imply
that more vehicles are departing from that neighborhood than arriving in it. Numbers
identify different neighborhoods. The downtown business area (number 3) attracts a
lot of rides in the morning period (figure 8.3a), while the opposite pattern is seen dur-
ing the afternoon period (figure 8.3b). In general, it is possible to assert that the FFCS
demand is higher in the peak hours, and the cars flow towards downtown in the morn-
ing and towards residential areas in the afternoon. This is clearly visible in figure 8.4
which reports the net flow for two neighborhoods for each hour of the day, namely
the downtown neighborhood (number 3), and the Grandview-Woodland (number 21)
neighborhood, a residential area close to downtown.

8.4.3 Socio-demographic and weather data characterisation
I now provide some examples of the socio-demographic and open data. Figure 8.5 re-
ports the weather condition during the month of September 2017. Being it a categorical
variable, I assign to each weather condition a different value on the y-axis. As expected,
the weather conditions change over time quite frequently. Moreover, no visible corre-
lation is found when comparing the weather conditions with the number of rentals in
figure 8.1.

Similarly, figures 8.6a and 8.6b show the number of high-income households and the
number of emergency calls per day for each neighborhood, respectively. Also in this
case, it is hard to see any clear correlation with the net flow per neighborhood reported
in figures 8.3. The scenario is similar considering other socio-demographic features.

Despite the non-linear correlations between the socio-demographic data and rentals,
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(a) 6am - 9am rental net flow
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Figure 8.3: Heatmap of net flow for each neighborhood in Vancouver. The more the
area is red, the higher are the arrivals with respect to the departures. Neighborhood
numbering is shown (from 0 to 21)
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Figure 8.4: Total net flow in September 2017 for Downtown (neighborhood 3) and
Grandview-Woodland (neighborhood 21) over different hours of the day

it is possible that the combination of multiple features help the prediction of car rentals,
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as we will discuss in the next sections. This is exactly what the machine learning al-
gorithms aim at, i.e., building a model from data, leveraging correlation from multiple
variables that, considered together, carry enough information to predict system usage.
Thus, we let the machine learning model decide if and how to factor different features
in the prediction model.
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Figure 8.5: Time series of weather conditions per hour during September 2017. Each
point in the plot represents an occurred weather type.

8.5 Temporal predictions of rentals
In this section, we describe the task of predicting the number of rentals in the whole
city at a given time in the future. Eventually, the same methodology could be applied
for each neighborhood. This prediction can exploit historical data, i.e., given the time
series of rentals in the past, predict the number of rentals in the future. If only the
past time series are used, the problem falls in the univariate regression class, i.e., the
prediction is based only on past data of the same target variable. Let 𝑥(𝑡) be the target
variable, i.e., the number of rentals at time 𝑡. In the case of prediction with historical
data, we predict

𝑥(𝑡 + 𝑗) = 𝑓 (𝑥(𝑡), 𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑘)), 𝑗 > 0, (8.1)

as a function 𝑓 () of the past 𝑘 + 1 data points of 𝑥 itself. 𝑗 is the horizon of the
prediction.

if other information are present, it possible to predicict a more generic model to
consider the dependence to other variables The goal is to predict

𝑥(𝑡 + 𝑗) = 𝑔(𝑦1, 𝑦2,… , 𝑦𝑙), 𝑗 > 0, (8.2)

where {𝑦𝑖} are different variables – possibly other time series themselves (including
𝑥) – and 𝑔 is themodel that allows to predict 𝑥 at time 𝑡+𝑗. This problem is a multivariate
regression problem, where multiple features are used to predict the target variable 𝑥.
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Figure 8.6: Heatmap of a sample of demographic (top) and socio-demographic (bottom)
data at our disposals. These two samples look quite correlated.

Considering the time horizon of the prediction, it is possible to formulate two ver-
sions of the problem: predict the long-term or short-term usage. In the first case, we
build and train a single model using all available data to predict the system usage in
the next months. In the short-term version, we target the prediction of the next time
bin 𝑡 + 1 only, i.e., 𝑗 = 1. In this second case, we build and update a new model at each
time bin by adding the latest recorded number of rentals to the training set as soon as
it becomes available.

Both predictions are important for the car sharing provider. For instance, the long-
term predictions are important for the company to know if their fleet size is enough
to keep up with the expected demand. The short-term is important for the company
to know when to take a car down for maintenance, or when and where cars should be
eventually relocated to those neighborhoods where the demand is expected to increase
shortly. While for long-term prediction we use the time series of the rentals and infor-
mation about day of the week and hour of the day, for short prediction we can use also
the near future weather condition information.

This work, we consider discrete time, i.e., we split time into fixed size time intervals
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as defined in the aggregation step – see Section 8.4. We then build and train several ma-
chine learning models to tackle each aforementioned problem. The goal is to compare
algorithms in terms of accuracy of the prediction and complexity of the model. At last,
we are also interested in considering models that are interpretable, i.e., that allow us to
understand which are the most important features that affect car sharing usage in large
cities. We evaluate all models considering three metrics: APE (absolute percentage er-
ror), MAPE (mean absolute percentage error), and RMSE (root mean square error) over
the validation set. The APE is defined as

𝐴𝑃𝐸 = 100∑
𝑡𝑖∈𝑉

∣ 𝑥(𝑡𝑖) − 𝑥̂(𝑡𝑖) ∣
𝑥(𝑡𝑖)

, (8.3)

where 𝑉 is the validation set, 𝑥(𝑡𝑖) is the actual value of the data at moment 𝑡𝑖 and 𝑥̂(𝑡𝑖)
is the predicted value. The MAPE is then given by

𝑀𝐴𝑃𝐸 = 1
|𝑉 |

× 𝐴𝑃𝐸. (8.4)

And the RMSE is defined as

𝑅𝑀𝑆𝐸 =
√

1
|𝑉 |

∑
𝑡𝑖∈𝑉

(𝑥(𝑡𝑖) − 𝑥̂(𝑡𝑖))
2
. (8.5)

8.5.1 Prediction models
We use off-the-shelf machine learning models both for the long-term and short-term
scenarios. We evaluate univariate models: a simple baseline (BL) approach, the au-
toregressive moving average (ARIMA) and the seasonal autoregressive moving average
(SARIMA) algorithms. Univariatemodels do not account for the influence of other time-
variant factors such as weather conditions, time of day, number of emergency calls, etc.
To account for that, we also investigate the performance of linear regression, random
forests Regression (RFR), Support Vector Regression (SVR), and long-term short-term
memory neural networks (NN).

We add categorical features (the day of the week and weather, for instance) to these
algorithms in order to improve on the univariatemodels. Following correct practices [87],
we represent each categorical feature as many binary variables, one for each category.
For example, when representing a given weather type, the corresponding binary vari-
able will be set to 𝑇 𝑟𝑢𝑒 while all the other weather-related variables to 𝐹𝑎𝑙𝑠𝑒. We used
the algorithms implementation in Python libraries scikit-learn8 [88] and Keras9.
For details about each model, we refer the reader to [78]. In this implementations, we

8https://scikit-learn.org/
9https://keras.io/
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started with the library’s default hyperparameters and conducted a grid search in order
to find a set of such parameters that worked well with the described models. We report
the range of the grid search along with the description of the models below.

Baseline. A simple approach to determine 𝑥(𝑡 +𝑗) in a time bin is to take the average
number of rentals in the same time bins in the available past days. We compare all the
prediction models to this baseline.

ARIMA. ARIMA (autoregressive integrated moving average) is widely used to pre-
dict time series data. ARIMA models are a combination of autoregressive models with
moving average models. The creation of an ARIMA model involves specifying three
parameters (𝑝, 𝑑, 𝑞). The 𝑑 parameter measures how many times we have to differenti-
ate the data to obtain stationary data. After determining 𝑑, we use sample partial auto
correlation function to get the value 𝑝. Finally, we determine the order 𝑞 by looking
at the sample auto correlation function of the differentiated data. For simplicity, we
restricted the grid search to find the best parameters values to the range [0, 3]. The
combination that gave the best results is (𝑝, 𝑑, 𝑞) = (2, 0, 1).

SARIMA. A SARIMA model incorporates the seasonality (periodicity) of the data
into an ARIMA model, enhancing its predictive power. For instance, when modeling a
time series, it is often the case that the data has a daily, weekly, or monthly periodicity.
We used previous ARIMA model with an additional explicit daily seasonal component
(𝑝 = 7 as the number of time bins in a day in this case).

Linear Regression. We fit a linear model, by finding the coefficients that multiply
each feature.

SVR. In the experiments, we use a Support Vector Regression (SVR) model with
the following combination of parameters, which produced the best results among the
values we tested: 𝐶 = 1000, 𝛾 = 0.1, and 𝜖 = 0.1, with the RBF kernel. The values
for the parameters 𝛾 = 0.1, and 𝜖 = 0.1 were evaluated in the range [0, 1], and for the
𝐶 parameter we considered the range [1, 10000], using exponential steps. The value
1000 was chosen once it provided a reasonable balance between model performance
and generality.

RFR. Random Forest Regression is an ensemble learningmethod that can be used for
regression. The decision is based on the outcome of many decision trees, each of which
is built with a random subset of the features. One advantage of random forests over
linear regression is that the forest model is able to capture the non-linearity. Another
advantage of RFR is that they are interpretable models, i.e. they offer a ranking of the
most important features for the prediction problem. Here, we use 50 decision trees10.
In this model, we used the default library parameters, but we evaluated it with different
numbers of trees, for which the results are shown in the next sections.

Neural Networks. We also consider a Long Short-Term Memory (LSTM) Neural

10Here, interpretable refers to the fact that it is possible to understand the decision taken by the classi-
fication model. However, interpretability has not to be confused with explainability, which refers to the
motivations of the decision. The latter is only possibly via domain knowledge.
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Network model. LSTMs have a memory that helps capturing past trends in the data,
which may favor the prediction task. We experimented with several different architec-
tures. The best results were obtained with a three layer architecture where the input
layer has 64 neurons (one for each feature), the dense layer has 4 neurons, and the out-
put layer has one neuron. We tested different configurations for the architecture: the
number of neurons was varied in the range [4, 128] for the first layer, and in the range
[4, 32] for the second layer. Because of the nature of the task (regression and not classi-
fication), the number of neurons in the third layer was set to one. In the experiments, to
balance prediction accuracy and training time, the model was trained for 50 epochs. As
we will see, increasing the number of epochs to more than 50 has no significant effect
(less than 1% reduction in the MAPE, on average) on the performance of the model.

8.5.2 Long-term predictions - Results
Here we predict the FFCS demand for cars in the future months given a model built
on the previous months. We use in the experiments the nine months of 2017 of car
sharing usage of Vancouver. Given the volume of rentals in the training period, we try
to predict the number of rentals in the validation period. For that, we use a model that is
trained once and then used to perform all the predictions in the validation period. The
training set consists in the volume of rentals for the first six months, and the validation
data consists of volume of rentals for the next three months.

Table 8.1 shows the average mean absolute percentage error (MAPE), the standard
deviation of the APE, and the RMSE for each of the prediction models. The models that
rely only on the time series (ARIMA and SARIMA) are able to capture some patterns
in the data, as their performance is considerably better than the baseline. However, the
multivariate models perform better, with Random Forest Regression reaching the best
performances. In figure 8.7 we show the comparison between the actual values and
the prediction in one month of the validation set using the Random Forest Regression
model (orange dashed line). Overall the model is able to predict quite well the daily and
weekly periodicity of rentals, but in general slightly underestimates the actual num-
ber of rentals. This could be due to the fact the training period refers to the first six
months of the year, during which the average number of rentals is lower than during
the validation period in fall.

8.5.3 Short-term predictions - Results
We now tackle the problem of predicting the demand of cars in a city in the next time
bin. Differently from the long-term predictions we use adaptive models, hence the
model is re-trained every time new data is made available, so then we can add it to the
training set. We here focus on the following prediction task: given the volume of rentals
per time bin period for a specific number of past days and the weather conditions,
predict the number of rentals in the next time bin period.
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Prediction Model MAPE [%] 𝜎(APE) [%] RMSE

Baseline 40.05 44.95 321.32
ARIMA 25.53 19.68 238.87
SARIMA 21.15 21.74 159.17

Linear Regression 15.80 15.61 178.57
Support Vector Regression 15.12 16.14 179.99
Random Forest Regression 14.63 11.62 157.40

Neural Networks 15.83 16.60 187.08

Table 8.1: Long-term temporal prediction - Mean Absolute Percentage Error (MAPE),
Standard Deviation of the Absolute Percentage Error (APE) and RootMean Square Error
(RMSE) for each prediction model in the validation set.
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Figure 8.7: Long-term temporal prediction - Performance of the RFR model in one
month of the validation set. The difference in the total number of time bins and the
actual number of hours in the month are due to missing data (crawler failures).

We study this prediction task using two approaches: expanding window and sliding
window. In the expanding window approach, after making the first prediction, we add
the actual value to the training set, therefore increasing the amount of data available
for training in the next step. To train the models, we first set aside 24 days of data for
validation, and start with 28 days of training data. In the sliding window approach, after
making the predictionwe remove the oldest training data and add the actual value to the
training set. Therefore, the training set size is always the same during the evaluation
of the models. To train the models, we consider different sliding windows sizes (from
7 to 28 days), and validate on the same validation set of 24 days as with the expanding
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window.

Expanding Window (starting: 28 days)

Prediction Model MAPE [%] 𝜎(APE) [%] RMSE

Baseline 20.12 16.64 195.53
ARIMA 36.01 35.87 306.80

SARIMA 17.60 20.01 160.42
Linear Regression 18.28 20.38 179.11

Support Vector Regression 12.22 15.62 128.72
Random Forests Regression 9.71 8.34 104.99

Neural Networks 10.52 12.93 128.84

Sliding Window (starting: 28 days)

Prediction Model MAPE [%] 𝜎(APE) [%] RMSE

Baseline 20.12 16.64 195.53
ARIMA 36.52 36.60 305.50

SARIMA 18.02 21.75 163.94
Linear Regression 18.11 20.55 178.61

Support Vector Regression 12.87 18.52 136.14
Random Forests Regression 10.08 12.23 109.47

Neural Networks 10.52 12.74 123.55

Table 8.2: Short-term temporal prediction - Mean Absolute Percentage Error (MAPE),
Absolute Percentage Error (APE), and Root Mean Squared Error (RMSE), for each pre-
diction model in the validation set.

In Table 8.2, we compare the performance of all models using the two approaches.
The best results for the slidingwindow approachwere obtainedwith the largest possible
window (28 days). The expandingwindow approach offers slightly better results, which
can be attributed to the fact that themodel can exploitmore data and the patterns are not
changing rapidly in time. Again, the multivariate models, and in particular the Random
Forest Regressionmodel, reach the best performance. Interestingly, the Neural Network
model performs similarly to other models, suggesting that, for this specific use case, a
simple and more interpretable model like a RFR is enough. Furthermore, as shown in
figure 8.8, increasing the number of epochs does not have a significant effect on the
performance of the Neural Networks model.

We show in figure 8.9 the performance of the best model, i.e., RFR with expanding
window. In this short-term formulation of the problem the prediction naturally adapts
to changes over time, obtaining better predictions with respect to long-term prediction.
Moreover, the weather data also provides useful information.

We now explore the importance of each feature for the model by analyzing the RFR
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Figure 8.8: Effect of the number of epochs on the performance (MAPE) of the Neural
Networks model.
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Figure 8.9: Short-term temporal prediction - Performance of the RFR model with ex-
panding window in the validation set (24 days).

feature ranking. When training a tree, it is possible to compute how much each feature
decreases the tree’s weighted impurity. For a forest, the reduction in impurity from
each feature can be averaged and the features can be ranked according to this measure.
This gives a simple and interpretable feedback on which features are most useful for
the prediction. We find that the most important features for the model are: (i) if we
are in the daily peaks from 3 pm to 9 pm, (ii) during the night (0 am - 6 am) or (iii) if we
are on a Friday and Saturday. Interestingly, the most important weather condition for
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the regressors is the presence of clouds, while the second one is a (rare) condition of
presence of fog, mist and rain in the considered time bin.

8.5.4 The effect of weather information
At this point, it is relevant to discuss the importance of weather forecast for the pre-
dictions. First, for the long-term predictions, we did not use any weather information,
as that would require perfect weather forecast in a period far in the future (in this case,
three months). In order to validate the effect of weather in this idealized situation, we
assumed such perfect forecast and evaluated the models using weather information as
a feature. By assuming perfect forecast, we are able to set an upper bound on the ef-
fect of weather information on the models. The results show that, on average, weather
information improved the models by about 3% on average.

Second, for the short-term predictions, we can use weather information. We assume
perfect weather forecast in the short-term (next three hours). This assumption is rea-
sonable once weather forecast for such short periods should be quite close to perfect.
By doing so, we filter out any dependence on the particular weather forecast technique
used (which could vary across different places/countries and is therefore out of the
scope of this work).

According to the feature importance, among the features used for the short-term
predictions (day of the week, hour of the day, and weather type), the weather is the least
important feature. As such, we do not expect a great impact of weather mispredictions
on the results. Indeed, the results with the random forests model (the one with the
best performance among the models we evaluated) show that by removing weather
information from the features the prediction accuracy decreases by less than 2% on the
MAPE.

8.6 Spatial prediction of rentalswith socio-demographic
data

In this section I show the methodologies used to predict the demand of cars in a neigh-
borhoodwithout using past data as features. In otherwords, given only socio-demographic
data in the neighborhoods, I try to predict the average number of expected rentals at
each time bin, and at each neighborhood. This problem is often referred to as a green
field or cold start approach. In this case, the operator is interested in knowing what
could be the system usage in a new neighborhood (or even a new city) based only on
socio-demographic data. Historical data are available from other neighborhoods (or
cities), and are used only for training.

Since Vancouver presents a division in 22 neighborhoodswhich constitute the dataset
for the training step, the analyses could suffer from an overfitting problem. Tominimize
this potential effect, I follow a state-of-the-art approach, namely leave-one-out testing:
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given a target neighborhood, I consider information from all other neighborhoods for
training the learningmodel, and consider the neighborhood that I left out for validation.

I manually select 83 socio-demographic features that might be related to human mo-
bility. Here, I only apply the Support Vector Regression and Random Forest Regression
models, given that they were the best performing models (aside from neural networks)
in the temporal prediction. I do not consider neural networks since these are known to
not work well with a very small training set as in this case. Additionally, being the RFR
an ensemble method, it is known to be resilient to overfitting [78].

Considering hyperparameter tuning, for SVR, I try three different kernels (linear,
polynomial and RBF), with different combinations of parameters. The best perfor-
mances are obtained for 𝜖 = 0.1, 𝐶 = 100 (𝐶 = 10 for RBF), and 𝛾 = 1

#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝛾 = 1
for RBF). For RFR, I try number of trees ranging from 10 to 100. I show the impact of
hyperparameter tuning in the following.

Figures 8.10a and 8.11b show the SVR prediction accuracy for the task of predict-
ing the number of starting and ending rentals, respectively. For each kernel type and
for each time bin, I report the average MAPE over the 22 experiments (one for each
neighborhood that is left out during training). The SVR model performs rather poorly
regardless of the parameter setting. Considering the targeted time bin, errors are higher
for the morning slots, independently of the kernel, while the time bin from 0 am to 6 am
is the one for which the model achieves the best performance. The polynomial kernel
performs the best: yet the average (over all time bins) MAPE is 70% for the prediction of
starting rentals, and 64% for the prediction of ending rentals. For the sake of complete-
ness, best RMSE for starting and ending rentals predictions are 499.776 and 427.675,
respectively, both for time bin from 0 am to 6 am.

The results for the Random Forest Regression model are shown in figures 8.11a and
8.11b, for different number of trees. For a given time bin, I observe limited variation in
the MAPE for increasing number of trees, which suggests that a small number of trees
(30 or 40 trees, for instance) could be enough. This is expected given again the limited
number of samples for the training. In this case, the overall MAPE is 59%.

Moving to the predictions for ending rentals in figure 8.11b, it is possible to observe
smaller errors, with the best case with 20 or 40 trees, with the overall MAPE being 56%.
Again, in the time bin from 0 am to 6 am I obtain the best predictions while the worst are
obtained from 6 am to 9 am (for starting rentals prediction). Regarding RMSE measure,
the best value for starting rentals is 427.260 for time from 0 am to 6 am and 50 trees,
while for final rentals the best RMSE is 732.825 for time bin 6 am to 9 am.

Overall, the usage of only socio-demographic data as features offers from quite large
prediction error. In the following, I show into which features are the most important
so to also perform feature selection and possibly improve the model.
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(a) SVR Model: Starting rentals
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(b) SVR Model: Ending rentals

Figure 8.10: Spatial prediction - MAPE for Support Vector Regression models, using
different kernels.

8.6.1 Feature ranking and selection
As in the previous section, I analyze the feature ranking for the RFR model. Table 8.3
reports the top-15 most relevant features. This feature ranking procedure allows us on
the one hand to identify what information the FFCS operator should focus on when
considering new neighborhoods of the city in which to implement its service. On the
other hand, such ranking leads to a reduction of the number of features the model: in
this way it is possible to focus only on the most important ones.

To evaluate the impact of the features on the model performance, I train once again
the RFR with an increasing number of features, chosen according to the given rank. I
fix the number of trees according to the best average MAPE obtained in Figures 8.11a
and 8.11b: 40 trees for the starting and 20 for the ending rentals prediction. Figure 8.12
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(a) RFR Model: Starting Rentals
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(b) RFR Model: Ending Rentals

Figure 8.11: Spatial prediction - MAPE for Random Forests Regression models, using
different number of trees.

shows the results. It reports the MAPE versus the number of features in the model.
Notice the U-shaped curve of the average MAPE (dashed black line). Intuitively, too
few features worsen the regression performance due to lack of information. Too many
features also reduce the performance since the training is more complicated and the
model gets confused.

I further evaluate the RFR model by selecting the best number of features (the one
that minimizes the average MAPE), which results to selecting the top 7 features in Ta-
ble 8.3. With this subset, the average MAPE is 41% and RMSE equals to 1104.501 for
starting rentals, while for arrivals MAPE is 39% and RSME is equal to 1010.453. As
expected, using only the top most important features improves significantly the perfor-
mance.
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Finally, I explore the spatial prediction error, i.e., I look if there are neighborhoods
that present significantly higher errors than others. Figure 8.13 depicts the heatmap of
the MAPE per neighborhood, averaged over all time bins. The more the area is red the
higher the average MAPE is. Each green dot represents actual positions of starting or
arrival rentals as recorded in the original trace. The areas having the highest error are
the ones labelled 15, 18, 11 and 0. The neighborhoods 15, 18, and 0 are in the periphery
and intersect only partially with the rental area of the FFCS operator. This mismatch
confuses the prediction since the model assumes the operative area coincides with the
total area of each neighborhood. Thus, the model predicts much higher numbers of
rentals (reflecting the whole neighborhood area) than the ones that are actually done
(reflecting the restricted operational area). Neighborhood 0 has instead a large presence
of parks where clearly the car cannot operate. As such, the features of this area are also
not reflecting the entire area, fooling the classifier.

In general, the performance of the spatial predictions is lower when compared to
the temporal predictions. This is expected given the nature of the problem, the limited
amount of available data, and because the number of rentals varies widely within each
neighborhood. However, I would like to emphasize that the results of the spatial pre-
diction are still quite useful: the ranking of the regions in terms of service demand is
indeed preserved in the predictions. In other words, the neighborhood with the largest
demands, which could be the preferred locations to extend the service, would still be
predicted correctly.

8.7 Conclusions
In this paper, we studied the problem of predicting FFCS demand patterns in time and
space, a relevant problem to an adequate provisioning of the service and maintenance
of the fleet. Relying on data from real FFCS rides in Vancouver as well as the municipal-
ity socio-demographic information, we investigated to which extent modern machine
learning based solutions allow us to predict the transportation demand.

Our results show that the temporal prediction of rentals can be performed with rela-
tive errors down to 10%. In this scenario, a simple Random Forests Regression performs
consistently among the best models, and allowing us to also discover which features
are more useful for prediction. When considering the spatial prediction using socio-
demographic data, we obtain relative errors around 40%, after feature selection. This is
expected due to the scarcity of data, but the prediction results are still useful. Indeed,
since the number of rentals varies widely within each neighborhood, the relative rank-
ing is preserved. This is valuable for, e.g., look for the area where to first extend the
service. Again, using a Random Forest Regression model, we can observe which fea-
tures are the most useful for the prediction, a precious information for providers and
regulators that wish to understand FFCS systems and to provide a high-quality service
that benefits both providers and its costumers.

As future work, we would like to investigate whether this same strategy generalizes
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Rank Feature Relevance

1 Number of emergency calls 0.0717
2 Distance from downtown 0.0481
3 People commuting by walk 0.0381
4 People commuting within Vancouver 0.0342
5 People with income between 100 000 and 149 999 $CAD 0.0298
6 People with income between 60 000 and 69 999 $CAD 0.0286
7 People legally recognized as couple 0.0281
8 People with income more than 150 000 $CAD 0.0274
9 People divorced 0.0261
10 People commuting within the same neighborhood 0.0249
11 Couples having more than 3 children 0.0239
12 People with age between 50 and 54 years 0.0233
13 Unemployed people 0.0231
14 People never married 0.0217
15 People with income between 80 000 and 89 999 $CAD 0.0211

Table 8.3: Spatial prediction - Most relevant features and their importance for the pre-
diction using Random Forest Regression. The first 7 are the ones that for obtain the
best overall model

to different cities. Answering this question is challenging due to the heterogeneity and
diversity of open data in different cities, and of usage patterns of car sharing around the
world. We conjecture that given similar data the methodology could be applied to other
cities, as there is nothing specific to the analyzed city in it. However the effectiveness
of the models may change depending on peculiarities of each city. Still, it is an open
problem towards which we have provided an important first step.
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Figure 8.12: Spatial prediction - MAPE in the different time bins by selecting the most
relevant features in RFR

Figure 8.13: Spatial distribution - Heatmap of averageMAPE per neighborhood. Rentals
are shown on the map as green points
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Chapter 9

Scalability of Electric FFCS in
Smart Cities

This chapter is mostly taken from ”On Scalability of Electric Car Sharing in Smart Cities”
([89]) published in the 2020 IEEE International Smart Cities Conference (ISC2) in Septem-
ber 2020.

9.1 Introduction
Today, around 55% of the world’s population lives in urban areas, a proportion that is
expected to increase to 68% by 2050 [1]. Cities face important challenges to manage
mobility, with a mixture of public and private transportation means. The widespread
usage of private cars led to land consume, increase of air pollution and higher health risk
[90]. Private cars are often chosen by citizens for their flexibility and comfort, with the
burden of higher fixed and variable costs. Recently, the sharing economy has brought
regulators and policy makers to invest on free floating car sharing (FFCS) systems, car
rental models where the customers can freely pick and drop a car within an operative
area through a mobile app. They pay only for the time spent driving, usually with
minute-based fares which include all costs. Thus, this combines some of the benefits
of public transport and private cars [13]. Sharing the same car among different people
helps reducing the number of vehicles and brings benefits for the whole community
like increase of parking availability and reduction of pollution [91]. Moreover, since
there are no fixed costs for users, usually FFCS is economically convenient for users
who travel few thousand kilometers per year [92].

To make another step towards sustainable mobility, the challenge is to convert FFCS
fleet from internal combustion engine vehicles (ICE) to electric ones (EVs), maintaining
the same service flexibility. This change would further reduce the noise and pollutant
emissions in congested areas [93], but calls for the creation of a charging infrastructure,
and the management of the additional costs to handle battery charging operations.
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In this work I analyze the feasibility and scalability of FFCS with electric vehicles.
The goal is to find an economically sustainable solution that brings benefits to both
citizens (i.e., high availability) and operators (i.e., high profit), with the economic sus-
tainability being a crucial aspect. For instance in Italy, the main FFCS operator had
revenues around 48 million euros in 2016, but still losing around 27 millions euros,
with each car burning 4700 € on average[94]. Despite that, car sharing is estimated to
increase from 20% to 40% from 2019 to 2021 [95].

However, the shift to EVs implies not trivial decisions due to the additional need of
deploying and managing the charging infrastructure. What are its impacts on system
performance and profit?

As a case study, I focus on the city of Turin in Italy. I leverage hundred of thousands
of real FFCS trips [96] to extract the geo-temporal mobility demand. I use Kernel Den-
sity Estimation (KDE) to catch the demand spatial variability, and modulated Poisson
models for the temporal demand [97]. I use it to feed a trace-driven flexible simulator
that allows us to study how the design choices and system parameters impact on per-
formance. I first consider an electric-car sharing system that has the same number of
cars and faces same demand of the current one in Turin. I observe the impact of dif-
ferent charging infrastructure design, i.e., the number of poles and how to spread these
are over the city area.

Next, I consider when the intensity of the mobility demand grows. How would
the charging infrastructure need to grow correspondingly? And what is the impact of
the fleet size? Summarizing the contributions, this paper proposes an answer to these
questions making use of the demand model to project future or different scenarios and
the cost-revenue model to evaluate the profitability of each configuration. I focus on
performance indicators like the fraction of demand the system can satisfy and the total
working hours it has to spend for the battery charging operations. Then, I project these
into economical figures, observing how the design options impact on profitability.

The results show that the charging station placement is fundamental if poles are
placed in areas with high demand, as cars get located where customers need them. This
allows the system to naturally intercept the customers demand, thus to maximize the
satisfied demand, and revenues. Considering system scalability, as expected the charg-
ing infrastructure must grow proportionally to the mobility demand. Interestingly in-
stead, the number of vehicles can growmuch slower, showing economy of scale savings
which make the system likely profitable if well designed.

The paper is organized as follows: In section 9.2 I discuss this work in light of past
literature for FFCSs and their economical aspects. After reporting the details about the
dataset and demand model in section 9.3, and the simulator in section 9.4, I present
results in section 9.5 before drawing conclusions in section 9.6.
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9.2 Related Work
While first FFCS are operative since 2008 in Europe [29], the research on this topic has
only recently flourished, especially for EVs. A common problem in transportation is
to define models to optimize the fleet management and system design in general. For
example, the authors of [98] proposed a Mixed Integer Problem (MIP) to maintain and
organize fleet distribution in short term considering a stochastic demand. In the recent
work [99] authors showed how to analytically model customers’ probability to use car
sharing. Other studies include more complex phenomena in their works, like [100]
where the authors consider a non-linear charging function and detailed power lines
constraints to optimally design one-way car sharing system (using a MIP).

Another strategy to study FFCS is to simulate how users interact with it. For exam-
ple, the authors of [101] proposed (but did not implement) an agent simulator approach
to measure how FFCS can be scaled on the entire Swiss traffic. The authors of [91]
present a study of two-ways car sharing growth, with the help of an event-based simu-
lator that measures if and how charging stations produce profits. Similarly, [102] pro-
poses an open-source multi-agent simulator able to replicate travelling people’s habits.
In particular, it focuses on the realistic replication of users’ behavioral model relying
on multinomial distribution of modal choice.

Recently, the availability and abundance of data helped shaping FFCS users’ be-
haviour. Considering this, some works like [103] and [96] scraped data from real ICE
FFCS, characterized their services and proposed model generalizations. Big Data ap-
proaches helped researchers to improve the simulation fidelity. In particular, authors
of [104] used data to predict the shareability of an urban ride, finding that this a property
city-invariant. On the same optic, the authors of [105] use data from several American
cities to optimize the position of the charging stations of a one-way car sharing, find-
ing that the optimal results place the stations in high-demand areas. This results in this
chapters confirms the results in [106] and [107] where I used a simulation based ap-
proach to measure the impact of different design options of an EVs FFCS system. Here,
the use of big data to derive realistic demand models to feed accurate simulations. I
move one step forward - showing that this is beneficial also as a proxy of relocation,
i.e., cars get naturally relocated to high demand zones.

The economic sustainability is another key aspect of car sharing - especially with
EVs. Authors of [108] studied the economic sustainability of one way electric car shar-
ing systems finding out that charging station should have an amortization period of at
least 5 years to produce profits. The authors of [109] compared how FFCS with EVs and
ICE can produce profits, observing the best compromises with ICE fuelled with cheap
and cleaner fuel like ethanol. Another study [110] concerning the city of Lisbon found
out that switching to EVs would cost more than ICE and would lead to a negative profit
of about one million per year. This is largely due to the higher cost of electric cars
and of the charging infrastructure. This chapter explores which are the most efficient
and economically sustainable combinations of fleet size, charging infrastructure design,
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also in light of demand growth.
To the best of I can tell, this work is among the first to study the scalability of a FFCS

system with electric vehicles, exploring key parameters like number of poles, fleet size
and increase in demand can affects economic and performance of the system.

9.3 Dataset and demand model

9.3.1 Dataset
In this chapter I leverage the data collected chapter 2 and described in chapters 3 and
4, capturing real trips performed by car2go users. These data let us model the users’
mobility demand in time and in space. From this, I derive a demand model that gen-
eralize the users’ demand observed in the real data. I use it to generate realistic traces
describing possible user trips and feed them to the event-based simulator to derive per-
formance figures.

Recalling that the dataset consists in actual rental performed by car2go in Turin
composed by geo-temporal coordinates recording where and when a user’s ride starts
and end. Figure 9.1 summarizes the number of daily rentals from June 2017 to January
2018 in Turin, the reference dataset1 and table 9.1 outlines the main characteristics of
this data. 400 cars were available, travelling on average less than 4 km in each trip, for
an average rental time of 21 minutes.
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Figure 9.1: Number of rentals per day in Turin, from June 2017 to January 2018. Some
data is missing.

Instead, directly use the original trace to observe system performance, I decided to
create a model to observe what-if scenarios, e.g., to observe the impact of a growth in

1For some periods the crawler did not record data due to server failures.
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Table 9.1: Main dataset characteristics, recorded in Turin from October to December
2017. Rental time and rental distance report both median (Med) and average (Avg)
values.

Rentals
Fleet

Rental Rental
Zones

Size
Time [min] Dist. [km]
Avg Med Avg Med

180k 400 21 20 3.96 3.36 279
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Figure 9.2: Average number of rentals per hour during weekdays (WD) and weekends
(WE).

the demand. For this, I use the available data to create a generalized demand model. I
follow the approach presented in in [97]. In a nutshell the demand is modelled in time
by using modulated Poisson processes - a common accepted model for independent
service requests of a very large population [111]. To capture the spatial heterogeneity,
I generalize the traces using Kernel Density Estimation (KDE) [112]. KDE gives us the
possibility to smooth the real data over amulti-dimensional spacewhilemaintaining the
origin/destination correlation. In more details, for the request arrival time process the
model assumes that the inter-arrival time of trips follows an exponential distribution
with rate depending on the type (weekend or working day) and hour of the day. The
model considers 24 time bins of 1 h each - 48 periods in total. In each time/day bin, the
Poisson arrival rate matches the average rate of requests in that time bin in the original
dataset as shown in figure 9.2. This temporal model allows to scale the overall demand
by introducing a global scaling factor 𝜆 as a multiplier of the request rate of each time
bin.

To model the spatial diversity of the demand, the models works on the case of study
city divided in a set 𝑍 of contiguous 500m x 500m zones, obtaining in total 279 zones.
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Each couple of spatial coordinates in the city area (𝑥, 𝑦) maps to one and only one zone.
Since each trip 𝑖 departs from a certain zone (origin 𝑂𝑖, described by two coordinates)
and arrives to another zone (destination 𝐷𝑗, described by two coordinates), it is there-
fore characterized by two couples of coordinates, that can be represented as 4 scalars.
For each time bin, I derive an origin and destination matrix counting how many trips
were originated from a given zone 𝑂 and destined to a given zone 𝐷. Thus, in order
to model the OD matrix in each temporal slot, I fit a 4-dimensional KDE based on the
aforesaid coordinates. For each of these matrices, I compute a KDE model, using Gaus-
sian kernels, with bandwidth equal to 1. Not reported here for the sake of brevity, I
compare the number of trips generated from the model and the ones presented in the
original trace. As expected, there is a very good match with low residuals. I refer the
reader to [97] for details.

Notice that I employ a single global scaling factor 𝜆 directly the temporal model to
keep the spatial distribution of trips unchanged while increasing the request rate.

9.4 Simulator and System Parameters
Armed with the generalized demand model, I design and implement an event driven
simulator, improving the software depicted in chapter 5 to study the EVs FFCS system.
Here I detail the simulationmodel, the simulator assumptions, the performancemetrics,
and the cost model used to project system performance into economic figures.

9.4.1 Simulator and assumptions
I consider a fleet 𝐹 of electric cars. As the old version, the simulator works on the city
divided 𝑍 of zones of 500m x 500m each, where cars can be parked, rented, charged and
returned. Car characteristics are the same as MY2018 electric Smart ForTwo, namely
𝐵 = 17.6 kWh battery capacity and 15.9 kWh/100 km energy efficiency like the pre-
vious works. Each car is characterized by its location, status (i.e., available, rented,
under charge) and battery State of Charge (SoC). At simulation startup, cars are ran-
domly placed in zones and as first new feature, the initial SoC uniformly distributed in
[0.5𝐵,𝐵], and marked as available.

The charging infrastructure considers 𝑛𝑝 Level-2 chargers, with 3.7 kW nominal
power and 92% charging efficiency. Charging stations are spread around the city zones.
The simulator places poles in those zones having the highest probability of being desti-
nation zones. This results in a good strategy to maximize system performance [106,
107]. In details, the algorithm sorts zones 𝑧 ∈ 𝑍 by the total number of parkings
𝑡𝑜𝑡_𝑝𝑎𝑟𝑘(𝑧) observed in the original trace. The simulator then consider the top 𝑧𝑝 frac-
tion of zones, and place a number of poles in each proportionally to

𝑧𝑝 ≃ 𝑛𝑝 ⋅ 𝑡𝑜𝑡_𝑝𝑎𝑟𝑘(𝑧)/∑
𝑧
𝑡𝑜𝑡_𝑝𝑎𝑟𝑘(𝑧) (9.1)
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At 𝑡 = 0, the simulator generates the first rental request event, extracting origin and
destination coordinates according to the KDE model of the current hour/day slot, and
schedules the next rental request event according to the modulated Poisson process.
Events are then processed as follows:

Car request event. When a rental requests fires, a customer looks for a car within
the origin zone and in 1-hop neighbouring zones. If at least one car with enough SoC
to reach the desired destination exists, the car gets rented, and a car release event is
scheduled after the time to reach the destination that is proportional to the distance,
considering both orography and road network shape [107]. If more than one such cars
exists the closest one is picked, and, if need, the one with highest SoC. If no car is
suitable for this ride, the trip does not occur and the request is marked as unsatisfied.

Car release. When a car release event fires, the simulator updates the car SoC de-
creasing it proportionally to the travelled distance. If the updated SoC is above a thresh-
old 𝛼, the car is parked in the user’s arrival zone, and marked available for other rentals.

If instead the SoC is below 𝛼, the car battery needs to be charged. The system handles
the charging event by moving the car to the nearest-free charging pole. The simulator
schedules a charge complete event which accounts for both the time to reach the pole
and the time to bring the SoC to 100%2.

Charge complete. When a charge complete event fires, the car is marked as avail-
able, and customers can rent it again. The charging pole is released as well. Notice
that I assume the car is released in the same zone where it was being charged, i.e., the
system does not implement any relocation policy after charging.

9.4.2 Performance metrics
In this chapter, I describe on the following performance metrics to compare different
design options:

Unsatisfied Demand: it is the fraction of requests that are not satisfied because
there is no car with enough SoC in the origin and neighbouring zones. It is an indicator
of the quality of the service in terms of car availability for user requests, and shall be
minimised.

Total charging handling time: it measures the monthly time spent by the system
to bring cars to the charging stations. It is the sum of the driving time spent by workers
to drive the cars to the nearest-free pole. It gives an indication of the goodness of the
charging infrastructure. Being it a cost, it shall be minimized (see the operating costs
described below).

2For simplicity, the assumption is the presence of infinite workers to handle the battery charge events
so that a car gets serviced immediately. In case all poles are busy, the car gets placed in a queue of the
closest charging station, and gets serviced when the first pole is freed.
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Table 9.2: Summary of parameters and economic cost assumed for Turin.

Parameters used for the simulations
Param Description Range
|𝐹 | Fleet size [80, 2000]
|𝑍 | Number of 500m x 500m zones 279
𝐵 Battery capacity - Electric Smart ForTwo 17.6 kWh
𝑛𝑝 Number of charging poles - 3,7kW each [8, 300]
𝑧𝑝 Fraction of zones with charging poles [0.003, 0.20]
𝛼 SoC charging threshold 0.25
𝜆 Rental demand rate scaling factor [1, 5]

Cost and revenue parameters with values for Turin
𝐶𝑙𝑒𝑎𝑠𝑒 Yearly electric Smart ForTwo vehicle lease cost 4000 €/yr/vehicle [113]
𝐶𝑝𝑜𝑙𝑒 Material cost of a level-2 charging pole 1700 €/pole [114]
𝐶𝑙𝑎𝑏𝑜𝑟 Labor cost to install a charging pole 2200 €/pole [114]

𝐶𝑠𝑒𝑡𝑢𝑝
Make-ready infrastructure cost per charging
station 1500 €/station [114]

𝑝𝑙 𝑖𝑓 𝑒
Charging station and pole lifetime - amortization
period for 𝐶𝑝𝑜𝑙𝑒, 𝐶𝑙𝑎𝑏𝑜𝑟 and 𝐶𝑠𝑒𝑡𝑢𝑝

10 yr [110]

𝐶𝑚𝑎𝑖𝑛𝑡 Yearly pole maintenance cost 500 €/yr/pole [114]
𝐶𝑔𝑟𝑜𝑢𝑛𝑑 Yearly ground occupation tax 355 €/yr/pole [115]
𝐶𝑒𝑛𝑒𝑟𝑔𝑦 Energy cost for kWh 0.19 €/kWh [116]
𝐶𝑑𝑟 𝑖𝑣𝑒𝑟𝑠 Hourly labour cost to bring the cars to charge 23 €/h [117]
𝐶𝑑𝑖𝑠𝑖𝑛𝑓 Disinfection and interior cleaning cost 15 €/charge [118]
𝐶𝑤𝑎𝑠ℎ Cost to wash the car 8 €/100 rentals [118]
𝑅𝑟𝑒𝑛𝑡𝑎𝑙 Average revenue per rental minute (exl. VAT) 0.20 €/min [119]

9.4.3 Cost model
While performance indexes are useful to explore design options, the FFCS operator is
ultimately interested in the economic sustainability of a solution. For this, I derive a cost
model based on yearly projections. I then consider revenues by projecting the number
of rental and their duration. Armed with both, I estimate profit. Here I consider:

Vehicle cost. I assume cars are leased to include all costs, namely registration, tax,
insurance, ordinary and extraordinary maintenance, and roadside assistance. I assume
electric cars do not pay for parking on street and for accessing limited traffic areas.
Given the yearly car lease 𝐶𝑙𝑒𝑎𝑠𝑒 and the number of vehicles, I easily derive the total
yearly fleet cost.

Charging infrastructure cost. Here I refer to actual use cases as defined in [114].
Pole installation costs account for material and labor cost. Material cost 𝐶𝑝𝑜𝑙𝑒 includes
hardware cost for Level II chargers. Labor cost 𝐶𝑙𝑎𝑏𝑜𝑟 is highly dependent on the city,
region and country. I need also to consider the make-ready infrastructure cost 𝐶𝑠𝑒𝑡𝑢𝑝
that represents the cost for a charging station setup. It does not depend on the number
of charging poles per station, but depends only on the number of charging zones 𝑧𝑝 ⋅ |𝑍 |.
It represents a highly variable cost since it depends on the location and the electric
distribution infrastructure already in place. In fact, the expenses of trenching and laying
conduit can add thousands of Euros to costs. All these costs are one-time costs. I assume
these costs have an amortization period equal to the average charging station and pole
lifetime 𝑝𝑙 𝑖𝑓 𝑒.

122



9.5 – Results

Next, I consider pole maintenance costs 𝐶𝑚𝑎𝑖𝑛𝑡, which I derive from variable site-
specific parameters.

In some cities, I need also to consider the per vehicle ground occupation tax 𝐶𝑔𝑟𝑜𝑢𝑛𝑑,
that usually depends on the surface for dedicated charging spot. Due to the small size
of Smart ForTwo, charging spots are assumed to be 4,50m x 2,30m, for each pole.

Operating costs. For this I take into account the 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 cost for the energy to charge
the vehicles; the hourly cost for workers 𝐶𝑑𝑟 𝑖𝑣𝑒𝑟𝑠 who have to handle the charge events; a
cost 𝐶𝑑𝑖𝑠𝑖𝑛𝑓 to clean and disinfect the car any time the worker brings it to charge. Finally,
I assume exterior car washing every 100 rentals, each costing 𝐶𝑤𝑎𝑠ℎ.

Rental Revenue I consider a simple average cost-per-minute 𝑅𝑟𝑒𝑛𝑡𝑎𝑙. This allows us
to transform the total rental minutes into the total revenues.

Top part of table 9.2 summarizes the parameters that define the scenarios used in
the simulations. Bottom part shows the cost I consider for the Turin use case. Given
a scenario, I run a simulation to collect performance indexes. I next post-process the
simulation results to derive themonthly cost and revenue figures. The custom simulator
used is written in Python and based on SimPy library.3 The cost-revenue model is
implemented in Python too and it is available online. The cost model allows one to
interactively observe what happens by changing the cost values.4

9.5 Results
Given the multiple system design parameters, here I proceed by steps. First I analyse
the impact on performance in order to select good design options. I then project the
results through the cost figures to gauge the economic implications of these choices.

I consider as starting parameters the ones referring to the current FFCS running in
Turin based on ICE cars, i.e., a fleet size |𝐹 | = 400 and demand scaling factor 𝜆 = 1. I
explore the charging infrastructure design options, namely its size 𝑛𝑝 and extensiveness
𝑧𝑝. I fix 𝛼 = 0.25 corresponding to the minimum energy needed to perform the longest
trip in Turin [106]. I also check the impact of increasing the demand up to 𝜆 = 5.
Correspondingly, I increase the fleet size |𝐹 (𝜆)| = 400 ⋅ 𝜆 by the same factor. Each
simulation considers three months of virtual time, corresponding to more than 200 000
rental requests for 𝜆 = 1.

3SimPy is a discrete-event simulation library. Documentation is available at: https://simpy.readthe-
docs.io/en/latest/contents.html.

4The code and data for cost and profit evaluation are available at: https://smartdata.polito.
it/on-scalability-of-electric-car-sharing-in-smart-cities/.
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Figure 9.3: Unsatisfied demand with respect to different number of poles per vehicle.
Curves show performance with different demand factor 𝜆 and fleet size |𝐹 |, with 𝑧𝑝 =
0.05.
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Figure 9.4: Unsatisfied demandwith respect to the fraction of zones with charging poles
𝑧𝑝. Curves show performance with different demand factor 𝜆 and fleet size |𝐹 |, with
𝑛𝑝/|𝐹 | = 0.06.

9.5.1 Impact of infrastructure design options
Focus first on the impact of the number of poles per vehicles 𝑛𝑝/|𝐹 | on the unsatisfied
demand - reported in figure 9.3. Consider 𝜆 = 1 first. Here 𝑧𝑝 = 0.05 (14 charging
zones). I observe two working regions: on the right - the charging infrastructure has
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enough capacity to supply the energy to support all customers’ trips - resulting in a
constant unsatisfied demand. On the left, system charging capacity goes below a mini-
mum threshold (highlighted by the red area). Here the charging infrastructure cannot
supply enough energy and unfeasible trips grow linearly with the lack of energy. Con-
sider now a demand factor that doubles (𝜆 = 2, and |𝐹 | = 2 ⋅ 400). The energy supply
must grow by a factor of 2 to supply twice the number of trips. As such the minimum
threshold in terms of number of poles per vehicles remains the same. The same holds
for higher 𝜆. Interestingly, the number of poles to supply the energy to cope with the
mobility demand is quite small: a pole every 20 cars results enough.

There is still a 5-7% of unsatisfied demand which results from the mismatch between
zones with available cars, and zones with demand. I now check the impact of 𝑧𝑝 on this.
figure 9.4 fixes 𝑛𝑝/|𝐹 | = 0.06, and shows the impact of concentrating or spreading them
on few ormore zones. On the leftmost case, I have the “charging hub” scenario, meaning
that all poles are located in a single zone where all cars must be brought for charging.
This solution creates a surplus of cars in the zone where the hub is, and a lack of cars in
other zones. Unsatisfied demand then grows, calling for relocation policies. Increasing
𝑧𝑝 has the benefit of spreading cars in the city5. Having opted to place poles in 𝑡𝑜𝑝_𝑝𝑎𝑟𝑘
zones, cars get naturally located there, facilitating customers that look for a car in those
high-demand zones. This reduces the percentage of unsatisfied demand significantly,
questioning the need of costly relocation policies. Performance-wise, the higher the
fraction of zones with poles, the better.

Focus now on the time the system has to spend to bring cars to the closest charging
pole, reported in figure 9.5 for 𝑧𝑝 = 0.20. Notice that if the system cannot supply enough
energy to satisfy the demand (𝑛𝑝/|𝐹 | < 0.055 in this case), the charging handling cost
decreases. Likely not a good design choice being this due to loss of satisfied demand.
Consider the region 𝑛𝑝/|𝐹 | ≥ 0.055, where the system has enough charging capacity. If
there are just enough poles, most of them results busy, and the workers need to drive
cars to far away free poles. This results in an increase of handling time up to 1600 ℎ
for 𝜆 = 5. By increasing 𝑛𝑝/|𝐹 |, I increase the probability of finding a nearby free pole,
shortening handling time down to 1000 ℎ per month for 𝜆 = 5. As expected, the higher
𝜆, the higher the time to handle charging events –with an almost perfect linear increase.

This highlights a trade-off between infrastructure costs and management costs. To
better gauge this, figure 9.6 compares a more concentrated system with 𝑧𝑝 = 0.05 with
a more distributed systemwith 𝑧𝑝 = 0.20. I plot the ”additional satisfied demand” (black
curve) and the saving in charging handling time (red curve) for increasing demand fac-
tor 𝜆 and fleet size |𝐹 | (fixing 𝑛𝑝/|𝐹 | = 0.06). In all cases, 𝑧𝑝 = 0.20 results in higher
satisfied demand and lower cost than 𝑧𝑝 = 0.05, with benefits that increase with in-
creasing demand. In a nutshell, distributing the same number of poles among more
zones improves system performance and reduces charging handling time. Clearly this

5For 𝜆 = 1 I can equip 𝑛𝑝 = 24 zone maximum (𝑧𝑝 = 0.09), after which results do not change.
Differences are due to simulation randomness.
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Figure 9.5: Monthly charging handling time drivers have to spend to bring cars to charg-
ing poles. Curves show performance with different values of demand factor 𝜆 and fleet
size |𝐹 |, with 𝑧𝑝 = 0.20.
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Figure 9.6: Gain in terms of satisfied demand and charging handling time of a more
spread infrastructure (𝑧𝑝 = 0.20) with respect to a more centralized infrastructure (𝑧𝑝 =
0.05). Gain is showed for increasing demand factor 𝜆 and fleet size |𝐹 |. Here 𝑛𝑝/|𝐹 | =
0.06.

needs to be weighted by the additional cost of installing a more distributed charging
infrastructure.
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9.5.2 Impact of fleet size
I now explore the impact of the number of cars when the demand increases. For this, I
scale 𝜆, but keep the fleet size constant to |𝐹 | = 400. For simplicity, I consider a charging
infrastructure capacity that can cope with the highest demand, i.e., 𝑛𝑝 = 120. I consider
two cases, 𝑧𝑝 = 0.05 and 𝑧𝑝 = 0.20. I plot results in figure 9.7. Interestingly, the same
number of vehicles can sustain a sizeable increase in 𝜆 without a significant impact
the unsatisfied demand. For instance, |𝐹 | = 400 vehicles can cope with a factor 𝜆 = 3
increase in the demand, just losing 2.5% of customer requests. This would result in a
significant saving in the cost of vehicles. Given there are no differences in concentrating
or spreading the charging poles in few or more zones, I fix 𝑧𝑝 = 0.20 from now on.
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Figure 9.7: Unsatisfied demand for increasing values of 𝜆 but same number of vehicles
|𝐹 | = 400, and large enough charging infrastructure (𝑛𝑝 = 120).

To observe how the unsatisfied demand would be impaired by further reducing the
number of cars and/or the number of poles, I present contour maps in Figures 9.8a and
figure 9.8b, for 𝜆 = 1 and 𝜆 = 5, respectively. Interestingly, the two design parameters
seem to affect unsatisfied demand in almost independent manner. On the one hand,
reducing the number of cars has limited impact until I reach very small values. For
instance, halving the fleet size down to |𝐹 | = 200would increase the unsatisfied demand
by 6-8% only. On the other hand, increasing 𝑛𝑝 brings no benefit - provided there are
enough poles (cfr. figure 9.3).

The same considerations holdwhen 𝜆 = 5, with a slightly higher interaction between
𝑛𝑝 and |𝐹 | when approaching small values for both. Observe also a large region with
unsatisfied demand lower than 6% (dark green). The high number of vehicles allows a
high multiplexing gain so that fewer cars can offer the same service level. For instance,
|𝐹 | = 800 cars guarantee about 10% of unsatisfied demand if 𝑛𝑝 > 120. In a nutshell,
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(b) Demand factor 𝜆 = 5

Figure 9.8: Unsatisfied demand varying number of poles 𝑛𝑝 and fleet size |𝐹 | with 𝑧𝑝 =
0.20.
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Figure 9.9: Monthly estimated profits varying number of poles 𝑛𝑝 and fleet size |𝐹 | with
𝑧𝑝 = 0.20.

the system needs less cars to satisfy the same percentage of demand when the demand
increases, with significant economy of scale gain.

9.5.3 Impact of costs
To have a clear and complete picture, I now project the performance indexes into eco-
nomic figures. Here I compare the monthly profit an EVs FFCS provider would reach
for different combinations of the number of vehicles and the number of poles, i.e., its
investment in the fleet and charging infrastructure. All costs included in Table 9.2 are
considered.

figure 9.9a shows the results for 𝜆 = 1. Green shades reflect positive profit, while
yellow and red shades highlight loss-making configurations. Interestingly, the zones
with the highest profits tend to be in the leftmost part of the figure, i.e., for small number
of cars. While this causes a higher unsatisfied demand - see figure 9.8a - it looks the
only way to reduce the cost of the fleet so to have a profitable system. The impact of the
charging infrastructure is quite negligible unless when 𝑛𝑝 becomes too small (i.e., when
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not enough charging capacity is present). This is due to the low cost of buying and
installing a charging pole when amortized on 𝑝𝑙 𝑖𝑓 𝑒 = 10 years. Recall that I have seen
that the charging infrastructure design calls for a charging pole every 20 vehicles. As
such, the overall economic impact of the charging infrastructure results quite negligible
compared to the fleet size costs.

The picture improves drastically when 𝜆 = 5, shown in figure 9.9b. Here, I explore
scenarios with a 5-fold increase in both the number of poles (𝑛𝑝 ∈ [50,300]), and in
the number of vehicles (|𝐹 | ∈ [400,2000]) with respect to the 𝜆 = 1 scenario. Here,
all configurations result in positive profit. Even more interestingly, by reducing the
number of cars I observe a marginal decrease in the profit, with the best scenarios
being in |𝐹 | ∈ [1400, 2000]. This is due to large multiplexing effect I already observed in
figure 9.7. Even when reducing the number of cars to 800, I observe sizeable profits.

Considering the number of poles, as expected, when 𝑛𝑝 < 120 (the minimum thresh-
old for constant unsatisfied demand when |𝐹 | = 2000, showed in figure 9.3) the in-
sufficient system charging capacity impairs cars availability, increasing the unsatisfied
demand. As seen already, increasing 𝑛𝑝 above the minimum threshold brings little ben-
efit, but it also has little impact on the profits (due to the relatively low cost of pole
installation).

In summary, I can conclude that the FFCS provider needs to carefully evaluate the
minimum number of poles when designing and implementing the charging infrastruc-
ture. The limited cost of pole installation, and the long amortization time make over-
provisioning the charging infrastructure a viable option to make the system robust to
demand increase. Considering the fleet size, when the demand is low, the high cost of
vehicles suggests limiting the number of vehicles. When instead the demand grows, an
economy of scale gain is possible, making the system even profitable with large fleet
size.

9.6 Conclusions
In this chapter I presented a simulation study of free floating car sharing systems.
Armed with a realistic demand, I studied the performance implications of moving from
ICE FFCS to a EV based solution.

This study offers several take-awaymessages: first, the charging infrastructure must
be able to provide enough energy to cope with the mobility demand. Interestingly, it
results to be quite limited, with just 20 poles able to sustain a system of 400 vehicles.
Second, distributing the charging poles in zones where cars get frequently parked and
rented is instrumental to maximize the demand the system can satisfy, while also lim-
iting the time workers have to spend to bring cars for charging. Third, the system
exhibits useful economy of scale, so that the fleet size shall increase sublinearly with
respect to the mobility demand intensity.
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At last, when projected into economic figures, the fleet setup and management rep-
resent the main cost factors. Choosing the right number of vehicles results more funda-
mental than optimizing the charging infrastructure costs. For instance, for the current
demand intensity in Turin, the switch to EVs must be carefully designed to be prof-
itable. Interestingly, when the demand grows, the margins are much higher, allowing
some nice economy of scale opportunities.

As future direction, I are studying different cities as new use cases, looking at op-
portunities of involving users in the charging process in order to decrease management
costs.
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Chapter 10

Conclusions and Future Works

In this thesis, I proposed a data-driven pipeline to study the conversion from internal
combustion engine electric vehicles in FFCS. Strongly relying on real FFCS data, op-
timization algorithms, and machine learning techniques, I depicted a pipeline able to
evaluate the performances of electric FFCS in hot and cold start-up scenarios.

In the first part of my thesis, I described the data gathering, scraping real users’ ride
from operative combustion engine FFCS. Then I characterized the users’ habits in 2017
for two FFCS providers: car2go and Enjoy. I highlighted the difference between one-
way CS, two-ways CS, and FFCS, which pointed out how the users prefer flexibility
over costs. Once all the data are consolidated, I developed an electric FFCS event-based
trace-driven simulator. It takes into input the list of rentals events, the infrastructure
setups (in terms of charging station placements, car consumptions), and the provider’s
fleet management policies. It replicates users’ patterns and returns as output the met-
rics describing system performance (complete battery depletion, car unavailability) and
users’ discomfort caused by car plugging procedures. Armed with this, I initially inves-
tigated the best electric FFCS setup varying case of study city (and thus users’ patterns),
finding how an electric FFCS is sustainable with few charging stations. Next, I improved
the solution of the previous step by running several optimization algorithms maximiz-
ing both system resilience and minimizing the users’ discomfort. Then, I moved my
attention to users’ ride predictability, computing how weather and socio-economics as-
pects are related to the users’ trips. Finally, I simulated possible electric FFCS growth
targeting which are the most sensible parameters, and how profitable an electric FFCS
may be.

The results are surprising. In particular, the data-driven charging station placement
showed how the current demand might be sustained with only 104 charging poles in a
city of about 1 million inhabitants like Turin. This estimate may still be reduced with
ad-hoc algorithms at 72 poles. Finally, the scalability studies (made open source) may
lead FFCS providers and policymakers aware of all the benefits of electric mobility.

However, the research presents several limitations. In particular, the dataset is com-
posed of passive measurements, the reason that it is impossible to distinguish users’
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trips and unallocated missed trips. The software does not really know when the users
did not find an available vehicle nearby. Moreover, the real traveled distances are un-
known due to the anonymization related to privacy. This should not really impact
macro analyses, but it becomes sensible when it necessary to perform neighborhood-
grained optimizations. This dissertation does not take into account fleet management
(relocation). This topic opens several research threads that need a pragmatic formula-
tion and sophisticated upgrade to the software. Finally, the recent COVID-19 pandemic
changed drastically both private and shared users’ patterns opening new questions on
mobility sustainment in smart cities.

In general, I believe my thesis proposes a pragmatic methodology to study the elec-
tric (r)evolution of shared mobility. It will be very challenging and stimulating for me
to face the unsolved problem in my future research career.
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Appendix A

Simulator Structure

A.1 Introduction
In this chapter I provide high level details about the simulator structure. In particu-
lar I provide the module composition in A.2 where I describe the three fundamental
simulator’s entity: the Car, the Event and the Zone modules. After that, I provide im-
plementation details about the the simulator workflow in section A.2.

A.2 Inputs
In this section I describe the implementation details of the most relevant inputs that the
simulator depicted in chapter 5. There are three main that models the mobility in the
simulator: the car, the event and the city_tiles collection.

A.2.1 Car module
The car module is the class that implements all the operation related to the car. The
significant attributes of this class reported in table A.1 Intuitively, the car present several
methods that set and get parameter to e from the object instance. In particular, the by
varying the consumption it is possible chose another car model.

A.2.2 Event module
This module represents the two possible events that trigger cars’ status and moving
trajectories. It contains as attributes make it possible distinguish between rental start
and rental end, the geo-temporal coordinates. Keep in mind that the zone ID is obtained
by joining the events coordinates into the 500m x 500m tiling procedure whom I divided
the city. The Event temporal sequences represents the simulator’s input trace. It exactly
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Attribute Description
ID car identifier

startTime timestamp when the rental starts
startChargeTime timestamp marking the starts of plugging procedure

startZone zone ID where the users rents the car
startEventID event ID that makes the car busy
currentZone zone ID of car current position

isBusy flag stating when a car is rented
onCharge flag stating when a car is plugged

soc battery state of charge [%];
consumption consumption [%kWh/km];

Table A.1: Car module attributes

replicate the users’ demand in terms of temporal and spatial habits. Table A.2 reports
the main attributes of the Event module.

Attribute Description
ID event identifier
type rental start or rental end

timeStamp timestamp marking the event shot
zoneID zone ID where the event happens

nextPrevEventID
stores the related Rental end ID

if the event is a Rental start and viceversa

Table A.2: Event module attributes

A.2.3 Zone module
This module models the 500m x 500m whom the city is divided during the simulation.
It is useful to marks the tracks the cars available in a given zones and that can be used
to satisfy the users’ demand. The interaction between Car and Zone module replicates
the users-car-FFCS system interaction. If a zone is desgined to host a charging station,
other attributes are set in order to properly simulates the plugging procedures. Table
A.3 reports themain attributes of the Eventmodule, while table A.4 shows the attributes
that are used when a zone hosts a charging station.
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Attribute Description
ID zone identifier

availableCars list of Car module IDs of all the cars parked in the zone
timeStamp timestamp marking the event shot

neighbours
list of zone IDs corresponding to the cells

in the North, South, West and East
isChargingStation flags stating if the current zone hosts a charging station

Table A.3: Zone module attributes

Attribute Description
numberOfPoles total number of available plugs

busyPoles list of car IDs representing the curren plugs
suppliedPower [kWh]

Table A.4: Zone module attributes when the zone hosts a charging station

A.3 Simulator Core
In this section I illustrate how the main simulator logic blocks. The algorithm A.1 illus-
trates the main steps. All the input variables are global and accessible from the inner
code. It is basically composed by a main loop that consumes the event set trace(line 2).

A.3.1 Main block
The block between lines 3 and 7 manages the users’ car lookup procedure. In line 4
the the software looks for the closest car to the zone where the rental starts. In line
5 the simulator sets the parameters that records car status before the rental starts like
starting position and new state of charge (if the car were plugged). Finally, line 6 moves
the current car in the list of rented cars.

On the other hand, the block from line 8 to line 13 manages the users’ rental end.
In particular, line 9 performs the lookup procedure to retrieve the car involved in the
rentals. Line 10 manages the car parking according the set policy. Line 11 updates the
car state of charge, decreasing it proportionally to the travelled distance. Line 12, at the
end of the ride computes the log that will be used to compute all the KPIs .

A.3.2 Functions
In this section I provide the logic behind the th two main function of algorithm A.1.

In particular algorithm A.2 illustrate the dynamics implemented while the a user
look for a car when a rental start event is triggered. The block between line 2 and line 7
corresponds to looks for a car in the same zones of the event. If there are, the function
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Algorithm 2: Main simulator structure
Input : 𝐸𝑣𝑒𝑛𝑡𝑠 -List composed by rental start and rental end
Input : 𝐶𝑎𝑟𝑠 - List composed by cars elements representing the all the available cars
Input : 𝑅𝑒𝑛𝑡𝑒𝑑𝐶𝑎𝑟𝑠 - List composed by cars elements representing the all the rented cars
Input : 𝐶𝑖𝑡𝑦 - List composed by zones previously initialized with the charging station placement
Input : 𝑝𝑜𝑙𝑖𝑐𝑦 - Policy controlling the car releases and plugging
Input : 𝑤 - users willing to collaborate with the system
Input : 𝜋 - security threshold for state of charge

1 for event in Events do
2 if (event.type == ”start”) then
3 car_id = getClosestCar(event.zoneID)
4 Cars[car_id].reserveCar(event)
5 RentedCars.append(Cars[car_id])
6 end
7 else
8 car_id = lookupCar(event)
9 Cars[car_id].updateSoC(event)

10 releaseCar(car_id, event)
11 computeMetrics()
12 end
13 end

Figure A.1: Pseudocode of the simulator

Algorithm 3: Structure getCloserCar()
Input : 𝑒𝑣𝑒𝑛𝑡 - rental start event
Output: 𝑐𝑎𝑟_𝑖𝑑 - ID of the closest car

1 listOfAvailableCars = []
2 for cars_id in City[event.zoneID].availableCars() do
3 listOfAvailableCars.append(cars_id)
4 end
5 if (listOfAvailableCars.length > 0) then
6 return getRandom(listOfAvailableCars)
7 end
8 else
9 for zone_id in City[event.zoneID].neighbours() do

10 for zone_id in City[zone_id].availableCars() do
11 listOfAvailableCars.append(cars_id)
12 end
13 end
14 return getRandom(listOfAvailableCars)
15 end

Figure A.2: Pseudocode of the simulator

returns one random cars. The lines from 8 to 14 implement, with the same logic, the car
search in the neighbouring areas if the previous search did not produce any available
car.

The algorithm A.3 shows the car return management. More in details, the lines of
cod from 1 to 6 manages the the so-called Free-Floating policy: the users plug the car
only if there are charging station and available spots in the desired arrival zone.

Conversely, line from 7 to 12 force the user to plug the car only when the car state
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Algorithm 4: Structure of the releaseCar()
Input : 𝑐𝑎𝑟_𝑖𝑑 - car to park
Input : 𝐸𝑣𝑒𝑛𝑡 - rental end event

1 if policy == ”free-floating” then
2 if City[event.zoneID].isChargingStation() &
3 City[event.zoneID].busyPoles < City[event.zoneID].numberOfPoles then
4 Cars[car_id].onCharge = True
5 end
6 end
7 if (policy == ”needed”) then
8 if Cars[car_id].soc < 𝜋 then
9 zone_id = getClosestChargingStation(event.ZoneID)

10 Cars[car_id].reroute(zone_id)
11 Cars[car_id].onCharge = True
12 end
13 end
14 if (policy == ”hybrid”) then
15 userWilling = getRandom(0,1)
16 if (
17 City[event.zoneID].isChargingStation() &
18 City[event.zoneID].busyPoles < City[event.zoneID].numberOfPoles &
19 userWilling> w
20 ) |
21 (Cars[car_id].soc < 𝜋 ) then
22 zone_id = getClosestChargingStation(event.zoneID)
23 Cars[car_id].reroute(zone_id)
24 Cars[car_id].onCharge = True
25 end
26 end

Figure A.3: Pseudocode of car releasing

of charge is below the security 𝜋 threshold. It is possible to notice how line 9 manages
the rerouting towards the closest charging station so far as the designed arrival zones
does not have available charging poles.

Finally, lines 15 to 25 describes the hybrid policy which combines the constraints of
the needed and hybrid ones. In particular the random willingness selected in line 15
and tested in line 19 simulates the the condition on the users’ selfishness. The higher
the w value is the less probable is that the users decide to plug the car at the end of a
ride.
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List Of Publications

B.1 Journal Publications
• Cocca, M., Giordano, D., Mellia, M., & Vassio, L. (2019). Free floating electric car
sharing design: Data driven optimisation. Pervasive and Mobile Computing, 55,
59-75.

• Alencar, V. A., Rooke, F., Cocca, M., Vassio, L., Almeida, J., & Vieira, A. B. (2019).
Characterizing client usage patterns and service demand for car-sharing systems.
Information Systems, 101448.

• Cocca, M., Giordano, D., Mellia, M., & Vassio, L. (2019). Free Floating Electric
Car Sharing: A Data Driven Approach for System Design. IEEE Transactions on
Intelligent Transportation Systems, 20(12), 4691-4703.

• Cocca, M., Teixeira, D., Vassio, L., Mellia, M., Almeida, J. M., & Couto da Silva, A.
P. (2020). On Car-Sharing Usage Prediction with Open Socio-Demographic Data.
Electronics, 9(1), 72.

B.2 Conference Publications
• Ciociola, A., Cocca, M., Giordano, D., Mellia, M., Morichetta, A., Putina, A., &
Salutari, F. (2017, August). UMAP: Urban mobility analysis platform to harvest
car sharing data. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1-8). IEEE.
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optimization of charging station placement for EV free floating car sharing. In
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