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Abstract: In this paper, the effects of wheel slip compensation in trajectory planning for mobile
tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot
architecture is marked out, then an experimental campaign is done to identify if it is possible to
kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the
close connection to the experimental data, the results shown are valid only for Epi.q, the prototype
that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to
any mobile robot subject to large lateral slip.

Keywords: mobile robots; tractor-trailer; wheel slip compensation; kinematics

1. Introduction

In recent years, autonomous navigation applied to mobile robots is a rising trend.
Within this field, trajectory planning and control is one of the most studied themes.
Along with the growth of the mobile robotic fields of application, new and better per-
formance is required from robots. In particular, off-road capabilities, quick manoeuvring at
high speed, and particular locomotion architectures require a deep understanding of how
the robot dynamically behaves to develop proper trajectory planning and control.

Lateral and longitudinal wheel slips are two of the most common phenomena to be
faced in order to compensate undesired robot behaviour. Many of the existing works in
mobile robotics overcome these issues assuming pure rolling conditions of the wheels,
neglecting, therefore, wheel slip [1–5]. These issues are instead largely studied in the
automotive field due to similar interest in handling control [6,7]. Wheel slip is almost
impossible to be measured directly; therefore, in most of the cases, it has to be estimated.
Thus, many slip estimation approaches have been proposed [8], such as sliding mode con-
trol [9,10], motor current sensing control [11], Kalman [12,13] or particle filter [14,15] based
estimations, IMU-based slip estimation [16], and vision-based estimation [17]. All these
methods have advantages and limitations reported in depth in the literature. Generally
speaking, the best-performing solutions require a structured environment (i.e., vision-based
systems) or intensive computation load in order to model, estimate, and control the robot
correctly. Therefore, it is not always possible to meet the requirements of the various solu-
tions, either because it is not possible to setup in advance the work environment, because
the control unit is not capable to manage the slip compensation complexity, or maybe be-
cause it is already overburdened by other heavy tasks. For this reason, this paper proposes
a very simple approach based on adjusting kinematics parameters to compensate the large
lateral wheel slip. A vaguely similar approach was adopted in a couple of cases among
tracked robots in order to correlate the complex tracks interaction with the soil with a
simpler wheel–ground contact [18,19].

The idea behind this approach is to characterise the mobile robot through an exper-
imental campaign with the aim of finding a simple correlation between the ideal and
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expected kinematic trajectory and the measured one. Then, by means of the experimental
correlation between the desired and observed behaviour, it is possible to adjust some robot
control reference input signals with the aim of obtaining a trajectory closer to the kine-
matic one by compensating undesired handling behaviours due to dynamic phenomena.
The experimental correlation between key parameters, such as the yaw rate and path
curvature radius, should be simple enough to be easily and quickly computed by any
robot control unit. This approach is strongly related to the robot (and the environment)
that has been characterised. However, if a good identification is done, it is possible to
obtain a very simple correlation between parameters that can be easily used to compute
the required corrections.

This paper briefly introduces a kinematic model of the mobile robot that is then used to
fit the experimental results. Post-processing the data, a correlation between the theoretical
and experimental results is found and used to compensate the divergence between the two.

2. Kinematic Model

This section summarises the theoretical background of the study. Initially, the robot is
briefly presented, then the kinematic model is derived.

2.1. Robot Architecture

This study focus on Epi.q (Figure 1), the last model of a family of modular surveil-
lance UGV [20]. It is composed of two practically identical modules linked together by
a 2 DOF (relative yaw and relative roll rotations) joint. Its most notable feature is the
architecture of its hybrid legged-wheeled locomotion unit (Figure 2): the unique design
is an underactuated epicyclic gearing system driven by a single electric motor coupled
to the sun gear; depending on the forces acting on the wheels and the carrier, the motor
imposes a rotation motion to the wheels, to the carrier or both of them [21]. Hence, this lo-
comotion unit enables to overcome little obstacles using the carrier as a legged rotating
unit. While this locomotion unit enables interesting behaviour, during more conventional
navigation, all wheels of the same unit are constrained to spin at the same speed due to the
nature of the gearing system. This inevitably leads to a very evident phenomenon of large
lateral wheel slip during curved trajectories, even at low speed.

This drawback can be addressed in several ways to obtain the desired trajectories,
compensating the divergences from the kinematic model. The authors have proposed an
initial attempt to dynamically model the behaviour of a robot with a similar architecture [22].
In this study, however, a different approach, purely based on kinematic models, is taken.

Figure 1. Epi.q, modular surveillance UGV.
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Figure 2. Schematic representation of Epi.q and its locomotion unit.

2.2. Kinematic Model

The kinematic model is based on the following hypothesis:

• The model is purely kinematic.
• The model considers only planar motion on a flat surface; out-of-plane motions

are neglected.
• The locomotion units are simplified considering a single equivalent wheel per side

with the axis passing through the centre of mass of the module.

Figure 3 represents the kinematic module, where (xn, yn, ϕn) is the pose of the n-th
module (n = 1 for the front module, n = 2 for the back one), δ is the relative yaw rotation
between the front and rear module, i is the track of the module, a = 0.132 m and b = 0.139 m
are the distances between the central joint and the front and rear modules respectively,
and vn is the longitudinal speed of the n-th module in its reference frame.

Figure 3. (a) Epi.q kinematic model. (b) The kinematic model with virtual non-slipping wheels.
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The geometric relations between the modules impose the following constraints:

x2 = x1 − b cos ϕ2 − a cos ϕ1 (1)

y2 = y1 − b sin ϕ2 − a sin ϕ1 (2)

δ = ϕ1 − ϕ2 (3)

Moreover, two additional holonomic constraints can be defined:

.
x1 sin ϕ1 −

.
y1 cos ϕ1 = 0 (4)

.
x2 sin ϕ2 −

.
y2 cos ϕ2 = 0 (5)

The velocity in the world reference frame of each module is defined as:

.
x1 = v1 cos ϕ1 (6)

.
y1 = v1 sin ϕ1 (7)
.
x2 = v2 cos ϕ2 (8)
.
y2 = v2 sin ϕ2 (9)

Hence, the kinematic system can be defined as:

.
q =


.
x1.
y1.
ϕ1.
δ

 = A
[

v1.
ϕ1

]
(10)

The relation of
.
δ as a function of v1 and

.
ϕ1 can be obtained differentiating Equations (1)–(3)

in time and substituting the results in Equation (5). With some manipulation, it is possible
to get:

.
δ =

( a
b

cos ϕ1 + 1
) .

ϕ1 −
1
b

sin δv1 (11)

Thus, the kinematic model can be explicitly written as:

.
q =


.
x1.
y1.
ϕ1.
δ

 =


cos ϕ1 0
sin ϕ1 0

0 1
− 1

b sin δ a
b cos ϕ1 + 1

[ v1.
ϕ1

]
(12)

Considering that each module behaves as a skid steering robot, it is possible to rewrite
the latter relations in an alternative form considering the two following relations:

v1 =
1
2
(v1R + v1L) (13)

.
ϕ1 =

1
i
(v1R − v1L) (14)

Therefore:

.
q =


.
x1.
y1.
ϕ1.
δ

 =


1
2 cos ϕ1

1
2 cos ϕ1

1
2 sin ϕ1

1
2 sin ϕ1

1
i − 1

i
a cos δ+b− i

2 sin δ
bi − a cos δ+b+ i

2 sin δ
bi


[

v1R
v1L

]
(15)
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v1Rv1L are easily related to the motor angular speeds ω1R and ω1L by knowing the
wheel radius rwheel = 32mm and the transmission ratio of the gearing system τadvancing = 4.1.

3. Experimental Identification of the Estimator
3.1. Experimental Setup

This section delineates the main points of the experimental setup required to study
the behaviour of the robot while performing curve trajectories. As already introduced,
Epi.q was the robot used in this study. Its front module motors were velocity controlled to
achieve the desired curved trajectory, while, for these tests, the rear motors were disabled;
therefore the robot behaved similarly to a tractor-trailer system instead of two independent
active modules linked together. Relevant on-board measurements, such as motor angular
speed, were transmitted in real-time to a PC, where they were logged. The visual-based
tracking system, described in depth in [23] and summarised in the following section,
was used to track the actual trajectory of the robot. Several tests at different motor speeds
were performed and then used to compare the actual trajectory with the theoretical one.

3.2. Tracking Method

As can be seen in Figure 4, two ArUco markers, a set of open source square fiducial
markers, designed for the fast processing of high quality images [24–26], were fixed to
the robot (one per module), while one was fixed to the ground at an arbitrary location.
The camera recording the tests was free to move in the environment; its position only affects
the accuracy of the measure. The test recordings were then post-processed by a custom
marker-tracking algorithm that first searched for a set of markers and then estimated the
homogeneous transformation TC

n , a representation of the pose of the nth marker in the
camera reference frame. The poses (x1, y1, ϕ1) and (x2, y2, ϕ2) of the two moving markers
were then estimated with respect to the marker fixed to the ground, representing the world
reference frame, by applying a concatenation of homogeneous transformations such as
T0

n = TC
n T0

C = TC
n TC

0
−1. With this approach, the camera can move freely, and the tracking

results could still cohere to the desired reference frame. As anticipated, the camera position
only influenced the accuracy of the measure, since the system used just a single camera;
therefore, the picture depth estimation was noisy.

Figure 4. Experimental setup with a schematic representation of the visual-based tracking system.
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3.3. Results

Table 1 collects the test performed with the robot together with the kinematic inputs
and the main parameter used as comparisons, such as the curve radiuses and the estimated
track between the wheels. The theoretical radius Rth was computed using the kinematic
relation Rth = v1.

ϕ1
, which is the expected curve radius if the mobile robot behaviour is

purely kinematic. The radius R̂ is the radius of the trajectory curve estimated from the
experimental data collected by the vision-based tracking system. As expected, the esti-
mated radius was always larger than the theoretical one, reflecting the under-steering
behaviour due to the large lateral wheel slip. The estimated track î, instead, was obtained
fitting the tracked trajectory with the kinematic model described in the previous section,
where the same kinematic input v1R and v1L that have been logged experimentally have
been used as input to the model. By recalling the model described before, this trend can
be interpreted as that the virtual axle used in the model is wider than the actual track in
order to mathematically represent the under-steering behaviour of the robot. R̂ and î are
two different way to represent the robot under-steering tendency with a basic difference:
R̂ is purely based on the fitting of the measured trajectory with a circle, while î is obtained
fitting the whole kinematic model shown before using the measured kinematic input in
order to match as close as possible the robot behaviour.

Table 1. List of tests and their parameters.

Test Longitudinal
Speed v1 [m/s]

Yaw Rate
.

ϕ1 [rad/s]
Theoretical

Radius Rth [m]
Estimated

Radius
^
R [m]

Estimated

Track
^
i [m]

1 0.412 0.961 0.429 0.452 0.303
2 0.393 0.915 0.430 0.458 0.296
3 0.310 0.616 0.504 0.621 0.319
4 0.319 0.596 0.535 0.598 0.314
5 0.384 0.940 0.408 0.427 0.333
6 0.405 1.001 0.405 0.525 0.336
7 0.299 0.305 0.983 1.225 0.333
8 0.285 0.311 0.916 0.965 0.337

Figure 5 depicts a comparison between the various trajectories taken into account
for each test. Figure 5a shows a comparison of the measured trajectory and the resulting
curves of the two kinematic models when the measured input data are used. The difference
between the two kinematic models and the actual measured data can be interpreted as the
lack of dynamic phenomena modelling, such as robot inertia, wheel longitudinal, and lat-
eral slip. By making a comparison between the two kinematic models instead, the results
described before are again evident: the kinematic model with the estimated track length î
(“Fit Kin.”) has a more under-steering behaviour compared to the kinematic model with the
actual track length (“Th. Kin.”). Since the fitted kinematic model is a better approximation
of the actual robot trajectory, it could be said that a kinematic model with virtual wheels
with a slightly increased track length î could partially compensate unmodelled dynamic
behaviours better than the kinematic model with the actual track length.

Figure 5b shows a comparison between two circles and the steady-state part of the
measured trajectory: the actual trajectory is not an exact circle, but the two circles approxi-
mate it, one better than the other. Again, it appears from the results that the kinematic circle
of radius Rth is smaller and a worse approximation of the actual data than the circle with
the estimated radius R̂. This figure depicts more clearly that, if a purely steady-state com-
parison is made, the perfectly circular kinematic trajectories could be a good approximation
of the real one.
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Figure 5. Test 1: trajectories comparison. (a) Comparison between kinematic models and measured
data. The theoretical kinematic curve (“Th. Kin.”) uses the actual robot parameters, while the other
trajectory (“Fit Kin.”) use the best fitting track length î. (b) Comparison between measured data,
steady-state kinematic trajectory with radius Rth and best fitting circle with radius R̂.

Figure 6 highlights the latter statements even better; the figure shows the instanta-
neous curvature radius of the two kinematic models over time, and how the two curves
reach a steady-state very close to the value of the radius of the circle described before.
The theoretical kinematic model tends toward Rth = v1.

ϕ1
, while the kinematic model with

the corrected track length î tends to the value of R̂, the radius of the best-fitting circle.

Figure 6. Test 1: Trajectory radius comparison.

As described before, the virtual track length that better fits the experimental trajectories
î is always larger than the robot actual track length i = 0.286 m to mathematically describe
the under-steering behaviour of the robot that, otherwise, the theoretical kinematic model
could not represent. Figure 7, in particular, illustrates that there is a strong correlation
between î and the front module yaw rate

.
ϕ1: the quicker the robot turns, the higher the

fitted virtual length is, or, from another point of view, the quicker the robot turns, the more
evident the dynamic effects on the handling, such as under-steer and wheel slip, become
more relevant.
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Figure 7. Test 1: Estimate track length î as a function of the yaw rate
.
ϕ1, experimental data and

linear trend.

Figure 7 also shows that the data trend could be approximated by the linear function:

î = p1
.
ϕ1 + p2 (16)

where p1 = 0.049 m s and p0 = 0.286 m are the coefficients of the linear function.
This very simple relation could be used to predict and, therefore, partially compensate

the unmodelled dynamic effects of the kinematic model. It is important to state that this
particular relation holds only for working scenarios identical, or at least very similar, to the
experimental setup. Unfortunately, this simple approach has as a downside the limitation
of being valid only in tested and specific scenarios. Nevertheless, a robot working in a
well-known and uniform environment could benefit from this approach.

The latter equation can be rewritten in order to explicitly show the relation between î
and the radius R by recalling that R = v1/

.
ϕ1:

î = p1
v1

R
+ p0 (17)

Due to its simplicity, the relation can also be easily rewritten as:

R =
p1v1

î − p0
(18)

Hence, depending on the case and the known and unknown parameters, it is pos-
sible to compute, using a simple linear equation, the correction parameters that could
compensate for undesired behaviour in a robot.

4. Conclusions

In this paper, a simple and computationally efficient solution is proposed to predict,
estimate, and compensate complex dynamic behaviour, such as significant lateral slip,
which highly influences the mobile robot handling employing an experimental kinematic
characterisation. Compared to the commonly used approaches to similar issues, the results
shown herein are highly dependent on a particular robot and a particular environment.
The fitting method behaves sufficiently well at lower speeds and yaw rates, but when
velocities increase, or more generally, when the dynamic phenomena are more relevant,
the robot handling behaviour diverges from a purely kinematic one in a manner that is
not easily compensated by the proposed fitting method. However, its simplicity makes
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its application feasible to any kind of kinematic architecture of mobile platforms where
the wheels transversal slip is significant. Moreover, its computational efficiency allows
its implementation at low-power, low-performance, or overburdened control units. As a
future work, the validity of the proposed method can be tested on other machines of the
class of eight-wheeled mobile articulated robots developed at Politecnico di Torino (such as
the Agri.q rover for precision agriculture, or even the Rese.q snake rescue robot). Prior to
a proper identification of the virtual track, in fact, the methodology can be used both to
estimate the actual trajectories of the robot modules and, above all, to enhance the precision
of a robot’s motion planning with a consequent improvement of the robot’s control within
its workspace.
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