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Abstract. Partial differential equations describing the dynamics of cell pop-
ulation densities from a fluid mechanical perspective can model the growth of

avascular tumours. In this framework, we consider a system of equations that
describes the interaction between a population of dividing cells and a pop-

ulation of non-dividing cells. The two cell populations are characterised by

different mobilities. We present the results of numerical simulations displaying
two-dimensional spherical waves with sharp interfaces between dividing and

non-dividing cells. Furthermore, we numerically observe how different ratios

between the mobilities change the morphology of the interfaces, and lead to
the emergence of finger-like patterns of invasion above a threshold. Motivated

by these simulations, we study the existence of one-dimensional travelling wave
solutions.

1. Introduction. Partial differential equations (PDE) describing the dynamics of
cell population densities from a fluid mechanical perspective can model the growth
of avascular tumours [2, 20, 23]. These models rely on the observation that, when
in mechanical contact with other cells, proliferating cells exert a pressure on their
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neighbours. This pressure results in a mechanical form of cell motion (i.e. neigh-
bouring cells are pushed and forced to move) and, above a certain threshold, it can
also induce quiescence due to competition for space [5, 12, 22].

Such PDEs can be used to investigate possible mechanisms that underlie cancer
invasion, such as: the effects of local pressure gradients which are generated by
proliferation and competition for space and resources; conditions for preserving the
initial radial symmetry of the tumour, and conditions for developing irregular shapes
and invading the surrounding tissue [1, 3, 8, 9, 6]. Moreover, it is now known that
models of this type are equivalent, in the incompressible limit, to models of tumour
growth which are formulated as free boundary problems [18, 19].

In this framework, we consider a PDE model describing the time dynamics of
a population of dividing cells and a population of non-dividing cells, coupled by
pressure forces. The two populations are characterised, respectively, by the local
density of dividing cells m and the local density of non-dividing cells n, governed
by the following system of equations: ∂tm− µ div(m ∇p) = G

(
p
)
m,

∂tn− ν div(n ∇p) = 0.
(1)

The second terms on the left hand sides model the tendency of cells to move down
pressure gradients, and rely on the definition of the cell velocity fields through
Darcy’s law [7, 14]. The parameters µ > 0 and ν > 0 stand for the mobility
(i.e. the quotient of permeability and viscosity) of dividing cells and non-dividing
cells, respectively. In the compressible description, the pressure p is given by a
constitutive relation whose desirable properties are discussed, for instance, in [10].
For simplicity, we follow the lines of [8] and [19], and we use the constitutive relation

p := Kγ (n+m)γ , Kγ :=
γ + 1

γ
, (2)

where the parameter γ ≥ 1 controls the stiffness of the pressure law. Finally, the
net growth rate G satisfies

G′
(
·
)
< 0, G

(
PM
)

= 0. (3)

Assumptions (3) mean that competition for space decreases the cell division rate
according to the local pressure. The parameter PM > 0 models the threshold
pressure above which dividing cells are entering a quiescent state (i.e. the so-called
homeostatic pressure) [8, 22].

It is worth noting that, if we use m for the local density of cancer cells within
a solid tumour and n for the concentration of cells in homeostatic equilibrium that
surround the solid tumour, the case µ > ν is the most biologically relevant one. In
fact, the loss of junctional contacts, such as the loss of E-cadherin mediated adhesion
induced by the nuclear up-regulation of soluble β-catenin [21], endows cancer cells
with a much higher mobility compared to the cells of the surrounding tissues.

Also, some biological scenarios are not captured by the system of equations under
study. For instance, there are other PDE models for the dynamics of dividing and
non-dividing cells which allow cells to pass from one state to the other, and include
a death term for non-dividing cells as well. We refer the interested reader to [13, 25],
and references therein.

Our work follows earlier papers that are devoted to study the existence of travel-
ling wave solutions with composite shapes and discontinuities for cell-density models
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of avascular tumour growth [18, 19, 26]. These papers consider one single nonlinear
PDE, while we deal with a nonlinear strongly-coupled system of PDEs. This repre-
sents a novel fundamental difficulty, and the current literature still lacks a system-
atic characterisation of such systems of equations, with the exception of semilinear
cooperative systems. In this respect, it has been speculated that the system (1)
could exhibit various behaviours depending on the values of the parameters µ and
ν [12]. A first observation is that segregation can occur: dividing and non-dividing
cells remain well separated through a sharp interface. Phenomena of this type have
already been analyzed for related parabolic systems [11, 17]. Furthermore, two-
dimensional spherical waves could be stable in the case when µ < ν, while they
could become unstable for µ > ν. The rationale behind this intuition is that, since
mobility is inversely proportional to viscosity, the case µ > ν corresponds to the
situation where one “less viscous fluid” (dividing cells) expand into a “more viscous
fluid” (non-dividing cells). This might trigger the emergence of patterns that would
be reminiscent of the viscous fingering resulting from Saffman-Taylor-like instabil-
ities [24], i.e. those instabilities that can be observed when a less viscous fluid is
injected into a more viscous fluid in a radial Hele-Shaw cell.

The aforementioned intuitions are supported by our numerical simulations which
we report in Section 2. They display sharp interfaces and show that two-dimensional
spherical waves are stable for µ < ν and can be unstable for µ > ν. Motivated by
these results, our goal here is to investigate the profile of one-dimensional travelling
waves for the system (1) by using numerical simulations and qualitative analyses.

One-dimensional travelling waves may provide a tractable way to explain both
segregation and the profiles of two-dimensional spherical waves through, for in-
stance, transversal instability [15]. They are solutions of the form

m(x, t) = m(x− σ t) and n(x, t) = n(x− σ t),

where the constant σ > 0 represents the travelling wave velocity. Substituting these
travelling wave ansatz into equations (1) gives

−σm′ − µ (m p′)′ = G(p) m, (4)

−σn′ − ν (n p′)′ = 0. (5)

An observation we will use throughout our analysis is that, since p′ vanishes at ±∞,
equation (5) gives

(σ + ν p′) n = σ n∞, n −→
x→±∞

n∞. (6)

In Section 3, we construct travelling wave solutions such that, in (6), we have
n∞ = 0 for all values of µ and ν. These solutions have compact support in n, and
they display a remarkable qualitative difference between the cases µ < ν (when they
exhibit a segregation effect) and µ > ν (when stable mixing occurs). Notice that
any two functions m and n such that Kγ (n+m)γ = PM are solutions in the case
where σ = 0. In Section 4, we extend the construction to the case where n∞ > 0. In
this setting, travelling wave solutions still exist but they are numerically unstable
objects, and a numerical constraint has to be imposed to capture them.

2. Numerical observations. Based on numerical simulations, we first investigate
the behaviour of two-dimensional spherical waves that, as mentioned before, can be
unstable for µ > ν. To this end, we numerically solve the mathematical problem
defined by completing (1) with zero Neumann boundary conditions and the following
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initial conditions, which mimic a biological scenario where dividing cells expand in
an embedding medium made of non-dividing cells:

m(x, y, t = 0) := am e−bm (x2+y2) and n(x, y, t = 0) := an e
−bn (x2+y2), (7)

with

am = 0.1, an = 0.8, bm = 5× 10−1, bn = 5× 10−7.

Moreover, in view of the considerations drawn in [12, 26], and to satisfy assumptions
(3), we use the following definition for the net growth rate G:

G
(
p
)

:=
200

π
arctan

(
4 (PM − p)

)
+
, PM = 30. (8)

Finally, in line with the ideas presented in [18, 19], we choose γ = 30 (i.e. we focus
on the incompressible limit γ →∞).

Numerical computations are performed in Matlab. We select a uniform dis-
cretisation consisting of 4502 points on the square [−L,L] × [−L,L], with L = 45,
as the spatial domain. The method for calculating numerical solutions is based on
a time splitting scheme between the conservative parts and the reaction term. A
finite volume method is used for solving the conservative parts. Convection terms
are approximated through an upwind scheme, and the cell edge states are calculated
by means of a high order extrapolation procedure [16].

The numerical results are summarised in Fig. 1 and Fig. 2. These results high-
light how variations in the parameters µ and ν can lead to major changes in the
morphology of the interface between dividing cells and non-dividing cells.

Figure 1. Numerical observations in the case µ < ν. Plots
of the computed m (left panel) and n (right panel) at time t = 1
for ν = 2 and µ = 1. We observe the emergence of a spherical wave
of dividing cells pushing the surrounding non-dividing cells (left
panel), and an invasive front made of non-dividing cells that are
induced to move by the expansion of dividing cells (right panel).

Both figures show that the additional mass generated by cell divisions induces a
pressure gradient that moves the dividing-cell population against non-dividing cells.
On the one hand, when µ < ν, we observe the emergence of a spherical wave of
dividing cells pushing the surrounding non-dividing cells (see left panel in Fig. 2),
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Figure 2. Numerical observations in the case µ > ν. Plots
of the computed m (left panel) and n (right panel) at time t = 1
for ν = 1 and µ = 2. We observe the appearance of numerical
instabilities which result in finger-like patterns of dividing cells (left
panel) that protrude through and dislocate the surrounding non-
dividing cells (right panel).

and the creation of an invasive front made of non-dividing cells that are induced to
move by the expansion of dividing cells (see right panel in Fig. 1). On the other
hand, when µ > ν, the non-dividing cells cannot move away with the same speed
as the growth front. This triggers the formation of dendrites made of dividing cells
that protrude through and dislocate the surrounding non-dividing cells. As a result,
finger-like patterns of invasion emerge (see Fig. 2).

3. Discontinuous travelling waves with Supp(n) finite. Motivated by numer-
ical solutions in one dimension, we first search for discontinuous travelling wave
solutions that satisfy

p(−∞) = PM , Supp(m) = (−∞, 0], Supp(n) = [0, r]. (9)

Figure 3. The profile of p for the travelling wave when n has a
finite support that coincides with [0, r].



6 T. LORENZI, A. LORZ AND B. PERTHAME

Theorem 3.1. For all values of µ, ν and for M > 0 given, there are a speed σ and
a width r > 0 such that a solution of (4)–(5), (9) exists, with m non-increasing,
discontinuous at x = 0, and such that n satisfies∫ r

0

n(x)dx = M > 0 (given mass).

The pressure has a kink at x = 0 with sgn(p′′(0)) = sgn([p′]) = sgn(ν − µ). The
construction gives a limit as γ → ∞ (Hele-Shaw or incompressible limit), and the
speed satisfies

0 < σ <
νPM
M

.

The numerical solution obtained for µ < ν is shown in Fig. 4. If µ > ν, this
travelling wave solution is unstable, as it can be seen very intuitively by using
the proof below. Take a small perturbation of n near x = 0, for which n > 0 in
region II. Such perturbation will move with a velocity close to −νp′(0+) < −νp′(0−)
(see condition (16)). This means that the perturbation will further separate from
the main core rather than join it. The numerical solution obtained for µ > ν is
presented in Fig. 5. This figure displays a transient regime after which n is left
behind and m propagates alone (see also Supplementary Movie S1) with a profile
analogous to that observed in the case where n = 0. Such a profile resembles that
of travelling wave solutions to combustion models with non-linear diffusion which
has been previously presented by Berestycki et al. [4].

Proof. As depicted in Fig. 3, we work on two regions: region I that coincides with
[0, r] = Supp(n), and region II that is defined as (−∞, 0]. We use a shooting argu-
ment for the parameter σ that we fix at the beginning.

Step 1. Since we are considering the case n∞ = 0, (6) implies (σ + νp′)n = 0. In
region I, as n > 0, this leads to

p′ = −σ
ν
, p(x) =

σ

ν
(r − x), 0 ≤ x ≤ r; (10)

and therefore,

p(0) =
σr

ν
. (11)

The mass conservation gives the value of r by∫ r

0

n(x)dx =

∫ r

0

( 1

Kγ
p(x)

)1/γ
dx =

( 1

Kγ

)1/γ(σ
ν

)1/γ γ

γ + 1
r

1+γ
γ = M. (12)

Step 2. Adding equations (4) and (5), we obtain

− σ(m+ n)′ − ((µm+ νn)p′)′ = mG(p). (13)

Moreover, in region II, since n ≡ 0, we can rewrite equation (4) as

− σp′ − µ(p′2 + γpp′′) = γpG(p), (14)

and the solution has to satisfy

p(−∞) = PM (15)

and boundary condition (11) at x = 0. By the maximum principle p cannot have
a local minimum therefore p′(x) < 0 for x < 0. So the solution p is larger than
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p(0) on (−∞, 0) and the equation (14) is non-degenerate. Therefore the solution
p is continuous on (−∞, 0) and there is a point x0 < 0 such that p′(x0) > −∞.
Multiplying equation (13) by p and integrating over a bounded interval (x0, r) gives∫ r

x0

(µm+ νn) p′2dx ≤
∫ r

x0

mG(p) pdx−
(
(µm+ νn)pp′

)
(x0) <∞,

since m and p are bounded. Therefore, p′ ∈ L2
loc(x0, r) and so p is continuous; as a

consequence, m+ n is continuous as well. This also means that

m(0−) = n(0+).

Step 3. Integrating equation (13), we obtain

−σ(m+ n)(x)− ((µm+ νn)p′)(x) =

∫ r

x

G(p)mdy.

Using (10) and step 2, and by the continuity of p and m+ n, we deduce the jump
condition at 0 by

((µm+ νn)p′)(0−) = ((µm+ νn)p′)(0+),

p′(0−) =
ν

µ
p′(0+) = −σ

µ
. (16)

Step 4. Here we want to show monotonicity of p in σ. To this end, let us define
F (p) := pG(p) and q := ∂p

∂σ . Deriving equation (14) w.r.t. σ we obtain

− σq′ − µ(2p′q′ + γqp′′ + γpq′′) = γ
dF

dp
q + p′ (17)

with

q(−∞) = 0 and q′(0) = − 1

µ
.

Deriving equation (14) w.r.t. x we obtain

− σ(p′)′ − µ(2p′(p′)′ + γ(p′)p′′ + γp(p′)′′) = γ
dF

dp
p′ (18)

with

p′(−∞) = 0 and p′(0) = −σ
µ
.

We rewrite equations (17) and (18) as

−σq′ − µ(a1q
′ + a2q + a3q

′′) = a4q + p′

and

−σ(p′)′ − µ(a1(p′)′ + a2(p′) + a3(p′)′′) = a4(p′),

where the coefficients ai are implicitly defined. So we view the equations (17)
and (18) as linear in q and p′, respectively. Now, the function 1

σp
′ satisfies the

boundary condition of equation (17). Since there is the additional negative term

p′ on the right-hand side of the equation on q, we have ∂p
∂σ = q ≤ 1

σp
′ ≤ 0. With

this monotonicity it follows that the overdetermined problem at hand has a unique
solution for a single value σ. More precisely, we choose a σ̃ and solve equation (14)
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with the boundary conditions (15) and (16) to obtain p̃. Then we rewrite equation
(12) as

r = M
γ

1+γCγ

(σ
ν

)− 1
1+γ

,

where we implicitly define the constant Cγ . Plugging this expression for r in con-
dition (11) we obtain

p(0) = M
γ

1+γCγ

(σ
ν

) γ
1+γ

. (19)

In order to find (σ, p) such that also this condition is satisfied, we use that the
right-hand side of (19) is increasing in σ and that p̃(0) is strictly decreasing in σ̃.
In this way we obtain a unique solution (σ, p).
Step 5. One can go further in the Hele-Shaw (incompressible) limit γ →∞. In fact,
equation (14) is then reduced to find a solution of

− µp′′σ = G(pσ), pσ(−∞) = PM , pσ(0) =
σ

ν
M, (20)

which we have to match with the condition p′σ(0) = −σµ . Now we show that such a

value of σ is unique.
The above semilinear elliptic problem is standard and there is a unique solution

of (20). By the comparison principle (which holds true because G′(·) < 0), we
know that, for σ1 < σ2, we have pσ1

< pσ2
. Additionally, as p′′σ < 0, we deduce

that p′σ < 0, and thus we conclude that the profile is decreasing. Furthermore, by
integration

p′σ(0) =

∫ 0

−∞
p′′σ dx = − 1

µ

∫ 0

−∞
G(pσ) dx.

From the monotonicity in σ of pσ and because G′ ≤ 0, we deduce that p′σ(0) is an
increasing function of σ, while σ 7→ −σµ is decreasing. This proves a unique possible

match.
Finally, for σ∗

ν M = PM , we have pσ∗ ≡ PM , and thus p′σ∗(0) = 0. For σ = 0,
we have p′σ(0) < 0, and this allows us to conclude that there exists a value σ such
that p′σ(0) = −σµ .

4. An extension with n∞ 6= 0. We now provide a case where segregation does
not hold but a sharp interface is still present. In particular, we consider the case
where n does not vanish at infinity, that is, we impose the conditions

n(x) −→
x→±∞

n∞, p(−∞) = PM , Supp(m) = (−∞, 0], Supp(n− n∞) = [0, r], (21)

with n∞ > 0.

Theorem 4.1. Let µ, ν, n∞ with Kγn
γ
∞ < PM and M > 0 be given. There are

speeds σ and cell densities n0 > n∞ such that the solution of (4)–(5) exists, satisfies
the boundary conditions (21), with m non-increasing, and such that n satisfies

n(x) > n∞ ∀x > 0,

∫ ∞
0

[n(x)− n∞]dx = M > 0 (given mass).

The pressure has a kink at x = 0 with sgn(p′′(0)) = sgn([p′]) = sgn(ν − µ).

Proof. We use the same notations as in Section 3. In region I i.e. [0,∞), we can
rewrite equation (6) as

νp′ = νγnγ−1n′ = σ
(n∞
n
− 1
)
. (22)
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Figure 4. Travelling waves of Theorem 3.1 for µ < ν. Pro-
files of p (left panel), and m (right panel, red curve) and n (right
panel, blue curve) for the travelling wave in the case where n has
a compact support and µ < ν. The dashed line in the left panel
highlights the value of PM , while the dashed line in the right panel

highlights the value of
(
PM/Kγ

)1/γ
.

This gives a differential equation on n

n′ =
σ

νγ

n∞ − n
nγ

. (23)

Therefore, starting from a value n(0) = n0 > n∞, n is decreasing to n∞ with expo-
nential decay.

Notice that we can write n(x) = N
(
σ
ν x
)

with N the (parameter independent)
solution of

N ′ =
n∞ −N
γNγ

, N(0) = n0.

By an immediate monotonicity argument, we can fix uniquely n0 through the mass
condition

M =

∫ ∞
0

N
(σ
ν
x
)
dx =

ν

σ

∫ ∞
0

N(x)dx,

∫ ∞
0

N(x)dx =
σ

ν
M.

In other words, there is a function N0 such that

n0 := N0
(Mσ

ν

)
, and

d

dz
N0(z) > 0, N0(z) −→

z→∞
∞, N0(0) = n∞.

As before, we complete in region II for x < 0. Since m(0−) = n0 − n∞ (no jump
on p and on m+n), we can find again the jump condition on p′(0) and thus achieve,
see condition (13),(
(µm+ νn)p′

)
(0) = 0,

p′(0−)

p′(0+)
=

(
µm+ νn

)
(0+)(

µm+ νn
)
(0−)

=
νN0

(
Mσ
ν

)
µ
[
N0
(
Mσ
ν

)
− n∞

]
+ νn∞

.
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Figure 5. Transient regime of Theorem 3.1 for µ > ν.
Profiles of p (left panel), and m (right panel, red curve) and n (right
panel, blue curve) in the case where n has a compact support and
µ > ν. The dashed line in the left panel highlights the value of
PM , while the dashed line in the right panel highlights the value

of
(
PM/Kγ

)1/γ
. This figure shows a transient regime after which

n is left behind and m propagates alone (see also Supplementary
Movie S1).

Therefore, thanks to (22), we find

p′(0−) = −σ
µ

(
1− νn∞

µ
[
N0
(
Mσ
ν

)
− n∞

]
+ νn∞

)
. (24)

Then, it remains to solve the equation for m, or equivalently p since n = n∞,
that is (14). It comes with the overdetermined conditions p(−∞) = PM , p(0) =

Kγ

(
N0
(
Mσ
ν

))γ
and (24). The monotonicity argument remains true and thus the

solution is again unique and m is decreasing.

For µ > ν, we have

p′(0−)

p′(0+)
≤

νN0
(
Mσ
ν

)
ν
[
N0
(
Mσ
ν

)
− n∞

]
+ νn∞

= 1.

The travelling wave solution of Theorem 4.1 is highly numerically unstable, and
we have to impose a numerical constraint to capture it, that is, we solve

∂tm− µ div(m ∇p) = G
(
p
)
m,

∂tn− ν div(n ∇p) =
(
n− n∞

)
+
,

(25)

instead of solving (1). The numerical solution obtained for µ < ν is shown in
Fig. 6. If µ > ν, the numerical results summarised in Fig. 7 suggest that the
travelling wave solution becomes unstable, and the sharp interface of Theorem 4.1
cannot propagate.
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Figure 6. Travelling waves of Theorem 4.1 for µ < ν. Pro-
files of p (left panel), and m (right panel, red curve) and n (right
panel, blue curve) for the travelling wave in the case where n does
not vanish at infinity and µ < ν. The dashed line in the left panel
highlights the value of PM , while the dashed line in the right panel

highlights the value of
(
PM/Kγ

)1/γ
.
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Figure 7. Transient regime of Theorem 4.1 for µ > ν.
Profiles of p (left panel), and m (right panel, red curve) and n
(right panel, blue curve) in the case where n does not vanish at
infinity and µ > ν. The dashed line in the left panel highlights the
value of PM , while the dashed line in the right panel highlights the

value of
(
PM/Kγ

)1/γ
.
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