
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model / Bubba, F.;
Lorenzi, T.; Macfarlane, F. R.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-
5021. - 476:2237(2020), p. 20190871. [10.1098/rspa.2019.0871]

Original

From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model

Publisher:

Published
DOI:10.1098/rspa.2019.0871

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2870762 since: 2021-02-12T12:35:18Z

Royal Society Publishing



From a discrete model of chemotaxis with volume-filling to a

generalised Patlak-Keller-Segel model

Federica Bubba1, Tommaso Lorenzi2,3 and Fiona R. Macfarlane2

1Sorbonne Universités, Universités Paris-Diderot, Laboratoire Jacques-Louis Lions,
F-75005 Paris, France

2School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS,
United Kingdom

3 Department of Mathematical Sciences “G. L. Lagrange”, Dipartimento di Eccellenza
2018-2022, Politecnico di Torino, 10129 Torino, Italy

Abstract

We present a discrete model of chemotaxis whereby cells responding to a chemoattractant
are seen as individual agents whose movement is described through a set of rules that result
in a biased random walk. In order to take into account possible alterations in cellular motility
observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be
modulated by a decaying function of the cell density. We formally show that a general form
of the celebrated Patlak-Keller-Segel (PKS) model of chemotaxis can be formally derived as
the appropriate continuum limit of this discrete model. The family of steady-state solutions
of such a generalised PKS model are characterised and the conditions for the emergence of
spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic
quantitative comparison between numerical simulations of the discrete model and numerical
solutions of the corresponding PKS model, both in one and in two spatial dimensions. The
results obtained indicate that there is excellent quantitative agreement between the spatial
patterns produced by the two models. Finally, we numerically show that the outcomes of the
two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.

1 Introduction

The ability of living organisms to form self-organised spatial patterns is at the root of a wide range of
developmental and evolutionary phenomena [14, 25]. In many biological systems, the emergence of
spatial organisation is orchestrated by chemotaxis, whereby individuals undergo directed migration
in response to the gradient of chemical signals (i.e. chemoattractants) [57]. Chemotaxis plays a
pivotal role in many biological processes – such as the immune response to infection, wound healing,
embryogenesis, cancer progression and metastasis [12, 28, 30, 51, 52, 58] – and the mathematical
modelling of chemotactic movement has received considerable attention from mathematicians and
physicists over the past seventy years – the interested reader is referred to [8, 23, 43, 49] and
references therein.

The Patlak-Keller-Segel model of chemotaxis The simplest and most classical mathematical
model for the emergence of self-organised spatial patterns driven by chemotaxis in biological systems
(e.g. populations of bacteria and eukaryotic cells) dates back to Patlak [46] and Keller-Segel [29].
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This model comprises a conservation equation for the density of cells and a balance equation for the
concentration of chemoattractant in the form of the following system of coupled parabolic equations

∂u

∂t
−∇ · (βu∇u− χu∇c) = 0, u ≡ u(t, x),

∂c

∂t
− βc ∆c = αu− κ c, c ≡ c(t, x),

(t, x) ∈ R+
∗ × Ω, (1)

subject to biologically relevant initial and boundary conditions. Here, the real, non-negative func-
tions u(t, x) and c(t, x) represent, respectively, the density of cells and the concentration of chemoat-
tractant at time t ∈ R+

∗ and at position x ∈ Ω. The set Ω is an open and bounded subset of Rd

with smooth boundary ∂Ω and d = 1, 2, 3 depending on the biological problem under study.
In the Patlak-Keller-Segel (PKS) model (1), the transport term in the equation for u models

the rate of change of the cell density due to both undirected, random movement and chemotaxis.
Undirected, random movement is described through Fick’s first law of diffusion with diffusivity
βu > 0. Furthermore, chemotaxis is modelled via an advection term whereby the velocity field
is proportional to ∇c, in order to capture the tendency of cells to move toward regions of higher
concentration of the chemoattractant (i.e. cells move up the gradient of the chemoattractant). The
proportionality constant χ > 0 represents the sensitivity of cells to the chemoattractant (i.e. the
chemotactic sensitivity). The second term of the left-hand side of the equation for c models the
effect of Fickian diffusion and βc > 0 is the diffusivity of the chemoattractant. Moreover, the first
term on the right-hand side takes into account the fact that the chemoattractant is produced by
the cells at a rate α > 0, while the second term describes natural decay of the chemoattractant,
which occurs at rate κ > 0.

Although the PKS model (1) has helped to elucidate the mechanisms that underlie the formation
of self-organised spatial patterns in various biological contexts [43], it is well known that its solutions
may blow up in finite time [7, 37, 59]. In order to avoid unphysical finite-time blow-up, a number
of possible variations on the classical PKS model have been proposed in the literature [43, 23]. In
a number of these variants, the cell diffusivity and sensitivity to the chemoattractant are assumed
to be functions of the cell density, leading to modified versions of (1) of the following form

∂u

∂t
−∇ · (βuD(u)∇u− χψ(u)u∇c) = 0, u ≡ u(t, x),

∂c

∂t
− βc ∆c = αu− κ c, c ≡ c(t, x),

(t, x) ∈ R+
∗ × Ω. (2)

Compared to the classical PKS model (1), here undirected, random cell movement is modelled as a
nonlinear diffusion process with diffusivity βuD(u) and the chemotactic sensitivity is a function of
the cell density χψ(u). The solutions are prevented from blowing up in finite time by introducing
suitable assumptions on the functions D(u) and ψ(u). In particular, Hillen and Painter [44] have
shown that letting

D(u) := ψ(u)− uψ′(u) (3)

and assuming ψ(u) to be a monotonically decreasing function of the cell density (i.e. ψ′(·) ≤
0), enables to capture possible alterations in cellular motility observed at high cell densities (i.e.
volume-filling) and precludes blow-up from occurring. Moreover, under the additional assumptions

ψ(u) > 0 for 0 ≤ u < u and ψ(u) = 0,
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where ū > 0 is a critical value of the cell density above which no more cells can move into a
given position, the same authors have proven global existence of classical solutions of (2) subject
to suitable initial and boundary conditions [21]. More recently, focussing on the case where D(u)
is a constant function and building upon the modelling strategy presented by Painter et al. [42],
Bubba et al. [3] considered the following definition of the sensitivity of cells to the chemoattractant

ψ(u) := exp (−u/umax), (4)

where umax > 0 represents a critical cell density above which chemotactic movement is reduced due
to overcrowding. In [42, 3] it has been shown that letting chemotactic sensitivity be an exponentially
decaying function of the cell density enables to reproduce experimental results on cell pattern
formation.

Derivation of continuum models for the movement of living organisms from discrete
models Continuum models for the movement of living organisms like (1) and (2)-(4) are amenable
to both numerical and analytical approaches, which support a more in-depth theoretical under-
standing of the application problems under study. However, defining these models on the basis
of population-level phenomenological assumptions makes it difficult to represent fine details of the
movement of single individuals. Therefore, it is desirable to derive them from first principles as
the appropriate continuum limit of discrete models that track the dynamics of individual organ-
isms. In fact, such discrete models enable a more direct and precise description of the spatial
dynamics of living systems at the individual level, thus ensuring that key biological aspects are
faithfully mirrored in the structure of the equations that compose the continuum model. As a
consequence, the derivation of continuum models for the movement of living organisms from under-
lying discrete models has become an active research field. Examples in this fertile area of research
include the derivation of continuum models of chemotaxis from velocity-jump and space-jump pro-
cesses [41, 22, 44, 45, 11] or from different types of random walks [4, 55, 56]; the derivation of
diffusion and nonlinear diffusion equations from random walks [9, 10, 24, 38, 40, 47, 48], from sys-
tems of discrete equations of motion [1, 6, 39, 32, 34, 35, 36], from discrete lattice-based exclusion
processes [2, 18, 19, 26, 27, 31, 33, 53] and from cellular automata [16, 17, 54]; and the derivation
of non-local models of cell-cell adhesion from position-jump processes [5].

Contents of the paper In this paper, we present a discrete model of chemotaxis whereby cells
responding to a chemoattractant are described as individual agents. Volume-filling effects are taken
into account by modulating the probabilities of cell movement by a decaying function of the cell
density, which is defined according to (4) with umax being interpreted, in a broader biological sense,
as a critical value of the cell density above which cellular movement is impaired.

In our model, cells move according to a set of rules that result in a discrete-time biased random
walk on a regular lattice, which is coupled with a discrete balance equation for the concentration
of chemoattractant. The modelling approach adopted here to describe cell dynamics shares some
similarities with the one presented in [11], where also cell proliferation and cell-cell adhesion have
been considered. However, the model in [11] relies on an exclusion-based approach whereby each
lattice site can be occupied by at most one cell. On the other hand, in the model considered here
the maximum occupancy for a lattice site is linked to the value of the critical cell density umax. In
this regard, we formally show (see Appendix A) that the continuum limit of our discrete model is
given by (2) complemented with (3) and (4). Although, to the best of our knowledge, proving the
global existence of solutions to (2)-(4) is still an open problem, the numerical solutions presented
here indicate that the value of the cell density remains bounded and blow-up does not occur unless
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umax → ∞, which is the asymptotic regime in which the generalised PKS model (2)-(4) formally
reduces to the classical PKS model (1).

The paper is organised as follows. In Section 2, we present our discrete model of chemotaxis
with volume-filling effects. In Section 3, we characterise the family of the steady-state solutions to
the generalised PKS model (2)-(4) and study the conditions for the emergence of spatial patterns
via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between
the results of numerical simulations of the discrete model and numerical solutions of its continuum
counterpart given by (2)-(4). The results obtained indicate that there is excellent quantitative
agreement between the spatial patterns produced by the two models, in the presence of sufficiently
large cell numbers. Finally, we numerically show that the outcomes of the two models faithfully
replicate those of the classical PKS model (1) in the asymptotic regime whereby umax → ∞.
Section 4 concludes the paper and provides a brief overview of possible research perspectives.

2 From a discrete model of chemotaxis with volume-filling effects
to a generalised Patlak-Keller-Segel model

In this section, we develop a discrete model of chemotaxis with volume-filling effects. In our
model, each cell is seen as an agent that occupies a position on a lattice, while the concentration
of chemoattractant is described by a discrete, non-negative function. Cells undergo undirected,
random movement and chemotactic movement in the presence of volume-filling effects, while the
chemoattractant is produced by the cells, undergoes natural decay and diffuses according to Fick’s
first law of diffusion.

For ease of presentation, we let the cells and the chemoattractant be distributed along the real
line R, but there would be no additional difficulty in considering bounded spatial domains or higher
spatial dimensions. We discretise the time variable t ∈ R+ and the space variable x ∈ R as tk = kτ
with k ∈ N0 and xi = ih with i ∈ Z, respectively, where τ, h > 0. Moreover, we introduce the
dependent variable nki ∈ N0 to model the number of cells on the lattice site i and at the time-step
k, and we define the corresponding density of cells as

uki := nki h
−1. (5)

The concentration of chemoattractant on the lattice site i and at the time-step k is modelled by
the discrete, non-negative function cki .

2.1 Dynamic of the chemoattractant

We let βc > 0 be the diffusivity of the chemoattractant and we denote by α > 0 and κ > 0 the rate
at which the chemoattractant is produced by the cells and the rate at which it undergoes natural
decay, respectively. With this notation, letting the operator L be the finite-difference Laplacian on
the lattice {xi}i∈Z, the principle of mass balance gives the following equation for the concentration
of chemoattractant cki

ck+1
i = cki + τ

(
βc(L ck)i + α uki − κ cki

)
, (6)

subject to zero-flux boundary conditions.

2.2 Dynamic of the cells

We let the cells update their positions according to a combination of undirected, random movement
and chemotactic movement, which are seen as independent processes. This results in the following
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rules which govern the dynamic of the cells.

Mathematical modelling of chemotactic cell movement with volume-filling effects Build-
ing upon the modelling strategy presented in [10], we model chemotactic cell movement as a biased
random walk whereby the movement probabilities depend on the difference between the concen-
tration of chemoattractant at the site occupied by a cell and the concentration of chemoattractant
at the neighbouring sites. Moreover, we multiply the movement probabilities by a monotonically
decreasing function of the cell density at the neighbouring sites, in order to take into account
volume-filling effects consisting in possible reduction of chemotactic sensitivity at higher cell den-
sities. In particular, for a focal cell on the lattice site i and at the time-step k, we define the
probability of moving to the lattice site i− 1 (i.e. the probability of moving left) via chemotaxis as

Jk
Li := η ψ(uki−1)

(cki−1 − cki )+

2 c
, (7)

where (·)+ denotes the positive part of (·), the probability of moving to the lattice site i + 1 (i.e.
the probability of moving right) via chemotaxis as

Jk
Ri := η ψ(uki+1)

(cki+1 − cki )+

2 c
, (8)

and the probability of not undergoing chemotactic movement as

1− Jk
Li − Jk

Ri. (9)

Here, the weight function ψ is defined according to (4), the parameter η > 0 is directly proportional
to the chemotactic sensitivity and we assume η ψ(·) ≤ 1. Moreover, the parameter c > 0 is directly
proportional to the maximal value that can be attained by the concentration of chemoattractant.
Dividing by c ensures that the values of the quotients in (7)-(9) are all between 0 and 1. In particular,
the results of numerical simulations presented in Section 3 indicate that a suitable definition of c is

c := max

(
max
i∈Z

c0
i , ζ umax

)
, (10)

where umax is given by (4) and ζ > 0 is a scaling factor ensuring unit consistency. Notice that
definitions (7) and (8) are such that cells will move up the gradient of the chemoattractant.

Mathematical modelling of undirected, random cell movement with volume-filling ef-
fects We model undirected, random cell movement as a random walk with movement probability
0 < θ ≤ 1. In order to capture volume-filling effects consisting in possible reduction of cell
motility at higher cell densities [20, 15], as similarly done in the case of chemotactic movement, we
modulate the movement probability by a decreasing function of the cell density at the neighbour-
ing sites. In particular, for a focal cell on the lattice site i and at the time-step k, we define the
probability of moving to the lattice site i− 1 via undirected, random movement as

T k
Li :=

θ

2
ψ(uki−1), (11)

the probability of moving to the lattice site i+ 1 via undirected, random movement as

T k
Ri :=

θ

2
ψ(uki+1), (12)

and the probability of not undergoing undirected, random movement as

1− T k
Li − T k

Ri. (13)

In (11) and (12), the modulating function ψ is defined according to (4).
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3 Comparison between discrete and continuum models

Letting τ, h→ 0 in such a way that

ηh2

2τc
→ χ ∈ R+

∗ and
θh2

2τ
→ βu ∈ R+

∗ as τ, h→ 0, (14)

one can formally show (see Appendix A) that the continuum counterpart of the discrete model
presented in Section 2 is given by the generalised PKS model (2) posed on R+

∗ ×R, and complemented
with (3) and (4). Similarly, in the case where the cells and the chemoattractant are distributed
over R2, considering a two-dimensional regular spatial grid of step h, defining the cell density via
the two-dimensional analogue of (5), letting the operator L be the finite-difference Laplacian on
the grid {x1i}i∈Z × {x2j}j∈Z and assuming τ, h→ 0 in such a way that

ηh2

4τc
→ χ ∈ R+

∗ and
θh2

4τ
→ βu ∈ R+

∗ , as τ, h→ 0, (15)

it is possible to formally obtain the generalised PKS model (2) posed on R+
∗ ×R2, and complemented

with (3) and (4), as the continuum limit of our discrete model.
In this section, we carry out a systematic quantitative comparison between our discrete model

and the generalised PKS model (2)-(4) – i.e. the following system of coupled parabolic equations
∂u

∂t
−∇ ·

[
βu exp (−u/umax)

(
1 +

u

umax

)
∇u− χ exp (−u/umax)u∇c

]
= 0,

∂c

∂t
− βc ∆c = αu− κ c,

(16)

which is obtained by substituting (3) and (4) into (2). In Section 33.1, we characterise the family of
steady-state solutions of (2)-(4) and investigate, via linear stability analysis of the unique positive
homogeneous steady state, the conditions for the emergence of spatial patterns. In Section 33.2,
we compare the results of numerical simulations of the discrete model with numerical solutions of
the continuum model given by (2)-(4), both in one and in two spatial dimensions.

3.1 Steady-state solutions of the generalised PKS model and linear stability
analysis

We consider the case where (2) is subject to an initial condition of components

u(0, x) = u0(x) and c(0, x) = c0(x), x ∈ Ω, (17)

and to the no-flux boundary conditions

∇u(t, x) · n̂ = 0 and ∇c(t, x) · n̂ = 0, (t, x) ∈ R+
∗ × ∂Ω. (18)

Here, u0 6≡ 0 and c0 6≡ 0 are real, non-negative and sufficiently regular functions, and n̂ is the unit
normal to ∂Ω that points outward from Ω.

6



Characterisation of the family of steady-state solutions A biologically relevant steady-
state solution of (2) subject to (17) and (18) is given by a pair of real, positive functions u∞(x)
and c∞(x) that satisfy the following system of elliptic equations

∇ · (βu D(u∞) ∇u∞ − χ ψ(u∞) u∞ ∇c∞) = 0, u∞ ≡ u∞(x),

βc ∆c∞ + α u∞ − κ c∞ = 0, c∞ ≡ c∞(x),

x ∈ Ω ⊂ Rd, (19)

along with the boundary conditions

∇u∞(x) · n̂ = 0 and ∇c∞(x) · n̂, x ∈ ∂Ω, (20)

and the following integral identity, which follows from the principle of mass conservation,∫
Ω
u∞(x) dx =

∫
Ω
u0(x) dx =: M. (21)

The second equation in (19) along with the integral identity (21) allow us to conclude that for
a given value of M there exists a unique positive homogeneous steady-state solution (u∞, c∞) ≡
(u?, c?), which is given by the pair

(u?, c?) =

(
M

|Ω|
,
α

κ

M

|Ω|

)
. (22)

Moreover, since D(u) and ψ(u) are defined according to (3) and (4), the first equation in (19)
along with the boundary conditions (20) give

D(u∞)

u∞ ψ(u∞)
∇u∞ = ν ∇c∞ =⇒ u∞ exp (u∞/umax) = λ exp (ν c∞) , (23)

where ν := χ/βu and λ is a real, positive constant that is uniquely defined by the integral iden-
tity (21). Building upon the analysis carried out in [44, 50], we define Φ(z) := z exp (z/umax) and
rewrite (23) as

Φ(u∞) = λ exp (ν c∞) .

Inverting the function Φ, which is strictly increasing and thus invertible, we find

u∞ = Φ−1 (λ exp (ν c∞)) = umax W

(
λ

umax
exp (ν c∞)

)
, (24)

where W is the multi-valued Lambert W function [13], which is implicitly defined by the relation

W (z) exp (W (z)) = z, ∀z ∈ C.

Notice that W (z) is real and single-valued for z ∈ R+ and, therefore, the right-hand side of (24) is
a real and single-valued function.

Remark 3.1. The Lambert W function admits the following Taylor series expansion about the
point z = 0

W (z) = z − z2 +
3

2
z3 +O(z4).
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Hence, in the asymptotic regime umax →∞, i.e. when the generalised PKS model (2)-(4) formally
reduces to the classical PKS system (1), we can rewrite (24) as

W

(
λ

umax
exp (ν c∞)

)
=

λ

umax
exp (ν c∞)− λ2

u2
max

exp (2ν c∞) + h.o.t. .

Inserting the first order term of the above expansion into (24) gives

u∞ = λ exp (ν c∞) ,

which is the well-known relation between u∞ and c∞ for the classical PKS model (1).

When Ω := (0, L) ⊂ R with L > 0, substituting (24) into the second equation in (19), introduc-
ing the notation

Γ(c) := κ c− αumaxW

(
λ

umax
exp (ν c)

)
(25)

and imposing the boundary conditions (20) gives the following second order differential equation

βc
d2c∞

dx2
= Γ(c∞), c∞ ≡ c∞(x), x ∈ (0, L),

subject to
dc∞(0)

dx
= 0 and

dc∞(L)

dx
= 0.

As similarly done in [44], further insight into the properties of c∞(x) can be gained using phase-
plane methods. We rewrite the latter second order differential equation as the following system of
first order differential equations

dc∞

dx
= w, c∞ ≡ c∞(x),

dw

dx
=

1

βc
Γ(c∞), w ≡ w(x),

x ∈ (0, L). (26)

In contrast to the case considered in [44], here we cannot determine the number of equilibria of (26)
due to the fact that we cannot infer the number of roots of Γ. In particular, the condition Γ(0) < 0
can be deduced from the fact that the function W is increasing, but we do not have enough
information to characterise the behaviour of Γ(c∞) as c∞ → ∞. However, as summarised by the
plots in Figure 1, numerical simulations indicate that, depending on the values of the parameters
in (25), we can generally expect zero, one or two distinct non-negative roots.

When c1 ∈ R+ is the unique non-negative root of the function Γ, we have that Γ′(c1) > 0
and, therefore, the corresponding equilibrium (c1, 0) of (26) is a saddle point and the positive
homogeneous steady-state state is stable. On the other hand, if the function Γ has two non-
negative roots c1 ∈ R+ and c2 ∈ R+ with c2 > c1, then necessarily Γ′(c1) > 0 and Γ′(c2) < 0.
Hence, the corresponding equilibria (c1, 0) and (c2, 0) of (26) will be a saddle point and a centre,
respectively, and in this case we can expect steady state solutions with multiple peaks.
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Figure 1: Sample plots of the function Γ(c) for three different sets of values of the parameters
in (25).

Linear stability analysis of the positive homogeneous steady state It is straightforward
to show that the steady state (u?, c?) is linearly stable to spatially homogeneous perturbations.
Furthermore, in order to study the linear stability of the steady state (u?, c?) to spatially inhomo-
geneous perturbations, we make the ansatz

u(t, x) = u? + ũ exp (σt) ϕk(x), c(t, x) = c? + c̃ exp (σt) ϕk(x), (27)

where ũ, c̃ ∈ R∗ with |ũ| � 1 and |c̃| � 1, σ ∈ C and {ϕk}k≥1 are the eigenfunctions of the
Laplace operator indexed by the wavenumber k. Linearising (2) about the steady state (u?, c?) and
substituting (27) into the linearised system of equations yields{

σ ũ = −k2 βu D(u?) ũ+ k2 χ ψ(u?) u? c̃,

σ c̃ = −k2 βc c̃+ α ũ− κ c̃.

For the above system to admit a solution (ũ, c̃) ∈ R2
∗ we need

σ2 +
[
k2(βuD(u?) + βc) + κ

]
σ + k4βuβcD(u?) + k2 (κβuD(u?)− αχu?ψ(u?)) = 0.

The steady state (u?, c?) will be driven unstable by spatially inhomogeneous perturbations (i.e.
spatial patterns will emerge) if Re(σ) > 0. Since k2(βuD(u?) + βc) + κ > 0, from the above
polynomial equation for σ we conclude that Re(σ) > 0 if

k4βuβcD(u?) + k2 (κβuD(u?)− αχu?ψ(u?)) < 0

for an interval of values of k2 ∈ R+
∗ , that is, if

αχu?ψ(u?)− κβuD(u?) > 0 =⇒ χ >
κβuD(u?)

αu?ψ(u?)

and

0 < k2 <
αχu?ψ(u?)− κβuD(u?)

βuβcD(u?)
.

In the case where the functions D(u) and ψ(u) are defined according to (3) and (4), respectively,
the above conditions reduce to

χ >
κβu(1 + u?/umax)

αu?
(28)

and

0 < k2 < k2
max with k2

max :=
αχu? − κβu (1 + u?/umax)

βuβc (1 + u?/umax)
. (29)

Notice that k2
max is an increasing function of the chemotactic sensitivity χ, which implies that if χ

increases then the most unstable mode associated with the largest eigenvalue σ increases and the
range of unstable modes broadens [50]. This is confirmed by the numerical results presented in
Section 33.2.
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3.2 Main results of numerical simulations

First, we present the results of base-case numerical simulations showing sample spatial patterns of
the discrete model and the generalised PKS model (2)-(4) (i.e. the system of coupled parabolic
equations (16)). Then, we investigate how the spatial patterns produced by the two models can
vary with the strength of chemotactic sensitivity (i.e. the value of the parameter η of the discrete
model and the value of the corresponding parameter χ of the continuum model), the size of the cell
population, i.e. the quantities ∑

i

n0
i and

∫
Ω
u0(x) dx,

and the critical cell density umax in definition (4). Finally, we explore the existence of scenarios
in which differences between spatial patterns produced by the two models can emerge due to
effects associated with small cell numbers, which reduce the quality of the approximation of the
discrete model provided by the continuum model. A complete description of the set-up of numerical
simulations, the algorithmic rules that underlie computational simulations of the discrete model,
and the numerical methods used to solve numerically the generalised PKS model (2)-(4) are given
in Appendices B and . In particular, for all the numerical simulations we report on in this section,
the parameter values are such that either conditions (14) or conditions (15) are satisfied.

Base-case numerical results Figure 2 and Figure 3 demonstrate that there is an excellent
quantitative match between numerical solutions of the generalised PKS model (2)-(4) and the
results of numerical simulations of the discrete model, both in one and in two spatial dimensions. In
agreement with the results of linear stability analysis carried out in Section 33.1, since condition (28)
is satisfied under the parameter setting considered here, spatial patterns are formed. In the one-
dimensional case (cf. Figure 2), we first observe the emergence of four peaks in the cell density, as
well as in the concentration of chemoattractant, which then merge into three peaks before coalescing
into two peaks. On the other hand, in the two-dimensional case (cf. Figure 3), we observe the
emergence of a plateau. This is due to the interplay between the tendency of cell density to
become locally concentrated and the fact that the type of nonlinear diffusion considered ensures
boundedness of the solutions. Later in this section, we further investigate how stationary solutions
are affected by the size of the cell population.

Effect of the strength of chemotactic sensitivity Figure 4 indicates that, coherently with
relation (29), the number of peaks observed at numerical equilibrium increases with the value of the
parameter η in the discrete model and the corresponding value of the parameter χ defined via (14)
in the continuum model. For all values of η considered, the numerical results obtained indicate
excellent agreement between the simulation results for the discrete model and numerical solutions
of the generalised PKS model (2)-(4).

Effect of the size of the cell population Figures 5 and 6 display the plots of the cell density
and the concentration of chemoattractant obtained at the end of numerical simulations for different
values of the size of the cell population, i.e. considering initial conditions n0

i and u0(x) such that∑
i

n0
i = BM and

∫
Ω
u0(x) dx = BM, (30)

with M > 0 fixed and for different values of B > 0. These plots in Figure 5 show that, in
contrast to the classical PKS model, incorporating volume-filling effects through definitions (3) and
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Figure 2: Base-case numerical results in one dimension Comparison between the simulation
results for the discrete model (solid lines) and numerical solutions of the generalised PKS model (2)-
(4) (dotted lines). The top panels display the cell density (blue lines) and the bottom panels
display the concentration of chemoattractant (red lines) at five successive time instants – i.e. a.
t = 1, b. t = 25, c. t = 50, d. t = 300, e. t = 500. The results from the discrete model
correspond to the average over five realisations of the underlying biased random walk. The cell
density and the concentration of chemoattractant resulting from each realisation are plotted in pale
blue and magenta, respectively, to demonstrate the robustness of the results obtained. A complete
description of the set-up of numerical simulations and the numerical methods employed is given in
Appendix B.

(4) prevents unphysical finite-time blow-up. Moreover, the spatial patterns produced by the two
models change with the size of the cell population and, for all values of B in (30) considered, there
is an excellent quantitative match between the results for numerical simulations of the discrete
model and numerical solutions of the generalised PKS model (2)-(4), both in one and in two spatial
dimensions.

Effect of the critical cell density umax The generalised PKS model (2)-(4) formally reduces
to the classical PKS model (1) as umax → ∞, since ψ(u) ≡ 1 when umax → ∞ and, therefore,
D(u) ≡ 1 and ψ(u) ≡ 1 in this limit. As a result, we expect the generalised PKS model, and
thus our discrete model, to exhibit the same spatial patterns as those produced by the classical
PKS model in such an asymptotic regime. This is confirmed by the numerical results presented in
Figures 7 and Figure 8. These results demonstrate how increasing values of umax lead to a better
match between numerical solutions of the generalised PKS model and those of the classical PKS
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Figure 3: Base-case numerical results in two dimensions Comparison between the simulation
results for the discrete model and numerical solutions of the generalised PKS model (2)-(4). Panels
a.-c. display the discrete cell density at three successive time instants – i.e. a. t = 0, b. t = 5,
c. t = 15 – while panels e.-g. display the corresponding solutions of the generalised PKS model.
Panels d., h. display a side-on view of the cell density at the end of numerical simulations for the
discrete model and the generalised PKS model, respectively. The results from the discrete model
correspond to the average over two realisations of the underlying biased random walk. A complete
description of the set-up of numerical simulations and the numerical methods employed is given in
Appendix C.

model, both in one and in two spatial dimensions (cf. Figures 7a., b. and Figures 8a.-c., e.-g.),
and a perfect quantitative match is ultimately obtained for umax sufficiently high (cf. Figures 7c.
and 8h.). In all cases, there is an excellent agreement between numerical solutions of the PKS
models and the results for numerical simulations of the corresponding discrete models. Notice that
the discrete model corresponding to the classical PKS model (1) is defined by assuming ψ ≡ 1
in (7), (8), (11) and (12), and in their two-dimensional counterparts (i.e. there are no volume-
filling effects). We expect analogous results to hold in higher spatial dimensions (i.e. when d ≥ 3)
whereby the solutions of the classical PKS model are known to blow up for cell populations of
arbitrarily small size [59].

Emergence of differences between spatial patterns produced by the discrete and con-
tinuum models In all cases discussed so far we have observed excellent agreement between the
results of numerical simulations of the discrete model and numerical solutions of the corresponding
continuum model given by (2)-(4). However, we expect possible differences between the two models
to emerge in the presence of low cell numbers, which may cause a reduction in the quality of the
approximations employed in the formal derivation of the continuum model from the discrete model.
To investigate this further, we carry out numerical simulations of the discrete and continuum models
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Figure 4: Effect of the strength of chemotactic sensitivity Comparison between the sim-
ulation results for the discrete model (solid lines) and numerical solutions of the generalised PKS
model (2)-(4) (dotted lines). The top panels display the cell density (blue lines) and the bottom
panels display the concentration of chemoattractant (red lines) at the end of numerical simulations
(i.e. at numerical equilibrium). The three sets of panels refer to different values of the parameter
η in the discrete model – i.e. a. η = 0.9801, b. η = 4.9005, c. η = 294.03 – which correspond
to different values of the parameter χ defined via (14) in the continuum model. The results from
the discrete model correspond to the average over five realisations of the underlying biased random
walk. The cell density and the concentration of chemoattractant resulting from each realisation
are plotted in pale blue and magenta, respectively, to demonstrate the robustness of the results
obtained. A complete description of the set-up of numerical simulations and the numerical methods
employed is given in Appendix B.

considering progressively smaller cell numbers and critical cell densities, i.e. defining

n0
i ≡ A0, u0(x) ≡ A0 and umax := 2 A0 (31)

and considering progressively lower values of A0. As expected, the numerical results presented
in Figure 9 show that differences between the patterns produced by the discrete model and those
produced by the generalised PKS model (2)-(4) emerge for relatively small cell numbers and critical
cell densities, i.e. when sufficiently small values of A0 in (31) are considered.
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Figure 5: Effect of the size of the cell population in one dimension Comparison between
the simulation results for the discrete model (solid lines) and numerical solutions of the generalised
PKS model (2)-(4) (dotted lines). The top panels display the cell density (blue lines) and the
bottom panels display the concentration of chemoattractant (red lines) at the end of numerical
simulations for different values of the size of the cell population, that is, different values of the
parameter B in (30) – i.e. a. B = 0.25, b. B = 1, c. B = 5. The results from the discrete
model correspond to the average over five realisations of the underlying biased random walk. The
cell density and the concentration of chemoattractant resulting from each realisation are plotted
in pale blue and magenta, respectively, to demonstrate the robustness of the results obtained. A
complete description of the set-up of numerical simulations and the numerical methods employed
is given in Appendix B.

4 Conclusions

In this paper, we presented a discrete model of chemotaxis with volume-filling effects. We for-
mally showed that a general form of the celebrated Patlak-Keller-Segel model of chemotaxis can
be formally derived as the appropriate continuum limit of this discrete model. Additionally, we
characterised the family of steady-state solutions of such a generalised PKS model and we studied
the conditions for the emergence of spatial patterns via linear stability analysis. Moreover, we
carried out numerical simulations of the discrete and continuum models.

We showed that there is excellent agreement between the simulation results for the discrete
model, the numerical solutions of the corresponding PKS model and the linear stability analysis.
Furthermore, we provided numerical evidence for the fact that the dynamics of the cell density and
the concentration of chemoattractant exhibited by the two models faithfully replicate those of the
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Figure 6: Effect of the size of the cell population in two dimensions Comparison between
the simulation results for the discrete model (a.-c.) and numerical solutions of the generalised
PKS model (2)-(4) (d.-f.). The different panels display the cell density at the end of numerical
simulations for different values of the size of the cell population, that is, different values of the
parameter B in (30) – i.e. a.-d. B = 0.1, b.-e. B = 1, c.-f. B = 2. The results from the
discrete model in panels a.-b. correspond to the average over two realisations of the underlying
biased random walk, while the results in panel c. correspond to a single realisation. A complete
description of the set-up of numerical simulations and the numerical methods employed is given in
Appendix C.

classical PKS model in a suitable asymptotic regime. Finally, we showed that possible differences
between spatial patterns produced by the two models can emerge in the presence of relatively
small cell numbers, which reduce the quality of the approximation of the discrete model given by
the continuum model. This demonstrates the importance of integrating discrete and continuum
approaches when considering cell-chemotaxis models for spatial pattern formation.

Our discrete modelling framework for chemotactic movement, along with the related formal
method to derive corresponding continuum models, can be easily extended to incorporate the
effects of additional biological phenomena, such as quorum sensing, haptotaxis and mechanically
regulated or nutrient-limited growth of the cell population. An additional development of our
study would be to compare the results presented here with those obtained from equivalent models
defined on irregular lattices, as well as to investigate how our modelling approach could be related
to off-lattice discrete models of cell movement [17].

Fundin The authors gratefully acknowledge support of the project PICS-CNRS no. 07688. FB
acknowledges funding from the European Research Council (ERC, grant agreement No. 740623)
and the Université Franco-Italienne.
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Figure 7: Effect of the critical cell density umax in one dimension Comparison between
numerical solutions of the generalised PKS model (2)-(4), numerical solutions of the classical PKS
model (1), and the simulation results for the corresponding discrete models – i.e. the discrete
model with the function ψ in (7), (8), (11) and (12) defined via (4) or with ψ ≡ 1, respectively.
The solid, blue lines and the solid, red lines highlight the cell density and the concentration of
chemoattractant at the end of numerical simulations of the discrete model with the function ψ
defined via (4) (i.e. with volume-filling effects). On the other hand, the solid, green lines and the
solid, yellow lines highlight the cell density and the concentration of chemoattractant at the end of
numerical simulations of the discrete model with ψ ≡ 1 (i.e. without volume-filling effects). The
dotted lines highlight the numerical solutions of the corresponding PKS models. Different panels
refer to different values of the parameter umax – i.e. a. umax = 2 × 106, b. umax = 2 × 107, c.
umax = 2×109. The results from the discrete model with the function ψ defined via (4) correspond
to the average over thirty realisations of the underlying biased random walk, while the results from
the discrete model with ψ ≡ 1 correspond to the average over ten realisations. The cell density and
the concentration of chemoattractant resulting from each realisation are plotted in paler colours
to demonstrate the robustness of the results obtained. A complete description of the set-up of
numerical simulations and the numerical methods employed is given in Appendix B.

Acknowledgments The authors are grateful to the two anonymous Reviewers for their useful
and insightful comments.
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Figure 8: Effect of the critical cell density umax in two dimensions Comparison between
numerical solutions of the generalised PKS model (2)-(4), numerical solutions of the classical PKS
model (1), and the simulation results for the corresponding discrete models – i.e. the discrete model
with the function ψ in the probabilities of cell movement defined via (4) or with ψ ≡ 1, respectively.
Panels a.-c. display the cell density at the end of numerical simulations of the discrete model with
the function ψ defined via (4) (i.e. with volume-filling effects) for different values of the parameter
umax - i.e. a. umax = 1×108, b. umax = 1×1010, c. umax = 1×1011. The corresponding numerical
solutions of the generalised PKS model (2)-(4) are displayed in panels e.-g.. Panel d. displays the
cell density at the end of numerical simulations of the discrete model with ψ ≡ 1 (i.e. without
volume-filling effects), and the corresponding numerical solution of the classical PKS model (1)
is displayed in panel h.. The results displayed in panel a. correspond to the average over two
realisations of the underlying biased random walk, while all other results from the discrete models
correspond to a single realisation. A complete description of the set-up of numerical simulations
and the numerical methods employed is given in Appendix C.
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[49] Benôıt Perthame. Transport equations in biology. Springer Science & Business Media, 2006.

[50] A B Potapov and T Hillen. Metastability in chemotaxis models. J. Dyn. Diff. Eq., 2:293–330,
2005.

[51] Jean-Baptiste Raina, Vicente Fernandez, Bennett Lambert, Roman Stocker, and Justin R
Seymour. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol.,
page 1, 2019.

[52] Evanthia T Roussos, John S Condeelis, and Antonia Patsialou. Chemotaxis in cancer. Nat.
Rev. Cancer, 11(8):573, 2011.

[53] Matthew J Simpson, Kerry A Landman, and Barry D Hughes. Cell invasion with proliferation
mechanisms motivated by time-lapse data. Phys. A Stat. Mech. Appl., 389(18):3779–3790,
2010.

[54] Matthew J Simpson, Alistair Merrifield, Kerry A Landman, and Barry D Hughes. Simulating
invasion with cellular automata: connecting cell-scale and population-scale properties. Phys.
Rev. E, 76(2):021918, 2007.

[55] Angela Stevens. The derivation of chemotaxis equations as limit dynamics of moderately
interacting stochastic many-particle systems. SIAM J. Appl. Math., 61(1):183–212, 2000.

[56] Angela Stevens and Hans G Othmer. Aggregation, blowup, and collapse: the abc’s of taxis in
reinforced random walks. SIAM J. Appl. Math., 57(4):1044–1081, 1997.

[57] Peter JM Van Haastert and Peter N Devreotes. Chemotaxis: signalling the way forward. Nat.
Rev. Mol. Cell Biol., 5(8):626, 2004.

[58] George H Wadhams and Judith P Armitage. Making sense of it all: bacterial chemotaxis. Nat.
Rev. Mol. Cell Biol., 5(12):1024, 2004.

21



[59] M. Winkler. Finite-time blow-up in the higher-dimensional parabolic–parabolic keller–segel
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A Formal derivation of the generalised PKS model (2)-(4)

Formal derivation of the conservation equation (2) for the cell density u In the case
where cell movement is governed by the rules described in Section 2, the principle of mass conser-
vation gives

uk+1
i =uki +

θ

2
ψ(uki )

(
uki−1 + uki+1

)
− θ

2

(
ψ(uki−1) + ψ(uki+1)

)
uki

+
η

2c
ψ(uki )

(
(cki − cki−1)+ uki−1 + (cki − cki+1)+ uki+1

)
− η

2c

(
ψ(uki−1)(cki−1 − cki )+ + ψ(uki+1)(cki+1 − cki )+

)
uki .

(32)

Using the fact that the following relations hold for τ and h sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± h, (33)

uki ≈ u(t, x), uk+1
i ≈ u(t+ τ, x), uki±1 ≈ u(t, x± h), (34)

cki ≈ c(t, x), ck+1
i ≈ c(t+ τ, x), cki±1 ≈ c(t, x± h), (35)

equation (32) can be formally rewritten in the approximate form

u(t+ τ, x)− u(t, x) =
θ

2
ψ(u(t, x))

(
u(t, x− h) + u(t, x+ h)

)
− θ

2

(
ψ(u(t, x− h)) + ψ(u(t, x+ h))

)
u(t, x)

+
η

2c
u(t, x− h)ψ(u(t, x))(c(t, x)− c(t, x− h))+

+
η

2c
u(t, x+ h)ψ(u(t, x))(c(t, x)− c(t, x+ h))+

− η

2c
u(t, x)ψ(u(t, x− h))(c(t, x− h)− c(t, x))+

− η

2c
u(t, x)ψ(u(t, x+ h))(c(t, x+ h)− c(t, x))+.

Dividing both sides of the above equation by τ gives

u(t+ τ, x)− u(t, x)

τ
=

θ

2τ
ψ(u(t, x))

(
u(t, x− h) + u(t, x+ h)

)
− θ

2τ
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)
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2τc
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η
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(36)
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If the function ψ(u) is twice continuously differentiable and the function u(t, x) is twice continuously
differentiable with respect to the variable x, for h sufficiently small we can use the Taylor expansions

u(t, x± h) = u± h∂u
∂x

+
h2

2

∂2u

∂x2
+O(h3), ψ(u(t, x± h)) = ψ ± h

∂ψ

∂x
+
h2

2

∂2ψ

∂x2
+O(h3),

where

ψ ≡ ψ(u),
∂ψ

∂x
= ψ′(u)

∂u

∂x
,

∂2ψ

∂x2
= ψ′′(u)

(
∂u

∂x

)2

+ ψ′(u)
∂2u

∂x2
, u ≡ u(t, x).

Substituting into (36) and using the elementary property (a)+− (−a)+ = a for a ∈ R, after a little
algebra we find

u(t+ τ, x)− u(t, x)

τ
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θh2

2τ
ψ
∂2u

∂x2
− θh2

2τ
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η
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)
u

− ηh

2τc
ψ
(

(c(t, x)− c(t, x− h))+ − (c(t, x)− c(t, x+ h))+

) ∂u

∂x

+
ηh

2τc

∂ψ

∂x

(
(c(t, x− h)− c(t, x))+ − (c(t, x+ h)− c(t, x))+

)
u

+
ηh2

4τc
ψ
(

(c(t, x)− c(t, x− h))+ + (c(t, x)− c(t, x+ h))+

) ∂2u

∂x2

− ηh2

4τc

∂2ψ

∂x2

(
(c(t, x− h)− c(t, x))+ + (c(t, x+ h)− c(t, x))+

)
u + h.o.t. ,

which can be rewritten as

u(t+ τ, x)− u(t, x)

τ
=
θh2

2τ

(
ψ
∂2u

∂x2
− ∂2ψ

∂x2
u

)
− ηh2

2τc
ψ

(
c(t, x− h) + c(t, x+ h)− 2c(t, x)

h2

)
u

− ηh2

2τc
ψ

((
c(t, x)− c(t, x− h)

h

)
+

−
(
c(t, x)− c(t, x+ h)

h

)
+

)
∂u

∂x

+
ηh2

2τc

∂ψ

∂x

((
c(t, x− h)− c(t, x)

h

)
+

−
(
c(t, x+ h)− c(t, x)

h

)
+

)
u

+
ηh3

4τc
ψ

((
c(t, x)− c(t, x− h)

h

)
+

+

(
c(t, x)− c(t, x+ h)

h

)
+

)
∂2u

∂x2

− ηh3

4τc

∂2ψ

∂x2

((
c(t, x− h)− c(t, x)

h

)
+

+

(
c(t, x+ h)− c(t, x)

h

)
+

)
u

+ h.o.t. .

If, in addition, the function u(t, x) is continuously differentiable with respect to the variable t and
the function c(t, x) is twice continuously differentiable with respect to the variable x, letting τ → 0
and h→ 0 in such a way that

ηh2

2τc
→ χ ∈ R+

∗ and
θh2

2τ
→ βu ∈ R+

∗ as τ, h→ 0, (37)
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we have

ηh3

4τc
ψ

((
c(t, x)− c(t, x− h)

h

)
+

+

(
c(t, x)− c(t, x+ h)

h

)
+

)
∂2u

∂x2
= O(h), as τ, h→ 0,

ηh3

4τc

∂2ψ

∂x2

((
c(t, x− h)− c(t, x)

h

)
+

+

(
c(t, x+ h)− c(t, x)

h

)
+

)
u = O(h), as τ, h→ 0,

and from the latter equation we formally obtain

∂u

∂t
=βu

(
ψ
∂2u

∂x2
− u ∂2ψ

∂x2

)
− χ ψ u

∂2c

∂x2
− χ ψ ∂u

∂x

((
∂c

∂x

)
+

−
(
− ∂c
∂x

)
+

)
+ χ

∂ψ

∂x
u

((
− ∂c
∂x

)
+

−
(
∂c

∂x

)
+

)
.

Using again the elementary property (a)+ − (−a)+ = a for a ∈ R, we find

∂u

∂t
= βu

(
ψ
∂2u

∂x2
− u ∂2ψ

∂x2

)
− χ ∂

∂x

(
ψ u

∂c

∂x

)
, (38)

where ψ ≡ ψ(u), u ≡ u(t, x) and c ≡ c(t, x). Since

ψ(u)
∂2u

∂x2
− u∂

2ψ(u)

∂x2
=

∂

∂x

[(
ψ(u)− u ψ′(u)

) ∂u
∂x

]
,

under definition (3) of the function D(u) the differential equation (38) can be rewritten as

∂u

∂t
− ∂

∂x

(
βuD(u)

∂u

∂x
− χψ(u)u

∂c

∂x

)
= 0,

which is the conservation equation (2) for the cell density u complemented with (3) and (4), and
posed on R+

∗ × R.

Formal derivation of the balance equation (2) for the chemoattractant concentration c
For the one-dimensional case considered in Section 2 we have

(L ck)i =
cki+1 − 2cki + cki−1

h2
.

Hence, if τ and h are sufficiently small so that relations (33)-(35) hold, the difference equation (6)
can be formally written in the approximate form

c(t+ τ, x)− c(t, x)

τ
=

(
βc
c(t, x− h) + c(t, x+ h)− 2c(t, x)

h2
+ α u(t, x)− κ c(t, x)

)
.

If the function c(t, x) is continuously differentiable with respect to the variable t and twice contin-
uously differentiable with respect to the variable x, letting τ → 0 and h→ 0 in the above equation
formally gives

∂c

∂t
− βc

∂2c

∂x2
= αu− κ c,

which is the balance equation (2) for the chemoattractant concentration c posed on R+
∗ × R.
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B Details of numerical simulations in 1D

B.1 Details of numerical simulations of the discrete model in 1D

We use a uniform discretisation of the interval Ω := (0, 1) that consists of N = 100 points as the
spatial domain (i.e. the grid-step is h ≈ 1 × 10−2) and we choose the time-step τ = 1 × 10−2.
Numerical simulations are performed for 5 × 105 time-steps (i.e. the final time of simulations is
t = 500).

Computational procedure At each time-step, we follow the computational procedure illus-
trated by the flowchart in Figure 10 to update the positions of the single cells. Zero-flux boundary
conditions are implemented by letting the attempted move of a cell be aborted if it requires moving
out of the spatial domain. Numerical simulations are performed in Matlab and the random num-
bers mentioned in Figure 10 are all real numbers drawn from the standard uniform distribution on
the interval (0, 1) using the built-in function rand. At each time-step, the positions of all the cells
are updated first and then the cell density at every lattice site is computed via (5) and inserted
into (6) in order to update the concentration of the chemoattractant.

Figure 10: Flowchart illustrating the computational procedure followed to update the positions of
every cell in 1D.

Initial conditions The numerical results of Figures 2, 4 and 7 refer to the case where the cells
are initially uniformly distributed and the corresponding cell density is

u0
i =

A

2
for i = 1, . . . , N, A = 2× 106.

Moreover, the numerical results of Figure 5 refer to the case where

u0
i =

A

2
B for i = 1, . . . , N, A = 4× 105,
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and the value of B is varied as described in the caption of the figure. Finally, the numerical results
of Figure 9 refer to the case where the initial cell density is defined according to (31) and the value
of A0 is varied as described in the caption of the figure.

For all cases, the initial concentration of the chemoattractant is defined as an oscillating per-
turbation around the initial cell density, which is uniform, in order to drive pattern formation,
i.e.

c0
i = u0

i (1 + 0.1 cos(10 i h) sin(10 i h)) , i = 1, . . . , N.

An alternative initial condition for the concentration of chemoattractant could be a small random
perturbation around u0

i . Preliminary numerical simulations showed that the same spatial patterns
are formed in both cases.

Parameter values For all cases, the following parameter values are used

βc = 2.5× 10−3, α = 1, κ = 1, θ = 1.225× 10−1,

The numerical results of Figures 2 and 4 refer to the case where umax = 2×106, while the numerical
results of Figure 5 refer to the case where umax = 4 × 105. For the numerical results of Figure 7
the value of umax is varied as described in the caption of the figure and for Figure 9 the value of
umax is defined according to (31), with the value of A0 being varied as described in the caption
of the figure. In all cases, the value of c̄ is defined via (10) with ζ = 1. The numerical results
presented in Figures 2, 5 and 9, refer to the case where η = 2.4502, while for the numerical results
of Figure 4 the value of η is varied as described in the caption of the figure. Furthermore, for the
results presented in Figure 7, the value of η is varied according to the value of umax so that their
quotient remains constant and equal to 1.225× 10−6.

B.2 Details of numerical simulations of the generalised PKS model (2)-(4) in
1D

We select a uniform discretisation consisting of N = 100 points of the interval Ω := (0, 1) as the
computational domain of the independent variable x (i.e. xj = j∆x with ∆x ≈ 1 × 10−2 and
j = 1, . . . ,N ). Moreover, we assume t ∈ (0, 500] and we discretise the interval (0, 500] with the
uniform step ∆t = 1× 10−2.

Numerical methods The method for constructing numerical solutions of the generalised PKS
model (2)-(4) (i.e. the system of coupled parabolic equations (16)) is based on a finite difference
scheme whereby the discretised dependent variables are

unj ≈ u(tn, xj) and cnj ≈ c(tn, xj).

We solve numerically equation (2) for c using an implicit Euler method, that is,

cn+1
j − cnj

∆t
= βc

cn+1
j+1 − 2cn+1

j + cn+1
j−1

(∆x)2 + κcn+1
j − αunj , j = 1, . . . ,N ,

and impose zero-flux boundary conditions by letting

cn+1
0 = cn+1

1 and cn+1
N+1 = cn+1

N .
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Moreover, we solve numerically equation (2) for u using the following implicit scheme

un+1
j − unj

∆t
=
Fn+1
j+ 1

2

− Fn+1
j− 1

2

∆x
, j = 1, . . . ,N ,

where

Fn+1
j+ 1

2

:= βuD
(
un
j+ 1

2

) un+1
j+1 − u

n+1
j

∆x
− bn,+

j+ 1
2

un+1
j ψ

(
un+1
j+1

)
+ bn,−

j+ 1
2

un+1
j+1ψ

(
un+1
j

)
, j = 1, . . . ,N − 1,

with

un
j+ 1

2

:=
unj+1 + unj

2
,

and

bn
j+ 1

2

:= χ
cnj+1 − cnj

∆x
, bn,+

j+ 1
2

= max
(

0, bn
j+ 1

2

)
, bn,−

j+ 1
2

= max
(

0,−bn
j+ 1

2

)
.

The discrete flux Fn+1
j− 1

2

for j = 2, . . . ,N is defined in an analogous way, and we impose zero-flux

boundary conditions by using the definitions

Fn+1
1− 1

2

:= 0 and Fn+1
N+ 1

2

:= 0.

Analogous schemes are used to solve numerically the classical PKS model (1). All numerical
computations are performed in Matlab.

Initial conditions and parameter values In agreement with the set-up of numerical simula-
tions of the discrete model, the numerical results of Figures 2, 4 and 7 refer to the case where

u(0, x) ≡ A

2
, A = 2× 106.

Moreover, the numerical results of Figure 5 refer to the case where

u(0, x) ≡ A

2
B, A = 4× 105,

and the value of B is varied as described in the caption of the figure. Finally, the numerical results
of Figure 9 refer to the case where the initial cell density is defined according to (31) and the value
of A0 is varied as described in the caption of the figure. In all cases,

c(0, x) = u(0, x) + 0.1 (u(0, x) cos(10 x) sin(10 x)) .

Parameter values In agreement with the set-up of numerical simulations of the discrete model,
for all cases the following parameter values are used

βc = 2.5× 10−3, α = 1, κ = 1.

The numerical results of Figures 2 and 4 refer to the case where umax = 2×106, while the numerical
results of Figure 5 refer to the case where umax = 4×105. For the numerical results of Figure 7 the
value of umax is varied as described in the caption of the figure and for Figure 9 the value of umax

is defined according to (31), with the value of A0 being varied as described in the caption of the
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figure. In all cases, given the values of the parameters chosen to carry out numerical simulations
of the discrete model (see Appendix BB.1), the following definitions are used

χ :=
ηh2

2τc
and βu :=

θh2

2τ
,

so that conditions (14) are met.

C Details of numerical simulations in 2D

C.1 Details of numerical simulations of the discrete model in 2D

We use a uniform discretisation of the square Ω := (0, 1)× (0, 1) that consists of N2 = 2601 points
as the spatial domain (i.e. the grid-step is h ≈ 1.9×10−2) and we choose the time-step τ = 1×10−4.
Numerical simulations are performed for 5 × 104 time-steps (i.e. the final time of simulations is
t = 5) for the numerical results of Figure 8, whereas in all the other cases simulations are performed
for 15× 104 time-steps (i.e. the final time of simulations is t = 15).

Computational procedure At each time-step, the positions of the single cells are updated
following a procedure analogous to that employed in 1D (cf. Figure 10), with the only difference
being that the cells are allowed to move up and down as well. Moreover, the concentration of the
chemoattractant is updated through the two-dimensional analogue of (6), where the operator L is
defined as the finite-difference Laplacian on a two-dimensional regular grid of step h and the cell
density is computed via the two-dimensional analogue of (5).

Initial conditions The numerical results of Figures 3 and 8 refer to the case where the cells are
initially uniformly distributed and the corresponding cell density is

u0
ij =

A

2
for i, j = 1, . . . , N, A = 1× 107,

while the numerical results of Figure 6 refer to the case where

u0
ij =

A

2
B for i, j = 1, . . . , N, A = 1× 107,

and the value of B is varied as described in the caption of the figure. For the numerical results of
Figures 3, 6 and 8, the initial concentration of chemoattractant is defined as

c0
ij = 200

4∑
p=1

exp
[
−200(i h− x∗1p)2 − 200(j h− x∗2p)2

]
, i, j = 1, . . . , N.

Furthermore, in all cases, (x∗11, x
∗
21) = (0.26, 0.74), (x∗12, x

∗
22) = (0.26, 0.26), (x∗13, x

∗
23) = (0.74, 0.74)

and (x∗14, x
∗
24) = (0.74, 0.26).

Parameter values For all cases, the following parameter values are used

βc = 2.5× 10−3, α = 1, κ = 1.

Moreover, θ = 2.5×10−2 for the results presented in Figures 3 and 6, while θ = 0.125 for the results
presented in Figure 8. The numerical results of Figures 3 and 6 we choose umax = 107, and for the
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results of Figure 8 the value of umax is varied as described in the caption of the figure. In all cases,
the value of c̄ is defined via (10) with ζ = 1. The numerical results presented in Figures 3 and 6
refer to the case where η = 2.4502, while for the numerical results presented in Figure 7, the value
of η is varied according to the value of umax so that their quotient remains constant and equal to
2.4502× 10−7.

C.2 Details of numerical simulations of the generalised PKS model (2)-(4) in
2D

We select a uniform discretisation consisting of N 2 = 2601 points of the square Ω := (0, 1)× (0, 1)
as the computational domain of the independent variable x ≡ (x1, x2) (i.e. (x1i, x2j) = (i∆x, j∆x)
with ∆x ≈ 1.9 × 10−2 and i, j = 1, . . . ,N ). Moreover, we assume t ∈ (0, T ] with T = 5 for the
numerical solutions of Figure 8, whereas in all the other cases T = 15. The interval (0, T ] is
discretised with the uniform step ∆t = 1× 10−4.

Numerical methods The method for constructing numerical solutions of the generalised PKS
model (2)-(4) (i.e. the system of coupled parabolic equations (16)) is based on a finite difference
scheme whereby the discretised dependent variables are

uni,j := u(tn, x1i, x2j) and cni,j := c(tn, x1i, x2j).

We solve numerically equation (2) for c using an implicit Euler method, that is,

cn+1
i,j − cni,j

∆t
= βc

cni+1,j − 2cni,j + cni−1,j

(∆x)2 + βc
cni,j+1 − 2cni,j + cni,j−1

(∆x)2

+ αuni,j − κcni,j , i, j = 1, . . . ,N ,

and impose zero-flux boundary conditions by letting

cn+1
0,j = cn+1

1,j , cn+1
N+1,j = cn+1

N ,j , j = 1, . . . ,N ,

cn+1
i,0 = cn+1

i,1 , cn+1
i,N+1 = cn+1

i,N , i = 1, . . . ,N .

Moreover, we solve numerically equation (2) for u using the explicit scheme

un+1
i,j − uni,j

∆t
=
Fn
i+ 1

2
,j
− Fn

i− 1
2
,j

∆x
+
Fn
i,j+ 1

2

− Fn
i,j− 1

2

∆x
, i, j = 1, . . . ,N ,

where

Fn
i+ 1

2
,j

:= βuD
(
un
i+ 1

2
,j

) uni+1,j − uni,j
∆x

− bn,+
i+ 1

2
,j
uni,jψ(uni+1,j)

+ bn,−
i+ 1

2
,j
uni+1,jψ(uni,j), i = 1, . . . ,N − 1, j = 1, . . . ,N ,

Fn
i,j+ 1

2

:= βuD
(
un
i,j+ 1

2

) uni,j+1 − uni,j
∆x

− bn,+
i,j+ 1

2

uni,jψ(uni,j+1)

+ bn,−
i,j+ 1

2

uni,j+1ψ(uni,j), i = 1, . . . ,N , j = 1, . . . ,N − 1,

with

un
i+ 1

2
,j

:=
uni+1,j + uni,j

2
, un

i,j+ 1
2

:=
uni,j+1 + uni,j

2
,
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bn
i+ 1

2
,j

:= χ
cni+1,j − cni,j

∆x
, bn,+

i+ 1
2
,j

= max
(

0, bn
i+ 1

2
,j

)
, bn,−

i+ 1
2
,j

= max
(

0,−bn
i+ 1

2
,j

)
,

and

bn
i,j+ 1

2

:= χ
cni,j+1 − cni,j

∆x
, bn,+

i,j+ 1
2

= max
(

0, bn
i,j+ 1

2

)
, bn,−

i,j+ 1
2

= max
(

0,−bn
i,j+ 1

2

)
.

The discrete fluxes Fn
i− 1

2
,j

for i = 2, . . . ,N , j = 1, . . . ,N and Fn
i,j− 1

2

for i = 1, . . . ,N , j = 2, . . . ,N
are defined in analogous ways, and we impose zero-flux boundary conditions by using the definitions

Fn
1− 1

2
,j

:= 0, Fn
N+ 1

2
,j

:= 0, j = 1, . . . ,N ,

Fn
i,1− 1

2

:= 0, Fn
i,N+ 1

2

:= 0, i = 1, . . . ,N .

Notice that, in contrast to the one-dimensional case, here we employ a fully explicit scheme to
avoid Newton sub-iterations that could be computationally expensive. Analogous schemes are used
to solve numerically the classical PKS model (1). All numerical computations are performed in
Matlab.

Initial conditions In agreement with the set-up of numerical simulations of the discrete model,
the numerical results of Figures 3 and 8 refer to the case where

u(0, x1, x2) ≡ A

2
, A = 1× 107,

while the numerical results of Figure 6 refer to the case where

u(0, x1, x2) ≡ A

2
B, A = 1× 107,

and the value of B is varied as described in the caption of the figure. For all cases, the initial
concentration of chemoattractant is

c(0, x1, x2) = 200
4∑

p=1

exp
[
−200(x1 − x∗1p)2 − 200(x2 − x∗2p)2

]
,

with (x∗11, x
∗
21) = (0.26, 0.74), (x∗12, x

∗
22) = (0.26, 0.26), (x∗13, x

∗
23) = (0.74, 0.74) and (x∗14, x

∗
24) =

(0.74, 0.26).

Parameter values For all cases, the following parameter values are used

βc = 0.0025, α = 1, κ = 1.

The numerical results of Figures 3 and 6 refer to the case where umax = 1 × 107, while for the
numerical results of Figure 8 the value of umax is varied as described in the caption of the figure.
In all cases, given the values of the parameters chosen to carry out numerical simulations of the
discrete model (see Appendix CC.1), the following definitions are used

χ :=
ηh2

4τc
and βu :=

θh2

4τ
,

so that conditions (15) are met.
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