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Control of locomotion systems

and dynamics in relative periodic orbits

Francesco Fassò∗, Simone Passarella† and Marta Zoppello ‡

(Version 3 — June 7, 2020)

Dedicated to James Montaldi

Abstract

The connection between the dynamics in relative periodic orbits of vector fields with non-
compact symmetry groups and periodic control for the class of control systems on Lie groups
known as ‘(robotic) locomotion systems’ is well known, and has led to the identification of
(geometric) phases. We take an approach which is complementary to the existing ones, ad-
vocating the relevance—for trajectory generation in these control systems—of the qualitative

properties of the dynamics in relative periodic orbits. There are two particularly important
features. One is that motions in relative periodic orbits of noncompact groups can only be of
two types: either they are quasi-periodic, or they leave any compact set as t → ±∞ (‘drifting
motions’). Moreover, in a given group, one of the two behaviours may be predominant. The
second is that motions in a relative periodic orbit exhibit ‘spiralling’, ‘meandering’ behaviours,
which are routinely detected in numerical integrations. Since a quantitative description of me-
andering behaviours for drifting motions appears to be missing, we provide it here for a class
of Lie groups that includes those of interest in locomotion (semidirect products of a compact
group and a normal vector space). We illustrate these ideas on some examples (a kinematic
car robot, a planar swimmer).

Keywords: Robotic locomotion systems. Relative periodic orbits. Geometric phases. Reconstruction.
Equivariant dynamics. Scallop theorem. Trajectory generation.
MSC: 37N35, 37C80, 34H05, 70Q05, 70E60.

1 Introduction

1.A. Aim of the paper. This paper deals with trajectory generation for a class of driftless
control systems on Lie groups known as (robotic) locomotion systems, from a dynamical system
perspective.

The configuration space M of these systems is the product of an n-dimensional Lie group G,
called the position or group space, and of an m-dimensional manifold S which is assumed to be
parallelizable (e.g., an open set in an Euclidean space, or the product of one such set and a torus)
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called the shape space. If G is a matrix Lie group, then the governing equations for a given control
t 7→ s(t) ∈ S have the form

ġ = g

m∑

i=1

ṡi(t)Ai(s(t)) , g ∈ G , (1)

with maps Ai : S → g, the Lie algebra of G (here, in writing ṡi, it is understood that an identifi-
cation of TS with S × Rm has been chosen).

Systems of this type emerge in the locomotion of various types of robotics and living organisms.
The literature on the subject is too extensive to be exhaustively accounted for, so we limit ourselves
to a very limited (perhaps even almost random) choice which includes, besides some classics, some
works which we perceive, at least under some respect, as closer to ours [43, 40, 42, 31, 38, 32, 13,
7, 34, 44]. The mathematical study of the control of these systems was initiated in the 1970’s in
the context of control systems on Lie groups [9, 30]. These control problems are also related to the
theory of mechanical systems controlled through moving constraints, which was initiated around
1980 [4, 35] (see also [3] and references therein), where the control is achieved by assigning the
evolution of some of the coordinates—here the shape s ∈ S. The literature on the controllability
of systems of type (1) is very broad as well, so we limit ourselves to quote, in addition to the above
pioneering works, the textbooks [10, 1, 6] where comprehensive informations can be found. Many
of these studies do not take into account a cost functional, and following them we do the same
here; indeed, for many locomotion systems, including the examples reported in this paper, the first
question that arises is their controllability regardelss the presence of a cost functional—namely if,
given an initial and a final configuration, it is possible to find a control which drives the system
between them.

Special attention has been devoted to control through periodic shape changes, which in this
context are called gaits (see e.g. [31, 28]). Each T -periodic gait defines an element γ ∈ G such that
each initial position g0 ∈ G is changed, after the execution of the gait, to g0γ. The group element γ
is called the phase, or the geometric phase, associated to the considered gait [37, 31]. Its geometric
origin—as holonomy of the connection A—has been clarified and emphasized, see e.g. [37, 31, 6].
A certain attention has been given to the search of classes of ‘elementary’ gaits, that may produce
a variety of planned motions [31], and to gaits optimization [5]. Geometric techniques to compute
the phases are developed e.g. in [11].

Here, we take a somewhat different, complementary approach. Trajectory generation through
periodic shape changes for system (1) is linked to reconstruction from a reduced periodic orbit of
a G-invariant dynamical system on a trivial principal bundle M̄ × G → M̄ , with the action of G
on M̄ × G given by left translations on the factor G. (See e.g. [26, 28] for general introductions
to equivariant dynamics). Indeed, assuming again that G is a matrix group, any such system has
the form

˙̄m = X̄(m̄) , ġ = gA(m̄) (m̄, g) ∈ M̄ ×G (2)

with some map A : M̄ → g and some vector field X̄ on M̄ . If the ‘reduced’ system given by the
vector field X̄ on M̄ has a periodic orbit t 7→ m̄(t), then the set of all points in M̄ ×G that project
onto it, which is diffeomorphic to S1 ×G, is called a relative periodic orbit of system (2).

The dynamics in a relative periodic orbit is determined by the ‘reconstruction equation’ ġ =
gA(m̄(t)), which is exactly of the form (1) if one takes M̄ = TS = S × Rm ∋ (s, ṡ) and A(s, ṡ) =∑m

i=1 ṡiAi(s). The difference between the two cases is that in the control case the periodic map
t 7→ m̄(t) is assigned by the controller, but clearly, all results that apply to a relative periodic
orbit apply to equation (1) with a periodic control as well. This analogy is well known in the
control theory community. Nevertheless, it seems to us that the qualitative informations on control
problems that may be drawn from this analogy have not yet been fully identified and exploited.

The description of the dynamics in a relative periodic orbit of an equivariant vector field
is due to Krupa and Field [24, 33, 25] for compact groups and to Ashwin and Melbourne [2] for
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noncompact groups (for further developments and some applications see also [29, 17, 15, 22, 18, 19]
and references therein). Their results show that, in the case of a noncompact group, which is the
one of interest in control theory, orbits in a relative periodic orbits may be of two types: either
they remain inside a compact set, and in that case are quasi-periodic with a certain number k+ 1
of frequencies (namely, conjugate to a linear flow on Tk+1), with 0 ≤ k ≤ rank(G), or they ‘drift’
away leaving any compact set as t→ ±∞.

There are two features of the reconstruction process that, in our opinion, are relevant to tra-
jectory generation, and are the focus of the present article.

The first is the fact that, for a given noncompact group, one of the two behaviours—either
quasi-periodicity or drifting—may, in a sense that can be made precise, be “predominant” [2, 22].
For instance, among the groups that typically arise in the control of locomotion systems, quasi-
periodicity is predominant for SE(2) while drifting is predominant for SE(3). This may be relevant
for trajectory generation with periodic controls: if the group is such that the predominant behavior
is quasi-periodicity, then the choice of the periodic gait acquires an important role, because generic
gaits will not produce a drift.

The second is the fact that motions in a relative periodic orbit exhibit ‘spiralling’, or ‘me-
andering’, behaviours. These behaviours are revealed in numerical integrations and have been
investigated in a number of works, particularly oriented towards infinite dimensional systems and
having many applications (see e.g. [2, 22, 23, 21, 20, 14] and references therein). In the case of
quasiperiodic motions, the origin of these behaviours is clarified by the reconstruction procedure
of Krupa and Field: one frequency is due to the periodicity of the gait in shape space, while the
remaining k are produced by the action of a compact abelian subgroup of G, isomorphic to a torus.
Instead, the group-theoretical origin of these behaviours does not seem to have been clarified in
the case of drifting motions, perhaps because considered more or less self-evident in examples. We
shall thus begin such an analysis here, by considering a class of Lie groups that contains the groups
of interest in locomotion.

Specifically, we shall consider the case in which G is the semidirect product of a compact
subgroup G∗ and of a normal subgroup V isomorphic to a vector space,1 which contains SE(n).
In such a case, the reduction can be performed in two stages, first under the normal subgroup V
and then after the compact subgroup G∗. We will show that it is possible to consistently define
as frequencies of the G-relative periodic orbit the frequencies of the G∗-relative periodic orbit, to
which the theory of Krupa and Field applies. In particular, we show that the frequencies defined
in this way coincide with those of the G-relative periodic orbit whenever the latter carries quasi-
periodic motions. When instead the G-relative periodic orbit carries unbounded motions, then
the action of G∗ on V due to the semidirect product structure of the group translates the quasi-
periodicity in G∗ into spiralling, or meandering, patterns of the motion in the group G. The case
of more general groups will be considered elsewhere.

We will illustrate these ideas on simple locomotion systems—a car robot and a microswimmer—
for which G is SE(2), SE(2)× S1, SE(3).

1.B Structure of the paper. Section 2 is devoted to the qualitative properties of the dynamics
in relative periodic orbits. We describe some known results, and present our new treatment of the
frequencies of drifting motions for a class of semidirect products.

Section 3 is devoted to locomotion control systems. We focus on the case of periodic controls
and its link with the dynamics in relative periodic orbits. We also give a detailed description of
some properties of the phase for these systems. The material here is essentially known, but the
presentation has some elements of novelty.

Section 4 is devoted to the examples. A short section of Conclusions follows.

1Equivalently, the semidirect product of a compact group G∗ and of a vector space V on which G∗ acts by linear
maps.
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In the Appendix we give a proof of the reconstruction result for quasi-periodic motions, which
may help understanding the origin of the frequencies of the reconstructed motions.

Acknowledgements. The authors are grateful to Andrea Giacobbe, Paolo Rossi and Nicola
Sansonetto for some very useful conversations on the topics of this article. FF has been partially
supported by the MIUR-PRIN project 20178CJA2B New Frontiers of Celestial Mechanics: theory
and applications. MZ gratefully acknowledges support from the MIUR grant Dipartimenti di
Eccellenza 2018-2022 (CUP: E11G18000350001).

2 The dynamics in a relative periodic orbit

2.A Dynamical systems with symmetry. Consider a free and proper action Ψ : G×M →M
of a Lie group G on a manifold M . A vector field X on M is equivariant under the action Ψ if

X = Ψ∗
gX ∀ g ∈ G .

For general information on equivariant dynamics see e.g. [36, 26, 15, 28]. It is well known that
the quotient manifold M̄ :=M/G is a smooth manifold, the canonical projection π :M → M̄ is a
smooth submersion, and π : M → M̄ is a principal G-bundle. We will assume that this bundle is
trivial, so we may identify M with M̄ ×G ∋ (m̄, g). From now on, thus, we take

M = M̄ ×G

and the action Ψ of G on M̄ ×G is by left translations in the factor G, Ψh(m̄, g) = (m̄, hg).
A vector field X on M = M̄ ×G which is equivariant under the action Ψ has the structure

X(m̄, g) =
(
X̄(m̄), TeLg · ξ(m̄)

)

with X̄ a vector field on M̄ and ξ : M̄ → g a smooth map. (As usual, g or lie(G) denotes the
Lie algebra of G and Lg : G → G denotes the left translation by g in G, namely Lgh = gh for all
h ∈ G). Thus, its dynamics is given by the system of differential equations

˙̄m = X̄(m̄) , ġ = TeLg · ξ(m̄) (3)

on M̄×G. The first equation is the reduced equation and the second is the reconstruction equation.
If G is a matrix group, the latter takes the form ġ = g ξ(m̄) with ξ(m̄) now a matrix in g ⊂ L(n),
the space of all n× n real matrices.

Assume that, for a given point m0 = (m̄0, g0) in M̄ × G, the integral curve t 7→ m̄(t) of the
reduced equation with initial datum m̄(0) = π(m0) = m̄0 is known. The determination of the
solution t 7→ m(t) of system (3) with initial datum m0 reduces to the determination of the solution
of the reconstruction equation

ġ(t) = TeLg(t) · ξ(m̄(t)) (4)

with initial datum g0.
The qualitative properties of the solutions of the reconstruction equation (4) have been studied

in the case of relative equilibria (t 7→ m̄(t) is constant) and of relative periodic orbits (t 7→ m̄(t) is
periodic). We are interested in the latter case.

2.B Relative periodic orbits. Assume that the reduced equation ˙̄m = X̄(m̄) in M̄ has a
periodic solution t 7→ m̄(t) of minimal period T > 0. Let R̄ := m̄(R) ⊂ M̄ be its image. Then, the
preimage

P := π−1(R̄) = R̄×G

of R̄ under the projection π : M̄ ×G→ M̄ , π(m̄, g) = m̄, is called a relative periodic orbit.
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Consider an integral curve t 7→ (m̄(t),G(t)) ∈ P of (3) with initial datum (m̄0, e) ∈ P . Such an
integral curve intersects the G-orbit through (m̄0, e) at every period T , at the points (m̄0,G(pT )),
p ∈ Z. The phase of the relative periodic orbit P (relative to the point m̄0) is the group element

γ := G(T )

(other names are geometric phase, shift, monodromy). By the periodicity of the reduced motion
and the G-invariance of the system, G(pT ) = γp and the integral curve intersects the G-orbit
{m̄0} ×G ⊂ P at the points (m̄0, γ

p), p ∈ Z.

Figure 1: The phase

For any g ∈ G, the subgroup of G generated by g is the closed, abelian subgroup H(g) of G
defined as

H(g) :=
{
gp : p ∈ Z

}
,

where the bar denotes the topological closure. If G is not compact, then the reconstruction theory
of [33, 25, 2] shows that the qualitative properties of the integral curves of X in the relative periodic
orbit depend to a large extent on whether the subgroup H(γ) generated by the phase γ is compact
or not:2

i. If H(γ) is compact, then the flow of X in P is quasi-periodic with k + 1 frequencies for some
k ≤ rank(G) + 1.

ii. If H(γ) is not compact, then the integral curves of X leave any compact subset of P as
t→ ±∞ [2, 15].

We call ‘quasi-periodic’ the motions in case i. and ‘drifting’ those in case ii. Greater details on
them are given in the next two Sections.

Remark: The phase defined above depends on the choice of the initial point (m̄0, e). The
integral curve of (3) with initial datum (m̄0, g0) is t 7→ (m̄(t), g0G(t)) and has phase g0G(T )g

−1
0 .

Given any t0 6= 0, the X-orbit of (m̄(t0), e) intersects the G-orbit π
−1(m̄(t0)) at the points G(t0 +

pT ) = G(t0)G(T )
p, and has phase G(t0)G(T )G(t0)

−1. Thus, properly speaking, the phase of a
relative periodic orbit is a conjugacy class of G. All the relevant properties of the phases are
common to all phases in a conjugacy class.

2A compact, connected, abelian subgroup of a Lie group G is called a torus of G, and is diffeomorphic to Tk for
some k. The maximal dimension of its tori is the rank of a Lie group. Thus, for instance, SE(2) and SE(3) have
both rank one.
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2.B Quasi-periodic motions. In case i., the relative periodic orbit is foliated by ‘invariant tori’
Tg, g ∈ G. These are X-invariant submanifolds diffeomorphic to Tk+1 = S1 × Tk ∋ (〈α0〉, 〈α〉),

3

and the restriction of the dynamics to each one of them is conjugate to the linear flow

(
t, (〈α0〉, 〈α〉)

)
7→ (〈α0 + ω0t〉, 〈α+ ωt〉) (5)

on S1×Tk. Here, ω0 = 2π/T is the frequency of the reduced periodic orbit and ω = (ω1, . . . , ωk) ∈
Rk is a vector determined by the phase. Thus, all motions in P have the same frequencies
ω0, . . . , ωk. For completeness, we give a precise statement and a proof of this fact in the Appendix,
even though under a simplifying assumption. The proof fully explains the origin of the frequencies
ω1, . . . , ωk, but to make the article independent of it, we quickly introduce these frequencies here.

To keep things simple, assume that there exists an element η in the Lie algebra g of G such
that

γ = exp(Tη) (6)

(this certainly happens if the exponential map of G is surjective, as in the case of SE(n)). This
element generates the closed, abelian, connected subgroup

K(η) :=
{
exp(tη) : t ∈ R

}
(7)

of G, where the bar denotes the topological closure. Being closed, the subgroup K(η) is a Lie
subgroup of G. Clearly H(γ) ⊆ K(η), and it is not difficult to see that K(η) is compact if and only
if H(γ) is compact. (One implication is obvious. For the other, note that the curve t 7→ exp(tη)
intersects K(η) at the times qT , q ∈ Z, and use the compactness of H(γ) and of the intervals
[(q − 1)T, qT ]).

Therefore, if H(γ) is compact, then K(η) is a torus of G of some dimension k, 0 ≤ k ≤
rank(G). We will denote by lie(K(η)), eK(η), expK(η) etc. the Lie algebra, the identity element,
the exponential map etc. of K(η) (and we will use below a similar notation for other groups).
Choosing a basis of lie(K(η)) formed by vectors ξ1, . . . , ξk which after multiplication by 2π generate
ker(expK(η)) (namely, expK(η)(ξ) = eK(η) if and only if ξ =

∑
j 2πcjξ

j with all cj ∈ Z) gives a

diffeomorphism 〈α〉 7→ expK(η)

(∑k
i=1 αiξ

i
)
of Tk to K(η). The frequencies ω1, . . . , ωk of motions

(5) are the components of the Lie algebra vector η in the chosen basis:

η =

k∑

i=1

ωiξi . (8)

Clearly, motions in P exhibit spiralling, or ‘meandering’, paths produced by the embedding in P
of the spirals (5) in Tk+1. (The embedding is built in the Appendix).

Remarks: (i) If only p < k+1 of the frequencies are nonresonant (namely, linearly independent
over Q), then the closure of each motion (5) is a p-dimensional torus. In such a situation, the
construction described above could be repeated with K(η) replaced by a torus of dimension p− 1
(see [2, 15] and, for an analogous case, [18]). In this way, p-dimensional ‘invariant tori’ Tg are
constructed that are minimal sets for the flow of X .

(ii) The choice of the ‘logarithm’ η of the phase is unique up to an element of ker(expK(η)). Even
though this choice does not affect the phase, it may change the dimension of K(η) (an example
will be met in Section 4.C).

(iii) Even if the dimension of K(η) is kept fixed, the indeterminacy of η and of the basis
of lie(K(η)) implies that the frequency vector ω = (ω1, . . . , ωk) is determined up to an automor-
phism of Zk (a linear transformation with integer entries and determinant ±1).

3For x ∈ R, we write 〈x〉 to mean x (mod2π).
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2.D Frequencies of drifting motions for certain semidirect products. The description
of drifting motions in a relative periodic orbit R̄ × G is less detailed than that of quasi-periodic
motions. As already mentioned, their G-component leaves any compact set of G as t → ±∞ (and
this is basically their known dynamical characterization).

To show that this is indeed the case note that, if H(γ) is not compact, then certainly the points
G(nT ) = γn leave any preassigned compact subset of G for n tending to at least one between ±∞.
Assume, e.g., that this happens for n→ +∞. Since the action of G on itself by left translations is
proper, the map f : G×G → G×G, (g, h) 7→ (gh, h) is proper. If the points γ−n, n > 0, remain
inside a compact subset of G, then the subset f−1({(e, γ−n) : n ∈ Z+}) = {(γn, γ−n) : n ∈ Z+} of
G×G is compact, against the hypothesis that the γn’s leave any compact set in G.

The possibility of defining frequencies and spiralling for drifting motions does not seem to have
been considered before (even though frequencies make, at least implicitly, their appearance in some
examples involving SE(2) or other simple groups [2, 22]). We leave a general analysis of this topic
for a future work and, as a first step in this direction, we restrict our attention to a family of Lie
groups including SE(n) and other common groups in locomotion.

Specifically, in this Section we assume that G is the semidirect product of a compact subgroup
G∗ and of a (normal) vector subgroup V :

G = G∗ ⋉ V

(a “vector subgroup” of a Lie group is a closed subgroup isomorphic to a vector space). As a
manifold, G is diffeomorphic to G∗ × V , but the group multiplication is

(g∗, u)(h∗, v) = (g∗h∗, uφg∗(v))

where φ : G∗ × V → V is a (left) action of G∗ on V such that, for each g∗ ∈ G∗, φg∗ is an
automorphism of V . We will identify G with the product G∗ × V and write any element g ∈ G
as (g∗, u) with unique g∗ ∈ G and u ∈ V . Correspondingly, we will identify the phase space
M = M̄ ×G ∋ (m̄, g) with

M0 := M̄ ×G∗ × V

so that the action of G on M becomes the action of G∗ × V on M0 given by

Ψ(g∗,u)(m̄, h∗, v) =
(
m̄, Lg∗h∗, (Lu ◦ φg∗)(v)

)
.

The Lie algebra g of G, as a vector space, is the direct sum of the Lie algebras lie(G∗) of G∗

and lie(V ) of V , and any ξ ∈ g can thus be uniquely written as (ξ∗, ξV ) with ξ∗ ∈ lie(G∗) and
ξV ∈ lie(V ). We will denote by eG, e∗ and eV the identity elements of G, G∗ and V , and similarly
write expG, expG∗

, expV etc.
In order to define frequencies for the drifting motions we use the fact that, for a semidirect

product, the reduction procedure under G can be performed in two stages: first under the normal
subgroup V , then under G∗. Indeed, it is immediate to check that a G-invariant vector field X on
M0 ∋ (m̄, g∗, u) has the form

˙̄m = X̄(m̄) , ġ∗ = TeLg∗ · ξ∗(m̄) , u̇ = Te(Lu ◦ φg∗) · ξV (m̄) (9)

with X̄ a vector field on M̄ and, for any m̄ ∈ M̄ , ξ∗(m̄) ∈ lie(G∗) and ξV (m̄) ∈ lie(V ). In
agreement with the fact that V is normal, the quotient G/V is a group isomorphic to G∗ and the
quotient projection G→ G∗ is a Lie group isomorphism. Hence, taking the quotient under V gives
a “first-reduced” system on the phase space M1 := M̄ × G∗, with quotient map π1 : M0 → M1

given by the projection π1(m̄, g∗, u) = (m̄, g∗). The first-reduced vector field X̄1 on M̄ ×G∗, as a
differential equation, is

˙̄m = X̄(m̄) , ġ∗ = TeLg∗ · ξ∗(m̄)
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and is G∗-invariant. Its reduction under the action (g∗, (m̄, h∗)) = (m̄, Lg∗h∗) of G∗ on M1 gives
the vector field X̄ on M̄ , and coincides with the reduction of the full system from M0 to M2 := M̄
under the action of G. If π2 :M1 →M2 and π :M0 → M2 are the projections associated to these
two other quotients, then π = π2 ◦ π1.

Consider now a reduced periodic orbit R̄ ⊂M2 of period T . Reconstructing it with the full G-
action gives a G-relative periodic orbit P0 = π−1(R̄) ⊂M0 with a certain phase γ = (γ∗, γV ) ∈ G.
Since γn+1 =

(
γn+1
∗ , γV φγ∗(γV )

n
)
for all n ≥ 1, the compactness of the subgroup H(γ) := {γn :

n ∈ Z} of G generated by γ depends jointly on the two components γ∗ ∈ G∗ and γV ∈ V of the
phase; for H(γ) to be noncompact it is obviously necessary that γV 6= eV , but this is not sufficient;
for some examples, see Sections 2.E and 4. On the other hand, reconstructing R̄ with the action
of G∗ produces a G∗-relative periodic orbit P1 = π−1

2 (R̄) ⊂M1.

Lemma 1. The phase of P1 coincides with the G∗-component of the phase of P .

Proof. From the fact that the vector field X is π1-related to the vector field X1 in P1 it follows

that π1 ◦Φ
X
T = ΦX̄1

T ◦π1 and therefore ΦX̄1

T (m̄0, e∗) = ΦX̄1

T ◦π1(m̄0, e∗, eV ) = π1 ◦Φ
X
T (m̄0, e∗, eV ) =

π1(m̄0, γ∗, w) = (m̄0, γ∗).

Thus, if γ = (γ∗, γV ) is the phase of P , γ∗ is the phase of P1. Since G∗ is compact, the
subgroup H∗(γ∗) := {γn∗ : n ∈ Z} of G∗ generated by γ∗ is compact. Therefore, the dynamics in
P1 is quasiperiodic, and has a set of frequencies (ω0, ω) ∈ R × Rk, for some 0 ≤ k ≤ rank(G∗),
with ω0 = 2π/T and a vector ω ∈ Rk which is unique up to an automorphism of Zk.

Definition 1. Under the hypotheses of this section, we define as frequencies of the G-relative
periodic orbit P the frequencies of the G∗-relative periodic orbit P1.

This definition applies to both compact and noncompact subgroups H(γ) ⊂ G, namely to
both quasi-periodic and drifting motions in the G-relative periodic orbit P . Even though the case
of interest is that of drifting motions, we note that, in the case of quasi-periodic motions, this
definition leads to the right frequencies.

Proposition 1. In the hypotheses of this section, assume that H(γ) is compact. Then, the
reconstruction procedures described in Section 2.C for the G-action and for the G∗-action can be
performed so as to produce the same frequencies.

Proof. We use a few elementary facts about Lie groups, which can be found in any textbook (e.g.
[8, 16]).

Under the current hypotheses, as a manifold, G can be identified with G∗ ×V and, as a vector
space, lie(G) := g is isomorphic to lie(G∗) ⊕ lie(V ). We thus write g = (g∗, gV ) ∈ G∗ × V the
elements of G and ξ = (ξ∗, ξV ) ∈ lie(G∗) × lie(V ) those of lie(G) := g. Let p1 : G∗ × V → G∗,
p1(g∗, u) = g∗, be the projection onto the first factor. Because of the semidirect product structure
of G = G∗⋉V , as a map from G to G∗ the projection p1 is a Lie group homomorphism. Therefore,
its differential TeGp1 : lie(G∗) × lie(V ) → lie(G∗), (ξ∗, ξV ) 7→ ξ∗, as a map from lie(G) to lie(G∗),
is a Lie algebra homomorphism. Hence, p1 ◦ expG = expG∗

◦TeGp1.
If γ = (γ∗, γV ) is the phase of P then, as already noticed, γ∗ is the phase of P1. Pick up an

η = (η∗, ηV ) ∈ lie(G) such that γ = expG(Tη). Then, γ∗ = p1 ◦ expG(η) = expG∗

(η∗).

Consider now the two subgroups K := expG(Rη) of G and K∗ := expG∗

(Rη∗) of G∗, which are
both tori. From the relationship between p1 and Tep1, using also the compactness of K and the
continuity of p1, it follows that

K∗ = p1(K) .

Hence dimK∗ ≤ dimK. We now show that dimK∗ = dimK.
Let k = dimK. Since p1 : K → K∗ is a group homomorphism, lie(K∗) = Tep1(lie(K)). Since

K is a k-dimensional torus, its Lie algebra has a basis {ξ1, . . . , ξk} which generates ker(expK).
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Write, as above, ξi = (ξi∗, ξ
i
V ). The vectors ξi∗ = Tep1 · ξ

i belong to lie(K∗) and so, if they are
linearly independent, dimK∗ = k. If they are not linearly independent then, possibly after a
reordering, ξk∗ =

∑k−1
i=1 ciξ

i
∗ with ci ∈ R. Hence ξk −

∑k−1
i=1 ciξ

i = (0, w) ∈ lie(K) with some
nonzero (in view of the linear independence of ξ1, . . . , ξk) vector w ∈ lie(V ). Note now that
expK(t(0, w)) = (eG∗

, expV (tw)) for all t ∈ R and thus

expK(R(0, w)) = {eG∗
} × expV (Rw) .

But this is impossible because expK(R(0, w)), being a closed subgroup of the compact group K,
is compact, while expV (Rw) is noncompact because the vector subgroup V contains no nontrivial
compact subgroups. Thus, by contradiction, dim(K∗) = dim(K). Moreover, {ξ1∗, . . . , ξ

k
∗} is a basis

of lie(K∗) that exponentiate to the identity.
As explained in Section 2.C, the choice of the basis {ξ1, . . . , ξk} of lie(K) and of the ‘logarithm’

η =
∑

i ωiξ
i of the phase γ = (γ∗, γV ) leads to the frequencies ω0, ω1, . . . , ωk of the G-relative

periodic orbit P . In the basis {ξ1∗, . . . , ξ
k
∗} of lie(K∗), the phase γ∗ of the G∗-relative periodic orbit

P1 has ‘logarithm’ η∗ = Tep1 · η =
∑

i ωiξ
i which leads to the same frequencies.

Definition 1 allows to attach a set of k + 1 frequencies to drifting motions, with some 0 ≤ k ≤
rank(G∗). One of these frequencies comes from the reduced period, while the remaining k are
produced from the reconstruction procedure of the reduced periodic orbit with the action of G∗.
In the identification (as a manifold) of the G-relative periodic orbit P with R̄×G∗×V , (ω0, ω) are
the frequencies of the projections of motions to the R̄×G∗ factor of P , which are quasi-periodic.

However, due to the semidirect product structure of the group, which couples the V -component
of motions to their G∗-component, the frequencies may affect also the evolution of the V -component
of motions, producing meandering behaviours. In practice, the observability of these frequen-
cies and meandering depends on the possibility of identifying the components R̄ × G∗ and V of
the relative periodic orbit in the system’s phase space. We will illustrate this situation in the
examples—from control theory—of Section 4.

Remarks: (i) While the quasiperiodicity or drifting of a motion is determined by both com-
ponents of the phase in G∗ and V , its frequencies—as defined here—are determined only by the
former.

(ii) The analysis of the frequencies of unbounded motions made here applies as well to relative
equilibria of noncompact groups.

2.E The effect of the group on the prevalence of quasi-periodicity or drifting. Ashwin
and Melbourne in [2] make the interesting remark that, in a given group G, there may be a ‘pre-
ferred’ behaviour between quasi-periodicity and drifting, which is due to a prevalence of elements
g ∈ G that generate either a compact or a noncompact subgroup (see also, for the case of SE(n),
[22]). In fact, G decomposes as the union of the two disjoint subsets

GQP := {g ∈ G : H(g) is compact}

GD := {g ∈ G : H(g) is not compact}

and, if one of them is significantly ‘larger’ than the other, then the corresponding dynamical
behaviour may be expected to be preferred. In [2], this fact is characterized at the Lie algebra
level, but we prefer to work in G.

Specifically, [2] points out that the two subsets

gQP := {η ∈ g : K(η) is compact}

gD := {η ∈ g : K(η) is not compact}
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(where K(η) is defined as in (7)) of the Lie algebra g are semialgebraic sets (namely, closed sets
defined by polynomial equations and inequalities). We recall that a semialgebraic subset A of
a vector space E contains a dense subset which is a submanifold of E, and whose dimension
(codimension) defines the dimension (codimension) of A.

It is elementary to translate these facts to G if—as we do assume—the exponential map exp :
g → G is surjective. If g = exp(η), then as already noticed H(g) is compact if and only if K(η) is
compact. Therefore,

GQP = exp(gQP) , GD = exp(gD) .

If the group G is not a matrix group, then GQP and GD cannot be regarded as semialgebric
sets. However, since the exponential map is a local diffeomorphism, each of the two sets GQP

and GD contains a maximal submanifold (the image of the maximal submanifold of gQP and gD)
which is dense in it, whose dimension equals the dimension of gQP and gD. We may thus define
dimGQP := dim gQP and dimGD := dim gD. And it may happen that, in a given group, the
dimension of either GQP or GD exceeds the other.

It is instructive, in this regard, to compare SE(n), namely the semidirect product SO(n)⋉Rn,
to the direct product SO(n)×Rn. These two Lie groups have the same differentiable structure as
manifolds, but different group structures, with products (R, r)(S, s) = (RS, r + Rs) in the former
and (R, r)(S, s) = (RS, r + s) in the latter.

• In G = SE(n), codimGQP = 0 and codimGD = 1 if n is even, the opposite if n is odd ([2, 22]).

• In G = SO(n) × Rn, instead, the prevailing behaviour is always drifting. In fact, (R, r)n =
(Rn, nr) and H((R, r)) is compact if and only if r = 0. Thus, GD = SO(n) × {r 6= 0} is
an open submanifold of SO(n) × Rn while its complement SO(n) × {0} is a submanifold of
dimension n(n− 1)/2. It follows that codimGD = 0 and codimGQP = n.

At least at the Lie group or Lie algebraic level, therefore, it may happen that one of the two
behaviours—quasiperiodicity or drifting—is generic and the other exceptional. In such a situation,
unless peculiarities of the dynamics select phases that belong to the exceptional subset of the Lie
group, the prevalent behaviour is a priori expected to take place.

3 Phases and frequencies in robotic locomotion

3.A Control systems for robotic locomotion. The class of locomotion control systems that
we consider is formed by control systems of the form

ṡ(t) = u(t) , ġ(t) =

m∑

i=1

Xi(s(t), g(t))ui(t) ,

where: (1) The configuration space is the productM = S×G ∋ (s, g) of a connected n-dimensional
Lie group G and of an m-dimensional manifold S, which is assumed to be parallelizable (so that
TS ≈ S × Rn and it is meaningful to consider the components ui of its tangent vectors). (2) The
u’s are the controls. (3) The vector fields X1, . . . , Xm on G are assumed to be (for each fixed s)
left-invariant, so that Xi(s, g) = TeLg ·Ai(s) with smooth maps Ai : S → g, i = 1, . . . ,m. Thus, a
locomotion control system is given by

ṡ = u , ġ =

m∑

i=1

TeLg · Ai(s)ui (s, g) ∈ S ×G . (10)

The points of S are often interpretable as ‘shapes’ of the system, and the elements of G as its
‘configurations’ or ‘positions’. For instance, for a planar system formed by two articulated rigid
rods immersed in a viscous fluid, such as the ‘scallop’ considered in [40], the configuration space G
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is SE(2) (position and orientation of one rod) while the shape space S is S1 (mutual orientation
of the two rods).

In view of the first equation (10), the controls t 7→ u(t) ∈ Rm assign the velocities of the shape
changes as a function of time. General theorems on non-smooth ordinary differential equations (see
e.g. [1]) ensure that, given any measurable map u : R → Rn, any t0 ∈ R and any (s0, g0) ∈ S ×G,
there is a unique map (s, g) : I → S × G which is defined on a maximal interval I that contains
t0, is absolutely continuous,4 satisfies (s(t0), g(t0)) = (s0, g0) and satisfies (10) at almost any t ∈ I.
Furthermore, this map depends in an absolutely continuous way on t0 and smoothly on (s0, g0).

One may prefer to regard the curve R ∋ t 7→ s(t) ∈ S, rather than its derivative, as the control—
and we will do this way. Since any absolutely continuous map is almost everywhere differentiable
with a measurable derivative, the previous results imply that, given any absolutely continuous
curve R ∋ t 7→ s(t) ∈ G, any t0 ∈ R and any g0 ∈ G, there exists a unique map t 7→ g(t) ∈ G which
is defined in a maximal interval I ∋ t0, satisfies g(t0) = g0, is absolutely continuous and satisfies

ġ(t) = TeLg(t) ·

m∑

i=1

Ai(s(t))ṡi(t) (11)

at almost all t ∈ I. Furthermore, this map (that we will call the solution of the control system (11)
with initial datum g0 at time t0 relative to the given control t 7→ s(t)) depends in an absolutely
continuous way on t0 and is smooth in g0.

We will assume that all solutions of (11) exist for all times. Thus, for any absolutely continuous
control ŝ : R → S there is an absolutely continuous nonautonomous flow map

Φŝ : R× R×G→ G , (t0, t, g0) 7→ Φŝt,t0(g0) (12)

such that Φŝt,t0(g0) is the value at time t of the solution of (11) with initial datum g0 at time t0
relative to the control ŝ. By the left-invariance of (11),

Φŝt,0(g0) = g0Φ
ŝ
t,0(e) ∀t ∈ R , g0 ∈ G .

Furthermore, Φŝt2,t1 ◦ Φŝt1,t0 = Φŝt2,t0 for all t0, t1, t2 ∈ R. It follows that Φŝt,t0 : G → G is a

diffeomorphism with inverse Φŝt0,t for all t0, t ∈ R.

Remark: The configuration space M = S×G can be interpreted as the total space of a trivial
principal bundle with base S, fiber G and projection π : S×G→ S, π(s, g) = s. Correspondingly,
the map

A : TS → g , A(s, ṡ) =

m∑

i=1

Ai(s)ṡi (13)

can be regarded as a principal connection on this principal bundle. This interpretation has been
emphasized, e.g., in [42, 37, 31]. We will not need this interpretation, but we will use this termi-
nology.

3.B Phases and dynamics for periodic controls. We are interested in periodic controls. For
any s0 ∈ S and T > 0, let LTs0 be the space of all absolutely continuous (parametrized) curves
ℓ : R → S which are periodic with minimal period T and satisfy ℓ(0) = ℓ(T ) = s0. We call these
curves T -periodic gaits with basepoint s0. Next, we define the space Ls0 of gaits of any period
with basepoint s0, the space LT of gaits of period T with any basepoint, and the space L of all
gaits in S:

Ls0 :=
⋃

T>0

LTs0 , LT :=
⋃

s0∈S

LTs0 , L :=
⋃

s0∈S

Ls0 =
⋃

T>0

LT .

4We assume that a Riemannian metric has been chosen on S × G, so as to give a meaning to the absolute
continuity of curves in S ×G.
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Note that we do not require the restriction to the interval [0, T ) of a T -periodic gait to be injective.
Therefore, the image of a gait may have self-intersection points (Figure 2.b), may contain closed
subgaits ran more than once (Figure 2.c), and may even be a non-closed curve ran twice in opposite
directions (Figure 2.d). (The reason for not requiring injectivity is for the concatenation of gaits
to be a gait, see below).

To any gait ℓ ∈ L we associate its nonautonomous flow map Φℓ as in (12). Clearly, if ℓ ∈ LT ,
then Φℓt+T,t0+T = Φℓt,t0 for all t0, t.

Definition 2. The phase map for the control problem (11) is the map γ : L → G which to any
gait ℓ ∈ LT of period T > 0 associates the group element γ(ℓ) := ΦℓT,0(e).

Figure 2: Images of gaits

Equation (11) has the same form as the reconstruction equation (4) in a relative periodic orbit
of an equivariant vector field on TS × G, but with two differences. One is that, at variance with
reduced periodic orbits, control gaits may have self-intersections; in such a case the phase can be
defined through an obvious composition process. The other is that solutions of (11) need not be
smooth. Thus, all conclusions of Section 2 and of the Appendix apply to equation (11), with the
only difference that the conjugation to quasi-periodic motions is absolutely continuous rather than
smooth. With this caveat, we have that, given a gait ℓ ∈ L:

i. If the subgroup H(γ(ℓ)) is compact, then t 7→
(
(ℓ(t), ℓ′(t)),Φℓt,0(e)

)
is a quasi-periodic curve

with k + 1 frequencies, for some 0 ≤ k ≤ rank(G). Its component t 7→ Φℓt,0(e) is contained in
a compact subset of G.

ii. If the subgroup H(γ(ℓ)) is not compact, then t 7→
(
(ℓ(t), ℓ′(t)),Φℓt,0(e)

)
is a drifting curve. Its

component t 7→ Φℓt,0(e) leaves any compact subset of G as t→ ±∞.

In case i., the frequencies ω0, ω1, . . . , ωk can be computed as explained in Sections 2.C. If G is
the semidirect product of a compact group and of a vector space, as explained in Section 2.D
frequencies can be attached to drifting motions as well.

From a trajectory generation perspective, one might be interested in determining which gaits
have phases that belong to GD or GQP, namely, in determining the sets γ(L)∩GD, γ(L

T )∩GD etc.
A first information comes from the knowledge of GD and GQP themselves, particularly if one of
the two is prevalent. On top of that, in any given system, the specificities of the connection A that
appears in equation (11) may play a role—in particular, the phase map might not be surjective,
and only subsets of the two sets GD and GQP might be reached.

In conclusion we note that, in practice, there is a difference between the control problem and
the dynamics in a relative periodic orbit. In a control problem the interest is on the motion
t 7→ Φℓt,0(e) ∈ G, which takes place in the group G, not on the motion t 7→

(
(ℓ(t), ℓ′(t)),Φℓt,0(e)

)

which is the analogous of the motion in a relative periodic orbit. Therefore, what is actually
observed in a control system is the analogous of the projection to G of the motion in the relative
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periodic orbit R̄ × G, and the projected motion may loose one frequency. We will illustrate this
fact in the examples of Section 4.

3.C Behaviour of the phase under gaits’ concatenation and time-reparametrization.
We point out now two properties of phases of locomotion systems.

1. Gaits concatenation. The space Ls0 of all gaits based at a point s0 can be equipped
with a product (“concatenation”) defined as follows: if ℓ1 ∈ LT1

s0 and ℓ2 ∈ LT2

s0 , then ℓ1 ⋆ ℓ2 is the
(T1 + T2)-periodic curve defined by

ℓ1 ⋆ ℓ2(t) :=

{
ℓ1(t) if 0 ≤ t mod(T1 + T2) ≤ T1

ℓ2(t) if T1 ≤ t mod(T1 + T2) ≤ T1 + T2 .

If, as we will always assume, ℓ1 and ℓ2 have different images, then ℓ1 ⋆ ℓ2 ∈ LT1+T2

s0 . (If they have
the same image, then T1 + T2 is not the minimal period of ℓ1 ⋆ ℓ2). Obviously:

Proposition 2. γ(ℓ1 ⋆ ℓ2) = γ(ℓ1)γ(ℓ2) for all ℓ1, ℓ2 ∈ Ls0 .

This has the consequence that, if GQP is not a subgroup of G, it may happen that γ(ℓ1 ⋆ ℓ2) ∈ GD

even if γ(ℓ1), γ(ℓ2) ∈ GQP. Thus, it may be possible to build gaits that produce drifting motions by
concatenating gaits that, individually, produce quasiperiodic motions. The opposite may happen
to the products of gaits whose phase is in GD (which is never a subgroup, because e /∈ GD).

For a generic group G, there are no explicit algorithms to design the individual gaits ℓ1 and ℓ2
so as to produce a desired phase γ(ℓ1 ⋆ ℓ2). However, this is elementary for G = SE(2) and SE(3).
If we regard SE(n) as SO(n) ⋉ Rn ∋ (R, r) with product (R, r)(S, s) = (RS, r + Rs) and write
γ = (γ∗, γV ) with γ∗ ∈ SO(n) and γV ∈ Rn (see Section 2.B), then

γ(ℓ1 ⋆ ℓ2)∗ = γ(ℓ1)∗γ(ℓ2)∗ , γ(ℓ1 ⋆ ℓ2)V = γ(ℓ1)V + γ(ℓ1)∗γ(ℓ2)V .

When n = 2, if each γ(ℓi)∗ is a rotation of angle θi, then γ(ℓ1 ⋆ ℓ2)∗ is a rotation of angle θ1 + θ2.
When n = 3, the axis and angle of the rotation γ(ℓ1 ⋆ ℓ2)∗ can be read off those of γ(ℓ1)∗ and
γ(ℓ2)∗ using e.g. quaternions.

2. Gaits reparametrization. Second, for locomotion systems, the linearity in ṡ of the connection
(13) has the consequence that the phase of a control gait is independent of its time-parametrization.
This follows from the following known fact, whose proof is immediate (see also [12], which however
considers only time-reparametrizations of class C1).

Lemma 2. Consider an interval I ⊆ R and let g : I → G be the solution with initial datum g0 at
time t0 of equation (10) with a certain absolutely continuous map s : I → S. Consider an interval
Ĩ ⊆ R and a homeomorphism τ : Ĩ → I which is absolutely continuous together with its inverse.
Then, g̃ := g ◦ τ is the solution of equation (10) with the map s replaced by s ◦ τ and initial datum
g0 at time τ−1(t0).

Given T, T̃ > 0 and t̃0 ∈ R, consider an absolutely continuous homeomorphism τ0 : [t̃0, t̃0+T̃ ] →
[0, T ] and lift it to a map τ : R → R by defining

τ(t + p T̃ ) := τ0(t) + p T ∀ t ∈ [t̃0, t̃0 + T̃ ] , p ∈ Z ,

which is an absolutely continuous homeomorphism as well. Clearly, if ℓ ∈ LTs0 , then ℓ̃ := ℓ◦τ ∈ LT̃s̃0
with base point s̃0 = ℓ(τ(0)).

Proposition 3. For any absolutely continuous homeomorphism τ : R → R of the type just
introduced there exists gτ ∈ G such that, for all ℓ ∈ LT , γ(ℓ ◦ τ) = gτγ(ℓ)g

−1
τ if τ is orientation

preserving and γ(ℓ ◦ τ) = gτγ(ℓ)
−1g−1

τ if τ is orientation reversing.
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Proof. Let ℓ̃ = ℓ ◦ τ . By Lemma 2, Φℓ̃
t̃,t̃0

= Φℓ
τ(t̃),τ(t̃0)

for all t̃, t̃0 ∈ R. Therefore, using the

periodicity of ℓ̃ and the link between the two nonautonomous flows,

γ(ℓ̃) = Φℓ̃
T̃ ,0

(e) = Φℓ̃
T̃ ,T̃+t̃0

◦ Φℓ̃
T̃+t̃0,t̃0

◦ Φℓ̃t̃0,0(e) = Φℓ̃0,t̃0 ◦ Φ
ℓ
τ(T̃+t̃0),τ(t̃0)

◦ Φℓ̃t̃0,0(e) .

Hence, by equivariance, γ(ℓ̃) = Φℓ̃
t̃0,0

(e)Φℓ
τ(T̃+t̃0),τ(t̃0)

(e)Φℓ̃
0,t̃0

(e) = gτ Φ
ℓ
τ(T̃+t̃0),τ(t̃0)

(e) g−1
τ with

gτ = Φℓ̃
t̃0,0

(e). The proof is now concluded observing that Φℓ
τ(T̃+t̃0),τ(t̃0)

(e) = ΦℓT,0(e) if τ preserves

the orientation and Φℓ
τ(T̃+t̃0),τ(t̃0)

(e) = Φℓ0,T (e) = ΦℓT,0(e)
−1 if it reverses the orientation.

This implies that, unless a gait contains closed subgaits (as in Figure 2.c), its phase is a property
of its (oriented) image alone.

3.D Example: The scallop theorem. An extreme case is that of a gait of period T whose
image is an arc of a non-closed curve which is ran twice, first in a direction, then in the other, as
in Figure 2.d.

It is well known (Purcell’s “scallop theorem” [40]) that the phase of any such gait is trivial,
namely, it is the group identity. Within our setting, the proof of this fact is immediate. We
may reparametrize time so that the gait satisfies ℓ(t) = ℓ(T − t) for all t ∈ [0, T ]. Thus, if
τ(t) = T − t, ℓ ◦ τ = ℓ and hence, by Lemma 2, ΦℓT,T/2 = Φℓ◦τT,T/2 = Φℓ0,T/2 = (ΦℓT/2,0)

−1 so that

γ(ℓ) = ΦℓT,T/2 ◦ Φ
ℓ
T/2,0(e) = e; the conclusion now follows from Proposition 3.

Hence, if the shape space S is one-dimensional and diffeomorphic to R, then the phase map
γ maps S onto the group identity. Non-trivial phases are instead possible if the shape space
is diffeomorphic to a circle S1. The consequences of these facts on the self-propulsion of micro
swimmers have been extensively discussed by Purcell himself [40].

Remark: There is an extensive literature on the scallop theorem, which has been reconsidered
from a variety of perspectives. The statement and proof above seem to us to be exactly in the spirit
of Purcell’s ideas (who did not formalize his theorem): the gaits which are ran twice formalize the
“reciprocal motions” of [40] and the time reparametrization formalizes Purcell’s statement that
“Time, in fact, makes no difference—only configuration”.

4 Examples from locomotion systems

We provide now some examples, chosen from locomotion systems, to illustrate the theory and
the considerations of the previous sections. We focus mostly on the simple but typical case of
G = SE(2), but we very shortly consider also the cases of SE(2)×S1 and SE(3). All these groups
have the semidirect product structure of Section 3.C, and we may speak of frequencies of drifting
motions in the sense specified there.

Reconstruction for SE(2)-invariant systems appear in various works, see particularly [22, 21],
and the results in Section 4.A are known, except for the introduction of the frequencies of un-
bounded motions.

4.A Phases and frequencies in SE(2). We regard SE(2) as the semidirect product S1 ⋉R2 ∋
(〈α〉, r) with product

(〈α〉, r).(〈β〉, s) =
(
〈α+ β〉, r +Rαs

)
.

Here S1 = R/(2πZ) and, for any real x, 〈x〉 = x (mod2π) and Rx =

(
cosx − sinx
sinx cosx

)
. The

group identity is e = (〈0〉, 0) ∈ S1 × R2 and the inverse of an element (〈α〉, r) is (〈−α〉,−R−αr).
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Correspondingly, the Lie algebra se(2) is identified with R ⊕ R2 and the S1-component of the
exponential map exp : R⊕ R2 → S1 × R2 is that of S1. Thus,

exp(θ̇, ṙ) =
(
〈θ̇〉, ⋆

)
∀(θ̇, ṙ) ∈ R⊕ R2 ; (14)

the expression of the R2-component of exp, here denoted ⋆, is not important for us because, as
pointed out before, the frequencies in the relative periodic orbits are independent of it. In this
identification, a basis of R = s

1 which, after multiplication by 2π, generates ker(expS1) is formed
by the number 1.

As already mentioned, the generic behaviour for SE(2) is quasi-periodicity [2, 22]. In detail,
(〈α〉, r)n =

(
〈nα〉,

∑n
k=0Rkαr

)
for all n > 0, and a similar formula for n < 0. Therefore, if 〈α〉 = 0

and r 6= 0 then the R2-component of (〈α〉, r)n moves along a straight line, and H(〈α〉, r) is not
compact. In all other cases such a component moves on a circle (if 〈α〉 6= 0, r 6= 0) or is a point (if
〈α〉 = 0, r = 0), and H(〈α〉, r) is compact. Hence,

SE(2)D = {〈0〉} × (R2 \ {0}) , SE(2)QP = {(〈0〉, 0)} ∪
(
(S1 \ {〈0〉})× R2

)
.

Note that SE(2)D is a two-dimensional submanifold of SE(2) while SE(2)QP is the union of a
point and of a three-dimensional submanifold. Thus, SE(2)D has codimension one and SE(2)QP

has codimension zero.
Consider now a locomotion system with group SE(2) ∋ (〈θ〉, r = (x, y)) and an m-dimensional

shape space S, m ≥ 1. If η = (θ̇, ṙ) ∈ R⊕ R2 = se(2) then T(〈0〉,0)L(θ,v) · η = (θ̇, Rθ ṙ). Therefore,
if for every i = 1, . . . ,m we write

Ai(s) =:
(
A∗
i (s), A

V
i (s)

)
∈ R× R2

(where the “∗” and the “V ” have the meaning of Section 2.C, with now G∗ = S1 and V = R2),
then equation (11) takes the form

θ̇(t) =

m∑

i=1

A∗
i (s(t))ṡi(t) , ṙ(t) =

m∑

i=1

Rθ(t)A
V
i (s(t))ṡi(t) . (15)

These equations have the structure (9) of semidirect products, with that for θ being the ‘first
reduced’ equation in S1. Correspondingly, they allow to determine the phase of a gait with two
consecutive integrations. Specifically, if for any ℓ ∈ LT we define

θℓ(t) :=
m∑

i=1

∫ t

0

A∗
i (ℓ(τ))ℓ

′
i(τ)dτ

then γ(ℓ) = (γℓ∗, γ
ℓ
V ) with

γℓ∗ =
〈
θℓ(T )

〉
, γℓV =

m∑

i=1

∫ T

0

Rθℓ(t)A
V
i (ℓ(t))ℓ

′
i(t)dt .

Hence (see also [22, 21]):

Proposition 4. γ(ℓ) ∈ SE(2)D if and only if

θℓ(T ) = 0 (mod2π) and γℓV 6= 0 .

We now consider the frequencies of motions in the relative periodic orbit. As discussed in
Section 2.D, they are the frequencies produced by reconstructing the gait with the action of S1,
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namely, with the first equation (15). Since S1 has rank one, motions may have at most two
frequencies, one of which is the frequency ω0 = 2π

T of the control gait. The other frequency, if
present, is determined by the S1-component γℓ∗ = 〈θℓ(T )〉 of the phase. According to (14) we have

γℓ∗ = exp(Tηℓ∗) with, for instance, η
ℓ
∗ = θℓ(T )

T , or else ηℓ∗ = θℓ(T )+2πq
T = θℓ(T )

T + qω0 with any q ∈ Z.
The first choice leads to the second frequency

ω1 =
θℓ(T )

T
.

Thus:

1. In a drifting motion 〈θℓ(T )〉 = 0 and we may choose ηℓ∗ = 0. Motions have the single frequency
ω0. This means that the projection of the motion in R̄ × S1 is periodic with the period T of
the gait. Note that if θℓ(T ) = 2πq for some q 6= 0, then t 7→ θ(t) increments itself of an integer
multiple of 2π in each gait’s period.

2. Quasi-periodic motions are met in two cases:

2.1. 〈θℓ(T )〉 = 0, γℓV = 0. This is the trivial case where the phase is the identity. Choosing
ηℓ∗ = 0 does not produce a second frequency. Here too, the projection of motions in R̄×S1

is T -periodic.
2.2. If 〈θℓ(T )〉 6= 0 (and either γℓV 6= 0 or γℓV = 0) then motions are quasi-periodic with the two

frequencies ω0 and ω1. If ω1/ω0 = θℓ(T )
2π is irrational, then the projection of the motion

in R̄× S1 fills it densely; otherwise, it is periodic.

As already pointed out, even if the frequency ω1 arises in the reconstruction of the S1-component
of the motion, it may affect also the evolution of the R2-component. Moreover, the motion t 7→
(θ(t), r(t)) in the group might loose one frequency.

We now illustrate this situation on two control systems with shape spaces S of dimensions
two and three, respectively. (If S is one-dimensional, and simply connected, then by the scallop
theorem SE(2)D is always empty).

Remark: In cases 1. and 2.1, choosing ηℓ∗ = 2πq with q ∈ Z gives ω1 = qω0; hence, the number
of independent frequencies remain 1, consistently with the fact that the projection of motions in
R̄× S1 is periodic.

4.B A car robot. We consider here a simplified model of a car that moves on a horizontal
plane. This is a slightly modified version of a model studied in [39] and reconsidered in other
works, e.g. in the textbook [10] (for the differences see section 4.C). The car is formed by three
articulated rigid bodies: the rear and front wheels attached to the car’s frame—say, a rod of length
λ that connects the center C1 of the front wheel to the center C2 of the rear wheel. The wheels
are modelled as rigid disks of equal radius aλ with some a < 1/2, which are free to rotate about
their horizontal axes and are constrained to touch the plane and stand vertically. The front wheel
is also free to rotate about its vertical axis, which allows to steer the car. See figure 3 (where for
convenience the car is depicted more like a bike).

The configuration manifold of this (holonomically constrained, so far) mechanical system is
M = S1 × R2 × S1 × S1 × S1 ∋ (θ, (x, y), ψ1, ψ2, φ), where (x, y) are the coordinates of the
projection in the plane of a chosen point of the frame, say the center C2 of the rear wheel, the
angle θ fixes the orientation of the frame in the plane, ψ1 and ψ2 are rotation angles of the front
and rear wheels about their horizontal axes, respectively, and φ is the steering angle of the front
wheel. (To simplify the notation, we now specify that angles are to be taken mod 2π only where
this might cause ambiguities).
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Figure 3: The car robot

The system is also subjected to the non-holonomic constraint that the two wheels cannot slide
on the plane, so that the velocities of their contact points with the plane are zero. These conditions
are

ẋ− aλψ̇2 cos θ = 0 , ẏ − aλψ̇2 sin θ = 0 ,

ẋ− λθ̇ sin θ − aλψ̇1 cos(θ + φ) = 0 , ẏ + λθ̇ cos θ − aλψ̇1 sin(θ + φ) = 0

and define a distribution on M of constant rank 2. All the fibers of this distribution, but those on
points with φ = ±π

2 ,
5 can be parametrized with (ψ̇2, φ̇) ∈ R2 as

θ̇ = aψ̇2 tanφ , ẋ = aλψ̇2 cos θ , ẏ = aλψ̇2 sin θ , ψ̇1 =
ψ̇2

cosφ
. (16)

Assume now that the controller can assign the rotation angle ψ2 of the rear wheel and the
steering angle φ of the front wheel; in order to keep the two controls independent, we assume that
the steering angle can only assume values |φ| < π

2 (see the previous footnote). Equations (16)
can be viewed as a robotic locomotion system with group G = SE(2)× S1, the direct product of
SE(2) ∋ (θ, x, y) and of S1 ∋ ψ1, and shape space S = S1 × (−π

2 ,
π
2 ) ∋ (ψ2, φ). The product in

SE(2) × S1 is (θ, r, ψ1) · (θ
′, r′, ψ′

1) = (〈θ + θ′〉, r + Rθr
′, ψ1 + ψ′

1). If we identify the Lie algebra
with R× R2 × R, then the connection of the locomotion system (16) has components

Aψ2
(ψ2, φ) =

(
a tanφ , (aλ, 0) , 1/cosφ

)
, Aφ(ψ2, φ) = 0 . (17)

In the notation of (15), A∗
ψ2

= (a tanφ, 1/ cosφ) and AVψ2
= (aλ, 0). The vanishing of the φ-

component of the connection reflects the fact that equations (16) are invariant under translations
of φ̇; nevertheless, the connection depends on the angle φ.

4.C The car robot with G = SE(2). Ref. [39] considers a slightly different model, in which
the drive wheel is the front one. Moreover, ref. [39] ignores the rotational configuration of the rear
wheel (as if, e.g., the rear wheel was replaced by a point touching the plane) and focuses on the
motion of the frame of the car, which is parametrized by (θ, x, y) ∈ SE(2). We can do something
similar here, ignoring the rotational configuration of the front wheel, namely the angle ψ1 (as if
the front wheel were replaced by a knife’s blade), because the connection (17) is independent of
that angle. In this way we obtain a locomotion system (11) given by the first three equations (16),
namely

θ̇ = aψ̇2 tanφ , ẋ = aλψ̇2 cos θ , ẏ = aλψ̇2 sin θ , (18)

5 If φ = ±π
2
, then the rear wheel must have zero rotation speed ψ̇2. There is also a global parametrization of all

the fibers of the distribution with (ψ̇1, φ̇) ∈ R2, which reflects the fact that the rotation speed of the front wheel is
free when φ = ±π

2
. This parametrization could be advantageously used if the drive wheel were the front one, as in

[39] (who however neglects the rotation of the rear wheel).
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on the group G = SE(2) ∋ (θ, x, y), with shape space S = S1×
(
− π

2 ,
π
2

)
∋ (ψ2, φ) and connection

Aψ2
(ψ2, φ) =

(
a tanφ , (1, 0)

)
, Aφ = 0.

From Proposition 4 it follows that a gait ℓ = (ψℓ2, φ
ℓ) ∈ LT leads to a drifting phase in SE(2)

if and only if
〈
θℓ(T )

〉
= 0 and

∫ T

0

(
ψ̇ℓ2(t) cos(θ

ℓ(t))

ψ̇ℓ2(t) sin(θ
ℓ(t))

)
dt 6=

(
0
0

)
(19)

with

θℓ(t) = a

∫ t

0

ψ̇ℓ2(τ) tan(φ
ℓ(τ))dτ .

Thus, a necessary condition for a gait ℓ to generate drifting motions is that it takes the spatial
orientation t 7→ 〈θ(t)〉 of the car’s frame back to its initial value. If any such gait is not too
special—so that the second condition (19) is satisfied—then it does actually generate a drifting
phase.
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Figure 4: Four trajectories of a point of the car’s frame in the (x, y)-plane. The gaits have ψ̇ℓ2 = 1
and φℓ as shown in the insets. The coordinates in the insets’ plots are time (horizontal) and φℓ

(vertical). In all cases λ = 2.5, a = 0.4 and the initial configuration of the car is (θ0, x0, y0) =
(π/4, 0, 0). The value of θℓ(T ) is 0 in (a), 2π in (b), approximately 0.262 π in (c) and approximately
0.727π in (d).

We now discuss a few examples. Note that it follows from Lemma 2 that, if the controls
are such that the drive wheel does not reverse or stop its spinning, it is always possible—with a
reparametrization of time—to reduce to a constant ψ̇2, and even to ψ̇2 = 1. We thus consider only
2π-periodic gaits with

ψℓ2(t) = 〈t〉
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and specify the gait giving φℓ alone. Even though the drifting behaviour is not generic, it is easy
to design gaits that produce it. For instance:

0. A trivial example of a gait that satisfies both conditions (19) is given by φℓ(t) = 0 for all t:
by (19), the car runs straight forward.

1. Any absolutely continuous, odd, 2π-periodic function φℓ : R → (−π
2 ,

π
2 ) gives a gait with

θℓ(T ) = 0.

2. Suitably designed periodic functions φℓ : R → (−π
2 ,

π
2 ) are needed to produce drifting phases

with θℓ(T ) = 2πq, q ∈ Z \ {0}.

Generic gaits—including generic small perturbations of the previous ones—give however quasi-
periodic behaviours. Figures 4.a-4.d show the trajectories of a point of the car’s frame in the plane
(only the (x, y) coordinates are shown) as a result of gaits of the types above. The first two refer
to drifting motions and the last two to quasi-periodic motions.

We do not show in the Figure the trajectory relative to a gait of type 0., which is simply
a straight line. However, we note that in case 0. the absence of any quasi-periodic or periodic
behaviour is an example of the fact that the projection in the group can loose one of the frequencies.
In this specific case, this happens because the s1-component of the Lie algebra element Aψ2

is zero
if φℓ = 0.

In each example in the Figure the function t 7→ φℓ(t) is a triangle wave, shown in the inset.
The non-constancy of φℓ makes the s

1-component of the Lie algebra element Aψ2
non-zero, and

the gait gives its frequency to the motion in the group. As we know from Section 4.A, this is the
only frequency for drifting motions, while pure quasi-periodic motions may get an extra frequency.
This is clearly visible in the Figures:

• In Figure 4.a, φℓ is an odd function, as in case 1., and θℓ(T ) = 0. The motion is drifting, and
the wobbling of the trajectory of the car’s frame reflects the periodicity of the gait.

• In Figure 4.b φℓ has been (carefully) chosen so that θℓ(T ) = 2π. Not shown is the orientation
of the car, which makes a full turn in each gait’s period.

• Figures 4.c and 4.d refer to ‘generic’ gaits, for which
〈
θℓ(T )

〉
6= 0. The reconstruction intro-

duces a second frequency to the motion, which is thus quasi-periodic with two frequencies.
The appearance of a second, longer period is evident in the pictures.

Since SE(2)QP is not a subgroup of SE(2), drifting phases may also be produced by suitably
concatenating gaits that individually produce the generic quasi-periodic behaviour. For instance,
the gait in Figure 4.a is the concatenation of two π-periodic gaits which, individually, produce
quasi-periodic motions. Other examples are easily built.

4.D The car robot with G = SE(2) × S1. In the previous example the rank of the group
G = SE(2) is 1. Hence, the reconstruction can contribute at most one frequency to the motions
(and in fact, this happens only for the quasi-periodic motions). If, as in Section 4.B, the car
robot is regarded as a control system with group G = SE(2)× S1, which has rank two, then the
reconstruction can contribute two frequencies to the motions. In particular, drifting motions may
have two frequencies, and quasi-periodic motions may have three frequencies. However, the extra
frequency corresponds to the rotation of the front wheel and no new frequency is observed in the
trajectory of the car on the plane.

4.E A planar amoeba-like swimmer. An example with group SE(2) and a three-dimensional
shape space is provided by the amoeba-like planar swimmers [38, 32, 44]. In a particular model,
the swimmer is modeled as a set in R2 whose boundary is a smooth curve that depends on three
shape parameters s = (s1, s2, s3) ∈ R3 and is given, in polar coordinates (ρ, σ), by the equation

ρ = ρ0
(
1 + s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)

)
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with a constant ρ0 > 0. The configuration manifold of the control problem is thus SE(2)× R3 =
S1 × R2 × R3 ∋ (θ, (x, y), s), with (θ, x, y) that fix position and orientation of a (suitably defined)
swimmer’s reference frame. Under hypotheses discussed in [38, 44], which include the fact that the
swimmer starts with zero linear momentum, the control system is

θ̇ = −µs3ṡ2 + νs2ṡ3 ,

(
ẋ
ẏ

)
= Rθ

(
−µs2ṡ1 + s1ṡ2
−µs3ṡ1 + s1ṡ3

)

where µ and ν are two positive parameters that depend on the mass of the swimmer and on the
density of the fluid. These equations are of the form (15).

It thus follows from Proposition 4 that a T -periodic gait t 7→ ℓ(t) = (sℓ1(t), s
ℓ
2(t), s

ℓ
3(t)) produces

drift if and only if

〈
θℓ(T )

〉
= 0 and

∫ T

0

Rθℓ(t)

(
µsℓ2(t)ṡ

ℓ
1(t)− sℓ1(t)ṡ

ℓ
2(t)

µsℓ3(t)ṡ
ℓ
1(t)− sℓ1(t)ṡ

ℓ
3(t)

)
dt 6=

(
0
0

)
(20)

with, now,

θℓ(t) =

∫ t

0

(
νsℓ2(τ)ṡ

ℓ
3(τ) − µsℓ3(τ)ṡ

ℓ
2(τ)

)
dτ . (21)

Since the group is SE(2), the predominant behaviour is quasi-periodicity. Let us thus focus on
gaits that produce the exceptional drifting behaviour.

Trivial examples are given by the two classes of gaits with either sℓ2 = 0 and any sℓ1, s
ℓ
3 such

that
∫ T
0

(
µsℓ3(t)ṡ

ℓ
1(t)−s

ℓ
1(t)ṡ

ℓ
3(t)

)
dt 6= 0 (which produce translation in the direction

(
− sin θℓ

cos θℓ

)
) or

sℓ3 = 0 and any sℓ1, s
ℓ
2 such that

∫ T
0

(
µsℓ2(t)ṡ

ℓ
1(t) + sℓ1(t)ṡ

ℓ
2(t)

)
dt 6= 0 (which produce a translation

along the direction

(
cos θℓ

sin θℓ

)
).

More generally, any sℓ2 ∈ LT and sℓ3 = (sℓ2)
µ/ν give θℓ(t) = 0 for all t and therefore, if they

satisfy (20), produce a drifting motion. The same happens if sℓ2 = csℓ3 with a real constant c 6= 0.
But there are also other possibilities. For example, if the T -periodic functions sℓ2 and sℓ3 are both
odd or both even, then the integrand in (21) averages to zero, so again θℓ(T ) = 0 and drifting
motions can be produced.

The discussion of the frequencies of these motions is analogous to that of the car robot.

4.F 3D swimmers. There are interesting examples also with G = SE(3), such as the three
dimensional swimmers immersed either in an ideal or in a viscous fluid presented in [13, 34]. As
already noticed, for this group the generic case is drifting [2, 22].

Indeed, let us write the elements of SE(3) = SO(3) ⋉ R3 as (exp ω̂, r) with ω, r ∈ R3 (here,
as usual, ω̂ is the antisymmetric matrix that represents the cross product ω × · in R3). Note that

(exp(ω̂), r)n =
(
exp(n̂ω),

∑n
k=0 exp(k̂ω)r

)
if n > 0, and a similar expression for n < 0. If ω 6= 0

the component of
∑n

k=0 exp(k̂ω)r parallel to ω grows linearly with n, while its component in the
plane orthogonal to ω rotates. Remembering the case of SE(2), one concludes that

SE(3)QP = {(exp(ω̂), r) : ω · r = 0 except (ω = 0, r 6= 0)}

SE(3)D = {(exp(ω̂), r) : ω · r 6= 0 or (ω = 0, r 6= 0)} .

Thus SE(3)QP has codimension one and SE(3)D has codimension zero.
We do not treat these examples here, but we limit ourselves to note that, since SE(3) has rank

one, motions may have at most two frequencies as in the case of the planar swimmer.
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5 Conclusions

In this paper we highlighted the relevance of the qualitative properties of the dynamics in relative
periodic orbits of equivariant dynamical systems for control theory. Specifically, this was done
for trajectory generation via periodic controls in a class of driftless control systems on Lie groups
called robotic locomotion systems.

From the persepctive of dynamical systems with symmetry, we identified the frequencies of
drifting motions in relative periodic orbits for groups which are the semi-direct product of a compact
group and of a vector space, among which SE(n) is one of the most representative examples. An
extension of this result to more general non-compact Lie groups is an interesting problem that will
be the subject of future work.

A point to stress is that in our study we did not take into account any optimization problem.
Instead, our focus is on trajectory generation, which is more closely related to controllability, i.e.
the possibility of finding control functions that steer the system between two given configurations.
However, optimization is central to control theory. In a recent work [27] it is shown that, for
a quadratic optimization problem for an equivariant locomotion system with two controls, the
optimal controls are periodic. Thus, a possible future research direction is to apply the ideas
highlighted in this paper to the study of the relative periodic orbits obtained from such periodic
optimal controls.

Finally, we mention that our qualitative approach has been recently applied [41] to trajectory
generation for a nonholonomic system known as the hydrodynamic Chaplygin sleigh [21], whose
governing equations, even if SE(2)-invariant, are not of the form (1). Specifically, the SE(2)-reduced
space is the product of the shape space S and of the momentum space g∗. Not every periodic control
of the shape produces a periodic reduced orbit in S × g

∗. However, in this case, for certain classes
of shape controls the reduced equations become linear non homogeneous in the momenta, and via
Floquet theory it is possible to prove that there exist periodic controls of the shape which produce
periodic reduced orbits. The reconstruction procedure can thus be applied to them. This same
approach coould be easily extended to the class of nonholonomic systems forming the so called
pure transport case [6], whose reduced equations are also linear non homogeneous in the momenta.
More challenging would be to study more general classes of shape-controlled nonholonomic systems,
whose reduced equations are nonlinear in the momenta and Floquet theory does not apply.

6 Appendix: Quasi-periodic motions

For completeness, we describe here in some detail the known results from [25, 2, 15] about the
quasi-periodic dynamics in a relative periodic orbit.

Proposition 5. Let X be a G-invariant vector field on M = M̄ ×G. Assume that the solution
t 7→ m̄(t) of the reduced equation ˙̄m = X̄(m̄) with initial datum m̄0 is periodic with minimal period
T . Let

P = R̄×G ,

with R̄ = m̄(R), be the corresponding relative periodic orbit and γ be its phase. Assume that H(γ)
is compact.

Then there exist an integer k, 0 ≤ k ≤ rank(G), a smooth embedding

P : S1 × Tk →֒ R̄×G = P

and, if k > 0, a vector ω ∈ Rk which are such that 6

ΦXt (m̄0, g) = Ψg ◦ P
(
〈2πT t〉, 〈ωt〉

)
∀g ∈ G , t ∈ R . (22)

6Recall that G acts on P = R̄×G by left translations on the factor G, namely Ψg(m̄, h) = (m̄, gh).
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Moreover, the sets
Tg := Ψg ◦ P(S

1 × Tk) , g ∈ G ,

are diffeomorphic to Tk+1, ΦX-invariant and are the fibers of a G-principal fibration of P .

Proof. For simplicity, assume that there exists η ∈ g such that γ = exp(Tη) and define K(η) as in
(7). We write K for K(η). As noticed in Section 4.C, if H(γ) is compact then K is a torus of G
of some dimension k.

Choose a basis {ξ1, . . . , ξk} of lie(K) formed by vectors which after multiplication by 2π generate
ker(expK). Then, the map

J1 : S1 × Tk × R → S1 ×K ,
(
〈τ〉, 〈α〉) 7→

(
〈τ〉 , expK(

∑k
i=1αiξi)

)
.

is a diffeomorphism. Consider the map

Ĵ2 : S1 ×G→ R̄×G ,
(
〈τ〉, g

)
7→

(
m̄
(
τ
ω0

)
, g expG

(
− τ
ω0

η
)
G
(
τ
ω0

))
.

A computation shows that it is well defined (namely, independent of the choice of τ in the equiv-
alence class), injective and immersive (see e.g. the proof of Proposition 2 in [17] for a similar
computation in the case of compact G). Moreover it is surjective: a point (m̄◦, g◦) ∈ R̄×G is the
image of (〈τ◦〉, g◦) ∈ S1×G with 〈τ◦〉 such that m̄(τ◦/ω0) = m̄◦ and g◦ = g◦ expG(−

τ◦

ω0

η)G( τ
◦

ω0

)−1.

Thus, Ĵ2 is a diffeomorphism.
Being a closed subgroup of S1 × G, S1 × K is an embedded submanifold of it. Therefore,

the restriction J2 := Ĵ2|S1×K of the diffeomorphism Ĵ2 to S1 × K is an embedding, and so is
P := J2 ◦ J1 : S1 ×K → R̄ ×G. Explicitly,

P(〈τ〉, 〈α〉) =
(
m̄( τω0

) , expK
(∑k

i=1(αi −
τ
ω0

ωi)ξi
)
G
(
τ
ω0

))

where ω1, . . . , ωk ∈ R are the components of η in the basis ξ1, . . . , ξk of lie(K), see (8). Hence

P(〈ω0τ〉, 〈ωt〉) =
(
m̄(t) , G(t)

)
= ΦXt (m̄0, eG) .

Equality (22) follows from here because, by equivariance, for any g0 ∈ G the integral curve with
initial datum (m̄0, g0) is t 7→ (m̄(t), g0G(t)) = Ψg0(Φ

X
t (m̄0, eG)).

Since S1 ×K is a closed subgroup of S1 ×G, its action by right translations on S1 ×G, which
is given by

Ψ(〈σ〉,h)(〈τ〉, g) = (〈τ + σ〉, gh) ,

is free and proper and its orbits S1 × gK, g ∈ G, are the fibers of a principal bundle p : S1 ×G→
(S1 × G)\(S1 ×K) (see e.g. [16], section 1.11), and are diffeomorphic to Tk+1. The base of this
bundle can be identified with G\K. Thus, p ◦ Ĵ−1

2 : P → G\K is a locally trivial fibration with

fibers Ĵ2(S
1 × gK) = Ψ(〈0〉,g) ◦ J2(S

1 ×K) = Ψ(〈0〉,g) ◦ P(S
1 × Tk) = Tg.
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[17] F. Fassò and A. Giacobbe, Geometry of invariant tori of certain integrable systems with symmetry

and an application to a nonholonomic system. SIGMA Symmetry Integrability Geom. Methods Appl.
3 (2007), Paper 051, 12 pp.
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