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Abstract The geometrical nonlinear effects caused by large displacements and rotations over the cross sec-
tion of composite thin-walled structures are investigated in this work. The geometrical nonlinear equations
are solved within the finite element method framework, adopting the Newton–Raphson scheme and an arc-
length method. Inherently, to investigate cross-sectional nonlinear kinematics, low- to higher-order theories
are employed by using the Carrera unified formulation, which provides a tool to generate refined theories of
structures in a systematic manner. In particular, beams and shell-like laminated composite structures are ana-
lyzed using a layerwise approach, according to which each layer has its own independent kinematics. Different
stacking sequences are analyzed, to highlight the influence of the cross-ply angle on the static responses. The
results show that the geometrical nonlinear effects play a crucial role, mainly when higher-order theories are
utilized.

Keywords Carrera unified formulation · Higher-order one-dimensional models · Laminated structures ·
Geometrical nonlinear equations

1 Introduction

Composite materials have encountered great success during recent decades. Their usage on sophisticated
structural components has drastically grown in many engineering fields, such as automotive and aerospace,
among the others. This aspect is mainly due to their outstanding structural performances, in terms of stiffness
and strength properties, comparedwith traditionalmetal alloys. The adoption of composite laminated structures
in engineering applications continues to grow, as, for example, shown by Zhang et al. [1] for the aerospace field.
However, challenging issues in numerical modeling arise due to their heterogeneous mechanical properties.

A large number of one-dimensional (1D) models for slender structures have been developed in history.
Classical theories such as the Euler–Bernoulli beam [2] are widely applied in numerical simulations, although
it lacks the ability to accurately predict the transverse shear over the cross sections of beams, for which the shear
effects play a crucial role in their mechanical behavior. To overcome this problem, many other models have
been developed to carry out reliable results, especially in the case of composite structures. A comprehensive
review of themodeling of laminatedmaterials for 1D structures can be found inKapania andRaciti [3,4]. Based
on the Timoshenko beam theory [5], which considers a constant distribution of the shear stress along the cross
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section, the first-order shear deformation theory (FSDT) has been developed. This model has been adopted by
engineers for their study on the analysis of laminated structures. For instance, Kapania and Raciti [6] worked
in the framework of the nonlinear finite element method (FEM), which is the main focus of the proposed
research. They developed a simple 1D model for the nonlinear analysis of symmetrically and asymmetrically
laminated composite beams, including shear deformation, bending–stretching coupling, and twisting. Gupta
et al. [7] presented a formulation for the post-buckling behavior of composite beams with axially immovable
ends. Lanc et al. [8] discussed a beam finite element (FE) model for the post-buckling analysis of composite
laminated structures in the framework of an updated Lagrangian incremental formulation. Even though the
FSDT ensures reliable accuracy for a wide range of problems, it has its own limitations. In fact, when higher-
order phenomena arise within the structure, an accurate evaluation of the stress distribution may be necessary,
so that theories based on classical approach could lack the ability to perform an accurate stress analysis. For this
reason, refined kinematics were suggested by researchers. Stephen and Levinson [9] developed a higher-order
theory starting from the Timoshenko beam equation and taking into account the shear curvature, through the
introduction of new coefficients.

The need for the adoption of refined mathematical models arises when dealing with large displacements
and rotations, in order to be able to catch higher-order phenomena. For this reason, refined kinematics were
suggested during the last decades. In the following some major contributions in the geometrical nonlinear
analysis of beams are reviewed for completeness sake. Vo and Lee [10] analyzed the geometrical nonlinear
behavior of thin-walled composite beams, considering various stacking sequences and loading conditions. The
governing equations were derived with a Newton–Raphson linearization and von Kármán approximations.
Both updated and total Lagrangian approach were adopted by Bathe and Bolourchi [11] to evaluate the large
displacement field of three-dimensional beam elements. Chan andKitipornchai [12] conducted an investigation
about the geometrical nonlinear analysis asymmetric thin-walled beam columns, with an updated Lagrangian
formulation and the arc-length method. Emam [13] evaluated the post-buckling behavior of composite beams
comparing different approaches, from classical to higher-order beammodels accounting for shear deformation
theories. Obst and Kapania [14] developed a 1D higher-order beam model with a parabolic shear distribution.
Mororó et al. [15] developed a three-dimensional frame FE for geometrical nonlinear analysis of thin-walled
laminated composite beams is presented. Simo and Vu-Quoc [16,17] developed spatial beam FEs, based on
strain measures derived from the principle of virtual work. Experimental study were conducted about the
nonlinear response of composite structures, for instance, for static [18,19], dynamics [20] and stress analysis
[21] of polymer composite panels. Cross-sectional deformation of thin-walled composite structure found a
great interest in the literature. For instance, Cesnik and Hodges [22] developed the VABS approach for the
modeling of cross section of laminated rotor blades and Pollay and Yu [23] used the same approach for the
matrix cracking modeling. Moreover, Garcea et al. [24] studied the post-buckling behavior of thin-walled
structure through a Koiter semi-analytic approach, Gabriele et al. [25] developed a 1D beam model able to
account for cross-sectional in-plane deformation, and the samewas done also byGonçlaves et al. [26], including
finite rotations.

This paper intends to investigate the need for higher-order (nonlinear) kinematics in the case of geometrical
nonlinear problems. As a matter of fact, many papers in the literature combine classical structural theories
(mainly with linear kinematics) with nonlinear geometrical relations (Green–Lagrange or von Kármán). This
may shrink the consistency of the formulation and bring to inaccurate (inappropriate) results. Thus, the relation
between a higher-order model and the adoption of geometrical nonlinear relations is investigated with practical
examples. In otherwords, the problemwe address in thiswork is if the nonlinear kinematic equations are strictly
mandatory even if an higher-order model is adopted for the structural analysis and which level of accuracy is
reached, considering various cross section shapes, from compact to thin-walled ones. In the case of structures
made by isotropic material, the answers of the aforementioned questions can be found in Carrera et al. [27].
According to the work, even if the beammodel adopted is achieved using a higher-order theory, the geometrical
nonlinear relations must be considered to evaluate the correct displacement field. Clearly, in order to make such
analyses, the development of beammodels considering low- from higher-order theories is needed to investigate
the influence of the order of the mathematical model on the geometrical nonlinear behavior of the structure.
An efficient method to perform such analyses is represented by the Carrera Unified Formulation (CUF) [28].
CUF is a hierarchical formulation which allows introducing, as an input of the analysis, any theory order, so
any beam model can be developed for a given problem. Because composite structures are investigated in this
paper, particular emphasis is given to layerwise approaches. It is defined as a modeling technique in which
the different layers of a composite material are individually and independently modeled by means of a unique
formulation. This methodology was devised using CUF in [29] and then further extended to a vast number
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Fig. 1 Generic composite structure with layerwise approach

of application, for instance for progressive damage analysis [30], meshless analysis [31], dynamic analysis
[32,33] and stress evaluation [34], among the others.

This paper is organized as follows: (i) first, the formulation of the adopted refined beam theory is presented
in Sect. 2; (ii) subsequently, Sect. 3 introduces the geometrical relations and the constitutive expressions for
composite materials; (iii) Sect. 4 describes the derivation of the nonlinear governing relations and the FNs of
secant and tangent matrices for the solution of the geometrical nonlinear problem; (iv) then, different loading
and structural cases are considered as numerical results in Sect. 5; (v) finally, the main conclusions are given.

2 Unified formulation of composite beams

2.1 Kinematics and finite element approximation

Consider a generic one-dimensional (1D) structure, as depicted in Fig. 1. A Cartesian coordinate system is
adopted, oriented so that x and z are the coordinate of the cross section� and y is orthogonal and lays along the
beam axis. In this work, the three-dimensional (3D) displacement field u(x, y, z) = {

ux uy uz
}T is expressed

in the framework of the Carrera Unified Formulation (CUF) and, in the case of a 1D structure, it is:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, . . . ,M (1)

where Fs are the expansion functions of orderM of the cross section with coordinate x and z and us are the
generalized displacement vector. The choice of Fs and M is arbitrary and it is according to the theory adopted
to model the structure. Many options are available for the expansion functions, i.e. Taylor polynomials [35],
Chebyshev polynomials [36], Lagrange expansion [37] and Legendre polynomials [38], among the others. In
this work, Lagrange polynomials are adopted to discretize the displacement field over the cross section. This
choice allows to adopt a layerwise approach to analyze the composite structure. A comprehensive review about
layerwise theories developed was made by Carrera [29]. The layerwise theory treats each layer individually
and both displacement and transverse shear stress continuity may be satisfied between each layer; therefore,
it yields results compatible to 3D elasticity solutions. According to the layerwise approach, each layer has
its own kinematic described by a own Lagrange polynomial, as shown in Fig. 1. That figure shows also the
Lagrange polynomials adopted in this work, which are, with increasing higher-order capabilities, a linear (L4),
quadratic (L9) and cubic (L16) polynomial.

Multiple Lagrange polynomials can be assembled above the cross section imposing the displacement
continuity at the interface nodes, so any type of cross section, from compact to thin-walled shapes, can be
analyzed.

As far as the displacements along the beam axis are concerned, the finite element method (FEM) is adopted
to approximate the vector us(y), as follows:

us(y) = N j (y)qs j j = 1, 2, . . . , p + 1 (2)

where N j and j represent the shape function and the order of the shape function, respectively, and qs j is the

FE nodal parameters vector
{
qxs j qys j qzs j

}T . Interested readers can refer to Bathe [39] and to Carrera et al.
[40] for the complete form of the shape functions N j , not reported here for the sake of brevity. In this work,
classical 1D FEs with four nodes (B4) are adopted, i.e. a cubic approximation along the y axis is considered.
Finally, introducing Eq. (2) into Eq. (1), the explicit form of the 3D displacement field can be obtained:

u(x, y, z) = Fs(x, z)N j (y)qs j (3)
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3 Geometrical and constitutive relations

To introduce the geometrical and constitutive relations, consider the beam structure shown in Fig. 1. The strain
ε and stress σ components are written in vectorial form, and the transposed vectors are introduced in the
following:

ε = {
εxx εyy εzz εxz εyz εxy

}T
, σ = {

σxx σyy σzz σxz σyz σxy
}T (4)

As far as the geometrical relations are concerned, the full Green–Lagrange strains are taken into account. The
relation between the strain ε components and the displacement vector u(x, y, z) is

ε = 1

2
[∇u + (∇u)T + (∇u) × (∇u)T ] (5)

Equation (5) may read:
ε = (bl + bnl)u (6)

where bl and bnl are the linear and nonlinear differential operators, whose complete form are reported in
[41]. Finally, the strain vector ε in Eq. (6) can be written in terms of the generalized nodal unknowns qs j by
employing Eq. (3).

ε = (Bs j
l + Bs j

nl )qs j (7)

where Bs j
l and Bs j

nl represent the algebraic form of the differential operators bl and bnl . Complete form of the
algebraic matrices is not reported here for the sake of brevity, but can be found in [41]. ’

As far as the constitutive relations are considered, we assume linear elastic material in this work; thus, the
Hooke law can be employed:

σ = Cε (8)

where C is the material matrix, whose complete form can be found in [42]. The coefficients of the material
matrix depend only on the material properties and the geometrical properties of the fibers. Explicit form of the
coefficients can be found in many books, see [43].

4 Nonlinear governing FE equations

Once the strain ε and stress σ tensors are defined, the nonlinear governing equations of an elastic body can be
calculated. In this work, they are derived using the principle of virtual work, that is expressed in the following:

δL int = δLext (9)

where δL int is the virtual variation of the strain energy and δLext is the virtual variation of the work of the
external loads. Consider each term of Eq. (9) separately. The first term can be written as:

δL int =
∫

V
δεT σ dV (10)

where V is the volume domain of the body. Introducing the geometrical [Eq. (7)] and the constitutive relations
[Eq. (8)] into Eq. (10), one can write:

δL int = δqTs j

(∫

V

(
Bs j
l + 2Bs j

nl

)T
C

(
Bτ i
l + Bτ i

nl

)
dV

)
qτ i (11)

Equation (11), and in particular the argument of the integral, can be written in terms of four fundamental

nuclei (FN). Ki jτ s
0 =

∫

V
Bs j
l CBτ i

l dV is the linear contribution, Ki jτ s
lnl =

∫

V
Bs j
l CBτ i

nl dV and Ki jτ s
nll =

∫

V
2Bs j

nl CBτ i
l dV are the nonlinear contribution of order 1 and Ki jτ s

nlnl =
∫

V
2Bs j

nl CBτ i
nl dV is the nonlinear

contribution of order 2. The result of the sum of these 4 contributions is the secant stiffness matrixKi jτ s
S . Thus,

we can write Eq. (11) as:
δL int = δqTs jK

i jτ s
S qτ i (12)
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Next, consider the second term of Eq. (9), δLext. Omitting some mathematical steps that can be found in
Carrera et al. [28], one can write:

δLext = δuTP (13)

where P is a generic concentrated load P(x, y, z) = {
Px Py Pz

}T. Introducing the 3D displacement field,
expressed in Eq. (3), into Eq. (13), it can be written as:

δLext = Fs(xp, z p) N j (yp) δqTs j P = δqTs j ps j (14)

where it is assumed that P is applied at [xp, yp, z p] and pτ i is the FNs of the vector of the nodal loadings.
Finally, introducing Eqs. (12) and (14) into Eq. (9), it reads as:

δqTs jK
i jτ s
S qτ i = δqTs j ps j (15)

and then,
Ki jτ s

S qτ i − ps j = 0 (16)

Equation (16) can be arbitrarily expanded to reach any desired theory, from low- to higher-order ones, by
choosing the values for τ, s = 1, 2, . . . , M and i, j = 1, 2, . . . , p + 1, to give:

KS q − p = 0 (17)

where KS , q, and p are the global, assembled finite element arrays of the final composite structure.
Equation (17) represents the starting equation for the resolution of the geometrical nonlinear problem. The

authors refer to the work by Pagani and Carrera [41] for an exhaustive description of the applied method for the
resolution of the nonlinear equations. The geometrical nonlinear problem is solved using the Newton–Raphson
method, according to which Eq. (17) can be linearized using Taylor’s expansion around a known solution.
What comes out from the linearization of the internal work is the so-called tangent stiffness matrix KT .

δ(δL int) = δqTτ i
(
Ki jτ s

0 + Ki jτ s
T1

)
δqs j + δqTτ iK

i jτ s
σ δqs j

= δqTτ iK
i jτ s
T δqs j

(18)

whereKi jτ s
T represent the FN of the tangent stiffness matrix. Note thatKi jτ s

T = Ki jτ s
0 +Ki jτ s

T1
+Ki jτ s

σ .Ki jτ s
0 is

the linear contribution,Ki jτ s
T1

equals to 2Ki jτ s
lnl +Ki jτ s

nll +2Ki jτ s
nlnl , andK

i jτ s
σ represents the so-called geometrical

stiffness [44]. It takes into account both linear and nonlinear pre-stress states. The resulting system of equations
needs to be constrained. In this work, an opportune arc-length path-following constraint is adopted.More detail
about the arc-length method adopted can be found in the works by Carrera [45] and Crisfield [46,47].

5 Numerical results

To show the relationship between the order of the theory and the nonlinear displacement–strain equations,
various problems are addressed hereafter. After an assessment of the proposed nonlinear model through com-
parison with literature results and ABAQUS, compact, thin-walled and box cross section composite beams
are considered, with [0◦/90◦/0◦] and [0◦/45◦/0◦] stacking sequences. Large displacements and rotations are
enforced by imposing loads on the cross section of the beams, and linear and nonlinear analyses are carried
out using from low- to higher-order theories.

5.1 Assessment

A preliminary assessment analysis was conducted in order to validate the proposed geometrical nonlinear
model. We consider the same analysis case presented by Emam [13] about the post-buckling of a simply
supported [0◦/90◦/0◦] cross-ply beam, with E1/E2 = 10, G12 = 0.6E2, G23 = 0.6E2, G13 = G12 ν12 = 0.25
and ν13 = ν12. The ratio between the length of the beam and the side of the square cross section equals 50 and
the layers have the same thickness. The same analysis was performed using 1D, 2D and 3D elements with
ABAQUS. The vertical displacement component vs the applied load is given in Fig. 2, showing a good match
between the proposed model and the 3D elements of ABAQUS.
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Fig. 2 Post-buckling equilibrium curve of a simply supported [0◦/90◦/0◦] cross-ply square beam. P∗ = PL2
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Fig. 3 Geometry of the square compact cross section and loading case

Fig. 4 Layerwise approach for the compact cross section beam

5.2 Compact cross section composite beam

In the second analysis case, a square compact cross section of a cantilever beam was considered. The beam
is made of three layers of an orthotropic material with Young moduli E1 = 155 GPa, E2 = E3 = 15.5 GPa,
Poisson’s ratios ν = 0.25 and shear moduli G12 = G13=9.3 GPa, G12 = G23 = 7.75 GPa. Figure 3 shows
the loading condition of the proposed analysis case, along with the cross section of the beam. Each layer has
the same thickness t/3, where t is the side of the square cross section, and the length-to-side ratio is 10.

For this and all the subsequent discussions, 10 cubic elements were used for the beam axis discretization.
Figure 4 shows the discretization employed per layer, namely L4, L9 and L16 Lagrange polynomials. Two
stacking sequences were analyzed: [0◦/90◦/0◦] and [0◦/45◦/0◦].

The linear and nonlinear equilibrium curves of the [0◦/90◦/0◦] configuration are given in Fig. 5a, where
the displacement in the z-direction was evaluated for each kinematic approximation. Then, the percentage
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(a) (b)

Fig. 5 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “A” for the compact
square cross section beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100. t∗ = t

3

difference between linear and nonlinear solutions is reported in Fig. 5b. The results show that the greater is the
order of the employed theory, the higher is the difference between linear and geometrical nonlinear analyses,
although the L9 and L16 curves are very close to each other. Despite the results shown in Carrera et al. [27]
for a compact case of an isotropic beam, Fig. 5 demonstrates that the values of the percentage differences are
relevant when composite materials are considered; hence, linear analyses could not be considered accurate
for the given problem. In fact, even for the lowest order theory, the difference between linear and nonlinear
solution reaches a not negligible value, near 5%. The same conclusions can be drawn from the [0◦/45◦/0◦]
stacking sequence case, whose results are reported in Fig. 6. The percentage difference between linear and
nonlinear solutions reaches higher values for the L16 approximation, until near 20% for the last considered
external load.

5.3 Thin-walled composite beam

The next analysis dealt with a thin-walled channel-section beam. The geometry is shown in Fig. 7, andw=h, h/t
= 10 and length-to-side ratio is 20. The material adopted is orthotropic, with E1 = 155 GPa, E2 = E3 = 15.5
GPa, ν = 0.25, G12 = G13 = 9.3 GPa and G12 = G23 = 7.75 GPa. Two different stacking sequences were
considered, [0◦/90◦/0◦] and [0◦/45◦/0◦].

Three different higher-order models were used to define the channel section and to approximate the dis-
placement field. In detail, as shown in Fig. 8, 18L4, 18L9 and 18L16 Lagrange polynomials were implemented.
Increasing forces were applied as shown in Fig. 7, and in this scenario, static analysis using linear and non-
linear strain–displacement relations was performed, and the displacement of the points “A” and “B” along the
x-axis and of the point “C” along the z-axis was calculated. Then, the difference between linear and nonlinear
solutions was calculated.

In Fig. 9, both linear and nonlinear solutions are displayed, using the L4, L9 andL16Lagrange polynomials.
The percentage difference for the [0◦/90◦/0◦] stacking sequence is shown too, along with some of the

deformed configurations. It can be noticed that increasing the external loading, the percentage difference



1612 E. Carrera et al.

(a) (b)

Fig. 6 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “A” for the compact
square cross section beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100. t∗ = t

3

Fig. 7 Cross section geometry and loading condition of the thin-walled section beam

Fig. 8 Layerwise approach and Lagrange Polynomials adopted for the thin-walled section beam
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(a) (b)

Fig. 9 a Linear and nonlinear equilibrium curves for the x-component of the displacement of the point “A” for the thin-
walled composite beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100

Table 1 Values of the linear and nonlinear displacement and percentage difference of the thin-walled cross section, for various
beam theories

P L4 L9 L16

−uxl /h −uxnl /h e% −uxl /h −uxnl /h e% −uxl /h −uxnl /h e%

5.000 0.027 0.027 −0.39% 0.128 0.124 −3.300% 0.142 0.136 −4.100%
10.00 0.053 0.053 −1.09% 0.257 0.232 −10.25% 0.284 0.253 −11.81%
15.00 0.080 0.078 −2.01% 0.385 0.321 −19.48% 0.425 0.348 −21.76%
20.00 0.106 0.103 −3.15% 0.514 0.394 −30.12% 0.567 0.425 −33.08%

Results are referred to the to the point “A” of the [0◦/90◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

increases as well. The greater the order of the beam theory is, the higher the differences between linear and
geometrical nonlinear analyses are. This behavior can be assessed in Table 1, where some values of both linear
and nonlinear solution are reported. The highest values of the difference percentages are reported in bold in
the table, going from 3.15 for a first-order beam model to 30.12 for a quadratic beam model and to 33.08
for a cubic theory. It is clear that the adoption of geometrical nonlinear relations is required for thin-walled
problems. Figure 10 shows the results of the same analyses for the point “C.” A hardening behavior of the
nonlinear analysis can be noticed until a certain load, and then a softening trend appears. For example, for the
cubic interpolation mathematical model, the percentage difference changes the sign after a load P = 16 kN,
as clearly reported in Table 2. The same trend is evident for the L9 solution, but in this case, the load of the
changing trend is higher, near 20 kN. Finally, the L4 solution leads to a hardening behavior.

As far as the [0◦/45◦/0◦] cross-ply lamination is concerned, Fig. 11 shows the percentage difference between
linear and nonlinear solutions, along with both static solutions for point “A.” As noticed in the previous case, it
can be observed that the percentage difference increases with the external loading. The values of the percentage
difference are greater than the ones of the [0◦/90◦/0◦] stacking sequence case. Table 3 reports values of the
displacement for points point “A” and in bold are quoted the highest values. For the point “A,” they go from
1.99 for a first-order beam model to 25.30 for a quadratic beam model and to 29.63 for a cubic theory. Its
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(a) (b)

Fig. 10 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “C” for the thin-
walled composite beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100

Table 2 Values of the linear and nonlinear displacement and percentage difference of the thin-walled cross section, for various
beam theories

P L4 L9 L16

−uxl /t −uxnl /t e% −uxl /t −uxnl /t e% −uxl /t −uxnl /t e%

5.000 0.046 0.046 0.88% 0.177 0.184 3.95% 0.197 0.203 2.85%
10.00 0.092 0.093 1.56% 0.353 0.369 4.50% 0.394 0.404 2.60%
15.00 0.138 0.141 2.77% 0.530 0.544 2.79% 0.592 0.592 0.25%
20.00 0.184 0.189 2.47% 0.706 0.702 −0.35% 0.789 0.761 −3.39%

Results are referred to the to the point “C” of the [0◦/90◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

results evident that for the thin-walled problems, the adoption of geometrical nonlinear relations is needed.
Finally, the z-displacement of the point “C” is analyzed as well. The curves and values are reported in Fig. 12
and Table 4, respectively, and they show a similar trend of those of the “C” point for the [0◦/90◦/0◦] stacking
sequence case.

5.4 Pinched box beam

As a final example, a box pinched beam was analyzed. The material properties are the same as in the previous
example,with E1 = 155GPa, E2 = E3 = 15.5GPa, ν = 0.25,G12 = G13 = 9.3GPa andG12 = G23 = 7.75
GPa. [0◦/90◦/0◦] and a [0◦/45◦/0◦] stacking sequences were analyzed. Geometrical data are similar to the
previous analysis case, and they are shown in Fig. 13, withw = h, h/t = 10 and length-to-side ratio 20. Three
different higher-order beam models were utilized to evaluate the displacement field over the cross section,
which pattern is described in Fig. 14.

Both static linear and nonlinear analyses were performed and the difference between the two solutions has
been evaluated for the displacement along x-axis of the point “A” and the displacement along z-axis of the
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(a) (b)

Fig. 11 a Linear and nonlinear equilibrium curves for the x-component of the displacement of the point “A” for the thin-
walled composite beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100

Table 3 Values of the linear and nonlinear displacement and percentage difference of the thin-walled cross section, for various
beam theories

P L4 L9 L16

−uxlA /h −uxnlA /h e% −uxlA /h −uxnlA /h e% −uxlA /h −uxnlA /h e%

5.000 0.026 0.026 0.88% 0.128 0.127 −1.15% 0.143 0.141 −1.91%
10.00 0.051 0.051 −0.24% 0.257 0.240 −6.89% 0.287 0.263 −8.84%
15.00 0.077 0.076 2.77% 0.385 0.397 −15.26% 0.430 0.362 −18.47%
20.00 0.103 0.101 −1.99% 0.514 0.409 −25.30% 0.574 0.442 −29.63%

Results are referred to the point “A” of the [0◦/45◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

point “B” (points “A” and “B” are reported in Fig. 13). In Fig. 15, the z component of the displacement of
point “A” for the cross-ply lamination [0◦/90◦/0◦] is considered. In Fig. 15a both static linear and nonlinear
solutions are reported, whereas in Fig. 15b the difference between the two solutions is shown. The L9 and L16
polynomials lead to higher differences than L4 polynomial, and L16 leads to higher values, as pointed out in
the previous analysis case for the thin-walled cross section beam. The same trend is highlighted in (Fig. 16) that
considers the point “B” for the same stacking sequence case. Moreover, for all the L9 and L16 polynomials,
the percentage difference is null for some positions on the cross sections. The reason is that, before this value,
the displacement from the nonlinear solution is higher than the linear one, while it becomes less increasing
the external load. Tables 5 and 6 report values for displacement and percentage difference for the points “A”
and “B,” respectively.

Finally, a [0◦/45◦/0◦] cross-ply lamination case was considered. The displacement along z-axis of the
point “A” and the displacement along x-axis of the point “B” has been considered, and the results are shown,
respectively, in Figs. 17 and 18. The main difference from the previous cases arises looking at the point “B.”
In fact, after the external load P reaches the value of 100 kN, the L9 polynomial leads to higher differences
between linear and nonlinear solution than the L16 polynomial (while the L4 polynomial brings lower values
as already noticed for the previous cases). Tables 7 and 8 report correspondent values.
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(a) (b)

Fig. 12 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “C” for the thin-
walled composite beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference

u∗ = unl − ul
unl

× 100

Table 4 Values of the linear and nonlinear displacement and percentage difference of the thin-walled cross section, for various
beam theories

P L4 L9 L16

−uxlC /t −uxnlC /t e% −uxlC /t −uxnlC /t e% −uxlC /t −uxnlC /t e%

5.000 0.046 0.046 0.81% 0.188 0.196 3.97% 0.216 0.222 2.54%
10.00 0.091 0.093 1.42% 0.376 0.395 4.75% 0.432 0.440 1.90%
15.00 0.137 0.140 1.91% 0.564 0.583 3.32% 0.648 0.642 −0.85%
20.00 0.183 0.187 2.21% 0.752 0.754 0.35% 0.865 0.824 −4.90%

Results are referred to the point “C” of the [0◦/45◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

Fig. 13 Cross section geometry and loading condition of the pinched box beam
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Fig. 14 Cross section discretization and Lagrange polynomials adopted for the pinched box beam

(a) (b)

Fig. 15 a Linear and nonlinear equilibrium curves for the x-component of the displacement of the point “A” for the pinched box

beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference u∗ = unl − ul
unl

× 100

Table 5 Values of the linear and nonlinear displacement and percentage difference of the pinched box beam, for various beam
theories

P L4 L9 L16

−uxlA /w −uxnlA /w e% −uxlA /w −uxnlA /w e% −uxlA /w −uxnlA /w e%

40.000 0.012 0.012 0.71% 0.040 0.042 5.59% 0.054 0.055 1.70%
80.000 0.023 0.023 1.38% 0.080 0.085 6.24% 0.109 0.106 −2.07%
120.00 0.035 0.035 1.81% 0.119 0.124 3.83% 0.163 0.151 −7.38%
160.00 0.046 0.047 2.00% 0.159 0.158 −0.20% 0.218 0.192 −12.74%

Results are referred to the point “A” of the [0◦/90◦/0◦] cross-ply lamination analysis case. The load is expressed in kN
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Table 6 Values of the linear and nonlinear displacement and percentage difference of the pinched box beam, for various beam
theories

P L4 L9 L16

uxlB /w uxnlB /w e% uxlB /w uxnlB /w e% uxlB /w uxnlB /w e%

40.00 0.006 0.006 −0.07% 0.025 0.025 1.11% 0.025 0.025 −0.89%
80.00 0.013 0.013 0.38% 0.050 0.048 −3.73% 0.050 0.047 −5.02%
120.00 0.019 0.019 0.57% 0.075 0.067 −12.24% 0.075 0.068 −9.86%
160.00 0.026 0.026 0.50% 0.100 0.081 −22.75% 0.100 0.086 −15.09%

Results are referred to the point “B” of the [0◦/90◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

(a) (b)

Fig. 16 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “B” for the pinched box

beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference u∗ = unl − ul
unl

× 100

Table 7 Values of the linear and nonlinear displacement and percentage difference of the pinched box beam, for various beam
theories

P L4 L9 L16

−uxlA /w −uxnlA /w e% −uxlA /w −uxnlA /w e% −uxlA /w −uxnlA /w e%

40.00 0.012 0.012 0.92% 0.043 0.046 6.51% 0.059 0.061 2.29%
80.00 0.023 0.023 1.58% 0.086 0.094 8.01% 0.118 0.116 −1.42%
120.00 0.035 0.035 2.02% 0.129 0.138 6.14% 0.178 0.166 −6.68%
160.00 0.046 0.047 2.20% 0.172 0.176 2.17% 0.237 0.211 −11.99%

Results are referred to the point “A” of the [0◦/45◦/0◦] cross-ply lamination analysis case. The load is expressed in kN
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(a) (b)

Fig. 17 a Linear and nonlinear equilibrium curves for the x-component of the displacement of the point “A” for the pinched box

beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference u∗ = unl − ul
unl

× 100

(a) (b)

Fig. 18 a Linear and nonlinear equilibrium curves for the z-component of the displacement of the point “B” for the pinched box

beam. b Percentage difference between linear and geometrical nonlinear analyses. Percentage difference u∗ = unl − ul
unl

× 100
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Table 8 Values of the linear and nonlinear displacement and percentage difference of the pinched box beam, for various beam
theories

P L4 L9 L16

uxlB /w uxnlB /w e% uxlB /w uxnlB /w e% uxlB /w uxnlB /w e%

40.00 0.006 0.006 0.71% 0.028 0.025 1.69% 0.028 0.028 −0.40%
80.00 0.013 0.013 1.16% 0.056 0.054 −2.84% 0.056 0.053 −4.67%
120.00 0.019 0.019 1.35% 0.083 0.075 −11.49% 0.084 0.076 −9.94%
160.00 0.026 0.026 1.27% 0.111 0.090 −23.01% 0.112 0.096 −15.83%

Results are referred to the point “B” of the [0◦/45◦/0◦] cross-ply lamination analysis case. The load is expressed in kN

6 Conclusions

This paper investigates the importance of considering geometrical nonlinearities in the case of high-order
nonlinear theories of structures. Thanks to the Carrera Unified Formulation (CUF), from low- to higher-order
theories have been addressed in the domain of linear and nonlinear elasticity. Compact, thin-walled and box
cross sections have been analyzed. In particular, it has been shown that the geometrical nonlinear kinematic
relations can be very significant in the selected analysis cases. It has been proved that in many problems the
adoption of the geometrical nonlinear relations may be mandatory to correctly capture the deformed state of
the given structure, especially when refined models are employed.
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