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Abstract Various biological studies suggest that the corneal epithelium is main-
tained by active stem cells located in the limbus, the so-called Limbal Epithelial Stem
Cell (LESC) hypothesis. While numerous mathematical models have been developed
to describe corneal epithelium wound healing, only a few have explored the process
of corneal epithelium homeostasis. In this paper we present a purposefully simple
stochastic mathematical model based on a chemical master equation approach, with
the aim of clarifying the main factors involved in the maintenance process. Model
analysis provides a set of constraints on the numbers of stem cells, division rates, and
the number of division cycles required to maintain a healthy corneal epithelium. In
addition, our stochastic analysis reveals noise reduction as the epithelium approaches
its homeostatic state, indicating robustness to noise. Finally, recovery is analysed in
the context of perturbation scenarios.
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1 Introduction

The cornea is the clear outer, avascular tissue that protects the eye’s anterior parts
from inflammations and injuries (Watsky et al., 1995). Further, by controlling the
light that passes through the eye it is estimated to contribute approximately 2/3 of
the eye’s total focusing and optical power (Artal and Tabernero, 2008). The cornea,
being a highly and organised set of different cell populations (Meek and Knupp,
2015), is arranged into five basic layers (Figure 1-(ii)): the corneal endothelium, the
innermost layer keeping the corneal tissue clear (Oshima et al., 1998); a thin acellular
layer known as Descemet’s Membrane; the stroma which covers nearly 90% of the
cornea thickness (Kefalov, 2010); Bowman’s Layer, a transparent sheet of acellular
tissue; finally, the outermost layer of the cornea, the epithelium, which accounts for
approximately 10% of human cornea’s thickness (Reinstein et al., 2008) and varies
according to species. Moreover, as the outward surface, the epithelium protects the
eye from toxic UV irradiation (Marshall, 1985) and chemical injuries or pathological
insults (Ruberti et al., 2011). It has been also characterised as “tight” (Liaw et al.,
1992) since it has tight junctions and accounts for over 1/2 of the cornea’s total re-
sistance to infection and fluid loss (Klyce, 1972).

The corneal epithelium is composed of 5−7 cell layers (Toropainen, 2007). The
conventional view is that, during normal homeostasis, the corneal epithelium is main-
tained by limbal epithelial stem cells (SCs) that are located in the basal epithelial layer
of the “limbus”, a ring-shaped transition zone between the cornea and conjunctiva.
The SCs replace themselves and produce transient amplifying cells (TACs), which
divide and move centripetally across the corneal radius to populate the basal layer
of the corneal epithelium. The TACs also produce more differentiated cells (TDs),
which move apically through the corneal epithelial layers and are shed from the sur-
face (Zieske, 1994), (Figures 1(i), 1(iii), 1(v)). Despite some alternative proposals
(e.g. Majo et al. (2008)), this hypothesis is the most widely accepted and is supported
by almost 40 years of clinical observations and basic science (Davanger and Evensen,
1971; Tseng et al., 1989; Dua et al., 1994; Sun et al., 2010; Ahmad, 2012).

Prior to the realisation of SC maintenance of the corneal epithelium, the X, Y,
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Z hypothesis had been proposed by Thoft and Friend (1983). According to this,
cell loss (Z) is balanced by (1) replacement from centripetal movement of periph-
eral corneal cell (Y) and (2) basal epithelial cell proliferation (X). This hypothesis
and that of corneal outer layer self-maintenance by basal proliferation (Hanna and
O’Brien, 1960) pre-dated modern understanding of stem cells, which are now known
to be key for maintaining corneal tissue integrity (Daniels et al., 2001). Hence, the X,
Y, Z hypothesis is somewhat updated by the Limbal Epithelial Stem Cell hypothesis
(Dorà et al., 2015) by changing the definition of Y to the production of basal TACs by
SCs. Active limbal stem cell (SCa) division generates two cells (Figure 1(v)) where
each has the potential to remain a SCa (and stay in the limbus) or become a tran-
sient amplifying cell (TAC) that moves into the basal layer of the corneal epithelium
periphery (Morrison and Kimble, 2006; Ebrahimi et al., 2009). Note that, at an in-
dividual level, stem cells do not necessarily divide asymmetrically: stem cells can
divide symmetrically into either two stem cells or two TACs. As a whole, though,
asymmetric division prevails to give rise to “population asymmetry” (Klein and Si-
mons, 2011) . The first generation of TACs (TAC1) produced from stem cells proceed
through their cell cycle, subsequently undergoing a symmetric or asymetric division
(Figure 1(v)) into either two TAC2 cells, a TAC2 and a T D cell or two T D cells. The
same procedure applies in subsequent TAC generations. Note, however, that evidence
suggests TACs more frequently undergo symmetric divisions than asymmetric ones
(Beebe and Masters, 1996). Once a TAC cell loses its self-renewal ability, it simply
divides into two TD cells (Figure 1(v)). TD cells lose contact with the basal layer
and move up through the epithelium until they are eventually shed from the surface
(Figure 1(iv)). This proliferation process is believed to provide the necessary cells
required to maintain epithelial homeostasis.

Clearly, the above suggests that there must be a sufficient number of SCas in
the limbus to maintain the corneal epithelium. If the number of SCas decreases (e.g.
surgery, injury, disease) the corneal epithelium could lose its capacity for homeosta-
sis, eventually resulting in a corneal disease known as limbal epithelial stem cell
deficiency (LSCD) (Chan et al., 2015). Observations on human and mouse corneal
epithelia suggest that the number of coherent clones of active SCs that are capable
of maintaining the corneal epithelium decreases with age. While more investigation
is required, this reduction can be caused either by an increase in the proportion of
quiescent SCs (SCq) or loss of active SCs (SCa) in the limbal area (Mort et al., 2012).
Experimental studies have shown that LSCD is associated with conjunctivalization,
vascularization and chronic inflammation of the corneal epithelium (Chen and Tseng,
1990; Kruse et al., 1990; Chen and Tseng, 1991) with conjunctival epithelial in-
growth (conjuctivalization) the most reliable diagnostic sign of LSCD (Puangsrichar-
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Fig. 1: Biology of cornea stem cell maintenance. (i)-(iv) Surface and cross-section
of the cornea, showing the limbal and central regions and the supposed positions
of stem cells (SC), transient (or transit) amplifying cells (TAC) and terminally
differentiated cells (TD). (v) Hypothesised model for stem cell maintenance, via
active stem cell (SCa) division into multiple generations of TAC cells before even-
tual terminal differentiation (the production of TDs from cells of the last TAC
generation, n).

ern and Tseng, 1995). There are many known genetic and hereditary causes of LSCD
(Puangsricharern and Tseng, 1995; Espana et al., 2002) which results in pain and
chronic ocular surface discomfort. In particular, corneal conjunctivalization leads to
loss of corneal clarity, making LSCD an extremely painful and potentially blinding
disease (Ahmad, 2012).

In this paper, we use mathematical modelling to determine the constraints placed
on the proliferation process for healthy maintenance of the epithelium. Specifically,
we investigate the number of active SCs (SCa), division rates and maximum cycle
number needed to maintain the basal corneal epithelium with sufficient TAC cells. To
account for potential variability, we formulate a stochastic model for this prolifera-
tion process and subsequently derive the corresponding system of ordinary differen-
tial equations (ODE model) that describes the average behaviour. Inevitably, corneal
epithelium integrity is crucial for vision and perturbations (such as wounds) can cause
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integrity loss, so we also investigate recovery after various perturbations.
This paper is structured as follows. In Section 2 we briefly review existing math-

ematical models before providing a detailed description of our model. In Section
3 a steady state and stability analysis is performed with the aim of obtaining the
constraints on the proliferation process that ensures the integrity of the tissue is not
compromised. Aiming to investigate the noisiness of the system, we calculate the
second moments of the stochastic model via the Lyapunov equation, before a Fano
Factor and Coefficient of Variation estimation is presented. In Section 4, perturbation
scenarios are considered. Finally, Section 5 summarises the main results of this work
and describes future extensions.

2 Mathematical Modelling

2.1 Brief Review of Existing Models

A sizeable literature has focused on corneal epithelium modelling, with the specific
aim of describing wound healing (Sherratt and Murray, 1990, 1991, 1992; Dale et al.,
1994a,b; Sheardown and Cheng, 1996). Several attempts have also been made to ex-
plore stem cell population dynamics within other tissues, for example, in the colonic
crypt (Paulus et al., 1992, 1993; Meineke et al., 2001; Gerike et al., 1998). A num-
ber of models have focused on cancerous stem cell dynamics, including the com-
putational model by Meineke et al. (2001) and the deterministic models by Boman
et al. (2001) and Johnston et al. (2007). In Marciniak-Czochra et al. (2009) a three
multi-compartment model was proposed to describe the proliferation and asymmet-
ric division of SCs during hematopoiesis. They investigated three different possible
regulation mechanisms through feedback signalling and indicated that external reg-
ulation of SC self-renewal rate is necessary. Alarcon et al. (2011) proposed a state-
dependent delay differential equation model for the stem cells’ maturation process,
proving global existence and uniqueness of solutions as well as existence of a unique
positive steady state for which they compute its formula. They also propose examples
of biological processes where their model could be applicable, specifically in the con-
text of cancer. Rhee et al. (2015) proposed two computational approaches to explain
the spiral patterns of TACs which can be seen in mosaic systems and proposed that
spiral angles are stable in mature mouse corneas.

As far as we are aware, only three studies have specifically investigated corneal
epithelium maintenance, focussing on the centripetal movement of epithelial cells.
Sharma and Coles (1989) proposed a population balance model based on the X, Y, Z
hypothesis to study the centripetal movement of epithelial cells and how these regen-
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erated from stem cells located in the limbus, determining the centripetal migration
rate of TACs. Second, a recent mathematical simulation model by Lobo et al. (2016)
showed that when physiological cues from the rest of the cornea are absent, a cen-
tripetal growth pattern can develop from self-organised corneal epithelial cells. Using
the same computational framework they extended this to study the origin and fate of
stem cells during mouse embryogenesis and adult life. In addition, they proposed
that population asymmetry and neutral drift (when a SCa is lost due to production
of two TACs, it may be replaced by a neighbouring SCa producing two SCas, with
this replacement leading to stochastic neutral drift of SCa clones) result in SC clone
loss over the lifespan. Moreover, they showed that cell movement towards regions of
excess cell loss due to blinking is feasible (Richardson et al., 2017).

2.2 Formulation of the Model

Here we ask the basic question: what are the constraints on active SC (SCa) numbers,
proliferation rates and generations required to maintain a healthy epithelium? To that
end we construct a simple stochastic model based on an analogy to chemical reac-
tions, allowing us to account for random fluctuations in the cell numbers. While the
migration of cells within the corneal epithelium is undoubtedly important, a primary
determinant of the number of TACs would be the proliferation kinetics and, conse-
quently, our current investigation focuses solely on this aspect. Specifically, we con-
sider the dynamics in the basal layer, effectively assuming that maintenance of this
layer is the key to overall homeostasis of the epithelium. The details of our model are
as follows:

1. The SCas located in the limbal basal layer (considered a one-dimensional ring,
but we ignore spatial considerations in the present formulation) are assumed to
divide with rate α into either: (a) two TACs of the first generation (TAC1) with
probability qT,T ; (b) two SCas with probability qS,S; or (c) a SCa and a TAC1 with
probability qS,T = 1− qS,S− qT,T (see Figure 2a). Note that for the SCa division
rate (Figure 2a) we have α = ln(2)/tSCa , where tSCa is the mean SCa doubling
time, and

0≤ qS,S +qT,T ≤ 1. (1)

Across the lifespan of an organism, ageing is likely to result in declining α (Liu
and Rando, 2011; Nalapareddy et al., 2017) and hence one could treat this pa-
rameter as a function of time. Moreover, α , qS,S, qT,T and qS,T are also likely
to be functions of, amongst others, the available space to proliferate or chemi-
cal factors which allow feedback regulation of SCa division. In the interests of



A stochastic model of corneal epithelium maintenance and recovery following perturbation 7

developing the simplest possible model we currently treat these parameters as
constants. Note also that in the interests of model simplicity, we presently ignore
either transitions of stem cells between quiescent and active states or potential
reverse differentiations from TAC cells back into stem cells. Hence, the model
is probably best viewed as operating over a relative short time span where such
assumptions are reasonable. Note that a short time span refers to a timescale over
which we can reasonably expect there not to be significant changes due, say, to
aging of the organism. For example, in the case of a mouse, the order of a few
months.

2. We denote by TACi the ith TAC generation (where i = 1, · · · ,n). TACs located
in the basal epithelial layer (considered to be a hemisphere of one-cell thick-
ness) are assumed to divide with rate β into: (a) two TACs of the next generation
(TACi+1) with probability pT,T (i); (b) a TACi+1 and a TD cell with probability
pT,T D(i); or (c) two TD cells with probability pT D,T D(i) = 1− pT,T (i)− pT,T D(i)
(see Figure 2b). Note that for the TAC division rate β (Figures 2b, 2c) we have
β = ln(2)/tTAC, where tTAC is the mean TAC doubling time, and

0≤ pT,T + pT,T D ≤ 1. (2)

Similarly to SCas division rates, ageing also causes TAC proliferation rates to
decline (Liu and Rando, 2011; Nalapareddy et al., 2017) and hence β could also
be considered a function of time. However, again we neglect this in the interests of
simplicity. We do, however, assume that different TAC generations have different
self-renewal abilities (Lehrer et al., 1998), assigning probabilities pT,T and pT,T D

to be functions of the TAC generation i.
3. TAC cells of the very last generation (TACn) are assumed to lose their self-renewal

ability and division automatically leads to two TD cells as shown in Figure 2c.
Note that one can theoretically set n = ∞ to give cells unlimited self-renewal
capacity.

4. TD cells, once produced, lose contact with the basal layer of the epithelium, move
up the layers and are eventually shed at a rate γ (Figure 2d).

Given the above (1, 2, 3 and 4) one can write the chemical master equation (CME)
using simple probabilistic laws (Gillespie, 1992). Let

#»
NNN(t) = ([NS], [NT1 ], · · · , [NTn ])

be the system’s composition vector, where [NS] is the SCa number and [NTi ] is the
number of TAC cells in generation i, and n is the highest TAC generation number.
Note that TD cells lose contact with the basal epithelial layer and, hence, are dis-
carded from consideration. Let P( #»

NNN , t) be the probability distribution for all possible
states at time t, then the CME for our system reads

∂P
∂ t

= αqT,T ([NS]+1)PNS+1 +αqS,S([NS]−1)P[NS]−1
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SCa

TAC1 +TAC1

SCa +SCa

SCa +TAC1

αqT,T

αqS,S

αqS,T

(a) SCa division pathways.

TACi

T D+T D

TACi+1 +TACi+1

TACi+1 +T D

β pTD,T
D(

i)

β pT,T (i)

β pT,TD (i)

(b) TACi division pathways.

TACn 2T D.
β

(c) TACn division to T D
cells.

T D sloughing
γ

(d) T D sloughing.

Fig. 2: Possible SCa and TAC division pathways, and TD sloughing.

+αqS,T ([NS])P[NS],[NT1 ]−1−α([NS])P

+β

n−1

∑
i=1

pT D,T D(i)[([NTi ]+1)P[NTi ]+1− [NTi ]P]

+β

n−1

∑
i=1

pT,T D(i)[([NTi ]+1)P[NTi ]+1,[NTi+1 ]−1− [NTi ]P]

+β

n−1

∑
i=1

pT,T (i)[([NTi ]+1)P[NTi ]+1,[NTi+1 ]−2− [NTi ]P]

+β [([NTn ]+1)P[NTn ]+1− [NTn ]P], (3)

where P= P([NS], [NT1 ], · · · , [NTn ]), P[NS],[NT1 ]−1 = P([NS], [NT1 ]−1, [NT2 ], · · · , [NTn ]),
P[NS]+1 =P([NS]+1, [NT1 ]−2, [NT2 ], · · · , [NTn ]), P[NS]−1 =P([NS]−1, [NT1 ], [NT2 ], · · · , [NTn ]),
P[NTi ]+1 = P(· · · , [NTi ]+1, · · ·), P[NTi ]+1,[NTi+1 ]−1 = P(· · · , [NTi ]+1, [NTi+1 ]−1, · · ·)
and P[NTi ]+1,[NTi+1 ]−2 = P(· · · , [NTi ]+1, [NTi+1 ]−2, · · ·).

2.3 Derivation of Equations for the Mean Values

Having formulated the model via linear reactions, we can exploit the well known
fact that the time evolutions for the stochastic mean values (the first moments of the
Chemical Master Equation) are exactly equal to the solutions of the corresponding
deterministic rate equations (e.g. see (Erban et al., 2007; Grima, 2010)). Hence, recall
that denoting the cell numbers by [SCa] = NS, [TACi] = NTi where i = 1,2, ...,n and



A stochastic model of corneal epithelium maintenance and recovery following perturbation 9

[T D] = NT D and applying the Law of Mass Action, we obtain the following system
of coupled ordinary differential equations (ODEs):

dNS

dt
= α(qS,S−qT,T )NS; (4)

dNT1

dt
= α(1−qS,S +qT,T )NS−βNT1 ; (5)

dNT2

dt
= β (2pT,T (1)+ pT,T D(1))NT1 −βNT2 ; (6)

...

dNTn

dt
= β (2pT,T (n−1)+ pT,T D(n−1))NTn−1 −βNTn ; (7)

dNT D

dt
= 2β

n−1

∑
i=1

pT D,T D(i)NTi +2βNTn +β

n−1

∑
i=1

pT,T D(i)NTi − γNT D. (8)

Note that NS, NT D and NTi correspond to the averages for SCa, TD and TAC numbers,
respectively 〈NS〉, 〈NT D〉 and 〈NTi〉. While the dynamics of TD cells do not impact
on the dynamics of the stochastic model, and therefore have not been included in our
original statement of the CME (Equation 3), it is a simple extension and we include
their dynamics for completeness. Trivially we note that the mean SCa number remains
constant if qS,S = qT,T , that is NS = NS0 where NS0 is the initial number of SCas in the
limbus. Further, Equation 8 decouples and can be ignored, allowing us to focus on
system (4)-(7), provided it is assumed that TD cells cannot somehow return to a TAC
state (see Figure 2d). Initial conditions will vary according to the context, for example
with respect to whether we are exploring homeostasis or perturbation scenarios. We
discuss these at the appropriate point and simply state that we close Equations 4-7
through some set of given initial conditions

(NS(0),NT1(0), · · · ,NTn(0)) = (NS0 ,NT10
, · · · ,NTn0

), (9)

where, NS0 ,NT10
, · · · ,NTn0

≥ 0.
Table 1 presents parameter ranges for the model; we refer to Appendix A for de-
tailed discussion of values. Comprehensive understanding of the long time behaviour
is vital to determine whether the corneal epithelium is maintained and we perform a
steady state and stability analysis to address this. Specifically, we will determine the
theoretical maximum number of TACs that the above model can generate (see Sub-
section 3.1).
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Parameter Name Range/Value Source

NS SCa numbers
Human/Rabbit Mouse/Rat

103−104 102−103

Di Girolamo et al. (2015), Dorà
et al. (2015), Romano et al.

(2003),

Tspecies
required

TAC number

Human/Rabbit Mouse/Rat

∼ 106 cells ∼ 105 cells

Rüfer et al. (2005), Cabrera
et al. (1999), Tsonis (2011)

tSCa , tTAC

SCa & TAC
doubling

time
6 hours to 16 days

Douvaras et al. (2013),
Urbanowicz et al. (2011),

Bertalanffy and Lau (1962),
Lehrer et al. (1998),

Castro-Muñozledo (1994)
qS,S, qS,T ,
qT,T , pT,T ,

pT,T D,
pT D,T D

SCa & TAC
division

probabilities
0−1

Table 1: A list of all the principal parameters appearing in the models’ equa-
tions. The reader refers to the Appendix A for detailed reasoning behind the
parameter choices.

3 Steady-State Analysis of the 1st Moment Equations

3.1 Maximum TAC Population

The tendency of stem cells to undergo asymmetric divisions is a common concept in
the biological literature (Yoon et al., 2014). Symmetric divisions do not frequently
take place and approximately half of the time they occur are self-renewing (Ebrahimi
et al., 2009), suggesting qS,S ≈ qT,T . To simplify our models we therefore assume
qS,S = qT,T and the average number of SCas therefore remains constant.

To determine the densities (over the total corneal epithelial basal layer) of TAC
generations that can be created by the model we use a straightforward steady state
analysis. Specifically, we find a unique and stable steady state (N∗T1

,N∗T2
, · · · ,N∗Tn

)

given by(
αNS0

β
,

αNS0

β
(2pT,T (1)+ pT,T D(1)), · · · ,

αNS0

β
∏

n−1
k=1(2pT,T (k)+ pT,T D(k))

)
.(10)

Moreover, explicit analytical solutions can be found to Equations 5-7. For example,
the analytical solution for a total of two TAC generation is given by

NT1(t) =C2e−β t +
αNS0

β
(11)

NT2(t) =(C2 +C1β t(2pT,T (1)+ pT,T D(1))e−β t

+
αNS0

β
(2pT,T (1)+ pT,T D(1)). (12)
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In general, for n TAC generations the solution for the ith TAC generation is given by

NTi(t) =
( i

∑
k=1

Cn−i+kβ k−1tk−1

(k−1)!

k−1

∏
l=1

(2pT,T (l)+ pT,T D(l))
)

e−β t

+
αNS0

β

i−1

∏
m=1

(2pT,T (m)+ pT,T D(m)), (13)

where n is the total number of the required TAC generations and Cn−i+k are the ODE
integrating constants determined via the initial conditions.

As expected, the above shows that the number of TAC cells of generation i de-
pends on the parameters of the proliferation process and the number of cells in the
preceding generations. Note that the division rate of TACs (β ) has a direct and clear
effect on the rate of temporal dynamics. Taking the simple limit t→ ∞ clearly shows
solutions converge to the unique steady state solution (Equation 10).

Since solutions converge to Equation 10 we can interpret 10 as the number of each
TAC generation that would be generated at homeostasis. Summing across all gener-
ations at steady state gives the total number of TAC cells (TSS) that can be generated
at homeostasis:

TSS =
n

∑
i=1

NTi =
αNS0

β

[ n

∑
i=1

i−1

∏
m=1

(2pT,T (m)+ pT,T D(m))

]
. (14)

Note that
α

β
=

tTAC

tSCa

if division rates are expressed in terms of doubling times.

We suppose that the model is capable of generating and sustaining the corneal
epithelium if the above exceeds the number of TAC cells required to fill a typical
basal epithelium layer, which will of course vary with the size of the eye (and hence
species). In other words, successful homeostatic capacity is subject to the condition

TSS ≥ Tspecies, (15)

where Tspecies refers to the total number of TAC cells that can be generated at home-
ostasis for different organisms. For example, based on typical basal cell and eye sizes
for the mouse corneal epithelium we would require TSS ≥ Tmouse ≈ O(105) cells,
while for human we could expect TSS ≥ Thuman ≈ O(106) cells (see Table 1 and Ap-
pendix A).

3.2 Forms of TAC Division Probabilities

We consider two potential forms for the TAC division probabilities. Firstly, we take
an analytically convenient step-function form

pT,T (k) =

{
ω if k ≤ n,
0 otherwise.

(16)
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In the above n < ∞ (n ∈ N) represents a strict upper limit on the number of divisions
a TAC can make before automatically dividing into two TD cells. Obviously, ω being
a probability implies 0≤ ω ≤ 1. The corresponding formulas for probabilities pT,T D

and pT D,T D are

pT,T D(k) = z(1−ω), (17)

pT D,T D(k) = (1− z)(1−ω), (18)

where constant z (0 ≤ z ≤ 1) represents the probability that a TAC undergoes an
asymmetric division if division into two TACs did not occur. Note that the above
ensures pT,T (k)+ pT,T D(k)+ pT D,T D(k) = 1.

Secondly, we consider the exponential form

pT,T (k) =

{
ce−µk if k ≤ n,
0 otherwise,

(19)

where c is constant which, for simplicity, we set c = 1. Note that choices c < 1 would
result in earlier differentiation into TD cells and therefore act to reduce the total max-
imum number of TAC cells. We set the exponential decay rate µ > 0 and potentially
allow n = ∞: theoretically, division from the SCa could lead to an infinite number of
TAC generations but the probability exponentially decreases with generation number.
This is in line with certain findings that TAC renewal ability decreases with the num-
ber of times they have divided (Yoon et al., 2014). The corresponding formulas for
probabilities pT,T D and pT D,T D are of the form

pT,T D(k) = z(1− e−µk), (20)

pT D,T D(k) = (1− z)(1− e−µk), (21)

where, again, 0 ≤ z ≤ 1 represents the probability that a TAC undergoes an asym-
metric division if division into two TACs does not occur. Again, it is easy to see
pT,T (k)+ pT,T D(k)+ pT D,T D(k) = 1.

3.2.1 Explicit Form for TSS under Step-function Form

Substituting Equations 16 and 17 into Equation 14 we find

TSS =
αNS0

β

[1−
(

z(1−ω)+2ω

)n

1−2ω− z(1−ω)

]
. (22)

The “optimal scenario” demands ω = 1: TAC cells maximise their number by auto-
matically undergoing symmetric divisions into two TACs of the next generation until
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(a) (b)

Fig. 3: Parameter spaces in an “optimal case” (Equation 23), where only sym-
metric TAC divisions into two TACs are possible, showing significance of SCa

number, SCa and TAC division rates and TAC generation number. The region
of successful maintenance in the parameter space is the portion above each line,
where “success” corresponds to generating the > 105 basal epithelium cells re-
quired for a small (mouse-sized) cornea. (a) Change of the parameter space is
shown for various maximum TAC generations, while fixing TAC division rates
at once every 2 days. (b) Change of the parameter space is shown for a range
of TAC division rates, while fixing the maximum number of TAC generations at
10.

terminal differentiation. In this case Equation 22 reduces to

TSS =
αNS0

β
(2n−1). (23)

Thus, the number of TAC cells that can be generated increases with: (i) the number
of SCas; (ii) the number of TAC generations; and (iii) the ratio of SCa:TAC division
rates. More so, this relationship allows us to generate parameter spaces for successful
homeostasis, shown in Figure 3 based on benchmark figures for the size of a typical
small epithelium, such as those of a mouse.

Parameter Spaces. We next expand to interspecies differences, exploring how pa-
rameter combinations would have to adapt to maintain a healthy corneal epithelium
across eye sizes. Specifically, we consider two sizes: large (e.g. human/rabbit) and
small (e.g. rat/mouse). In Figure 4a the successful parameter space region is shown
in red for the large eye and in the union of red and blue regions for the small eye. Fig-
ure 4a(i) shows how the parameter spaces shift as the TAC doubling time increases,
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while Figure 4a(ii) illustrates how they change as SCa number increases. To provide
more precise quantitative statements, consider the white dot in Figure 4a(i), which
allows for a maximum of 8 TAC generations, a SCa doubling time of 2 days and 300
active stem cells. We see that a TAC doubling time of half a day would be insufficient
to support either eye size, a doubling time of 2 days would be sufficient to support the
small eye but not the large eye while a doubling time of 8 days would support both.
Large TAC doubling times allows the TAC population to persist in the basal layer
for longer, before eventual division into TD cells. In Figure 4a(ii) the dots represent
a maximum of 8 TAC generations, and both TAC and SCa doubling times set at 2
days. Here we see that only 100 SCas would be insufficient to support either eye size,
300 SCas would support the small eye but not the large eye, while 1000 SCas would
support either eye size.

The plots in Figure 4a provide further visual insights into the parameter space for
successful homeostasis: as expected from Equation 22, increases in TAC doubling
time and SCa numbers lowers the required maximum number of TAC generations.
Our main investigation will focus on mouse, since it is for this system that we have
the most available data. Hence, considering the blue outlined frames, correspond-
ing to a proposed normal scenario for mouse corneal epithelium where there exist
roughly 300 SCas (see Appendix A.1) and TAC cells divide once every two days
(Urbanowicz et al., 2011), we see that somewhere between 5− 12 TAC generations
would be required for maintaining the mouse corneal epithelium (blue region) as we
move across the range of SCa doubling times: fast stem cell divisions (once every 12
hours) would demand only 5 TAC generations, a longer doubling time (e.g. 16 days)
would increase this to 12 TAC generations. Another TAC doubling time estimate is
one every 3 days (Lehrer et al., 1998), and similar calculations would demand a TAC
generation range of 4−11 according to the same range of SCa doubling times.

Moving beyond the optimal scenario, we next assume non-zero probabilities for
asymmetric TAC divisions (division into a TAC and TD cell, pT,T D) and/or “prema-
ture terminal differentiation” (division into two TD cells before reaching the maxi-
mum generation, pT D,T D). Figure 4b shows the parameter spaces suggested by Equa-
tion (22) for a small eye scenario, as we progressively perturb probabilities pT,T D

and pT D,T D from zero. Thus, the lower left most frame would correspond to param-
eter combination (pT,T , pT,T D, pT D,T D) = (1,0,0) while the upper right would corre-
spond to (0.1,0.5,0.4). Increasing either pT D,T D or pT,T D from zero places a greater
demand on the required number of TAC generations: these results follow naturally,
since TAC cells prematurely enter the TD state.

Overall, while moderate pT D,T D and/or pT,T D, can be maintained, significant in-
creases will result in a dramatic collapse in the size of the parameter space and un-
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Fig. 4: (a) Parameter space plots showing corneal epithelium maintenance de-
mands for different eye sizes, under the “optimal scenario”. Red areas give pa-
rameter value ranges for maintenance in “large” corneas (i.e human/rabbit),
while combined blue/red regions are for “small” corneas (i.e mouse/rat). Note
that blue outlined figures specifically correspond to estimated parameter sets
for a mouse cornea. SCa doubling time ranges between 1/2 to 16 days. (i) TAC
doubling times of 1/2, 2 and 8 days and SCa number fixed at 300 cells. (ii) SCa

number is 100, 300 and 1000 cells and TAC doubling time fixed at once every 2
days. (b) Parameter space plots under “sub-optimal” cases in which TAC assy-
metric division or premature terminal differentiation can occur. For these plots
we fix the number of limbal SCa at 300, and TAC division rates at once every
2 days. Parameter spaces are plotted across the maximum permissible number
of TAC generations and SCa division times for different pT,T D, pT D,T D combina-
tions. White region shows where epithelium fails to maintain.

likely maintenance. Note that, according to biological data TACs more often divide
to cells of the same fate than asymmetrically (Beebe and Masters, 1996). Assuming
a zero pT,T D probability the bottom line in Figure 4b suggests that the corneal ep-
ithelium can even be maintained when 6/10 times TACs divide to two TACs than
two TDs, although there would be a significant increase in the number of generations
required.

3.2.2 Explicit Form for TSS under Exponential Form

Next we consider our alternative generation-dependent division process, assuming
the exponentially decreasing form. Specifically, we substitute Equations 19-20 into
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Equation 14 to obtain

TSS =
αNS0

β

[
1+

n

∑
i=2

i−1

∏
k=1

(2e−µk + z(1− e−µk)

]
. (24)

When no asymmetric divisions are possible (z = 0), Equation 24 becomes

TSS =
αNS0

β

[
1+

n

∑
i=2

2i−1e
−

1
2

µ(i−1)i
]
. (25)

Note that by setting µ = 0 and n < ∞ we reduce to the step-function case analysed
previously. When n = ∞ the parameter µ effectively replaces the concept of the max-
imum generations parameter: for small µ there is a high likelihood that TAC cells
proceed through numerous generations before terminal differentiation, for large µ

the reverse is true. Thus, small values of µ can generate high numbers of TAC cells
at homeostasis and we focus on this parameter in subsequent investigations.

Parameter Spaces. As Figure 5a shows, under symmetric TAC cell divisions (z = 0),
decreases in either SCa number or the TAC doubling time demands smaller values of
µ for healthy corneal maintenance. In Figure 5b(i) we show the relationship between
µ and n, where we show that a small increase in µ can result in a substantially smaller
parameter space.

Finally, in Figure 5b(ii) we extend to allow for asymmetric TAC division scenar-
ios (z > 0) and investigate how the parameter space change. Under this scenario, a
failure to divide into two next generation TAC cells does not automatically lead to
two TD cells; rather, asymmetric divisions can allow a TAC cell to persist and hence
the parameter space regime for successful maintenance is increased. Overall, how-
ever, we find that the results are generally consistent with those for the step function
form implying model robustness with respect to the functional form, and therefore
for the remainder of the paper we will use the step function form for its analytical
convenience.

3.3 Derivation of Equations for the Second Moments

The steady-state analysis of the mean equations gives key insight into understand-
ing the limitations of the average cell proliferation process, yet not the variability
about the mean behaviour. Here we address this by deriving equations for the second
moments at the unique steady state (Equation 10 in Subsection 3.1), using the CME
(Equation 3).

Since the chemical system is monostable and composed only of first-order reac-
tions, we can use the well-known fact that the second moments of the CME are given
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Fig. 5: (a) Parameter space plots showing corneal epithelium maintenance de-
mands for different eye sizes, for the exponential TSS form. Red areas give pa-
rameter value ranges for maintenance in “large” corneas (i.e human/rabbit),
while combined blue/red regions are for “small” corneas (i.e mouse/rat). Note
that blue outlined figures specifically correspond to estimated parameter sets
for a mouse cornea. SCa doubling time ranges between 1/2 to 16 days. (i) TAC
doubling times of 1/2, 2 and 8 days and SCa number fixed at 300 cells. (ii) SCa

number is 100, 300 and 1000 cells and TAC doubling time fixed at once every
2 days. (b) Parameter space plots showing corneal epithelium maintenance de-
mands for “small” eye size, for the exponential TSS form. For these plots we fix
the number of limbal SCa at 300, and TAC division rates at once every 2 days.
(i) Parameter space is plotted across the maximum permissible number of TAC
generations and SCa division times for different parameter µ values. (ii) Param-
eter space is plotted across the maximum permissible value of parameter µ and
SCa division times for different parameter z values.

by the Lyapunov equation (Equation 26) (Schnoerr et al., 2017; Elf and Ehrenberg,
2003), where C is the correlation matrix (Ci, j = 〈NTiNTj〉 or 〈NSNTi〉),

J ·C+C ·J+D = 0. (26)

In the Lyapunov equation above (Equation 26), J is the Jacobian matrix and D is the
diffusion matrix for the stoichiometries of the reactions along with their rates.

The diffusion matrix D is calculated by the stoichiometries of the reactions as
described in stoichiometric matrix S, its conjugate transpose ST and the reaction rates
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which are described in the diagonal matrix F of the vector of macroscopic rates
#»
FFF :

D = S ·F ·ST. (27)

For calculation of matrices J, S and F included in Equations 26 and 27 from the
chemical reactions we refer to Appendix B. Moreover, it is worth mentioning that the
approach we use here is frequently used for Linear Noise Approximation (LNA) in
biochemically reacting systems (Elf and Ehrenberg, 2003).

To obtain the correlation matrix C, we use a built-in Matlab function (lyap) for
the Lyapunov Equation while changing the probabilities as to whether TACs are un-
dergoing symmetric or asymmetric divisions. We use these results to investigate the
stochastic properties of the system. In particular, we calculate the Fano Factor (FF)
and the Coefficient of Variation (CV) in Subsection 3.3.1 (Thomas et al., 2013; Pauls-
son, 2005). The FF is a measure of how different are the second moments of the
stochastic process, compared to those of a Poisson distribution with the same mean.
The FF equals one for a simple birth-death process with constant rates. The CV is
a measure of the size of the fluctuations relative to the mean; it is zero for a purely
deterministic system.

3.3.1 Noise

We use the Lyapunov Equation (Equation 26) to investigate how the variance in cell
numbers differs from that of a Poisson distribution with the same mean by calculating
the FF, defined as

FF(i) =
Variance(NTi)

Mean(NTi)
, (28)

with i the TAC generation number.
To investigate whether FF increases (or decreases) as we move through TAC gen-

erations (and hence as more cells are added into the system) we numerically solve
the Lyapunov equation (Equation 26) and, as a reference case, we fix the parameters
for the number of SCa at 300, SCa and TAC division rate at once every two days and
pT,T = 0.8 and z = 0.4. Moreover, we force a requirement to generate sufficient TAC
cells to maintain a small corneal epithelium (105 cells). The analysis shows that FF
increases with the TAC generation. Specifically, our results show that while TAC1

cells follow a Poisson distribution (FF = 1), the distribution of cells in subsequent
generations changes significantly to Super-Poissonian behaviour, since FF > 1 (Fig-
ure 6a). This shows that while for TAC1 cells the proliferation process is analogous
to a simple “birth-death” process, this is not true for the subsequent TAC generations
and variances in the cell densities will be larger than expected from Poisson statistics.

To investigate if the FF increasing tendency was a result of parameter choice, we
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(a) (b)

Fig. 6: Plots show the increasing tendency of Fano Factor (FF) where SCa = 300,
α = β = log2/2 and Ttot = 105 cells (similar to a small cornea epithelium of a
mouse). (a) FF in reference case where pT,T = 0.8 and z = 0.4 . (b) FF increases
for all pairs of division probabilities (0.2 ≤ pT,T ≤ 1 and 0 ≤ z ≤ 1). Note that
similar results concerning the FF increasing tendency are observed for all per-
turbation experiments about SCa numbers, SCa and TAC division rates.

consider the ranges 0.1≤ pT,T ≤ 1 and 0≤ z≤ 1. Simulations under these perturba-
tions show similar results, with FF always increasing with the TAC generation num-
ber. Specifically, Figure 6b shows this FF increasing tendency which is either small
or large. Small increases in FF as we move towards higher generations are reported
when pT,T + pT,T D < 0.5 (i.e. pT,T = 0.2 and 0≤ z≤ 0.6) and hence, pT D,T D > 0.5.
This is logical as few TAC cells are generated in the epithelium and hence the vari-
ance in the cell numbers will be small. We recall that different pairs of pT,T and z
result in different maximum TAC generation numbers, in order to generate the total
of 105 cells as shown in Figure 6b.

We then perturb first the SCa number in the limbus, followed by the SCa division
rates and finally the TAC division rates, for a range of probabilities 0.1≤ pT,T ≤ 1 and
0 ≤ z ≤ 1. Note that for each experiment other parameters were fixed and set equal
to those of our reference case. For all of these experiments, our simulations gave the
same results (with respect to the increasing tendency of the FF) indicating that the
FF increasing tendency is a persistent property. Our experiments above therefore in-
dicate that the model is robust, in the sense of insensitivity to the chosen parameter
values.

Next we study a second noise measure, the Coefficient of Variation (CV ),

CV (i) =
Standard Deviation(NTi)

Mean(NTi)
, (29)
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(a) (b)

Fig. 7: Plots show Coefficient of Variation (CV) in two different regions when
SCa = 300, SCa and TAC division rates are set at once every two days and z = 0.4.
(a) Maintaining region where 0.7 ≤ pT,T ≤ 1 and the CV decreases. (b) Non-
maintaining region where 0≤ pT,T ≤ 0.3 and the CV increases.

where i is the TAC generation number.
Larger CV implies a noisier system. In regions where the parameter combinations

are capable of maintaining a small mouse corneal epithelium, the number of first gen-
eration TACs as they are pushed into the basal layer is slightly noisy, but noise rapidly
decreases for higher generations. Since it is indeed the higher generations that con-
tribute the bulk of the TAC cells, this suggests overall robustness of the system. As
an illustrative example, consider 0.7 ≤ pT,T ≤ 1 and z = 0.4: the decreasing nature
of CV with generation number is shown in Figure 7a. On the other hand, for a non
maintaining region where pT,T < 0.4 (and z = 0.4) the CV increases with the number
of TAC generations (see Figure 7b). In other words, non-robustness in the sense of
noise is only observed in biologically unrealistic regimes, i.e. where the epithelium
cannot be maintained.

To understand whether this is impacted by the TAC division probabilities, we
solve as previously by fixing the total number of TAC that can fill the epithelium to
be 105, the SCa number in the limbus at 300 and the TAC division rate of once every
2 days. Over the full range of SCa division rates (Table 1), we find decreasing (in-
creasing) noise for division probability pairs marked black (white) in Figure 8a. Note
that the decreasing cases correspond exactly to the “biologically” relevant regime, i.e.
those parameter combinations capable of sustaining a healthy cornea (Section 3.2).

As a further test we altered the number of SCa in the limbus (100, 300 and 1000
cells) and again allowed SCa division rates to range from 6 hours to 10 days; results
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are shown in Figure 8a. Thus, FF always increases independently of the various pa-
rameter choices while CV decreases, but we can see a dependency on the division
probability choices.

For further investigation into whether noise decreases for parameters at which
the corneal epithelium is maintained we plot a parameter space for maintenance in
Figure 8b. Here probabilities pT,T and z are perturbed (recall that pT,T D = z(1− pT,T )

and pT D,T D =(1−z)(1− pT,T ); see Subsection 3.2). Moreover, SCa and TAC division
rates are also perturbed, but such that the model generates a sufficient number of TAC
cells to maintain a small corneal epithelium (105 cells). Note, therefore, that since
the TAC division rates vary we expect the TAC generation number to vary as well.
Dark areas correspond to those parameter combinations which can generate 105 cells,
while those in white regions fail. Providing that parameters sit within A (biologically
relevant, as already discussed in Subsection 3.2.1), a straightforward comparison be-
tween Figures 8a and 8b indicates that we have robustness to noise. It is only when
the parameters sit on the threshold of the parameter space where we start to get po-
tential noisiness of the system. Figure 8b suggests that for pT,T = 0.5 and 0≤ z < 0.1
the corneal epithelium is maintained (while noise increases in Figure 8a), but only
for more than 20 TAC generations. For example, for z = 0 and tTAC = tSCa = 2 days
the epithelium would require an unfeasibly large 334 generations. Note further that
areas B-F correspond to TAC division rates of more than once every 3 days, beyond
estimated values. Hence Figure 8a and 8b suggests that increasing noise only occurs
under “abnormal” conditions. Figures 8c, 8d give the number of TAC generations re-
quired when the SCa doubling time is once every 2 days and the TAC doubling time is
either once every 2 or 3 days (Lehrer et al., 1998). In Figures 8e and 8f the numbers
of TAC generations required to maintain the epithelium are shown when tSCa is of
once every 14 days (an upper bound of the SCa division rate according to Douvaras
et al. (2013)) and tTAC is set at once every 2 or 3 days respectively. When probability
pT,T = 1 and tSCa = 2 days, the required TAC generations are 9 and 10 for tTAC = 2
and 3 days respectively, while when tSCa = 14 days the required generations are 12
and 11. This suggests that there is not a large difference in the required generations
for large variations of tSCa for biological estimated tTAC values.

Summarising, FF always increases with the numbers of TAC generations. While
CV can increase, it only does so outside the relevant parameter region for mainte-
nance. Hence, it is possible that parameters evolve over an individual’s growth into a
state where noise reduces while maintaining the epithelium. Noise reduction would
clearly be beneficial (Rao et al., 2002) for maintaining the epithelium, since fluctua-
tions in cell numbers would be minimised. For a healthy individual we would expect
the parameters to all sit comfortably within A, but a potential result in Limbal Stem
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Noise decreases for the whole parameter space where corneal epithe-
lium is maintained. (a) Coefficient of Variation. Black (white) area shows the
parameter space where CV decreases (increases) with the increasing number of
TAC generations. (b) Parameter space where corneal epithelium can maintain
when tSCa is from 6 hours to 14 days. Area A correspond to all pairs of tTAC and
tSCa . Area B to tTAC ≥ 8 d and tSCa = 6 h. Area C to tTAC ≥ 2 d and tSCa = 6 h,
tTAC ≥ 4 d and tSCa = 12 h and tTAC ≥ 8 d and tSCa = 1 d. Area D to tTAC = 6,10 d
and tSCa = 6 h and to tTAC = 10 d and tSCa = 12 h. Area E to tTAC = 4, ...,10 d
and tSCa = 6 h and to tTAC = 8,10 d and tSCa = 12 h. Area F to tTAC = 8,10 d
and tSCa = 6 h. (c)-(f) TAC generations required for maintaining the epithelium
when tSCa = 2,14 days and tTAC = 2,3 days. White area corresponds to parameter
space not capable of maintaining the epithelium.
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Cell Deficiency would involve parameters (e.g. reduced TAC division rates) shifted
towards the boundary, where one starts to “feel the effect” of noise.

4 Perturbation Experiments

4.1 Objectives

Here, we explore the behaviour under perturbations linked to pathological/wound
healing type scenarios or biological experiments. For the in silico experiments we
consider a specific reference parameter set, motivated by mouse cornea. Specifically,
we set the SCa number to be 300 and their division rate once every two days (un-
less otherwise stated). With 9 TAC generations, a TAC division rate of once every
2 days, the step-function choice for TAC divisions and “optimal” division (pT,T = 1
and z = 0), this would enable a basal corneal epithelium to be supported of up to
153,300 cells. For the remainder of the section our initial conditions are taken to be
the homeostatic steady state distribution of TAC cells, and at some time tpert we ap-
ply some perturbation, where the exact form of perturbation will be defined at the
appropriate point.

4.2 Pathological SCa Loss

First, consider the impact of pathological stem cell loss scenarios, defined as an SCa

loss from the limbal area of the eye (e.g. as associated with LSCD or due to in-
jury/experimental extraction). Note that here we do not consider any mechanisms that
may boost SCa, e.g. via symmetrical divisions to two SCas or via de-differentation of
TAC cells back into stem cells. As such the SCa loss must be viewed in the context of
irreparable injury. From our analysis of the homeostatic scenario we know that there
is a direct relationship between the number of TACs and the number of SCas at steady
state: ablating X% of the SCa population will decrease the steady state distribution of
TAC cells by X%, and we investigate the re-establishment time required to reach the
new distribution. Specifically, we calculate

treestablishment =

{
t− tpert :

∣∣∑n
i=1 Ti(t)−TSS

Post
∣∣

TSS
Post < ε

}

where ε is arbitrarily small, TSS
Post is the total number of TAC cells that would be

generated at the new steady state after X% of initial stem cell population is removed,
and tpert is the time the stem cell loss perturbation occurs. Before moving to the



24 E. Moraki et al.

(a) (b)

(c) (d)

Fig. 9: (a) Each line represents the computed re-establishment time for an indi-
vidual stochastic simulation (total of 1,000 simulations) under 3 different values
of ε . Also plotted are the mean, standard deviation, maximum and minimum re-
establishment time (in days), using the reference parameter set. Note that each
coloured line in each bar represents the result from one stochastic simulation
of the model, however only a subset of the total simulations is plotted for each
case. The specific simulation that generates one of the extrema (maximum or
minimum) may therefore not be represented. (b)-(f) Plots show different scenar-
ios for a mouse corneal epithelium’s fate resulting from pathological scenarios,
with ε = 0.05 . (b) Required time to reach the new steady state according to %
loss in SCa number. (c) Case of 10% SCa loss. An increase in β decreases the time
needed for the epithelium to collapse. (d) Case of 10% SCa loss. An increase in
pT D,T D decreases the time needed for the epithelium to collapse.

perturbation experiments, it is sensible to first investigate the impact of ε for the re-
establishment time. To do so, we perform Gillespie-based stochastic simulations for
the specific parameter set described in Subsection 4.1, under 3 different values of ε:
ε = 0.01,0.05,0.1 given a 20% SCa loss. Value of ε = 0.01,0.05,0.1 represent reach-
ing within 1%,5%,10% of the new TAC population homeostatic state. Inevitably,
when ε is very small, the system is in a noisy regime and it is unfeasible to get ex-
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actly within X% of the new TAC population level after applying the perturbation. In
this case there can be large variations in the re-establishment time. Hence, we focus
on finding a value of ε which is small enough to get close to the new level, but not
small enough that we start to face sensitivity issues. Our results (see Figure 9a) show
that if we impose a very tight bound restriction (ε = 0.01) then large variations in the
re-establishment time are possible. On the other hand, for ε = 0.05 or 0.1, variations
in treestablishment are relatively small, indicating values ε ≥ 0.05 are required and we
choose ε = 0.05. Moreover, for ε = 0.05 both the mean of the stochastic model and
the deterministic model agree (see Figure 9a for ε = 0.05 and Figure 9b for 20%
SCa loss) therefore allowing us to use the deterministic model to explore the mean
re-establishment time for different perturbations.
In Figure 9b we show that large increases in SCa loss only result in moderate in-
creases in the reestablishment time. Specifically, when 10% of the SCa population
is lost, treestablishment ≈ 23 days. Moreover, when 90% of SCas are lost then the ep-
ithelium reaches its new steady state in roughly 39 days. Thus, despite the 9 fold
difference in SCa loss, there is a less than 2 fold increase in the time required. Hence,
from a clinical/biological perspective, in the case of a patient who suffers from sud-
den limbal SC loss, clinicians could be able to predict the time at which the new
homeostatic state is attained.

To understand how parameter changes alter the reestablishment time, we perturb
TAC, SCa division rates and probabilities. In Figure 9c we show the impact of×2 and
×1/2 perturbations to the default value of β on the re-establishment time 9b: clearly,
β has significant impact with ×2/× 1/2 perturbations generating corresponding-
sized perturbations on re-establishment time. On the other hand, equivalent simula-
tions involving perturbations to α show no effect on treestablishment (data not shown).
These results can be anticipated by the analytical solution to the ODE system, Equa-
tion 13, where we see the intrinsic link between β and t; α , on the other hand, simply
enters via a scaling. Assuming now that under a biological experiment, in addition to
the 10% SCa loss, TACs are forced into premature TD differentiation. An increase in
probability pT D,T D will result in epithelium collapse in shorter time (see Figure 9d).
Note that no substantial change was observed for increases to pT,T D while keeping
pT D,T D constant, due to the insubstantial difference in the number of TACs lost.

4.3 TAC Loss Perturbation Experiments

Here, we investigate the capacity of the epithelium to recover under insults to the
central epithelium area: perturbations to the TAC population from their homeostatic
(steady state) values. We assume perturbations do not change the number of SCas, and
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therefore do not expect any change to the homeostatic situation post recovery. The
recovery time is defined as the time it takes before returning to the pre-perturbation
TAC number:

trecovery =

{
t− tpert :

∣∣∑n
i=1 Ti(t)−TSS

Pre
∣∣

TSS
Pre < ε

}
where ε is arbitrarily small, TSS

Pre is the total number of TAC cells before the pertur-
bation is applied. As in the previous subsection (see Subsection 4.2), we investigate
the impact of ε for the recovery time. Similarly to the SCa perturbation experiments
we found that ε = 0.05 represents a suitable small value without facing sensitivity
issues. The deterministic model captures the mean recovery time of the stochastic
model, that is trecovery = 39.7 days (see Figure 10a for ε = 0.05 and Figure 10b for
remaining 0% of the TAC population) and, hence, in the rest of the section we exploit
the deterministic model to explore trecovery under different perturbation experiments.

We first consider uniform perturbations, where we remove equal percentages of
each TAC generation. The impact on recovery time is summarised in Figure 10b
which shows the percentage change of recovery time with respect to the maximum
recovery time (i.e. the recovery time if 100% of TAC population was removed). As
could be expected, increased TAC loss demands an increase in recovery time, al-
though the results show that the change is relatively small with respect to the size of
perturbation.

There is likely to be uncertainty in parameters such as SCa and TAC division
rates, and particularly whether they change in the face of some perturbation (cell pro-
liferation rates can be experimentally manipulated e.g. Lehrer et al. 1998, Saghizadeh
et al. 2017. Hence, we vary these parameter values and plot the resulting change to
the recovery time in Figures 10c-10d. Decreasing the SCa division rates (α) has a
negative effect on recovery, and can even lead to recovery failure as alterations of this
type act to lower the homeostasis level of cells. Similarly, decreases to TAC division
rate will slow down the recovery rate (as expected from our earlier analytical solu-
tion, Equation 13). Thus, in the context of perturbations to TAC numbers, a (possibly
temporary) response of decreased TAC and increased SCa division rate would be op-
timal for quick recovery, in line with certain biological findings (Lehrer et al., 1998;
Pal-Ghosh et al., 2004). Note that, as expected, recovery time increases according to
the size of TAC loss, cf. Figures 10c and Figure 10d.

We next investigate the effect of non-uniform perturbations, removing a set per-
centage of the total TAC population but the removal weighted variably across the
TAC generations. TAC generations are assumed to be distributed radially, since cells
move centripetally (Nagasaki and Zhao, 2003) over time, and thus different weight-
ings in this manner would correspond to principally removing the TAC cells from the
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(a) (b) (c)

(d) (e) (f)

Fig. 10: (a) Each line represents the computed recovery time for an individual
stochastic simulation (total of 1,000 simulations) under 3 different values of ε .
Also plotted are the mean, standard deviation, maximum and minimum recov-
ery time (in days), using the reference parameter set. Note that each coloured
line in each bar represents the result from one stochastic simulation of the model,
however only a subset of the total simulations is plotted for each case. The spe-
cific simulation that generates one of the extrema (maximum or minimum) may
therefore not be represented. (b)-(f) Plots show different scenarios for a mouse
corneal epithelium’s fate following a wound type perturbation, with ε = 0.05.
Specifically: (b) The percentage change of recovery time with respect to the
maximum recovery time, assuming uniform removal across TAC generations.
The required time for recovery is counted in days (in red). (c)-(d) Measurement
of recovery time when TACs are lost uniformly across TAC generations and di-
vision rates α and β are perturbed. Black area correspond to no full recovery
within 50 day period. (e) Perturbed areas: Area A, TAC loss weighted to higher
generations; Area B, uniform TAC loss across all generations; Area C, weighted
to lower generations. (f) Comparison between a minor (10%) and a large (60%)
TAC loss according to the time needed for 95% recovery and the perturbed area.
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centre or the periphery of the cornea. Figure 10e illustrates our three basic pertur-
bation types: a type A perturbation corresponds to predominantly removing higher
generation TAC cells (expected to be located in the central cornea region); a type
B perturbation corresponds to an equal weighting removal across all generations; a
type C perturbation corresponds to predominantly removing lower generation TAC
cells (expected to be located in peripheral regions). Note that for perturbation A (C)
we first removed all cells from the highest (lowest) generation, followed by the next
higher (lowest) generation and so forth until the required number has been removed.
As Figure 10f suggests, area A perturbations show significantly faster recovery rates
than rate C perturbations, suggesting that preserving first generation TAC cells is
more critical for recovery: intuitively, low generation cells and their descendants can
remain in the basal layer for significantly longer before automatic terminal differen-
tiation. In fact, for an area C perturbation we even see a drop in the total number of
TACs in the initial stages of the recovery process. Summarising, we expect that the
region where a perturbation is applied may have some relatively significant impact
on the subsequent recovery time.

5 Conclusion

In this paper, we have developed a purposefully simple stochastic mathematical model,
based on an analogy to chemical reactions, to clarify the main factors involved in
maintaining the corneal epithelium. We have focused on the proliferation process of
both SCas and TACs, considering only the dynamics in the basal epithelial layer and
thereby assuming that maintaining this layer provides the key to epithelial homeosta-
sis.

Our analysis provides an explicit link between the number of TACs at each gen-
eration and: (i) the numbers of active stem cells, and (ii) the relative rate of SCa to
TAC division. Further, the TAC proliferation rate who has a significant impact on the
rate of temporal dynamics of TACs. For the TAC division probabilities, we consid-
ered two potential forms: (i) an analytically convenient step-function form, and (ii)
an exponential form. We have shown that these two reasonably plausible forms give
very similar results and hence, there is robustness of the results with respect to the
precise form. The analysis of the model using these probability functions generated
parameter spaces for the constraints under which the epithelium maintains.

To account for the variability about the mean TAC proliferation process, and
hence investigate the noisiness of the system, we derived the second moments at
the steady state using the Lyapunov equation and then calculated the FF and CV for
each TAC generation. The work on Fano Factor and Coefficient of Variation pre-
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sented here suggests that an evolving less noisy system might be fitter to avoid a
noisy behaviour of cells and hence maintain the epithelium. We further investigated
the required number of TAC generations to maintain the corneal epithelium by let-
ting tTAC range across the acceptable range of TAC proliferation rates and tSCa vary
widely. For a mouse corneal epithelium we found that when SCas divide once every
14 days, which is assumed to be towards the upper bound of the SCa proliferation
rate, the required TAC generation number for the epithelium maintenance increases,
although not much compared with a tSCa of 2 days. Nevertheless, the 14 days figure
may be because SCs switch in and out of the active state. Thus, the 14 days could
be viewed as more appropriate for the total stem cell population (rather than the ac-
tive population). Further, we are able to make a direct comparison with respect to
the number of the required TAC generations between species. For example, we can
compare the mouse with the rabbit corneal epithelium. The rabbit corneal epithelial
area is bigger and TACs proliferate faster than in mouse (once every 18 hours). This
would imply that 5 more TAC generations will be needed for maintaining the rabbit
corneal epithelium, compared to those needed for the mouse, assuming that the SCa

division rate remains the same.
The work in this paper serves as a stepping stone in understanding the maintain-

ing process of the corneal epithelium and its behaviour under perturbations linked to
pathological/wound healing type scenarios or biological experiments. Of course, cell
migration is fundamentally important but has been neglected here in order to concen-
trate on the proliferation kinetics of cells. Future work will use both PDE and random
walk description of motile cells (Grima and Newman, 2004; Grima, 2008) to extend
the present model into a spatial one capable of modeling the centripetal movement of
TAC population seen in biological experiments, and obtain a clearer idea of corneal
epithelium wound healing responses. Other possible extensions will be to include the
quiescent SC population to allow some feedback mechanisms.

Appendix A Parameter Estimations

A.1 Mouse

We first note that the corneal circumference of a mouse is∼ 10,000µm (Di Girolamo
et al., 2015; Dorà et al., 2015) and a typical basal cell diameter is ∼ 10µm (Romano
et al., 2003). If stem cells simply formed a one-cell thick ring, a total stem cell pop-
ulation of ∼ 1,000 cells could be accommodated along the corneal-limbal border.
Note, however, that an estimated 250− 300 are active (Dorà et al., 2015) at home-
ostasis. To accommodate scenarios that can range from healthy to pathological, or
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eye sizes from larger to smaller, we assume the number of SCa in the limbus ranges
between 100−1000.

Although the cornea is dome-shaped, for the purposes of the model we have as-
sumed it is a hemisphere with a circumference of approximately 10,000 µm. Then,
the radius of the corneal is rcorneal = 1,592 µm, from which the corneal area is
Acorneal = 2πr2

corneal µm2. Similarly, the average area occupied by a basal corneal
cell (assuming that the cell is a disc in the 2D plane) is Acell = πr2

cell µm2, where
rcell = 5 µm. Thus, an estimate of cells that can fit in the corneal epithelium is given
by:

Acorneal

Acell
=

2πr2
corneal

πr2
cell

= 202,757 (30)

and to take into account not just the normal conditions, we can introduce the magni-
tude of 105 as a guideline baseline value for the number of cells required to populate
a small cornea.
For mouse we have a number of sources that provide indications of stem cell and
TAC division rates. If it is assumed that mouse limbal epithelial SCs are equivalent
to BrdU “label-retaining cells”, which include slow-cycling stem cells, it can be esti-
mated that certain limbal epithelial SCs do not divide more often than once per two
weeks (∼ 14 days). This calculation follows from detectable BrdU retention for at
least 10 weeks (Douvaras et al., 2013), and that BrdU is probably diluted to unde-
tectable levels after 4 - 5 cell divisions (Wilson et al., 2008). However, this is quite
likely to provide an approximate lower bound for division rates, as it remains quite
possible that certain SCs divide significantly more quickly and may not be detected
by the label-retaining cell approach. As such, the mean SC cell cycle time may be
considerably less than 2 weeks. Of course division rates are ultimately bounded by
the minimum length of time needed to complete the cell cycle, which would be of the
order of several hours to a day. Consequently, we take a range 6 hours to 16 days for
(active) stem cell doubling times.

Experimental studies on the TAC cell cycle in the peripheral corneal epithelium
indicate that almost 50% of basal corneal epithelial cells are in S-phase of the cell
cycle, during a 24-hour labelling period (Urbanowicz et al., 2011). This suggests a
minimum cell doubling time of just over 2 days but it would be longer if certain TACs
cycle more slowly. Similarly, an average mitotic rate of 37% of basal layer cells per
day can be derived for rats from the results reported by Bertalanffy and Lau (1962)
and this suggests a minimum cell doubling time of about 2.7 days. (The original re-
sults showed that 14.5% of all corneal epithelial cells divided per day and results for
the mouse imply that about 38.8% of mouse corneal epithelial cells are in the basal
layer (Douvaras et al., 2013)). Other experiments on the TAC cell cycle in the pe-
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ripheral corneal epithelium have estimated it as approximately as 72 hours for the
mouse (Lehrer et al., 1998). Overall the results show that the average doubling time
for TACs is about once every 2 - 3 days but may be longer in the central corneal ep-
ithelium (Lehrer et al., 1998). While we centre on an average rate of 2 days, for our
studies we again use a range of 6 hours to 16 days to include scenarios under normal
and abnormal conditions.

A.2 Human

Experimental data suggests that the average corneal diameter in human eye is 11.71±
0.42 mm, (Rüfer et al., 2005) implying a corneal circumference ∼ 36.770 mm2. In
the absence of specific data, we consider an analogous case to the mouse and suppose
the circumference corresponds to the corneal-limbal border. Assuming limbal corneal
cells are 10µm in diameter, we estimate that there is a room for ∼ 3,000− 4,0000
limbal cells forming a one-cell thick ring; although (in contrast to the mouse case)
some biological studies suggest that they are asymmetrically distributed (Wiley et al.,
1991; Pellegrini et al., 1999; Shanmuganathan et al., 2007). If a similar fraction (to
that of mouse) of this population is taken to be active, we estimate ∼ 1,000 active
stem cells (SCa) in the human limbus. Again, we consider an order of magnitude
range about this value (∼ 400 - 4,000).

Using the same calculations adapted from the mouse case gives an order of mag-
nitude of 106 basal epithelial cells fitting in the human cornea.

A.3 Rat and Rabbit

To demonstrate variability across other species, we note that rat and rabbit corneas
have average diameters of 5.5µm (Cabrera et al., 1999) and 14.375µm (Tsonis,
2011) respectively. Straightforward calculations show that the circumferences will
be 17,270µm and 45,138µm respectively. Making the same assumptions as earlier,
this would allow for a total of 1,727 and 4,513 stem cells and, if again approximately
1/4 are active,∼ 450 and∼ 1200 active stem cells for rat and rabbit respectively. Cal-
culating an estimate for the total number of cells that can fit into the basal epithelium
yields a magnitude∼ 105 for rat and∼ 106 for rabbit, the former the same magnitude
as the mouse and the latter similar to the human eye.

For a rabbit corneal epithelium, experimental data on TAC doubling time sug-
gests once every 18 hours (3/4) (Castro-Muñozledo, 1994). We are lacking such data
for the rat eye. Nevertheless, the parameter spaces provided throughout the paper can
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give a rough estimate of the TAC generations required for the epithelium maintenance
for each of rat and rabbit eye.

Appendix B Derivation of Matrices Included in Lyapunov Equation

B.1 Jacobian Matrix

The Jacobian matrix J can be derived from the stochastic mean system (5)-(7) ob-
tained in Section 2.3. Matrix J of our n-ODEs system for the stochastic means of
TACs is:

J =



−β 0 0 0 . . . 0

2β pT,T +β pT,T D −β 0 . . . . . . 0

0 2β pT,T +β pT,T D −β 0 . . . 0

...
. . . . . .

...

...
...

. . . . . .
...

0 0 . . . 2β pT,T +β pT,T D −β


Note that Ji j =

∂

∂φ j
(∂tφi) where φi = NTi and φ j = NTj with j = 1, ...,n.

B.2 Stoichiometric Matrix

For the stoichiometric matrix we are only interested in the number of TACs at each
reaction. Denoting the reactions as rk,l with k the reacting population (i.e. k = 0,1, ·,n,
where k = 0 corresponds to the SCa division to TAC1 and k = i the TACi divisions)
and the pathway indicator is l (hence l = 1,2,3). The reactions can be written as

r0 : /0 α−→ TAC1 (31)

ri,1 :TACi
β pT D,T D−−−−−→ /0 (32)

ri,2 :TACi
β pT,T−−−→ 2TACi+1 (33)

ri,3 :TACi
β pT,T D−−−−→ /0+TACi+1 (34)
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rn :TACn
β−→ /0 (35)

where i = 1, · · · ,n to be the number of TAC generation. The stoichiometric vector for
TAC1 is [1 -1 -1 -1 0 · · · 0], for TACi is [0 · · · 0 2 1 -1 -1 -1 0 · · · 0] and for TACn is
[0 · · · 0 2 1 -1]. As an example for the stoichiometric matrix S, let us assume that the
total number of TAC generations is 3, then

S =

1 −1 −1 −1 0 0 0 0
0 0 2 1 −1 −1 −1 0
0 0 0 0 0 2 1 −1


Note that in the stoichiometric matrix for n TAC generations, the number of zero
elements at the start of each row (excluding the first and last row which corre-
spond to the first and last TAC generation respectively) will be N0 = 3(i− 1) + 2
with i = 2, . . . ,n− 1. Hence, the position of the first non-zero element in each row
(i = 2, . . . ,n−1 ) follows the sequence ∑

n−1
i=2 3(i−1).

B.3 Vector of Macroscopic Rates

To find the vector of macroscopic rates
#»
FFF we recall the reactions 31-35 listed in

Appendix B.2 with corresponding rates:

(α[SCa],β pT D,T D(i)[TACi],β pT,T (i)[TACi],β pT,T D(i)[TACi],β [TACn]). (36)

Hence, the vector
#»
FFF for our system is

#»
FFF =(α[SCa],β pT D,T D(1)[TAC1],β pT,T (1)[TAC1],β pT,T D(1)[TAC1], . . .

. . . ,β pT D,T D(n−1)[TACn−1],β pT,T (n−1)[TACn−1],β pT,T D(n−1)[TACn−1],

β [TACn]). (37)

B.4 Diffusion Matrix

For the elements of the diffusion matrix, as already discussed in the text, we used

D = S ·F ·ST, (38)

inside the matlab code, with F, S and ST determined as above.
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asymmetric cell division in hematopoietic stem cellsregulation of self-renewal is
essential for efficient repopulation. Stem Cells and Development 18 (3): 377–386.

Marshall, J. 1985. Radiation and the ageing eye. Ophthalmic and Physiological Op-
tics 5 (3): 241–263.

Meek, KM, and C Knupp. 2015. Corneal structure and transparency. Progress in
Retinal and Eye Research 49: 1–16.

Meineke, FA, CS Potten, and M Loeffler. 2001. Cell migration and organization in



A stochastic model of corneal epithelium maintenance and recovery following perturbation 37

the intestinal crypt using a lattice-free model. Cell proliferation 34 (4): 253–266.
Morrison, SJ, and J Kimble. 2006. Asymmetric and symmetric stem-cell divisions in

development and cancer. Nature 441 (7097): 1068–1074.
Mort, RL, P Douvaras, SD Morley, N Dorà, RE Hill, JM Collinson, and JD West.
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