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The Second-Generation Shifted Boundary Method and Its Numerical Analysis

Nabil M. Atallaha, Claudio Canutob, Guglielmo Scovazzia,∗

aDepartment of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA
bDipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Torino, Italy

Abstract

Recently, the Shifted Boundary Method (SBM) was proposed within the class of unfitted (or immersed, or
embedded) finite element methods. By reformulating the original boundary value problem over a surrogate
(approximate) computational domain, the SBM avoids integration over cut cells and the associated prob-
lematic issues regarding numerical stability and matrix conditioning. Accuracy is maintained by modifying
the original boundary conditions using Taylor expansions. Hence the name of the method, that shifts the
location and values of the boundary conditions. In this article, we present enhanced variational SBM for-
mulations for the Poisson and Stokes problems with improved flexibility and robustness. These simplified
variational forms allow to relax some of the assumptions required by the mathematical proofs of stability
and convergence of earlier implementations. First, we show that these new SBM implementations can be
proved asymptotically stable and convergent even without the rather restrictive assumption that the inner
product between the normals to the true and surrogate boundaries is positive. Second, we show that it is not
necessary to introduce a stabilization term involving the tangential derivatives of the solution at Dirichlet
boundaries, therefore avoiding the calibration of an additional stabilization parameter. Finally, we prove
enhanced L2-estimates without the cumbersome assumption - of earlier proofs - that the surrogate domain
is convex. Instead we rely on a conventional assumption that the boundary of the true domain is smooth,
which can also be replaced by requiring convexity of the true domain. The aforementioned improvements
open the way to a more general and efficient implementation of the Shifted Boundary Method, particularly
in complex three-dimensional geometries. We complement these theoretical developments with numerical
experiments in two and three dimensions.

Keywords: Shifted boundary method; immersed boundary method; small cut-cell problem; approximate
domain boundaries; weak boundary conditions; unfitted finite element methods.

1. Introduction

In this article, we provide improved proofs for well-posedness, numerical stability and convergence of the
shifted boundary method (SBM) for the Poisson and Stokes problems under a simplified set of assumptions
which makes the SBM more generally applicable in the simulation of practical engineering problems of very
complex geometry.

We briefly recall the scope and motivation for the SBM, which falls in the broader category of unfitted (or
embedded) finite element methods [7, 11–19, 27–29, 31, 32, 35, 39–41, 45]. Many of these methods require
the geometric construction of the partial elements cut by the embedded boundary, which can be both
algorithmically complicated and computationally intensive, due to data structures that are considerably
more complex with respect to corresponding fitted finite element methods. Furthermore, integrating the
variational forms on the characteristically irregular cut cells may also be difficult and advanced quadrature
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formulas might need to be employed [23, 37]. Accordingly, it is typical for unfitted methods that a non-
negligible portion of the overall wall-clock time for a simulation is spent handling the embedded boundary,
when complex geometries are considered.

The SBM approach is instead aimed at avoiding integration over cut cells and all the problematic issues
just mentioned, and belongs to the more specific class of approximate domain methods [5, 6, 8–10, 20–
22, 26] for some examples). The SBM is built for minimal computational complexity, in that the location
where boundary conditions are applied is shifted from the true to an approximate (surrogate) boundary,
and, at the same time, modified (shifted) boundary conditions are applied in order to avoid a reduction
in the convergence rates of the overall formulation. In fact, if the boundary conditions associated to the
true domain are not appropriately modified on the surrogate domain, only first-order convergence is to be
expected. The shifted boundary conditions are appropriately modified by means of Taylor expansions and
are applied weakly, using a Nitsche strategy. This process yields a method which is simple, robust, accurate
and efficient.

The shifted boundary method was proposed in [33] for the Poisson and Stokes flow problems and gener-
alized in [34] to the advection-diffusion and Navier-Stokes equations, and in [42] to hyperbolic conservation
laws. In [33] and [34], an analysis of the stability and accuracy of the SBM for the Poisson and advection-
diffusion operators was also included, respectively. More recently, the authors of [4] analyzed the stability
and accuracy of the SBM for the Stokes flow equations, in an endeavor to complete the numerical analysis
of the method for the fundamental differential operators that combine in the Navier-Stokes equations and
many other linear and nonlinear partial differential equations of importance in engineering and physical
sciences.

In the present work, we propose second generation shifted boundary formulations for the Poisson and
Stokes flow problems, and we include their mathematical analysis of stability and accuracy. These enhanced
formulations are obtained by 1) discarding the assumption that the inner product between the normals to
the true and surrogate boundaries must be positive [33] and 2) removing a boundary stabilization term
constructed with tangential derivatives, which was initially considered necessary for the numerical stability
of the method [33]. Particularly, the assumption that the inner product between the normals to the true and
surrogate boundaries must be positive is typically not verified in three dimensional computations involving
complex geometries, and the ability to avoid such restriction is paramount for the application of the SBM
framework to general engineering problems. Furthermore, the new proofs of stability and accuracy proposed
in this work provide a clear explanation of why the SBM is very effective in the robust treatment of complex
geometry problems.

In addition, we provide enhanced proofs for the convergence rates in the L2-norm, using the conventional
requirement that the boundary of the true domain is smooth, as opposed to the restrictive assumption that
the surrogate domain is convex [4, 33, 34]. We also note that the assumption of smoothness of the true
boundary can be replaced by an assumption of convexity of the true domain.

Finally, in the case of the specific stabilized variational formulation utilized to treat the Stokes operator,
we also discard one of the stabilization terms associated with the incompressibility condition. This modifica-
tion is however less relevant for those practitioners who are interested in pairing the SBM with LBB-stable
finite elements.

This article is organized as follows: Section 2 introduces the general SBM notation; the analysis of
the SBM variational formulation of the Poisson problem is discussed in Section 3; the analysis of the
SBM variational formulation of the Stokes problem is presented in Section 4; extensive numerical tests are
presented in Section 5 and Section 6; and finally, conclusions are summarized in Section 7.

2. The shifted boundary method

Notation. Throughout the paper, we will denote by L2(Ω) the space of square integrable functions on Ω and
by L2

0(Ω) the space of square integrable functions with zero mean on Ω (i.e., q ∈ L2
0(Ω) implies

∫
Ω
q = 0).

We will use the Sobolev spaces Hm(Ω) = Wm,2(Ω) of index of regularity m ≥ 0 and index of summability
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(a) The true domain Ω, the surrogate domain
Ω̃h ⊂ Ω and their boundaries Γ̃h and Γ.
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(b) The distance vector d, the true normal n
and the true tangent τ .

Figure 1: The surrogate domain, its boundary, and the distance vector d.

2, equipped with the (scaled) norm

‖v‖Hm(Ω) =

(
‖ v ‖2L2(Ω) +

m∑
k=1

‖ l(Ω)kDkv ‖2L2(Ω)

)1/2

, (1)

where Dk is the kth-order spatial derivative operator and l(A) = measnd
(A)1/nd is a characteristic length

of the domain A (nd = 2, 3 indicates the number of spatial dimensions). Note that H0(Ω) = L2(Ω).
As usual, we use a simplified notation for norms and semi-norms, i.e., we set ‖ v ‖m,Ω = ‖ v ‖Hm(Ω) and
| v |k,Ω = ‖Dkv ‖0,Ω = ‖Dkv ‖L2(Ω).

2.1. The true domain, the surrogate domain and maps
Let Ω be a connected open set in Rnd with Lipschitz boundary. We consider a closed domain D such

that clos(Ω) ⊆ D and we introduce a family Th of admissible and shape-regular triangulations of D . Then,
we restrict each triangulation by selecting those elements that are contained in clos(Ω), i.e., we form

T̃h := {T ∈ Th : T ⊂ clos(Ω)} .

This identifies the surrogate domain

Ω̃h := int

 ⋃
T∈T̃h

T

 ⊆ Ω ,

with surrogate boundary Γ̃h := ∂Ω̃h and outward-oriented unit normal vector ñ to Γ̃h. Obviously, T̃h is an
admissible and shape-regular triangulation of Ω̃h (see Figure 1a). We now select a mapping

Mh : Γ̃h → Γ , (2a)
x̃ 7→ x , (2b)
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which associates to any point x̃ ∈ Γ̃h on the surrogate boundary a point x = Mh(x̃) on the physical
boundary Γ. Whenever uniquely defined, the closest-point point projection of x̃ upon Γ is a natural choice
for x, as shown e.g. in Figure 1b. But more sophisticated choices may be locally preferable; we refer to [3]
for more details. Through Mh, a distance vector function dMh

can be defined as

dMh
(x̃) = x− x̃ = [Mh − I ](x̃) . (3)

For the sake of simplicity, we set d = dMh
where d = ‖d‖ν and ν is a unit vector.

Remark 1. If Mh(x̃) does not belong to corners or edges, then ν = n.

Remark 2. There are other strategies in the definition of the map Mh and, correspondingly, the distance
vector d. Among them is a level set description of the true boundary, in which d is defined by means of a
distance function.

In case the boundary Γ is partitioned into a Dirichlet boundary ΓD and a Neumann boundary ΓN with
Γ = ΓD ∪ ΓN and ΓD ∩ΓN = ∅, we need to identify whether a surrogate edge Ẽ ⊂ Γ̃h is associated with ΓD

or ΓN . To that end, we partition Γ̃h as Γ̃D,h ∪ Γ̃N,h with Γ̃D,h ∩ Γ̃N,h = ∅ using again a mapMh, such that

Γ̃D,h = {Ẽ ⊆ Γ̃h : Mh(Ẽ) ⊆ ΓD} (4)

and Γ̃N,h = Γ̃h \ Γ̃D,h.
Indicating by hT (hiT , resp.) the circumscribed diameter (inscribed diameter, resp.) of an element

T ∈ T̃h and by h (hi, resp.) the piecewise constant function in Ω̃h such that h|T = hT (hi|T = hiT , resp.)
for all T ∈ T̃h, we require that the distance ‖d ‖ goes to zero slightly faster than h, as the grid is refined,
according to the following

Assumption 1. There exist constants cd > 0 and ζ > 0 such that

‖d(x̃) ‖ ≤ cd hT ĥζT ∀x̃ ∈ Γ̃h ∩ T, T ∈ T̃h , (5)

where
ĥT = l(Ω̃h)−1 hT . (6)

We also introduce the following mesh parameters

hτ := (hT h
i
T )1/2 , (7a)

hΓ̃h
:= max

T∈T̃h:T∩Γ̃h 6=∅
hT , (7b)

hΩ̃h
:= max

T∈T̃h

hT , (7c)

h⊥ :=
measnd

(T )

measnd−1(Ẽ)
∀Ẽ ∈ Γ̃h, T ∩ Ẽ 6= ∅, T ∈ T̃h . (7d)

Remark 3. The rate of decay of ‖d‖ needs only to be marginally faster than the one of h, that is, ζ can
be set to an arbitrarily small positive number. For example, this condition can be realized in practice by
(iteratively) subdividing each of the edges of the mesh into two, and then slightly shifting the location of
the nodes on the surrogate boundary along the direction d.

Remark 4. When computing convergence rates in numerical experiments, we found that it was not neces-
sary to enforce Assumption 1, and that a standard mesh refinement in which every edge of the grid is split
in half was sufficient. Assumption 1 should therefore be considered as a technical condition for the proofs
rather than a practical condition for computations.
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Remark 5. Assumption 1 effectively replaces the earlier and much more restrictive assumption inf Γ̃h
ñ·ν >

0 in [33]. The latter, as will be shown in the numerical tests of Section 5 and Section 6, is typically not
verified for complex geometries. The fact that stability and convergence can be established without this
restriction is one of the main results in this paper (see Section 3 and Section 4), and paves the way to
the application of the SBM to very complex geometry problems. Incidentally, Assumption 1 is also one of
the differences between the unfitted SBM approach presented here and the Universal Meshes Method [38],
an unrelated hybrid fitted/unfitted method that however utilizes closest-point projection algorithms and
stability conditions analogous to inf Γ̃h

ñ · ν > 0.

2.2. General strategy
The SBM introduced in [33] discretizes the governing equations in Ω̃h rather than Ω. Consequently, the

challenge would be to consistently enforce the boundary conditions on Γ̃h. To this end, the SBM resorts
to a first-order Taylor expansion of the concerned variable at the surrogate boundary in order to shift the
boundary condition from Γ to Γ̃h.
To illustrate, consider a scalar field u to be the exact solution to a partial differential equation in Ω with a
trace g on Γ. Assuming u is sufficiently smooth in the strip between Γ̃h and Γ so as to admit a first-order
Taylor expansion pointwise, we can write

u(x̃) + (∇u · d)(x̃) + (R(u,d))(x̃) = g(x) , on Γ̃h . (8)

where the remainder R(u,d) satisfies

|R(u,d) | = o(‖d ‖) as ‖d ‖ → 0 .

Introducing the function ḡ(x̃) := g(Mh(x̃)) on Γ̃h, we see that the trace of u on Γ̃h satisfies

u+∇u · d− ḡ +R(u,d) = Shu− ḡ +Rhu = 0 , (9)

where we have introduced the boundary operator

Shv := v +∇v · d on Γ̃h (10)

and Rhu is a short-hand notation for the Taylor expansion remainder R(u,d). Neglecting the higher-order
term (with respect to ‖d ‖) in (9), we obtain the final expression of the shifted boundary condition

Shu = ḡ , on Γ̃h , (11)

which will be weakly enforced on the discretization uh of u that we are going to introduce. Similarly, for a
vector field u, we deduce that its trace ḡ on Γ̃h satisfies

Shu+Rhu = ḡ , (12)

where Shv := v +∇v d on Γ̃h and Rhu is the Taylor expansion remainder of u on Γ̃h. Again, neglecting
the higher-order term in (12), we obtain the shifted vector boundary condition

Shu = ḡ , on Γ̃h . (13)

3. The SBM for the Poisson equation

The strong form of the Poisson problem with a non-homogeneous Dirichlet boundary condition reads

−∆u = f in Ω , (14a)
u = uD on Γ = ∂Ω , (14b)
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where u is the primary variable, uD its value on the boundary Γ and f a body force.

3.1. Existence, uniqueness and regularity of the infinite dimensional problem
Let us denote by H1/2(Ω) a fractional trace space (typically associated with H1(Ω)), and H−1(Ω) the

dual (space) of H1
0 (Ω). The well-posedness of the infinite dimensional problem is discussed, for example,

in [24] (Theorem 5.1, p. 80), with the following result:

Theorem 1 (Well-posedness of the exact problem). Let Ω be a bounded and connected open subset of Rnd

with Lipschitz-continuous boundary Γ. Given f ∈ H−1(Ω) and uD ∈ H1/2(Γ), there exists a unique solution
u ∈ H1(Ω) of Problem (14). Furthermore, if the boundary Γ is of class C 2, f ∈ L2(Ω) and uD ∈ H3/2(Γ),
then u ∈ H2(Ω) and satisfies

‖u ‖2,Ω ≤ C
(
‖ f ‖0,Ω + ‖uD ‖3/2,Γ

)
(15)

for a constant C independent of f and uD.

As a point of departure in the development of the SBM discretization, we just assume Γ to be Lipschitz-
continuous, f ∈ L2(Ω) and uD ∈ H1/2(Γ). Later on, we will make stronger assumptions.

3.2. Weak discrete formulation
Discretizing Problem (14) in Ω̃h and enforcing (11) on Γ̃h with ḡ = ūD through Nitsche’s method [2, 36],

we deduce the following SBM Galerkin discretization of Problem (14):

Find uh ∈ Vh(Ω̃h) such that, ∀wh ∈ Vh(Ω̃h)

(∇uh , ∇wh)Ω̃h
− 〈∇uh · ñ , wh〉Γ̃h

− 〈Shuh , ∇wh · ñ〉Γ̃h
+ 〈αh−1

⊥ Shuh , Shwh〉Γ̃h

= (f , wh)Ω̃h
− 〈ūD , ∇wh · ñ〉Γ̃h

+ 〈αh−1
⊥ ūD , Shwh〉Γ̃h

, (16)

where Vh(Ω̃h) =
{
vh ∈ C0(Ω̃h) | vh|T ∈P1(T ) , ∀T ∈ T̃h

}
.

In what follows, besides the shape-regularity of the grids, we will assume that there exist two global constants
ξ1, ξ2 ∈ R+ such that ξ1 h ≤ h⊥ ≤ ξ2 h. With slight abuse of notation, we will always assume that h and h⊥
are interchangeable. For the sake of completeness, we rewrite (16) using the classical notation with linear
and bilinear forms:

Find uh ∈ Vh(Ω̃h) such that, ∀wh ∈ Vh(Ω̃h)

ah(uh , wh) = lh(wh) , (17a)

where

ah(uh , wh) = (∇uh , ∇wh)Ω̃h
− 〈∇uh · ñ , Shwh〉Γ̃h

− 〈Shuh , ∇wh · ñ〉Γ̃h

+ 〈αh−1 Shuh , Shwh〉Γ̃h
+ 〈∇uh · ñ , ∇wh · d〉Γ̃h

, (17b)

lh(wh) = (f , wh)Ω̃h
− 〈ūD , ∇wh · ñ〉Γ̃h

+ 〈αh−1 ūD , Shwh〉Γ̃h
. (17c)

Remark 6. Despite utilizing a symmetric form of Nitsche’s method, the bilinear form ah(uh , wh) is not
symmetric in general, because of the presence of the term 〈∇uh · ñ , ∇wh · d〉Γ̃h

.

Remark 7. Formulation (17) does not include a tangential stabilization term that was introduced [33]
to help in the proof of coercivity. This simplifies the implementation and avoids having to calibrate an
additional numerical parameter. It will be clearer from what follows that coercivity can be proved by simply
relying on Assumption 1.

6



3.3. Well-posedness and stability
The first step in our analysis of the SBM is to prove that, for sufficiently fine grids, ah(uh , wh) is

uniformly coercive. This will immediately imply the existence and uniqueness of the solution of the discrete
SBM problem. Later on, this coercivity result will be used to prove optimal error convergence in the natural
norm.

Theorem 2 (Coercivity). Consider the bilinear form ah(uh , wh) defined in (17). If the parameter α is
sufficiently large and the quantity ĥΓ̃h

defined in (6) is sufficiently small, then there exists a constant Ca > 0
independent of the mesh size, such that

ah(uh , uh) ≥ Ca ‖uh ‖2a ∀uh ∈ Vh(Ω̃h) , (18)

where ‖uh ‖2a = ‖∇uh ‖20,Ω̃h
+ ‖h−1/2 Shuh ‖20,Γ̃h

.

Proof. By substitution, we have

ah(uh , uh) = ‖∇uh ‖20,Ω̃h
− 2〈Shuh , ∇uh · ñ〉Γ̃h

+ 〈∇uh · d , ∇uh · ñ〉Γ̃h
+ α ‖h−1/2 Shuh ‖20,Γ̃h

. (19)

Young’s ε-inequality and the discrete trace inequalities in Theorem 14 of Appendix A yield

ah(uh , uh) ≥ (1− ε1 CI) ‖∇uh ‖20,Ω̃h
+ 〈∇uh · d , ∇uh · ñ〉Γ̃h

+
(
α− ε−1

1

)
‖h−1/2 Shuh ‖20,Γ̃h

. (20)

Applying Assumption 1 to (20) and recalling that d = ‖d ‖ν give

ah(uh , uh) ≥ (1− ε1 CI) ‖∇uh ‖20,Ω̃h
− ‖‖d ‖1/2∇uh · ν ‖0,Γ̃h

‖ ‖d ‖1/2∇uh · ñ ‖0,Γ̃h

+
(
α− ε−1

1

)
‖h−1/2 Shuh ‖20,Γ̃h

≥ (1− ε1 CI) ‖∇uh ‖20,Ω̃h
− ‖‖d ‖1/2∇uh ‖20,Γ̃h

+
(
α− ε−1

1

)
‖h−1/2 Shuh ‖20,Γ̃h

≥ (1− ε1 CI − cd ĥζΓ̃h
CI) ‖∇uh ‖20,Ω̃h

+
(
α− ε−1

1

)
‖h−1/2 Shuh ‖20,Γ̃h

. (21)

Taking ε1 = (2CI)
−1 and considering sufficiently fine grids so that cd ĥΓ̃h

≤ (4CI)
−1 imply

ah(uh , uh) ≥ 4−1 ‖∇uh ‖20,Ω̃h
+ (α− 2CI) ‖h−1/2 Shuh ‖20,Γ̃h

. (22)

Enforcing α > 2CI yields the coercivity statement (18) with Ca = min (1/4 , α− 2CI) .

Remark 8. In the case of linear polynomials, the discretization scheme (17) bears some similarities to the
one proposed in [8], a reference that the authors of [33, 34] were unaware of. In the present work, however,
we admit a much greater freedom in the choice of the mappingMh : Ω̃h → Ω, that is, our vector d does not
need to be aligned with ñ as in [8] and can be chosen in such a way to account for general domains whose
boundaries have a finite number of corners and/or edges [3]. Although this difference seems mild at first
sight, in reality it makes the work in [8] of not easy applicability in practical engineering problems, and this
might explain why a work dating almost half a century ago has gone relatively unnoticed in the community.
On the other hand, our Assumption 1 is comparable to the general assumption made in [8] on the distance
between the surrogate and physical boundaries; correspondingly, our coercivity result, Theorem 2 above, is
similar to Lemma 6 in [8].

Interestingly, much of the emphasis in [8] and later works [9, 10, 17] was on perturbations of body-fitted
grids, for which ‖d‖ ∼ h2, despite many of the results of [8] apply in a broader sense. From our perspective,
the case ‖d‖ ∼ h1+ζ - for ζ positive and arbitrarily small - is significantly more interesting in computational
engineering applications.
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3.4. Consistency and convergence analysis
From now on, we pose the following regularity assumption on the exact solution u of our Dirichlet

problem (see [3]):

Assumption 2. Assume that Γ is of class C 2, f ∈ L2(Ω) and uD ∈ H3/2(Γ).

As a consequence, Theorem 1 guarantees u ∈ H2(Ω) with the estimate (15). This assumption allows us
to keep technicalities at a minimum in the subsequent consistency and convergence analysis. However, we
mention that it can be weakened to include e.g. domains with a finite number of corners and/or edges (see
[3]), at the expense of more cumbersome mathematical arguments.

The proof of convergence of the SBM for Problem (14) using the natural norm ‖ · ‖a, relies on Strang’s
Second Lemma. With this goal, we introduce the infinite dimensional space

V (Ω̃h; T̃h) = Vh(Ω̃h) +H2(Ω̃h) ⊂ H2(Ω̃h; T̃h) , (23)

an extension of the finite dimensional space Vh(Ω̃h) that contains the exact solution u, that is u ∈ V (Ω̃h; T̃h).
Here H2(Ω̃h; T̃h) =

∏
T∈T̃h

H2(T ) with ‘broken’ norm ‖ ·‖2,Ω̃h,T̃h
=
∑
T∈T̃h

‖ ·‖2,T . It is easily checked that
the form ah(·, ·) is well-defined also on the space V (Ω̃h; T̃h)× Vh(Ω̃h). We associate to V (Ω̃h; T̃h) the norm

‖ v ‖2
V (Ω̃h;T̃h)

= ‖ v ‖2a + |hw |2
2,Ω̃h,T̃h

, (24)

and we note that if v ∈ Vh(Ω̃h), then ‖ v ‖V (Ω̃h;T̃h) = ‖ v ‖a. At this point, we are ready to state

Lemma 1 (Strang’s Second Lemma). If uh ∈ Vh(Ω̃h) is the solution of (17), then

‖u− uh ‖V (Ω̃h;T̃h) ≤
(

1 + C−1
a ‖ ah ‖Vh(Ω̃h)×Vh(Ω̃h)

)
Ea,h(u) + C−1

a Ec,h(u) . (25a)

where
Ea,h(u) = inf

wh∈Vh(Ω̃h)
‖u− wh ‖V (Ω̃h;T̃h) (25b)

is the approximation error and

Ec,h(u) = sup
wh∈Vh(Ω̃h)

| lh(wh)− ah(u , wh) |
‖wh ‖V (Ω̃h;T̃h)

(25c)

is the consistency error.

Proof. The proof is classic, see, e.g., [24] for details.

From Theorem 2, we already have that Ca is a constant independent of the mesh size. Hence, to estimate
the discretization error in the norm ‖ · ‖V (Ω̃h;T̃h) we need to prove that ‖ ah ‖Vh(Ω̃h)×Vh(Ω̃h) is bounded from
above and to estimate the approximation and consistency errors in terms of the mesh size hΩ̃h

.

Proposition 1 (Boundedness). There exists a constant CA > 0, independent of the mesh size, such that

ah(u,w) ≤ CA ‖u ‖V (Ω̃h;T̃h) ‖w ‖V (Ω̃h;T̃h) ∀u,w ∈ V (Ω̃h; T̃h) . (26)

Proof. Using the Cauchy-Schwartz inequality and Theorem 13, we obtain:

ah(u , w) = (∇u , ∇w)Ω̃h
− 〈∇u · ñ , Shw〉Γ̃h

− 〈Shu , ∇w · ñ〉Γ̃h
+ 〈∇u · ñ , ∇w · d〉Γ̃h

+ 〈αh−1 Shu , Shw〉Γ̃h

≤ ‖∇u ‖0,Ω̃h
‖∇w ‖0,Ω̃h

+ ‖h1/2∇u · ñ ‖0,Γ̃h
‖h−1/2 Shw ‖0,Γ̃h

+ ‖h−1/2 Shu ‖0,Γ̃h
‖h1/2∇w · ñ ‖0,Γ̃h

+ ‖h1/2∇u · ñ ‖0,Γ̃h
‖h1/2∇w · ν ‖0,Γ̃h

+ α ‖h−1/2 Shu ‖0,Γ̃h
‖h−1/2 Shw ‖0,Γ̃h

≤ CA ‖u ‖V (Ω̃h;T̃h) ‖w ‖V (Ω̃h;T̃h) , (27)
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with CA = 1 + 2CI + C2
I + α.

The previous result implies that

‖ ah ‖V (Ω̃h;T̃h)×V (Ω̃h;T̃h) = sup
u∈V (Ω̃h;T̃h)

sup
wh∈V (Ω̃h;T̃h)

ah(u , w)

‖u ‖V (Ω̃h;T̃h) ‖w ‖V (Ω̃h;T̃h)

≤ CA . (28)

Proposition 2 (Approximability). There exists a constant CAPP > 0, independent of the mesh size, such
that

Ea,h(u) ≤ CAPP hΩ̃h
‖∇(∇u) ‖0,Ω̃h

∀u ∈ V (Ω̃h; T̃h) . (29)

Proof. Let wh = Ihu in (25b), where Ihu is the standard piecewise-linear Lagrange interpolant of u on the
triangulation T̃h. Consequently, the goal is to estimate

‖u−Ihu ‖V (Ω̃h;T̃h) = ‖∇(u−Ihu) ‖0,Ω̃h
+ ‖h−1/2 Sh(u−Ihu) ‖0,Γ̃h

+ |h (u−Ihu) |2,Ω̃h,T̃h

≤ ‖∇(u−Ihu) ‖0,Ω̃h
+ ‖h−1/2 Sh(u−Ihu) ‖0,Γ̃h

+ hΩ̃h
‖∇(∇u) ‖0,Ω̃h

. (30)

We begin by stating a classical interpolation result

‖h−1 (u−Ihu) ‖0,Ω̃h
+ ‖∇(u−Ihu) ‖0,Ω̃h

≤ C1 hΩ̃h
‖∇(∇u) ‖0,Ω̃h

, (31)

where C1 is a positive constant independent of the mesh size. Applying Theorem 13 and Assumption 1,

‖h−1/2 Sh(u−Ihu) ‖0,Γ̃h
≤ ‖h−1/2 (u−Ihu) ‖0,Γ̃h

+ ĥζ
Γ̃h
‖h1/2∇(u−Ihu) ‖0,Γ̃h

≤ CI

(
‖h−1 (u−Ihu) ‖0,Ω̃h

+ (1 + ĥζ
Γ̃h

) ‖∇(u−Ihu) ‖0,Ω̃h

+hΩ̃h
ĥζ

Γ̃h
‖∇(∇u) ‖0,Ω̃h

)
≤ C2 hΩ̃h

‖∇(∇u) ‖0,Ω̃h
. (32)

Replacing (32) in (30) gives (29) with CAPP = max(1, C1, C2).

In order to bound the consistency error Ec,h(u), the following Lemma is needed.

Lemma 2. Under Assumptions 1 and 2, there exists a constant CD > 0 independent of the mesh size such
that, for hΓ̃h

sufficiently small, it holds

‖h−1/2Rhu ‖0,Γ̃h
= ‖h−1/2(Shu− ūD) ‖0,Γ̃h

≤ CD hΓ̃h
‖∇(∇u) ‖0,Ω\Ω̃h

. (33)

Proof. The result follows from a careful bound of the remainder in the first-order Taylor expansion (8). For
a detailed proof in the more general setting, see Proposition 3 in [3].

Remark 9. The estimate in Lemma 2 can be modified to handle general domains containing corners and/or
edges. Naturally, this entails relaxing Assumption 2 (see Lemma 3 in [3]).

Remark 10. Lemma 2 can be proved without Assumption 2, by introducing additional assumptions on the
mapping Mh : Γ̃h → Γ (see [4, Assumption 5]).

Proposition 3 (Consistency error). Under the hypotheses of Lemma 2, there exists a constant CPBL > 0
independent of the mesh size and u such that

Ec,h(u) ≤ CPBL hΓ̃h
‖∇(∇u) ‖0,Ω\Ω̃h

. (34)
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Proof. Integrating by parts the bilinear form ah(· , ·) given in (17b) and applying Lemma 2 yield

|ah(u , wh)− lh(wh)| = | − 〈h−1/2 (Shu− ūD) , h1/2∇wh · ñ〉Γ̃h
+ α 〈h−1/2 (Shu− ūD) , h−1/2 Shwh〉Γ̃h

|
≤ CPBL hΓ̃h

‖∇(∇u) ‖0,Ω\Ω̃h
‖wh ‖V (Ω̃h;T̃h) . (35)

The proof is concluded by replacing (35) in (25c).

Theorem 3 (Convergence in the natural norm). Under Assumptions 1 and 2, and the condition that hΓ̃h

is sufficiently small, the numerical solution uh of the SBM (16) satisfies the following error estimate:

‖u− uh ‖V (Ω̃h;T̃h) ≤ C hΩ̃h
‖∇(∇u) ‖0,Ω , (36)

where u is the exact solution of Problem (14) and C > 0 is a constant independent of the mesh size and the
solution.

Proof. Combining Strang’s abstract error estimate (25a) with the stability bound (18) and error estimates
in Proposition 2 and Proposition 3 gives (36).

3.5. L2-error estimate by a duality argument
In this section, we provide an estimate of the L2-norm of the discretization error u − uh based on the

ideas recently proposed in [3]. This is a considerable improvement to the same work given in [33] and [4] as
we avoid the convexity assumption of the surrogate domain Ω̃h. We start with the following two preliminary
results:

Lemma 3. It holds

ah(w , v)− ah(v , w) = 〈∇w · ñ , ∇v · d〉Γ̃h
− 〈∇v · ñ , ∇w · d〉Γ̃h

∀v, w ∈ V (Ω̃h; T̃h) . (37)

Proof. By substitution in (17b).

Lemma 3 quantifies the symmetry discrepancy in the bilinear form ah(· , ·). The following lemma quan-
tifies the gap in Galerkin orthogonality.

Lemma 4. Let u be the solution of (14), and uh the numerical solution of (16). It holds

ah(u− uh , vh) = 〈Rhu , ∇vh · ñ〉0,Γ̃h
− 〈αh−1Rhu , Shvh〉0,Γ̃h

∀vh ∈ Vh(Ω̃h) . (38)

Proof. From (17), and following the same steps as in Proposition 3, we obtain

ah(u− uh , vh) = ah(u , vh)− ah(uh , vh)

= ah(u , vh)− lh(vh)

= −〈Shu− ūD , ∇vh · ñ〉Γ̃h
+ 〈αh−1 (Shu− ūD) , Shvh〉Γ̃h

. (39)

Finally, from (9) with ḡ = ūD, we have Shu− ūD = −Rhu, which concludes the proof.

Theorem 4 (Enhanced L2-error estimate). Assume the hypotheses of Theorem 3 to hold. Then, the nu-
merical solution uh of (16) satisfies the following error estimate:

‖u− uh ‖Ω̃h
≤ C h3/2

Ω̃h
l(Ω̃h)1/2 ‖∇(∇u) ‖0,Ω , (40)

where C is a positive constant independent of mesh size.
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Proof. Given z ∈ L2(Ω̃h), let z̄ ∈ L2(Ω) be its extension by 0 outside Ω̃h and let ψ be the solution to the
following homogeneous Dirichlet problem on Ω:

−∆ψ = z̄ in Ω , (41a)
ψ = 0 on Γ . (41b)

Recalling Theorem 1, the stated assumptions in addition to the fact that z̄ ∈ L2(Ω) imply the regularity
result ψ ∈ H2(Ω) ∩H1

0 (Ω), with the following bound

‖ψ ‖2,Ω̃h
≤ ‖ψ ‖2,Ω ≤ Q ‖ z̄ ‖0,Ω = Q ‖ z ‖0,Ω̃h

, (42)

where Q > 0 is a non-dimensional constant independent of z̄ and the mesh size. The same arguments that
led to (9) show that ψ satisfies

Shψ +Rhψ = 0 on Γ̃h . (43)

We now apply Proposition 3 in [3], which together with (42) yields the bound

‖h−1/2Rhψ ‖0,Γ̃h
≤ CDR hΓ |ψ |2,Ω\Ω̃h

≤ CDRQhΩ̃h
‖ z ‖0,Ω̃h

, (44)

where CDR is a positive constant independent of the mesh size.
Next, consider any q ∈ V (Ω̃h; T̃h) and note that ψ also satisfies the following variational statement:

(z , q)Ω̃h
= −(∆ψ , q)Ω̃h

= (∇ψ , ∇q)Ω̃h
− 〈∇ψ · ñ , q〉Γ̃h

. (45)

Adding residual terms on Γ̃h that vanish by definition if applied to the exact solution, we have:

(z , q)Ω̃h
= (∇ψ , ∇q)Ω̃h

− 〈∇ψ · ñ , q〉Γ̃h
− 〈Shψ +Rhψ , ∇q · ñ〉Γ̃h

+ 〈αh−1 (Shψ +Rhψ) , Shq〉Γ̃h

= ah(ψ , q)− 〈Rhψ , ∇q · ñ〉Γ̃h
+ 〈αh−1Rhψ , Shq〉Γ̃h

= ah(q , ψ) + 〈∇ψ · ñ , ∇q · d〉Γ̃h
− 〈∇q · ñ , ∇ψ · d〉Γ̃h

− 〈Rhψ , ∇q · ñ〉Γ̃h

+ 〈αh−1Rhψ , Shq〉Γ̃h
, (46)

where in the last equality we used Lemma 3. Picking q = z = eu := u − uh and using Lemma 4 with
vh = ψI := Ihψ,

‖ eu ‖20,Ω̃h
= ah(eu , ψ) + Esym(eu , ψ) + Erem(eu , ψ)

= ah(eu , ψ − ψI) + Esym(eu , ψ) + Erem(eu , ψ) + Eort(u , ψI) , (47a)

with

Esym(eu , ψ) := 〈∇ψ · ñ , ∇eu · d〉Γ̃h
− 〈∇eu · ñ , ∇ψ · d〉Γ̃h

, (47b)

Erem(eu , ψ) := −〈Rhψ , ∇eu · ñ〉Γ̃h
+ 〈αh−1Rhψ , Sheu〉Γ̃h

, (47c)

Eort(u , ψI) := 〈Rhu , ∇ψI · ñ〉0,Γ̃h
− 〈αh−1Rhu , ShψI〉0,Γ̃h

. (47d)

Next, we proceed to bound the four error terms on the right-hand side of (47a). Applying Proposition 1
and Proposition 2 (with ψ in place of u), yields

ah(eu , ψ − ψI) ≤ CA ‖ eu ‖V (Ω̃h;T̃h) ‖ψ − ψI ‖V (Ω̃h;T̃h)

≤ CA CAPP hΩ̃h
‖ eu ‖V (Ω̃h;T̃h) ‖∇(∇ψ) ‖0,Ω̃h

≤ C3 hΩ̃h
‖ eu ‖V (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (48a)
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Recalling Assumption 1, Lemma 2, equation (44), Theorem 11, and Theorem 13,

Esym(eu , ψ) ≤ cd ĥ
ζ

Γ̃h

(
‖h1/2∇eu · ν ‖0,Γ̃h

‖h1/2∇ψ · ñ ‖0,Γ̃h
+ ‖h1/2∇eu · ñ ‖0,Γ̃h

‖h1/2∇ψ · ν ‖0,Γ̃h

)
≤ cd C CI h

1/2

Ω̃h
l(Ω̃h)−3/2 ‖ eu ‖V (Ω̃h;T̃h) ‖ψ ‖2,Ω̃h

≤ C4 h
1/2

Ω̃h
l(Ω̃h)1/2 ‖ eu ‖V (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (48b)

Erem(eu , ψ) ≤
(
‖h1/2∇eu · ñ ‖0,Γ̃h

+ α ‖h−1/2 Sheu ‖0,Γ̃h

)
‖h−1/2Rhψ ‖0,Γ̃h

≤ (CI + α) ‖ eu ‖V (Ω̃h;T̃h) ‖h
−1/2Rhψ ‖0,Γ̃h

≤ C5 hΩ̃h
‖ eu ‖V (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (48c)

Eort(u , ψI) = −〈Rhu , ∇(ψ − ψI) · ñ−∇ψ · ñ〉0,Γ̃h
+ 〈αh−1Rhu , Sh(ψ − ψI)− Shψ〉0,Γ̃h

≤ ‖h−1/2Rhu ‖0,Γ̃h

(
‖h1/2∇(ψ − ψI) · ñ ‖0,Γ̃h

+ ‖h1/2∇ψ · ñ ‖0,Γ̃h

)
+ α ‖h−1/2Rhu ‖0,Γ̃h

(
‖h−1/2 Sh(ψ − ψI) ‖0,Γ̃h

+ ‖h−1/2 Shψ ‖0,Γ̃h

)
≤ C6 h

3/2

Ω̃h
l(Ω̃h)1/2 ‖∇(∇u) ‖0,Ω\Ω̃h

‖ eu ‖0,Ω̃h
. (48d)

Thus, substituting (48a), (48b), (48c) and (48d) in (47a), we obtain

‖u− uh ‖0,Ω̃h
≤ CAN h1/2

Ω̃h
l(Ω̃h)1/2 ‖u− uh ‖V (Ω̃h;T̃h) + C6 h

3/2

Ω̃h
l(Ω̃h)1/2 ‖∇(∇u) ‖0,Ω\Ω̃h

, (49)

where the the right hand side can be bound by a direct application of Theorem 3 to conclude the proof.

Remark 11. The bound obtained in Theorem 4 is suboptimal, since for a body-fitted Nitsche discretization
one would obtain quadratic convergence in the L2-norm of the error. However, it is not clear if the above
estimate is sharp, since in computations we always observe optimal, second-order convergence rates. A
careful inspection of the above proof indicates that the only non-optimal bound is (48b); it is likely that
further cancellations occur in this term, while Γ̃h approaches Γ is a smooth way.

4. The SBM for the Stokes flow equations

The strong form of the Stokes flow equations with non-homogeneous Dirichlet and Neumann boundary
conditions read

−∇ · (2µ ε(u)− pI) = f in Ω , (50a)
∇ · u = 0 in Ω , (50b)

u = uD on ΓD , (50c)
(2µ ε(u)− pI) · n = tN on ΓN , (50d)

where ε(u) = 1/2(∇u + ∇uT ) is the velocity strain tensor (i.e., the symmetric gradient of the velocity),
µ > 0 is the dynamic viscosity, p is the pressure, f is a body force, uD is the value of the velocity on the
Dirichlet boundary ΓD 6= ∅ and tN is the vector-valued normal stress on the Neumann boundary ΓN (where
∂Ω = Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅). The Stokes flow represents a prototype for the application of the
SBM to systems of differential equations in mixed form.

4.1. Existence, uniqueness and regularity of the infinite dimensional problem
We recall well-known facts about the solution of the Stokes problem above (see e.g. [25]).
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Theorem 5. Let Ω be a bounded and connected open subset of of Rnd with Lipschitz boundary Γ. Assume
f ∈ L2(Ω)nd , uD ∈ H1/2(ΓD)nd such that

∫
Γ
uD · n = 0 if ΓN = ∅, and tN ∈ L2(ΓN )nd . Then, Problem

(50) admits a unique solution [u , p] ∈ H1(Ω)nd × L2(Ω) satisfying
∫

Ω
p = 0 if ΓN = ∅. In addition, if Γ is

of class C 2 and ΓN = ∅, and if uD ∈ H3/2(Γ)nd , then [u , p] ∈ H2(Ω)nd ×H1(Ω) with the bound

‖u ‖2,Ω + ‖ p ‖1,Ω ≤ C
(
‖f ‖0,Ω + ‖uD ‖3/2,Γ

)
. (51)

4.2. Weak discrete formulation
Before stating the weak discrete formulation, we will make the following

Assumption 3. The Neumann boundary is body-fitted, that is Γ̃N,h = ΓN (see Section 2.1).

Remark 12. Assumption 3, which at first look may seem restrictive, is actually most frequently verified
in applications involving the Stokes and Navier-Stokes equations. In this context, Neumann conditions are
simply inflow and outflow conditions, and are typically applied on a portion of the boundary that has been
meshed using a body-fitted grid. Note also that Assumption 3 can be relaxed in practical computations, as
shown for example in [34], where numerical results with embedded inflows/outflows appear to be stable and
accurate.

We introduce next the discrete spaces V h(Ω̃h) and Qh(Ω̃h), for the velocity and the pressure, respectively.
We assume that a stable and convergent base formulation for the Stokes flow exist for these spaces in the
case of body-fitted grids. For example, if we consider the piecewise linear spaces

V h(Ω̃h) =
{
vh ∈ C0(Ω̃h)nd | vh|T ∈P1(T )nd , ∀T ∈ T̃h

}
, (52a)

Qh(Ω̃h) =
{
qh ∈ C0(Ω̃h) | qh|T ∈P1(T ) , ∀T ∈ T̃h

}
, (52b)

the stabilized formulation of Hughes et al. [30] will satisfy these assumptions. For the sake of simplicity,
we will use this formulation in what follows, but alternative choices are possible, such as, for example,
discontinuous Galerkin spaces. In the case of pure Dirichlet conditions, that is ΓN = ∅, the space Qh(Ω̃h)
needs to be modified as

Qh(Ω̃h) =

{
qh ∈ Qh(Ω̃h) |

∫
Ω̃h

qh = 0

}
. (53)

It is also convenient to introduce the product space W h(Ω̃h) = V h(Ω̃h)×Qh(Ω̃h).

Discretizing Problem (50) in Ω̃h, enforcing (13) on Γ̃D,h (see definition in Section 2.1) with ḡ = ūD,
applying (50d) on ΓN (see Assumption 3) and adopting an unsymmetric form of the velocity strain and
pressure gradient terms, we deduce the following SBM weak form of (50):

Find [uh , ph] ∈W h(Ω̃h) such that, ∀[wh , qh] ∈W h(Ω̃h),

0 = (2µ ε(uh) , ε(wh))Ω̃h
− (ph , ∇ ·wh)Ω̃h

+ (∇ · uh , qh)Ω̃h
− (f , wh)Ω̃h

− 〈2µ ε(uh)− phI , wh ⊗ ñ〉Γ̃D,h
− 〈(Shuh − ūD)⊗ ñ , 2µ ε(wh) + qhI〉Γ̃D,h

+ α 〈2µh−1
⊥ (Shuh − ūD) , Shwh〉Γ̃D,h

− 〈tN , wh〉ΓN

+ γ
∑
T∈T̃h

(
h2
τ (2µ)−1 (−∇ · (2µ ε(uh)) +∇ph − f) , ∇qh

)
T
, (54)

where the Nitsche’s stabilization parameter α > 0 helps in the weak imposition of the Dirichlet boundary
condition, whereas the parameter γ > 0 scales a pressure stabilization term required by equal-order veloc-
ity/pressure pairs [30]. As for the weak Poisson problem discussed in Section 3.2, we assume there exist
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constants Cr, ξ1, ξ2 ∈ R+ such that (1/
√
Cr)h ≤ hτ ≤ h and ξ1 h ≤ h⊥ ≤ ξ2 h. Again, with slight abuse of

notation, we will assume h, hτ and h⊥ are interchangeable.

Remark 13. The variational statement (54) does not include a stabilization term involving the tangential
derivative of the Dirichlet boundary conditions nor a stabilization term on the incompressibility constraint,
as was the case in [4, 33, 34]. The main reason for their introduction in addition to assuming inf Γ̃h

ñ ·ν > 0
was to attain coercivity of the bilinear form a(uh , wh). However, as it will be clearer from what follows,
asymptotic coercivity can be proved by simply relying on Assumption 1.

Remark 14. The proposed algorithm can be shown to satisfy statements of global conservation of mass
and momentum. We refer the reader to [4] for more details.

The variational statement (54) can be succinctly expressed as:

Find [uh , ph] ∈W h(Ω̃h) such that, ∀[wh , qh] ∈W h(Ω̃h),

B([uh , ph]; [wh , qh]) = L ([wh , qh]) , (55a)

where

B([uh , ph]; [wh , qh]) = a(uh , wh) + b(ph , wh)− b(qh , uh)− b̄(uh , qh) + c(ph , qh) , (55b)

L ([wh , qh]) = lf (wh) + lg(qh) . (55c)

with

a(uh , wh) = (2µ ε(uh) , ε(wh))Ω̃h
− 〈2µ ε(uh) , wh ⊗ ñ〉Γ̃D,h

− 〈Shuh ⊗ ñ , 2µ ε(wh)〉Γ̃D,h
+ α 〈2µh−1 Shuh , Shwh〉Γ̃D,h

, (55d)

b(ph , wh) = −(ph , ∇ ·wh)Ω̃h
+ 〈ph , wh · ñ〉Γ̃D,h

, (55e)

b̄(uh , qh) = 〈(∇uh d) · ñ , qh〉Γ̃D,h
+ γ

∑
T∈T̃h

(
h2 (2µ)−1∇ · (2µ ε(uh)) , ∇qh

)
T
, (55f)

c(ph , qh) = γ (h2 (2µ)−1∇ph , ∇qh)Ω̃h
, (55g)

lf (wh) = (f , wh)Ω̃h
− 〈ūD ⊗ ñ , 2µ ε(wh)〉Γ̃D,h

+ α 〈2µh−1 ūD , Shwh〉Γ̃D,h

+ 〈tN , wh〉ΓN
, (55h)

lg(qh) = −〈ūD · ñ , qh〉Γ̃D,h
+ γ (h2 (2µ)−1 f , ∇qh)Ω̃h

. (55i)

4.3. Well-posedness and stability
The first step in our analysis is to prove that the bilinear form a(·, ·) is coercive, under suitable assump-

tions. In a second step, we will establish that the bilinear form B(·, ·) satisfies a uniform inf-sup condition.
This will immediately imply the existence and uniqueness of the solution of the discrete SBM problem,
and will be lately used to prove its convergence to the exact solution, with optimal error estimates in an
appropriate natural norm. We start by proving an intermediate technical result.

Lemma 5. Let C̄K be the constant in the Korn inequality (A.5b). Then, ∀uh ∈ V h(Ω̃h),

l(Ω̃h)−2 ‖uh ‖20,Ω̃h
+ ‖∇uh ‖20,Ω̃h

≤ 2 C̄2
K

(
‖h−1/2 Shuh ‖20,Γ̃D,h

+ (cd CI ĥ
ζ

Γ̃D,h
)2 ‖∇uh ‖20,Ω̃h

+1/2 ‖ ε(uh) ‖2
0,Ω̃h

)
. (56)
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Proof. Korn’s inequality (A.5b) yields

l(Ω̃h)−2 ‖uh ‖20,Ω̃h
+ ‖∇uh ‖20,Ω̃h

≤ C̄2
K

(
‖h−1/2 uh ‖20,Γ̃D,h

+ ‖ ε(uh) ‖2
0,Ω̃h

)
. (57)

Using the triangle inequality, Assumption 1 and Theorem 14,

‖h−1/2 uh ‖0,Γ̃D,h
≤ ‖h−1/2 Shuh ‖0,Γ̃D,h

+ ‖h−1/2∇uh d ‖0,Γ̃D,h

≤ ‖h−1/2 Shuh ‖0,Γ̃D,h
+ cd CI ĥ

ζ

Γ̃D,h
‖∇uh ‖0,Ω̃h

. (58)

Thus,

‖h−1/2 uh ‖20,Γ̃D,h
≤ 2

(
‖h−1/2 Shuh ‖20,Γ̃D,h

+ (cd CI ĥ
ζ

Γ̃D,h
)2 ‖∇uh ‖20,Ω̃h

)
. (59)

Substituting (59) into (57) completes the proof.

Theorem 6 (Coercivity). Consider the bilinear form a(·, ·) defined in (55d). If the parameter α is suffi-
ciently large and the quantity cd ĥ

ζ

Γ̃D,h
is sufficiently small, there exists a constant Ca > 0 independent of

the mesh size, such that
a(uh , uh) ≥ Ca ‖uh ‖2a ∀uh ∈ V h(Ω̃h), (60)

where

‖uh ‖2a = l(Ω̃h)−2 ‖ (2µ)1/2 uh ‖20,Ω̃h
+ ‖ (2µ)1/2∇uh‖20,Ω̃h

+ ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h

+ ‖ (2µ ‖d ‖)1/2∇uh ‖20,Γ̃D,h
. (61)

Proof. Substituting uh for wh in (55d) yields

a(uh , uh) = ‖ (2µ)1/2 ε(uh) ‖2
0,Ω̃h

+ α ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h
− 2 〈2µ ε(uh) , Shuh ⊗ ñ〉Γ̃D,h

+ 〈∇uh (d⊗ ñ) , 2µ ε(uh)〉Γ̃D,h
, (62)

where the term 〈∇uh (d ⊗ ñ) , 2µ ε(uh)〉Γ̃D,h
has been added and subtracted. Using Young’s ε-inequality

and the third discrete trace inequality (A.3b) yields

|2 〈2µ ε(uh) , Shuh ⊗ ñ〉Γ̃D,h
| ≤ ε1 ‖ (2µh)1/2 ε(uh)ñ ‖2

0,Γ̃D,h
+ ε−1

1 ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h

≤ ε1 CI ‖ (2µ)1/2 ε(uh) ‖2
0,Ω̃h

+ ε−1
1 ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h

, (63a)

|〈∇uh (d⊗ ñ) , 2µ ε(uh)〉Γ̃D,h
| ≤ 1/2 cd ĥ

ζ

Γ̃D,h

(
‖ (2µh)1/2∇uhν ‖20,Γ̃D,h

+ ‖ (2µh)1/2 ε(uh)ñ ‖2
0,Γ̃D,h

)
≤ 1/2 cd CI ĥ

ζ

Γ̃D,h

(
‖ (2µ)1/2∇uh ‖20,Ω̃h

+ ‖ (2µ)1/2 ε(uh) ‖2
0,Ω̃h

)
. (63b)

Substituting (63a) and (63b) into (62), we obtain

a(uh , uh) ≥
(

1− ε1 CI − 1/2 cd CI ĥ
ζ

Γ̃D,h

)
‖ (2µ)1/2 ε(uh) ‖2

0,Ω̃h
+
(
α− ε−1

1

)
‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h

− 1/2 cd ĥ
ζ

Γ̃D,h
CI ‖ (2µ)1/2∇uh ‖20,Ω̃h

. (64)
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If we choose ε1 = (4CI)
−1, we have that, for sufficiently refined grids, cd CI ĥ

ζ

Γ̃D,h
≤ 1/2 and

a(uh , uh) ≥ 1/2 ‖ (2µ)1/2 ε(uh) ‖2
0,Ω̃h

+ (α− 4CI) ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h

− 1/2 cd CI ĥ
ζ

Γ̃D,h
‖ (2µ)1/2∇uh ‖20,Ω̃h

. (65)

Replacing the first term in (65) with the result (56) of Lemma 5,

a(uh , uh) ≥
(

(2 C̄2
K)−1 − (cd CI ĥ

ζ

Γ̃D,h
)2 − 1/2cd CI ĥ

ζ

Γ̃D,h

)
‖ (2µ)1/2∇uh ‖20,Ω̃h

+ (2 C̄2
K)−1 l(Ω̃h)−2‖ (2µ)1/2 uh ‖20,Ω̃h

+ (α− 4CI − 1) ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h
. (66)

Now, for a sufficiently fine grid, we can assume
(

(2 C̄2
K)−1 − (cd CI ĥ

ζ

Γ̃D,h
)2 − 1/2 cd CI ĥ

ζ

Γ̃D,h

)
≥ (4 C̄2

K)−1

so that

a(uh , uh) ≥ (4 C̄2
K)−1 ‖ (2µ)1/2∇uh ‖20,Ω̃h

+ (2 C̄2
K)−1 l(Ω̃h)−2 ‖ (2µ)1/2 uh ‖20,Ω̃h

+ (α− 4CI − 1) ‖ (2µh−1)1/2 Shuh ‖20,Γ̃D,h
. (67)

Finally, noting that ‖ (2µ)1/2∇uh ‖20,Ω̃h
≥ C−1

I ‖ (2µ ‖d ‖)1/2∇uh ‖20,Γ̃D,h
and choosing α > 4CI + 1 we

obtain the desired coercivity bound with Ca = min
(
α− 4CI − 1 , (8 C̄2

K)−1, (8CI C̄
2
K)−1

)
.

Apart from the fact that we are setting d = ‖d ‖ν instead of d = ‖d ‖n, this new result represents
the main difference from [4]. This indicates that the assumption inf Γ̃D,h

ñ · ν > 0 in addition to the
tangential and incompressibility constraint stabilization terms introduced in the earlier versions of the SBM
method [4, 33, 34] is just a set of sufficient (yet not necessary) conditions to obtain numerical stability.

Theorem 7. The quantity ‖uh ‖a defined in (61) is a norm on V h(Ω̃h), equivalent to the norm ‖uh ‖H1(Ω̃h)

(although not uniformly with respect to the mesh size).

Proof. To prove equivalence between ‖uh ‖1,Ω̃h
and ‖uh ‖a means to show that C1 ‖uh ‖1,Ω̃h

≤ ‖uh ‖a ≤
C2(h) ‖uh ‖1,Ω̃h

for some scalars C1, C2 > 0. We have

‖uh ‖1,Ω̃h
= ‖uh ‖0,Ω̃h

+ l(Ω̃h) ‖∇uh ‖0,Ω̃h

= l(Ω̃h) (2µ)−1/2
(
l(Ω̃h)−1 ‖ (2µ)1/2 uh ‖0,Ω̃h

+ ‖ (2µ)1/2∇uh ‖0,Ω̃h

)
≤ l(Ω̃h) (2µ)−1/2 ‖uh ‖a (68)

which gives the first inequality with C1 = l(Ω̃h)−1 (2µ)1/2. To show the second inequality, we use the discrete
trace inequalities of Theorem 14 and Theorem 11 to get

‖uh ‖a = l(Ω̃h)−1 ‖ (2µ)1/2 uh ‖0,Ω̃h
+ ‖ (2µ)1/2∇uh‖0,Ω̃h

+ ‖ (2µh−1)1/2 Shuh ‖0,Γ̃D,h

+ ‖ (2µ ‖d ‖)1/2∇uh ‖0,Γ̃D,h

≤ l(Ω̃h)−1 ‖ (2µ)1/2 uh ‖0,Ω̃h
+ (1 + 2c

1/2
d CI ĥ

ζ/2) ‖ (2µ)1/2∇uh‖0,Ω̃h
+ ‖ (2µh−1)1/2 uh ‖0,Γ̃D,h

≤ (l(Ω̃h)−1 + C l(Ω̃h)−1/2 h−1/2) ‖ (2µ)1/2 uh ‖0,Ω̃h

+ (1 + 2c
1/2
d CI ĥ

ζ/2 + C l(Ω̃h)1/2 h−1/2) ‖ (2µ)1/2∇uh‖0,Ω̃h

≤ 3 l(Ω̃h)−1/2 h−1/2 (2µ)1/2 ‖uh ‖1,Ω̃h
, (69)

which concludes the proof with C2(h) = 3 l(Ω̃h)−1/2 h−1/2 (2µ)1/2.

16



The coercivity property of the form a allows us to prove a uniform inf-sup condition for the form B,
thus yielding the LBB-stability of the proposed SBM variational formulation of the Stokes problem. We
skip the proof, as it does not contain significant differences with respect to that of Theorem 3 in [4], where
the interested reader can find detailed derivations.

Theorem 8 (LBB, inf-sup condition). If the parameter α is sufficiently large and the quantity cd ĥ
ζ

Γ̃D,h
is

sufficiently small, there exists a constant αLBB > 0, independent of the mesh size, such that for any pair
[uh , ph] ∈W h(Ω̃h) one can find a pair [wh , qh] ∈W h(Ω̃h) satisfying

B([uh , ph]; [wh , qh]) ≥ αLBB ‖ [uh , ph] ‖B ‖ [wh , qh] ‖B , (70)

where

‖ [uh , ph] ‖2B = ‖uh ‖2a + ‖ (2µ)−1/2 ph ‖20,Ω̃h
+ ‖ (2µ)−1/2 h∇ph ‖20,Ω̃h

. (71)

Next, we focus on the convergence of the SBM discretization in a natural norm. Precisely, we set

W (Ω̃h; T̃h) = V (Ω̃h; T̃h)×Q(Ω̃h; T̃h) ,

with

V (Ω̃h; T̃h) = V h(Ω̃h) +H2(Ω̃h)nd , (72a)

Q(Ω̃h; T̃h) = Qh(Ω̃h) +Q(Ω̃h) , (72b)

where Q(Ω̃h) = H1(Ω̃h) if ΓN 6= ∅ or Q(Ω̃h) = H1(Ω̃h)∩L2
0(Ω̃h) if ΓN = ∅ . We equipW (Ω̃h; T̃h) with the

norm

‖ [v , q] ‖2
W (Ω̃h;T̃h)

= ‖ [v , q] ‖2B + ‖ (2µ)1/2 h∇ε(v) ‖2
0,Ω̃h;T̃h

. (72c)

Note that if [vh , qh] ∈ W h(Ω̃h), then ‖ [vh , qh] ‖W (Ω̃h;T̃h) = ‖ [vh , qh] ‖B. Also note that V (Ω̃h; T̃h) ⊂
H2(Ω̃h; T̃h)nd , where the latter space is the subset of H1(Ω̃h)nd of the functions with broken H2-regularity
on the triangulation T̃h.
The analysis of the consistency error uses the following identity.

Lemma 6 (Consistency error). Let the exact solution of the Stokes problem (50) satisfy [u , p] ∈ H2(Ω)nd×
H1(Ω), with p chosen to satisfy p|Ω̃h

∈ L2
0(Ω̃h) if ΓN = ∅. For any [vh , ωh] ∈W h(Ω̃h), it holds that

B([u− uh , p− ph]; [vh , ωh]) = 〈Rhu⊗ ñ , 2µ ε(vh) + ωhI〉Γ̃D,h
− α 〈2µh−1Rhu , Shvh 〉Γ̃D,h

. (73)

Proof. From (55), we get

B([u− uh , p− ph]; [vh , ωh]) = B([u , p]; [vh , ωh])−B([uh , ph]; [vh , ωh])

= B([u , p]; [vh , ωh])−L ([vh , ωh]) . (74)

Integrating by parts (2µ ε(u) , ε(vh))Ω̃h
and (p , ∇ · vh)Ω̃h

in B([u , p]; [vh , ωh]) and recalling (12), we
obtain

B([u− uh , p− ph]; [vh , ωh]) = −〈(Shu− ūD)⊗ ñ , 2µ ε(vh) + ωhI〉Γ̃D,h

+ α 〈2µh−1 (Shu− ūD) , Shvh 〉Γ̃D,h

= 〈Rhu⊗ ñ , 2µ ε(vh) + ωhI〉Γ̃D,h
− α 〈2µh−1Rhu , Shvh 〉Γ̃D,h

, (75)

which concludes the proof.
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Convergence in the norm W (Ω̃h; T̃h) is established in the following theorem.

Theorem 9 (Convergence in the natural norm). Suppose that ΓD is of class C 2, and that the exact solution
of the Stokes problem (50) satisfies [u , p] ∈ (H2(Ω))nd ×H1(Ω); in addition, if ΓN = ∅, choose p satisfying
p|Ω̃h

∈ L2
0(Ω̃h). Suppose also that Assumption 1, Assumption 3 and the hypotheses of Theorem 8 hold. Then,

the SBM numerical solution [uh , ph] of (55) satisfies the following error estimate:

‖ [u− uh , p− ph] ‖W (Ω̃h;T̃h) ≤ C hΩ̃h

(
‖∇(∇u) ‖0,Ω + ‖∇p ‖0,Ω̃h

)
, (76)

where C > 0 is a constant independent of the mesh size and the solution.

Proof. The proof relies on Strang’s Lemma and the analysis of the consistency errors, as done in Sect. 3.4
for the Poisson problem; in particular, one uses Lemma 6 and the estimate of Lemma 2, applied to each
component of the velocity. We refer to the similar proof of Theorem 4 in [4] for the technical details.

Remark 15. Should the exact solution have a lower regularity than the one assumed in the Theorem (due
to the presence of corners or edges, or of mixed Dirichlet and Neumann boundary conditions), the exponent
of hΩ̃h

in (76) would be < 1. We refer again to Lemma 3 in [3] for the necessary changes.

Finally, we propose an enhanced L2 estimate for the velocity error that considerably improves over the
one presented in [4] in that we do not rely on the restrictive and unlikely assumption that the surrogate
domain Ω̃h is convex.

For simplicity, hereafter we assume ΓN = ∅, although extensions are feasible at the cost of an increased
technical burden.

Theorem 10 (Enhanced L2-error estimate for the velocity uh). Assume the hypotheses of Theorem 9 hold,
and in addition let ΓN = ∅. Then, the numerical velocity uh produced by SBM satisfies the following error
estimate:

‖u− uh ‖0,Ω̃h
≤ C h

3/2

Ω̃h
l(Ω̃h)1/2 µ−1/2

(
‖∇(∇u) ‖0,Ω + ‖∇p ‖0,Ω̃h

)
. (77)

where C is a positive constant independent of the mesh size and the solution.

Proof. Given z ∈ L2(Ω̃h)nd , let z̄ ∈ L2(Ω)nd be its extension by 0 outside Ω̃h and let [ψ , λ] be the solution
of the following homogeneous Dirichlet problem in Ω:

−∇ · (2µ ε(ψ) + λI) = µ z̄ in Ω , (78a)
−∇ ·ψ = 0 in Ω , (78b)

ψ = 0 on Γ . (78c)

The stated assumptions in addition to the fact that z̄ ∈ L2(Ω)nd imply the regularity result [ψ , λ] ∈
H2(Ω)nd ×H1(Ω), with the following bound

‖µ1/2ψ ‖2,Ω̃h
+ ‖µ−1/2 λ ‖1,Ω̃h

≤ ‖µ1/2ψ ‖2,Ω + ‖µ−1/2 λ ‖1,Ω ≤ Q ‖µ1/2 z̄ ‖0,Ω = Q ‖µ1/2 z ‖0,Ω̃h
, (79)

where Q > 0 is a non-dimensional constant independent of z̄ and the mesh size.
The same arguments that led to (12) show that on Γ̃h ψ satisfies

Shψ +Rhψ = 0 . (80)

Since by assumption Γ is of class C 2 and ψ is in H2(Ω)nd , we can apply Lemma 2 to each component of ψ,
obtaining

‖h−1/2Rhψ ‖0,Γ̃h
≤ CDR hΓ |ψ |2,Ω\Ω̃h

≤ CDRQhΩ̃h
‖ z ‖0,Ω̃h

, (81)
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where CDR is a positive constant independent of the mesh size. Next, consider [w , q] ∈ W (Ω̃h; T̃h) and
note that the pair [ψ , λ] also satisfies the following variational statement:

µ (z , w)Ω̃h
= −(∇ · (2µ ε(ψ) + λI) , w)Ω̃h

− (∇ ·ψ , q)Ω̃h

= (2µ ε(ψ) , ε(w))Ω̃h
+ (λ , ∇ ·w)Ω̃h

− (∇ ·ψ , q)Ω̃h
− 〈2µ ε(ψ) + λI , w ⊗ ñ〉Γ̃h

= (2µ ε(ψ) , ε(w))Ω̃h
+ (λ , ∇ ·w)Ω̃h

− (∇ ·ψ , q)Ω̃h
− 〈2µ ε(ψ) + λI , Shw ⊗ ñ〉Γ̃h

+ 〈2µ ε(ψ) + λI , (∇wd)⊗ ñ〉Γ̃h
. (82)

Adding residual terms that vanish by definition when applied to the exact solution, we have

µ (z , w)Ω̃h
= (2µ ε(ψ) , ε(w))Ω̃h

+ (λ , ∇ ·w)Ω̃h
− (∇ ·ψ , q)Ω̃h

− 〈2µ ε(ψ) + λI , Shw ⊗ ñ〉Γ̃h

+ 〈2µ ε(ψ) + λI , (∇wd)⊗ ñ〉Γ̃h
− 〈(Shψ +Rhψ)⊗ ñ , 2µ ε(w)− qI〉Γ̃h

+ α 〈2µh−1 (Shψ +Rhψ) , Shw〉Γ̃h

= B([w , q]; [ψ , λ])− γ
∑
T∈T̃h

(
h2 (2µ)−1 (∇q −∇ · (2µ ε(w))) , ∇λ

)
T

+ 〈2µ ε(ψ) + λI , (∇wd)⊗ ñ〉Γ̃h
− 〈(∇ψd)⊗ ñ , 2µ ε(w)− qI〉Γ̃h

− 〈Rhψ ⊗ ñ , 2µ ε(w)− qI〉Γ̃h
+ α 〈2µh−1Rhψ , Shw〉Γ̃h

(83)

Let us pick w = z = eu := u − uh, q = ep := p − ph. Using Lemma 6 with [vh , ωh] = [ψI , λI ] :=
[Ih(ψ) , Ih(λ)], where Ih denotes the Scott-Zhang interpolant at the nodes of the triangulation, we write

µ ‖ eu ‖2Ω̃h
= B([eu , ep]; [ψ −ψI , λ− λI ]) + Estab([eu , ep]; [0 , λ]) + Esym([eu , ep]; [ψ , λ])

+ Erem([eu , ep]; [ψ , λ]) + Eort([u , p]; [ψI , λI ]) (84a)

with

Estab([eu , ep]; [0 , λ]) := −γ
∑
T∈T̃h

(
h2 (2µ)−1 (∇ep −∇ · (2µ ε(eu))) , ∇λ

)
T
, (84b)

Esym([eu , ep]; [ψ , λ]) := 〈2µ ε(ψ) + λI , (∇eu d)⊗ ñ〉Γ̃h
− 〈(∇ψd)⊗ ñ , 2µ ε(eu)− epI〉Γ̃h

, (84c)

Erem([eu , ep]; [ψ , λ]) := −〈Rhψ ⊗ ñ , 2µ ε(eu)− epI〉Γ̃h
+ α 〈2µh−1Rhψ , Sheu〉Γ̃h

, (84d)

Eort([u , p]; [ψI , λI ]) := 〈Rhu⊗ ñ , 2µ ε(ψI) + λII〉Γ̃h
− α 〈2µh−1Rhu , ShψI〉Γ̃h

. (84e)

We proceed to bound the error terms on the right-hand side of (84a). Recalling Proposition 3 and Proposition
5 in [4], we have, for suitable constants,

|B([eu , ep]; [ψ −ψI , λ− λI ]) | ≤ CB ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖ [ψ −ψI , λ− λI ] ‖W (Ω̃h;T̃h)

≤ CB CAPP hΩ̃h

(
µ1/2 |ψ |2,Ω̃h

+ µ−1/2 |λ |1,Ω̃h

)
‖ [eu , ep] ‖W (Ω̃h;T̃h)

≤ C7 hΩ̃h
µ1/2 ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (85a)

From the definition of the norm W (Ω̃h; T̃h), we immediately get

|Estab([eu , ep]; [0 , λ]) | ≤ ‖ (2µ)−1/2 h∇λ ‖0,Ω̃h

(
‖ (2µ)−1/2 h∇ep ‖0,Ω̃h

+ ‖ (2µ)1/2 h∇ · ε(eu) ‖0,Ω̃h

)
≤ C8 hΩ̃h

µ1/2 ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h
. (85b)
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Recalling Assumption 1, Theorem 11, and Theorem 13, we obtain

|Esym([eu , ep]; [ψ , λ]) | ≤ cd ĥ
ζ

Γ̃h
‖ (2µh)1/2∇eu · ν ‖0,Γ̃h

(
‖ (2µh)1/2 ε(ψ) ‖0,Γ̃h

+ ‖ (2µh−1)−1/2 λ ‖0,Γ̃h

)
+ cd ĥ

ζ

Γ̃h
‖ (2µh)1/2∇ψ ‖0,Γ̃h

(
‖ (2µh)1/2 ε(eu) ‖0,Γ̃h

+ ‖ (2µh−1)−1/2 ep ‖0,Γ̃h

)
≤ cd C CI h

1/2

Ω̃h
‖ [eu , ep] ‖W (Ω̃h;T̃h)×

×
(
l(Ω̃h)−3/2 µ1/2 ‖ψ ‖2,Ω̃h

+ l(Ω̃h)−1/2 µ−1/2 ‖λ ‖1,Ω̃h

)
≤ C9 h

1/2

Ω̃h
l(Ω̃h)1/2 µ1/2 ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (85c)

Invoking now the bound (81), we have

|Erem([eu , ep]; [ψ , λ]) | ≤
(
‖ (2µh)1/2 ε(eu) ‖0,Γ̃h

+ ‖ (2µh−1)−1/2 ep ‖0,Γ̃h

)
‖ (2µh−1)1/2Rhψ ‖0,Γ̃h

+ α ‖ (2µh−1)1/2 Sheu ‖0,Γ̃h
‖ (2µh−1)1/2Rhψ ‖0,Γ̃h

≤ (2CI + α) µ1/2 ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖h
−1/2Rhψ ‖0,Γ̃h

≤ C10 hΩ̃h
µ1/2 ‖ [eu , ep] ‖W (Ω̃h;T̃h) ‖ eu ‖0,Ω̃h

. (85d)

At last, recalling the classical error estimates for the Scott-Zhang interpolant, we get

|Eort([u , p]; [ψI , λI ]) | = | − 〈Rhu⊗ ñ , 2µ ε(ψ −ψI) + (λ− λI)I − 2µ ε(ψ)− λI〉0,Γ̃h

+ α 〈2µh−1Rhu , Sh(ψ −ψI)−ψ〉0,Γ̃h
|

≤ ‖ (2µh−1)1/2Rhu ‖0,Γ̃h

(
‖ (2µh)1/2 ε(ψ −ψI) ‖0,Γ̃h

+ ‖ (2µh)1/2 ε(ψ) ‖0,Γ̃h

)
+ ‖ (2µh−1)1/2Rhu ‖0,Γ̃h

(
‖ (2µh−1)−1/2 (λ− λI) ‖0,Γ̃h

+ ‖ (2µh−1)−1/2 λ ‖0,Γ̃h

)
+ α ‖ (2µh−1)1/2Rhu ‖0,Γ̃h

×

×
(
‖ (2µh−1)1/2 Sh(ψ −ψI) ‖0,Γ̃h

+ ‖ (2µh−1)1/2 Shψ ‖0,Γ̃h

)
≤ C11 h

3/2

Ω̃h
l(Ω̃h)1/2 µ ‖ eu ‖0,Ω̃h

‖∇(∇u) ‖0,Ω\Ω̃h
. (85e)

Thus, combining (85a), (85b), (85c), (85d), and (85e) in (84a) yields

‖u− uh ‖0,Ω̃h
≤ CANS h1/2

Ω̃h
l(Ω̃h)1/2 µ−1/2 ‖ [u− uh , p− ph] ‖W (Ω̃h;T̃h) . (86)

The right-hand side can be bounded using Theorem 9, which concludes the proof.

Remark 16. The previous bound is clearly sub-optimal due to the terms in Esym([eu , ep]; [ψ , λ]). However,
it is not clear at the moment if the above estimate is sharp, since in computations we always observe optimal,
second-order convergence rates.

5. Two-dimensional numerical tests

In this section, we perform convergence tests comparing - on grids of similar size - the new proposed SBM
formulation with the corresponding body-fitted formulation for the Poisson and Stokes flow equations. Our
numerical tests are performed on a domain Ω given by the right trapezoid of height s = 1 and bases b1 = 0.6
and b2 = 0.4 as shown in Figure 2a. To verify that the SBM formulations do not require the geometric
resolution condition inf Γ̃h

ν ·n > 0, the computational grids are carefully built so as to violate it, as shown in
Figure 2b. In particular, the computational grids are constructed by splitting into four equal-area triangles
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Mesh Size No. of surrogate edges with ν · n ≤ 0 Percentage of total surrogate edges
4.00E-02 1 4.35%
2.00E-02 1 2.33%
1.00E-02 5 5.43%
5.00E-03 9 5.06%
2.50E-03 23 6.35%
1.25E-03 38 5.38%

Table 1: Number of surrogate edges with ν · n ≤ 0, as the computational grid of Figure 2 is refined.

b2

s

b1

(a) The domain Ω, a right trapezoid with s = 1,
b1 = 0.6 and b2 = 0.4.

(b) Zoomed view: the surrogate domain Ω̃ (grey), the
true boundary Γ (blue), and the surrogate boundary
Γ̃h (red).

Figure 2: The true domain Ω (left) and the surrogate domain Ω̃h (right).

each of the rectangular elements in a Cartesian grid of aspect ratio 5:1. Table 1 accounts for the absolute and
relative number of surrogate edges of each mesh for which the geometric resolution assumption is violated.
The grids used for the body-fitted method are virtually identical to those used for the SBM, in the sense
that they are obtained by moving the true boundary Γ by −10−15 vertically, so as to attain Γ̃h = Γ (see
Figure 2b).

The algebraic system of equations is solved using a smoothed aggregation multigrid method as precon-
ditioner from Sandia’s ML Library, part of the Trilinos Software Project [43].

5.1. Poisson problem
In this first test, we considered Poisson’s equation defined on Ω with the manufactured solution

u(x, y) = y sin(2πx)− x cos(2πy) . (87)

Dirichlet boundary conditions are applied on all boundaries and the Nitsche penalty parameter is set as
α = 10. Figures 3a and 3b show the numerical solution and L2-error rates for the SBM and body-fitted
variational forms. It is apparent that violating the condition inf Γ̃h

ν ·n > 0 has no effect on the convergence
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(a) Numerical solution.
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Figure 3: Poisson problem: plots of the solution and error convergence rates.

Body-fitted SBM
Mesh Size ‖u− uh ‖0,Ω Rate ‖u− uh ‖0,Ω̃h

Rate
4.00E-02 4.95E-03 - 5.12E-03 -
2.00E-02 1.26E-03 2.00 1.28E-03 2.00
1.00E-02 3.16E-04 2.00 3.19E-04 2.00
5.00E-03 7.92E-05 2.00 7.96E-05 2.00
2.50E-03 1.98E-05 2.00 1.99E-05 2.00
1.25E-03 4.96E-06 2.00 4.98E-06 2.00

Table 2: Convergence rates for the Poisson equation using the body-fitted and the SBM approaches.

rate of the SBM. In fact, the L2-norm of the SBM error converges quadratically, and therefore faster than the
rate 3/2 theoretically predicted, as shown in Table 2. Such behavior has been observed in all computations
performed to date, including the ones reported in [4, 33, 34].

5.2. Stokes flow problem
We then computed a solution to the Stokes flow problem defined on the same domain Ω of the Poisson

problem, and with the manufactured solution proposed in [4], and given as
p(x, y) = x2exy + y2 ,

ux(x, y) = −(−0.2x3 − 0.2x2 + x+ 1) cos(y) ,

uy(x, y) = (−0.6x2 − 0.4x+ 1) sin(y) .

The fluid viscosity is set as µ = 1, the Nitsche penalty is set as α = 2.5 and the pressure stabilization
parameter is chosen as γ = 1. Dirichlet conditions are applied to all boundaries, besides the left leg of
the trapezoid, where a Neumann condition is enforced. Figure 4a and 4b show the numerical solutions of
the pressure and velocity, respectively. The L2-norm of the solution errors, for the SBM and body-fitted
algorithms are reported in Figure 5 and Table 3. As for the numerical tests presented in Section 5.1, the
condition inf Γ̃D,h

ν ·n > 0 has no effect on the convergence rates of the solution error, shown in more detail
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(a) Pressure numerical solution. (b) Velocity numerical solution.

Figure 4: Stokes flow problem: Solution plots.
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(a) Conv. rate of ‖ ε(u−uh) ‖0,Ω.

10−4 10−3 10−2 10−1 100

10−6

10−5

10−4

10−3

h

SBM
body-fitted

2

1
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(c) Conv. rate of ‖ p− ph ‖0,Ω.

Figure 5: Convergence rates for the Stokes problem test case.

in Table 3. In fact, the L2-norm of the SBM error converges quadratically, hence faster than the theoretically
predicted rate 3/2.

6. A three-dimensional numerical test for Stokes flow in complex geometry

In this section, we solve the Stokes flow problem in a three-dimensional domain given by a “sponge-like”
cavity [44] shown in Figure 6a. This complex geometry contains a large number of holes, internal channels
and sharp corners, and is a better representative of typical engineering applications. Moreover, the domain
considered here is represented in STL format (ie, a set of disconnected triangular facets) and generating
grids on geometries that are not “water-tight” may be even more challenging for state-of-the-art (adaptive)
meshing algorithms.

This geometry is immersed in a domain Ω = [−10,−10] × [−10,−10] × [−11, 7] with a total of approx-
imately 7.5 and 25.2 million tetrahedral elements for a coarse and high resolution grid, whose surrogate
boundaries are shown in Figure 6b and Figure 6c, respectively. Table 4 accounts for the absolute and rela-
tive number of surrogate faces of the coarse (Figure 6b) and fine (Figure 6c) grids for which the geometric
resolution condition inf Γ̃D,h

ν · n > 0 is violated. For the numerical setup, we choose the same viscosity µ
and stabilization parameters as the ones in Section 5.2.

Figures 6d and 6e display the streamlines profile around the true geometry colored with pressure contours
for the grids given in Figure 6b and Figure 6c respectively. These smooth and well-behaved numerical results
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Body-fitted
Mesh Size ‖ ε(u− uh) ‖0,Ω Rate ‖u− uh ‖0,Ω Rate ‖ p− ph ‖0,Ω Rate
4.00E-02 1.39E-02 - 6.01E-04 - 9.87E-03 -
2.00E-02 6.68E-03 1.06 1.62E-04 1.89 3.52E-03 1.49
1.00E-02 3.26E-03 1.03 4.21E-05 1.95 1.24E-03 1.51
5.00E-03 1.61E-03 1.02 1.07E-05 1.98 4.35E-04 1.51
2.50E-03 8.01E-04 1.01 2.70E-06 1.99 1.53E-04 1.51
1.25E-03 3.99E-04 1.00 6.77E-07 1.99 5.40E-05 1.50

SBM
Mesh Size ‖ ε(u− uh) ‖0,Ω̃ Rate ‖u− uh ‖0,Ω̃h

Rate ‖ p− ph ‖0,Ω̃h
Rate

4.00E-02 1.34E-02 - 7.93E-04 - 9.81E-03 -
2.00E-02 6.57E-03 1.03 2.08E-04 1.93 3.49E-03 1.49
1.00E-02 3.23E-03 1.02 5.36E-05 1.96 1.25E-03 1.48
5.00E-03 1.60E-03 1.01 1.36E-05 1.97 4.37E-04 1.51
2.50E-03 7.99E-04 1.01 3.41E-06 2.00 1.54E-04 1.50
1.25E-03 3.99E-04 1.00 8.54E-07 2.00 5.43E-05 1.50

Table 3: Convergence rates for Stokes flow problem using the body-fitted and SBM approaches.

indicate that the SBM can robustly capture the behavior of Stokes flow across very complex geometries
despite the increasing number of faces violating the geometric resolution condition as the mesh is refined.

Grid No. of elements No. of surrogate faces with ν · n ≤ 0 Percentage of total surrogate faces
coarse ∼ 7.5 million 234 0.196%
fine ∼ 25.2 million 577 0.189%

Table 4: Number of surrogate faces with ν ·n ≤ 0 for the coarse and fine grids shown in Figures 6b and 6c,
respectively.

7. Summary

We have provided an enhanced analysis of well-posedness and accuracy for the SBM in the case of
the Poisson and Stokes operators. The key improvement with respect to previous work are the removal
of an assumption about the angle between the normal to the surrogate boundary and the corresponding
normal to the true boundary. In addition, we have shown that no penalties on the tangential derivative
of the Dirichlet boundary condition are required to prove stability and accuracy of the SBM. In addition,
particular to the Stokes operator, incorporating an incompressibility constraint stabilization term was also
deemed as unnecessary. Furthermore, in the enhanced L2-error estimates, we removed the assumption of
convexity of the surrogate domain Ω̃h, relying instead on a conventional assumption of smoothness of the
true domain Ω (which could be replaced by convexity of the true domain Ω). These aspects are important in
advancing the understanding and development of the SBM, in that they increase the flexibility and simplicity
of the method, particularly when the geometry of the boundaries is highly complex. We have also performed
a number of tests to verify the findings of our theoretical analysis.
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Appendix A. Some useful inequalities

Hereafter, we collect some well-known inequalities that are used in the paper.

Theorem 11 (Trace Theorem). Assume A ⊂ Rnd is open and bounded and ∂A is Lipschitz. Then the trace
operator T : H1(A)→ L2(∂A) such that Tw = w|∂A satisfies

‖w ‖2L2(∂A) = ‖Tw ‖2L2(∂A) ≤ C
(
l(A)−1 ‖w ‖20,A + l(A) |w |21,A

)
, ∀w ∈ H1(A), (A.1)

where C is a constant that may depend on the shape of A but not on its size, and l(A) = meas(A)1/nd is a
characteristic length of the domain A.

Let T̃ h be the regular triangulation introduced in Section 2.1, and let Hk(Ω̃h, T̃ h) =
∏
T∈T̃ h Hk(T )

be the ‘broken’ Sobolev space of order k ≥ 0 with semi-norm | v |k,Ω̃h,T̃ h =
∑
T∈T̃ h | v |k,T . For the sake of

simplicity, here and in the rest of the paper we use the symbol |hv |k,Ω̃h,T̃ h to indicate the scaled quantity∑
T∈T̃ h |hT v |k,T . The general trace theorem above can be particularized to functions belonging to such

spaces as follows.

Theorem 12 (Scaled trace inequalities). There exists a constant cI > 0 independent of the mesh size such
that for any element T ⊂ Ω̃h with an edge γT ⊂ Γ̃h one has

‖h1/2
T w ‖20,γT ≤ cI

(
‖w ‖20,T + |hT w |21,T

)
, ∀w ∈ H1(T ) . (A.2a)

Summing over all the elements with at least one of their edges on the boundary Γ̃h, we obtain

‖h1/2 w ‖2
0,Γ̃h
≤ cI

(
‖w ‖2

0,Ω̃h
+ |hw |2

1,Ω̃h,T̃ h

)
, ∀w ∈ H1(Ω̃h, T̃

h) . (A.2b)

Combining these inequalities component-wise, one gets analogous results for vector- or tensor-valued
functions.

Theorem 13 (Scaled vector/tensor trace inequalities). There exists a constant CI > 0 independent of the
mesh size such that

‖hT ∇w · ν ‖20,γT ≤ CI
(
|w |21,T + |hT w |22,T

)
, ∀w ∈ H2(T ) , (A.2c)

‖h1/2∇w · ν ‖2
0,Γ̃h
≤ CI

(
|w |2

1,Ω̃h
+ |hw |2

2,Ω̃h,T̃ h

)
, ∀w ∈ H1(Ω̃h) ∩H2(Ω̃h, T̃

h) , (A.2d)
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‖h1/2 ε(w)ñ ‖2
0,Γ̃h
≤ CI

(
‖ ε(w) ‖2

0,Ω̃h
+ |h ε(w) |2

1,Ω̃h,T̃ h

)
≤ CI

(
|w |2

1,Ω̃h
+ |hw |2

2,Ω̃h,T̃ h

)
, ∀w ∈ (H1(Ω̃h) ∩H2(Ω̃h, T̃

h))nd . (A.2e)

In (A.2c) and (A.2d), ν denotes any unit vector field defined on the boundary.

Using the equivalence of norms in a finite dimensional space, we obtain the following trace inequalities
for piecewise affine functions.

Theorem 14 (Discrete trace inequalities). There exist constants cI , CI > 0 independent of the mesh size,
such that

‖
√
hT w ‖20;γT ≤ cI ‖w ‖20,T , ∀w ∈P1(T ) , (A.3a)

and, for all vector functions wh belonging to the space of piecewise linear and globally continuous functions
over the mesh T̃ ,

‖h1/2∇whν ‖2
0,Γ̃h
≤ CI ‖∇wh ‖2

0,Ω̃h
, (A.3b)

‖
√
h∇ ·wh ‖2

0,Γ̃h
≤ CI ‖∇ ·wh ‖2

0,Ω̃h
, (A.3c)

‖h1/2 ε(wh)ñ ‖2
0,Γ̃h
≤ CI ‖ ε(wh) ‖2

0,Ω̃h
. (A.3d)

In the second inequality, ν denotes any unit vector field defined on the boundary.

Next, we recall two classical Poincaré-type inequalities [1, 2] below:

Theorem 15 (Poincaré inequality). Assume that Ω̃h is a bounded connected open subset of Rnd with Lips-
chitz boundary ∂Ω̃h. There exists a constant CP > 0, depending only on Ω̃h (and in particular, independent
of h), such that for all u ∈ H1(Ω̃h)

‖u ‖0,Ω̃h
≤ CP l(Ω̃h)

(
‖∇u ‖0,Ω̃h

+ ‖h−1/2 u ‖0,Γ̃h

)
. (A.4a)

An alternative version of the Poincaré inequality holds for functions of bounded average.

Theorem 16 (Poincaré inequality for functions of bounded average). Assume that Ω̃h is a bounded connected
open subset of Rnd with Lipschitz boundary ∂Ω̃h. There exists a constant ∃C ′P > 0, depending only on Ω̃h
(and in particular, independent of h), such that for all p ∈ H1(Ω̃h) satisfying

∫
Ω̃h
p = 0, one has

‖ p ‖0,Ω̃h
≤ C ′P l(Ω̃h) ‖∇p ‖0,Ω̃h

. (A.4b)

Finally, we recall two inequalities of the Korn type for H1-vector fields.

Theorem 17 (Korn’s inequalities). Let Ω̃h be a domain in Rnd with nd ≥ 2. There exists a constant CK > 0
such that for all u ∈ H1(Ω̃h)nd ,

‖u ‖2
H1(Ω̃h)

≤ CK
(
‖u ‖2

0,Ω̃h
+ l(Ω̃h)2 ‖ ε(u) ‖2

0,Ω̃h

)
. (A.5a)

Furthermore, if Γ̃ ⊆ ∂Ω̃h has positive (nd − 1)-dimensional measure, there exists a constant C̄K > 0 inde-
pendent of any h ≤ l(Ω̃h) such that for all u ∈ H1(Ω̃h)nd ,

‖u ‖2
H1(Ω̃h)

≤ C̄K l(Ω̃h)2
(
‖h−1/2 u ‖2

0,Γ̃h
+ ‖ ε(u) ‖2

0,Ω̃h

)
. (A.5b)
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