
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On dissipated energy density in compression for concrete / Ferro, G.. - In: ENGINEERING FRACTURE MECHANICS. -
ISSN 0013-7944. - 73:11(2006), pp. 1510-1530. [10.1016/j.engfracmech.2006.01.037]

Original

On dissipated energy density in compression for concrete

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.engfracmech.2006.01.037

Terms of use:
openAccess

Publisher copyright

© 2006. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.engfracmech.2006.01.037

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2859920 since: 2021-01-07T13:16:18Z

elsevier



On dissipated energy density in compression

for concrete

Giuseppe FERRO ⋆

Politecnico di Torino, Department of Structural Engineering and Geotechnics,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract An experimental investigation on drilled cylindrical concrete specimens
in compression over a large scale range (1:19) has been carried out to evaluate the
variation of some mechanical parameters by varying specimen size. The peculiarity
of the present investigation consists in exploring very small specimen dimensions.
The experimental results show scale effects on dissipated energy density rather than
on uniaxial compressive strength. A theoretical explanation for such a phenomenon,
based on fractal hypothesis, is presented and a comparison between experimental
and theoretical values is discussed.

Keywords: Fracture mechanisms, powder compaction, concrete, structures, me-
chanical testing.

⋆
Address: Politecnico di Torino, Department of Structural Engineering and Geotechnics,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Tel. +39.11.5644885, Fax. +39.11.5644899, e-mail:ferro@polito.it

Paper submitted for publication to Engineering Fracture Mechanics

1



NOMENCLATURE

δ = displacements;
ǫ = strain;
ǫpeak = strain at the peak stress;
d= specimen diameter ;
h= specimen height chosen as the characteristic specimen size;
ǫm= mean deformation;
f ′

c= compression strength;
C1= smallest specimen set with h=10 mm;
C2= specimen set with h=23 mm;
C3= specimen set with h=46 mm;
C4= specimen set with h=100 mm;
C5= largest specimen set with h=190 mm;
C33= third specimen of the set with h=46 mm;
N= number of fragments in fragmentation process;
r= characteristic linear dimension of fragments;
B= constant of proportionality;
D= fractal dimension of the fragmentation process;
Vf= total volume (mass) of fragments;
rmax= characteristic linear dimension of the largest fragment;
rmin= characteristic linear dimension of the smallest fragment;
k= constant of proportionality;
V = volume of the un-fragmented specimen;
Af= total surface area of the fragments;
C= geometrical factor depending upon the average shape of the fragments;
W= energy dissipated to produce a new free surface in the fragmentation process;
βF = specific energy absorbing capacity;
G= elastic energy release rate or specific energy necessary to generate the unit area
of fracture;
dω= fractal dimension of the fragmented set=3-D;
h∗= measure of the fractal set representing the fragmented configuration;
S= dissipated energy density;
G∗

F =fractal dissipated energy density parameter;
ǫ∗= renormalized fractal strain;
E∗= renormalized fractal elastic modulus;

1 INTRODUCTION

The advent of computers has considerably changed the capabilities in design and
analysis of concrete structures. The extensive use of powerful computers and finite
elements codes in structural analysis is meaningful only if suitable and reliable con-
stitutive laws for the material are available. In design, however, concrete is generally
classified on the basis of its compressive strength. A correct evaluation is therefore
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fundamental.

In general, the constitutive relations and the mechanical parameters for concrete are
obtained from standard specimens. The sizes and shapes of compressive strength
test specimens of concrete vary from one country to another. Commonly used stan-
dard sizes are 150 mm for cubes and 150 × 300 mm for cylinders. The introduction
of high-strength concrete, with compression strength up to five times the standard
strength, suggests the use of smaller specimens, with the advantages of maintain-
ing the standard test machines available in the laboratories, easy handling, and
using less concrete. Another important application of reducing specimen sizes is
constituted by the determination of the concrete strength for existing structures
by drilling small specimens. This technique is very useful, the deterioration of the
mechanical properties for concrete structures being one of the main problems in
Civil Engineering.

The choice of the standard size is affected by the variation of the compressive
strength with size and height/diameter (or slenderness) ratio. This variation is high
when the rigid test machine platens are in direct contact with the concrete speci-
men,the lateral deformation of concrete being restrained at the specimen ends. A
wide investigation has been carried out by Carpinteri et al. [1].

Very interesting results have been obtained in a round robin test organized by the
RILEM Committee 148 SSC ”Strain-Softening of Concrete” [2], whose aim was
to investigate the softening behavior of concrete by varying specimen dimensions,
boundary conditions, feed-back signals and testing machine characteristics. They
observed the independence of the slenderness (or size) on the compressive strength,
when the boundary conditions of the concrete specimens were characterized by no
friction (or reduced friction) at the ends.

The effect of size on the mechanical properties of concrete is also important when
small scale models are used to predict the behavior of real structures. Early work on
the size effect in compression dates back to the 1920’s. Gonnermann [3] emphasized
the size effects through an extensive investigation on the compressive strength of
cylinders with a height/diameter ratio equal to two.

Many other authors fronted the problem of size effects on nominal strength for
concrete in compression. Blanks and McNamara [4] performed tests on cylindrical
specimens with slenderness of h/d=2 in a large scale range (1:12), while Jishan and
Xixi [5] performed experiments on cubes (scale range 1:4) and on prisms with h/d=3
(scale range 1:3). Other analyses on size effects in compression were conducted by
considering particular geometries, as compact compression tests [6] , reinforced con-
crete columns [7] and high-strength concrete reinforced with randomly distributed
fibers [8]. Several assessments were made on the size effects through the extensive
experimental work reported in the literature [9].

The nominal compressive strength is obtained by dividing the peak force by the
initial specimen cross-section area. This operation has the meaning of estimating
a global material property, ignoring at the same time the material structure as
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well as the material failure behavior during the test. Momber [10] analyzed the
fragmentation of standard concrete cylinders under compression. He observed that
the standard codes (ASTM C39-86) consider types of failure which involve only
large primary fracture debris, while after compression testing of any concrete speci-
men, fragments of fine-grained material are generated. Slate and Hover [11] showed
pervasive internal crack growth up to the peak load by studying the interior of con-
crete specimens that were loaded up to a certain level and that were subsequently
unloaded. From their experimental observations, it is believed that energy dissipa-
tion in the pre-peak regime is a global continuum-dominated process that may be
attributed to microcracking throughout the entire specimen. On the other hand,
energy dissipation in the post-peak regime is a localized surface-dominated fracture
process after the coalescence of microcracks in the peak regime. Vardoulakis et. al.
[12] proposed a continuum fracture mechanics of uniaxial compression on brittle
materials to arrive at a continuum description of the observed post-peak phenom-
ena. Their conclusions, based on experimental evidence and dimensional analysis,
state that the post-peak axial stress is a function of the axial displacement normal-
ized by the radius of the specimen, and not by its height. Van Vliet and van Mier
[13], observed that post-peak data from uniaxial compression experiments on plain
concrete suggest a stress-displacement rather than a stress-strain relation.

An extensive experimental investigation on geometrically similar cylindrical con-
crete specimens in compression obtained by a unique concrete block is herein pre-
sented to evaluate the variation of some mechanical parameters by varying specimen
size on a very large scale range (1:19) and by avoiding frictional restraint between
the loading platens and the specimen. The pecularity of the present investigation
consists in exploring very small specimen dimensions. One of the main goals of the
present paper is the measure of the energy dissipated in destroying or fragmenting
a volume of concrete.

From a phenomenological point of view, the softening branch of the load-displacement
curve is governed by macrocracking, after the coalescence of the initial microcracks.
As shown by the experimental results, the ultimate compressive strength of concrete
depends on the type of testing machine, the specimen size and the nature of the
contact between the machine platens and the specimen. In this paper, it is shown
how, avoiding friction, the strength is almost independent of specimen dimension,
whereas strong variations are observed for dissipated energy density in compression.
A theoretical explanation, recently proposed by Carpinteri and Pugno [14,15], for
the scale effects on the dissipated energy density in compression is discussed and
applied to the experimental results. This is based on the concept of fractal geom-
etry [16,17], and on the fragmentation approach [18]. From the theory, it can be
shown how, in the scale range of the tested specimens, the energy dissipation is
a surface-dominated phenomenon and damage localization occurs in small concen-
trated zones. This statement is valid only for small specimen sizes, while for larger
structural dimensions the energy dissipation should be a volume-dominated process
and damage is more spatially distributed.
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2 EXPERIMENTAL SETUP

The ambition of testing concrete specimens in compression in a very wide size range
strongly impacts with the laboratory set-ups, which opposes physical limits. The
fundamental idea was to use a very simple standard testing apparatus composed
only of a closed-loop servo-hydraulic system and strain gauges glued on the specimen
to record the longitudinal as well as the transverse deformation in the pre-peak part
of the force versus displacement curve. As the specimens were very different in size,
two different set-ups have been adopted, even if this could cause some inconveniences
due to different stiffnesses of the frames.

2.1 Test specimens

The first problem was that of defining the size and the slenderness of the test
specimens. The size is limited by the dimension of the aggregates (lower limit) and
by the potentialities of the available equipment (upper limit).

All the cylinders were obtained by drilling from a unique concrete block with sizes
800 × 500 ×200 mm. The microconcrete used for the specimens is characterized
by a maximum aggregate size of 4 mm. The porosity is equal to 17.7 vol % and
the distribution of pores is 15.8 % > 10000 nm, 52.9 % 30-10000 nm and 31.3 %
< 30 nm. The nominal strength is 51.8 N/mm2 while the compression strength f ′

c,
obtained from cubes (150 × 150 × 150 mm) after 28 days, is equal to 33 N/mm2.
The water-cement ratio is equal to 0.65.

Five different diameters were considered in relation to the disposable drilling core-
bits in a scale range of 1:19. The specimens were cylinders with a height/diameter
ratio h/d =1 and h chosen as the characteristic dimension equal to 10, 23, 45, 100,
190 mm, respectively. Four specimens have been tested at each size. Two extra
specimens for h= 10, 23 and 45 mm were used to check the electrical parameters
(impedance, gain). The geometries of the tested specimens are presented in Fig. 1.a,
while an overview of all the specimen sizes is reported in Fig. 1.b. The geometrical
characteristics are reported in Tab.1.

2.2 Testing equipment

For the three smallest sizes, the tests were carried out on a uniaxial compression
machine with a capacity of 100 kN. The machine is controlled by a closed-loop servo-
hydraulic system. Of the two loading platens, the lower is fixed, while the upper
is connected to the machine hinge. In this way, the upper platen can adjust to the
geometrical imperfections of the specimen. All compression tests with this machine
have been performed under displacement control, by imposing a constant rate of
the displacement of the upper loading platen. The displacement rate has been set in
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order to impose the same stress rate for all the specimen sizes. A stress rate equal to
0.5 N/mm2/s was adopted, as prescribed by UNI Standard 6130 for cubic strength
evaluation. To obtain this stress rate, the displacement rates have been set equal to
2 ×10−3 mm/s for the smallest specimens (h=10 mm, C1), 4.6 ×10−3 mm/s for the
specimens with h=23 mm (C2) and 10 ×10−2 mm/s for h=46 mm (C3). On each
specimen two bidirectional strain gauges were glued, the length of which was taken
proportional to the specimen height. More specifically, the strain gauge length was
1.5 mm for h=10 mm (strain gauge HBM 1.5/120 xy 11), 3 mm for h=23 mm (strain
gauge HBM 3/120 xy 11) and 6 mm for h=45 mm (strain gauge HBM 6/120 xy
11). The axial deformations as well as the lateral deformations in the middle part of
the specimen were measured with these strain gauges, and the volumetric variation
in the pre-peak part was determined. A detail of the three smallest specimens with
the glued strain-gauges is reported in Fig. 1.c

For the two remaining specimen sizes, h=100 (C4) and 190 mm (C5), a manual load
controlled uniaxial compression machine with a capacity of 3000 kN was used. The
choice of this kind of machine was chosen for the following reasons. First of all, the
height of the specimens do not permit control of the post-peak σ− ǫ diagram under
displacement control, due to the more brittle structural behavior. This aspect could
be overpassed if the tests were controlled over a central part of the specimens, as
performed by van Vliet and van Mier [19], or through lateral deformations [20]. The
latter would have comported a very sophisticated test, which was not the author’s
intention. Secondly, the control of the explosive behavior of the specimens and the
determination of the fragment sizes pushed the author toward the aforementioned
solution. For these two larger sizes, loading cycles around the peak-load (charac-
terized by a decrease of the slope in the load versus displacement diagram) were
performed in order to capture the post-peak branch and to plot the entire curve.
Unfortunately, as should have been easy to predict, only for one specimen (C44) it
was possible to capture the softening part. On the other hand, two specimens (C41
and C42) were tested in displacement control with a different closed loop servohy-
draulic machine with a capacity of 1000 kN. The stiffness of this machine was not
enough and an explosive failure occurred.

2.3 Boundary conditions

In uniaxial compression tests it is well-known how the boundary conditions play an
important role. When a concrete specimen is loaded between rigid loading platens
(steel), the lateral deformation of concrete is confined to the specimen ends (Fig.
2.a), which are forced to have the same lateral deformation as the rigid platens.
In this case, shear-stresses develop between specimen and loading platen, causing a
three-dimensional state of stress at the specimen ends.

An opposite trend comes out when loading platens with a low stiffness and a high
Poisson’s ratio are used (rubber or brushes) (Fig. 2.b). The platens are subjected
to large lateral deformations and outward-directed shear forces develop at the in-
terfaces, producing local splitting cracks.
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Kotsovos [21] performed experiments on cylinders with an aspect ratio of 2.5 and
with different frictional systems. He observed the same pre-peak behavior (in di-
mensionless form) for the different choices of loading system, and post-peak dimen-
sionless stress-displacement curves characterized by increasing slope with decreasing
the coefficient of friction. In order to minimize the interface friction, van Mier [22]
and Vonk [23] developed brush platens. Wittmann et al. [24] tested normal-strength
concrete cylinders by attaching at the ends two high-strength concrete disks of the
same diameter. This system was also adopted by Lee and Willam [25].

The system adopted in the present compression tests comes from the analysis of the
RILEM Technical Committee 148 SSC results [2]. The loading platens, they found,
not only affect the post-peak behavior, but also the peak stress. Van Vliet and van
Mier [13] observed an increase in peak stress by decreasing the slenderness (up to
200%), when the specimens were loaded between rigid steel platens, whereas an
almost constant peak stress with the application of teflon interlayers. The softening
branch, with both the systems, becomes steeper with increasing specimen height.
These results suggested the use of two teflon layers of 150 µm thickness with oil in
between and a specimen slenderness equal to one.

3 EXPERIMENTAL OBSERVATIONS

Only one representative curve for each of the five sizes has been selected, for graph-
ical reasons. The summary of the experimental results for peak-load, stress at peak
load and specific compressive energy is reported in Table 2. The experimental load
vs. displacement diagrams for smaller specimens (h=10 (C1), 23 (C2) and 46 mm
(C3)) are reported in Fig.3.a, while those related to the larger specimens (h = 100
(C4) and 190 mm (C5)) are reported in Fig.3.b. Moreover, a typical failure in the
post-peak softening regime is shown in Fig. 4 (specimen C33).

3.1 Stress-deformation response

The nominal stress vs. nominal deformation curves are plotted in Fig. 5. These
curves have been obtained from the load vs. displacement curves by dividing the
load by the initial specimen cross-section and the displacement by the initial spec-
imen heigth. The curves show an initial steadily increasing slope, due to the lower
stiffness at the beginning of the test. This fact is due to the adjustment of the loading
platens to the specimen surfaces and to the compressibility of the teflon interlay-
ers. This transition can be appreciated from Fig. 6, in which the axial and lateral
strains obtained from strain-gauges placed in the middle third of the specimen are
plotted together with the axial strains obtained by dividing the piston-stroke by the
specimen height. In the latter, the measured axial strains (called mean deformation,
ǫm, Fig. 6) also contain the deformation of the steel loading platens. This part is
often substituted by a straight line with slope equal to the maximum pre-peak slope
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of the force-displacement curve. In this paper, the experimental curves have been
presented as they have been recorded without any correction. Another possible cor-
rection that could be done on the experimental curves is related to the different
testing machine used for different specimen sizes. In this case, the two different
experimentally evaluated stiffnesses for the set-ups, obtained with the teflon layers
without any specimen, could be subtracted from the experimental diagrams.

After this initial part, the stress-strain path is nearly linear and this linear part is
as more pronounced as the specimen is larger (Fig.5). The smaller the specimen,
the more pronounced pre-peak nonlinearities are. After the peak stress, a gradual
descending branch has been detected. To appreciate the shape of the stress-strain
curve better, its normalized version obtained by dividing the stresses by the peak
stress (Fig.7a) and the strains by the strain at the peak stress (Fig.7b) are reported.
As can be deduced from Fig. 7, the stress-strain curve for different specimens are
almost the same in the pre-peak regime, but, beyond the peak, the slope of the
post-peak part decreases with decreasing specimen height. Van Mier [22] plotted the
normalized stress versus post-peak displacement curves, in which the displacements
are calculated as:

δ = (ǫ − ǫpeak)h, (1)

and obtained nearly overlapped curves. He concluded that, as the same displacement
is needed to fracture the specimens, the post-peak deformation must be localized
in a small zone, and cannot be interpreted as an average strain. This fracture lo-
calization of concrete uniaxial compression implies that strain cannot be used as
state variable in constitutive laws. The dimensionless stress versus post-peak defor-
mation diagrams for four cylindrical specimen sizes are plotted in Fig. 8. It can be
effectively observed that these curves are close to each other, even if different initial
slopes, indicating an increase in brittleness with size, is present.

3.2 Scatter in peak-stress

The values of the peak-stresses, which are commonly called compressive strength, are
reported in Fig.9 by varying specimen sizes. It can be noticed how in compression
a marked size effect does not come out and no relation with the specimen size
is evident, as instead can be observed in tension [26–28] or in compression when
localization is present [1]. The same results were obtained experimentally by the
RILEM Committee 148 and numerically by Carpinteri et al. [29,30] by simulations
with a boundary element approach. The scatter in the results is pronounced. What is
interesting to observe is that the values even for the smallest size are comparable to
the compressive strength of standard cubes. This permits us to affirm that, if friction
is avoided or drastically reduced, the compressive strength of an existing concrete
structure can be evaluated using very small drilling core specimens (Nondestructive
Test Method).
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3.3 Scatter in dissipated energy density

The dissipated energy density can be evaluated by considering the area under the
P −δ curve divided by the volume of the specimen. This is equivalent to considering
the area under the stress-strain curve. For the smallest specimen size, the dissipated
energy density has been evaluated by considering the area under the stress-strain
curve up to the minimum value of the stress. The numerical values of these areas for
each specimen are reported in Tab.2. The values are also plotted versus the char-
acteristic specimen size in Fig. 15. This dissipated energy density undergoes severe
scale effects, and the trend is a decrease by increasing the specimen dimension. This
interesting result is discussed in the next section and a theoretical explanation is
presented based on a fractal hypothesis for the fragment size distribution generated
during the compression test.

4 FULL STRESS-STRAIN CURVES

In this section the full stress-strain curves for the smallest cylindrical specimens
(h=10 mm) are presented and some considerations are proposed. An interesting
discussion of full stress-strain curve is proposed in the paper by Armer and Grimer
[31]. They considered the re-ascending stress-strain branch which is not usually
considered. This phenomenon was also described by Nikitin [32] by using dynamic
analysis.

The complete curve for specimen C13 is plotted in Fig. 10. After the specimen has
been crushed down more or less to a heap of aggregates, the resistance to further
deformation reaches a minimum for ǫ ≃0.5, and then begins to increase once more
to higher stresses. Armer and Grimer affirm the existence of a new higher peak,
at which the aggregate itself begins to break down. From the present experimental
tests (Figs.10 and 11) the author’s opinion is that the re-ascending curve tends to
an oblique asymptote rather than to a new peak. The increase of load will continue
and when all the aggregates will be pulverized, the slope of the asymptote has to
coincide with the test machine stiffness.

Physically, the valley zone BCD of the nominal stress versus average strain for the
specimen C12 (Fig. 11) reflects the macroscale breakdown of the specimen and the
following restructuring of the material into a new stable form.

The knowledge of the full load versus displacement (or nominal stress versus average
strain) diagram can be very useful in a load-controlled experimental test. In this
case, after the peak load (point B) a snap-through instability is evidenced, and a
horizontal jump up to point D occurs. The energy under the curve BCD is released
suddenly in a blasting way. Of course, point D corresponds to a new equilibrium
configuration, which is usually not achievable, as the instantaneous release of energy
is transformed into kinetic energy with expulsion of fragments. The curve, therefore,
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can be used to determine the specific energy released in the case of load-controlled
test.

In concrete diamond drilling it can be observed how the snap-trough phenomenon
just described can be very useful to simulate numerically the necessary energy (elas-
tic and kinetic) to break concrete and to determine the chip size. For crushing phe-
nomena (in concrete recycling, for example) it is very interesting to observe that
the energy required to fragment a specimen (or in general a concrete element) is
much larger than the elastic energy or the energy under the softening curve. This is
due to the fact that the fragmentation and the formation of smaller chips is related
to the surface area of the chips and this strongly increases by decreasing the size of
the chips.

Finally, the last part of the curve can be influenced by the confinement due to
the interaction of the aggregates with the machine platens. The interaction can
be compared with the confinement effect due to the steel reinforcement in building
columns which undergo earthquakes. In this case, if the confinement is well designed,
the evaluation of re-ascending curve for concrete can be very useful.

5 FRACTAL EXPLANATION OF SIZE EFFECTS ON DISSI-

PATED ENERGY DENSITY IN COMPRESSION

The performed compression tests have shown an evident decrease of dissipated en-
ergy density with increasing specimen dimension (Fig. 15). This interesting phe-
nomenon can be interpreted by considering the fragmentation and the comminution
theories. In this field, fractal geometry represents a very helpful tool to explain such
a phenomenon [16,17]. Turcotte [18] in the formulation of his fragmentation theory
explains the difficulties in developing comprehensive theories. A primary reason is
that fragmentation involves initiation and propagation of fractures. Fracture propa-
gation is a highly nonlinear process requiring complex models even for the simplest
configuration. Fragmentation involves the interaction between fractures over a wide
range of scales. If fragments are produced over a wide range of sizes and if natural
scales are not associated with either the fragmented material, fractal distribution
of fragment number versus size would seem to be expected [33].

Let us consider a concrete specimen which undergoes a compression test. As is
shown in Fig.4, in the post-peak softening regime the specimen is characterized by
the generation of a large number of fragments. After fragmentation, the number of
fragments N with a characteristic linear dimension greater than r should satisfy the
relation:

N =
B

rD
, (2)

where B is a constant of proportionality, and D is the fractal dimension.
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In order to describe the mechanical meaning of the fractal exponent D, in Fig.12
some examples of discrete fragmentation model are presented, where fragmentation
is a scale-invariant process that leads to a fractal distribution of chip sizes. Let
consider a fractal cube and use it as the basis for a fragmentation model. The
fragmentation is such that some blocks are retained at each scale but others are
fragmented. In Fig.12.a two diagonally opposed blocks are retained at each scale.
For this configuration we have N1 = 2 for r1 = h

3 , N2 = 50 for r2 = h
9 , and

N3 = 1250 for r1 = h
27 . In order to determine D, eq.(2) can be written as:

D =
log(Nn+1/Nn)

log(rn/rn+1)
, (3)

and then we can find for this case that D = log 25/ log 3 = 2.93. This is the fractal
distribution of a discrete set. The cumulative number of blocks larger than a specified
size for the three highest orders are N1c = 2 for r1 = h

3 , N2c = 52 for r2 = h
9 and

N3c = 1302 for r2 = h
27 , obtaining a value D = 2.95.

In Fig.12.b eight angular diagonally opposed blocks are retained at each scale. For
this configuration we have N1 = 8 for r1 = h

3 , N2 = 152 for r2 = h
9 , and N3 = 2888

for r1 = h
27 , so that D = log 19/ log 3 = 2.68. The cumulative number of blocks

larger than a specified size for the three highest orders are N1c = 8 for r1 = h
3 ,

N2c = 160 for r2 = h
9 and N3c = 3048 for r2 = h

27 , obtaining a value D = 2.70.

In Fig.12.c the limit case of localization is presented in which eighteen angular blocks
are retained at each scale, while only nine central blocks are fragmented. For this
configuration we have N1 = 18 for r1 = h

3 , N2 = 162 for r2 = h
9 , and N3 = 1458 for

r1 = h
27 , so that D = log 9/ log 3 = 2.00. The cumulative number of blocks larger

than a specified size for the three highest orders are N1c = 18 for r1 = h
3 , N2c = 180

for r2 = h
9 and N3c = 1638 for r2 = h

27 , obtaining a value D = 2.05.

The same value for D can be obtained by retaining at each scale 18 blocks and
fragmenting 9 blocks placed this time in the configuration displayed in Fig.12.d.
In this case, D = 2, but differently from Fig.12.c when we obtained a surface
in correspondence of the central part of the largest block, we observe that the
fragmentation phenomenon is localized in different small zones. Localization does
not mean in this case dissipation on a surface (fracture or shear band), but rather
localization of failure in concentrated zones.

The fractal dimensions for the discrete set and for the cumulative statistics are
nearly equal. In Fig.13 the cumulative statistics are reported for three fragmentation
models.

The total volume (mass) of fragments is given by [33]:

Vf =

rmax
∫

rmin

r3dN, (4)
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since r has been defined to be the cube root of the fragment volume. It is expected
that there will be upper and lower limits to the validity of the fractal (power-law)
relation for fragmentation. The upper limit rmax is generally controlled by the size
of the fragmented object (rmax = k 3

√
V [34]). The lower limit rmin is likely to be

controlled by the scale of the heterogeneities responsible for fragmentation (grain
size). For a power-law (monofractal hypothesis) distribution of sizes, substituting
dN = −BDr(−D−1)dr, with B a constant of integration, into eq.(4) and integrating
gives:

Vf =
−DB

3 − D

(

r3−D
max − r3−D

min

)

, (5)

where, for 0 < D < 3, the specification of rmin is not necessary. In this case the
volume (mass) of fragments is predominantly provided by the largest fragments, so
that Vf can be rewritten as:

Vf =
−DB

3 − D
r3−D
max , for 0 < D < 3, (6)

and then

Vf =
−DB

3 − D
k3−DV 1−D

3 . (7)

On the other hand, the total surface area Af of the fragments is given by:

Af = C

rmax
∫

rmin

r2dN, (8)

where C is a geometrical factor depending upon the average shape of the fragments.
For a power-law distribution, substitution of dN = −DBr−D−1dr into eq.(8) and
integrating gives:

Af =
−DBC

D − 2

(

1

rD−2
min

− 1

rD−2
max

)

. (9)

If 0 < D < 2, it is necessary to specify rmax in order to obtain a finite total surface
area for fragments. If D > 2, it is necessary to specify rmin in order to constrain the
total surface area to a finite value. Usually the surface area of the smallest fragments
dominates:

Af =
−BDC

D − 2

1

rD−2
min

. (10)
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It can be assumed that the energy dissipated to produce a new free surface in
the fragmentation process is provided by the product of specific energy absorbing
capacity βF and the total surface area Af , for 2 < D < 3 [17]:

W = βF Af = βF Af
V

V
(11)

in which βF should be have dimension of [F ][L](D−1). From eq.(7), V can be ex-
pressed as:

V = V D/3Vf
3 − D

−DB
kD−3 =

r3
max

k3
. (12)

In this case it is possible to have, from eq.(6) and eq.(7):

W = βF Af
V

V
= βF Af

VfV D/3 3 − D

−DB
kD−3

r3
max

k3

= (13)

=

(

βf
−BCD

D − 2
r2−D
min rD

maxkD

)

V
D

3 = G∗

F V
D

3 .

The two extreme cases contemplated by eq.(13) are D=2, surface theory [35,36],

when the dissipation really occurs on a surface (W ∝ V
2
3 ) and by D=3, volume

theory [37], when the dissipation occurs in a volume (W ∝ V ). In this case G∗

F

presents the following physical dimension:

[G∗

F ] =

(

βf
−BCD

D − 2
r2−D
min rD

maxkD

)

= [F ][L]D−1[L]2−D[L]−D = [F ][L]1−D. (14)

For D = 2 → [G∗

F ] = [F ][L]−1, which is the canonical dimension for fracture energy,
while for D = 3 → [G∗

F ] = [F ][L]−2, which is the physical dimension of stress. The
experimental cases of fragmentation are usually intermediate (D ∼= 2.5) [18], as well
as the size distribution for concrete aggregates due to Fuller [38].

If we consider V = h3, we can write the expression of the dissipated energy density,
from eq.(13):

S =
W

V
= G∗

F hD−3. (15)

The relationship of dissipated energy density related to different sizes can be posed
in logarithmic form:

log S = log G∗

F + (D − 3) log h. (16)
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Eq.(16) represents a straight line with slope (D− 3) in the log S versus log h plane
(Fig. 14). If D = 2, the slope is −1, as well as D = 3 implies a vanishing slope.

The same results can be obtained in a different way, by considering a sequence of
scales of observation [39]. Considering W as the global dissipated energy measured
by the experimental set-up, G as the elastic energy release rate or the specific energy
necessary to generate the unit area of fracture, which is by hypothesis invariant with
respect to the scale of observation, we have:

W = GA, (17)

and then:

G =
W

A
=

SV

A
=

Sh3

h2
= Sh. (18)

If we consider a sequence of scale of observation, we have:

G = S1h1 = . . . = Sn−1hn−1 = Snhn = Sn+1hn+1 = . . . = S∞h∞, (19)

where the first scale of observation could be the macroscopic one, with S1h1 = Sh,
h being the characteristic linear dimension of the specimen, and the asymptotic
scale of observation could be the microscopic one, with S∞h∞ = G∗

F h∗, h∗ being the
measure of the fractal set representing the fragmented configuration. It is important
to underline that the measure h∗ assumes finite value only for one particular value
of dω equal to the fractal dimension of the set (Hausdorff dimension). For any other
values of d, h∗ = 0 for d < dω and h∗ = +∞ for d > dω. From the equality between
the extreme members we can write:

S = G∗

F

(

h∗

h

)

, (20)

or:

S = G∗

F

(

h1−dω

h

)

, (21)

where 0 < dω < 1 is the decrement of the topological dimension due to fragmenta-
tion. Taking the logarithms of both members of eq.(21) we obtain:

log S = log G∗

F − dω log h, (22)

where dω = 3−D can be considered as the decrement of the topological dimension
of the set in which energy dissipation occurs. When dω = 1 we obtain D = 2
(localization) ; when dω = 0 we have D = 3 (volumetric dissipation). Localization
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assumes here the meaning of dissipation localized in concentrated zones. Eq.(22) is
identical to eq.(16).

The values of dissipated energy density for the three smallest sizes are plotted in
Fig. 15.a against the specimen size in a bilogarithmic plane. The values for the four
available sizes are instead reported in Fig.15.b. The size effect is represented by the
slope of the linear regression of the points of the diagram. It is evident how the
dissipated energy density decreases with increasing specimen size.

As may be seen from Fig.15, the slope of the dissipated energy density decrease
proves to be equal to 0.67 when only three specimen sizes are considered, and to
0.97 when considering the fourth size. We have considered the two different cases as
the fourth size has been tested with a different procedure which can cause variations
in energy estimation. In the former case, the physical meaning reveals an energy
dissipation on a fractal space of dimension 2.33, while in the latter case the dissipa-
tion occurs on a fractal space of dimension 2.03, i.e., very close to a 2-dimensional
surface. In the second case, as the fractal space is close to a 2-dimensional surface,
different interpretations, by using the classical euclidean geometry, could be also
proposed. In this approach, however, the fractal approach has been chosen. It is
therefore possible to obtain a constant (universal) dissipated energy density equal
to 31 Nmm−1.33 and to 74 Nmm−1.03, respectively (Fig.16). The graphic interpre-
tation of the renormalization procedure is given in Fig.14. The assumption of a
fractal (or anomalous) physical dimension allows the determination of the dissi-
pated energy density parameter G∗

F , which results in independence of the scale. As
it is easy to observe, in the latter case the renormalized dissipated energy density
tends to be a fracture energy, the dissipation occurring on a fractal set very close
to a 2-dimensional surface. Such a result confirms the localization of the dissipation
on a surface [25]. The fractal nature of the fragments generated by the compressive
test emerges very clearly at the size scale of the specimens. Momber [10] applied
fragmentation theory to the study of compression and analyzed the fragments, de-
termining a fractal exponent D close to 2. On the other hand, the property of
self-similarity is very likely to vanish or change at higher or lower scales, owing to
the limited character of the particle size curve. The price to pay for obtaining a
constant value is the loss of the classical physical dimensions for dissipated energy
density. It is obviously very difficult to use these results in a structural analysis, a
noneuclidean (or fractal) mechanics being not yet available, even if very important
steps have been moved forward by Carpinteri et al. [40].

6 SCALE-INDEPENDENT CONSTITUTIVE LAW FOR CON-

CRETE IN COMPRESSION

The experimental curves σ vs ǫ, reported in Fig.5, show a marked scale dependence,
in particular for what concerns the post-peak part. These curves σ vs ǫ, or F vs.
δ, are in fact characterized by two different regimes. The first regime corresponds
to the pre-peak elastic behavior, when microcracks form randomly in the specimen.
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At this stage the external force linearly increases until it reaches the peak value
and the statistical fluctuations are very small. In the second regime, which could
be called ”catastrophic”, the interactions between the microcracks begin to rule the
process, untill macrofractures form and propagate through the whole specimen. In
large specimens this phenomenon could occur with a sudden release of stored elastic
energy.

In this section, a renormalization procedure is proposed to obtain a unique consti-
tutive relationship for softening in compression. By assuming damage occurring in a
fractal sub-domain inside the specimen, energy dissipation becomes scale-dependent.
Hence it should be substituted by a fractal quantity, which is the true material con-
stant. The assumption that the energy dissipation occurs in a sub-domain character-
ized by a fractal dimension, imposes the definition of fractal strain (or dilatation).

Let us consider the external work W , which presents the physical dimension of
[F][L]. The nominal dissipated energy density, S = W/V , is usually the dissipated
energy over the specimen volume, so that it presents the physical dimension of
[F][L]−2 and can be evaluated by integration:

S =
W

V
=

ǫmax
∫

0

σ(ǫ)dǫ, (23)

which represents the area under the σ − ǫ curve. Supposing that the energy dissi-
pation does not occur in the specimen volume (V ∝ l3) but in a fractal domain of
dimension D (V ∝ lD), and considering [σ] = [F ][L]−2 as the nominal stress, in
order to obtain a constant specific compression energy, the strain has to assume a
physical dimension of [L]−(D−3) = [L]dω [40,41]. In fact, in this hypothesis, if W is
dissipated over a domain with physical dimension of [L]D, we obtain:

[S] =
[W ]

[V ]
=

[F ][L]

[L]D
= [F ][L]1−D. (24)

For D=2 (surface theory, dissipation occurring on a surface) → S = [F ][L]−1,
while for D=3 (volume theory, dissipation occurring on a volume) → S = [F ][L]−2.
Assuming to maintain the the nominal stress σ with physical dimension of [F ][L]−2,
from eq.23 we have:

[S] = [σ][ǫ∗] = [F ][L]−2[L]x = [F ][L]1−D , (25)

and than:

x = 3 − D = dω. (26)

In the monofractal hypothesis, the renormalized strain therefore assumes the phys-
ical dimension of [L]3−D, defined as the displacements δ divided by l=[L]D−2.
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By considering the fractal strain, a scale-invariant constitutive relationship can be
obtained. In other words, the experimental diagrams related to the different sizes
can be rescaled by considering the strain renormalization, and a clear superposition
of the curves is evidenced. In Fig.17.a the strains are renormalized for D=2.67
as obtained from the fitting that considers only three sizes, while in Fig.17.b the
dimension D=2.03 has been used. It is possible to observe how the curves tend
to superpose one on each other and in particular how the variation in structural
behaviour disappears.

Lastly, form Fig.17a, b, it can be observed how a renormalization (or a new def-
inition) of the elastic modulus comes out. In fact, the elastic modulus is defined,
from the classical Hooke Law’s, as the ratio between the stress and the strain. In
the present analysis we obtain:

[E∗] =
[σ]

[ǫ∗]
=

[F ][L]−2

[L]−(D−3)
= [F ][L]D−5, (27)

and in the two limit cases for D = 2 (surface theory, dissipation occurring on a
surface) → E=[F][L]−3, and assumes the physical dimension of a density, while for
D = 3 (volume theory, dissipation occurring on a volume) → E=[F][L]−2 and we
obtain the classical elastic modulus.

The renormalization previously presented is in good agreement with the method-
ology proposed by van Mier [42] in order to obtain a unique empirical stress-
displacement relationship and applied to the present experimental curves (Fig. 8).
In fact, in our results (Fig. 17) the renormalization strain has a physical dimen-
sion equal to 0.97, very close to 1, and then very close to a displacement. What is
important to emphasize at this stage is that in compression we have dissipation of
the energy over an area at small scales, while at large scales the energy dissipation
occurs in a volume. This appears very interesting as it is the opposite trend with
respect to tension, in which localization is evident for large specimens and not at
small scales. Eventually, the renormalization procedure for large specimens (D=3)
tends again to a stress-strain diagram, as ǫ∗ = ǫ

7 CONCLUSIONS

Uniaxial compression tests were performed under displacement control on drilled
cylindrical specimens obtained from a single concrete block over a very large scale
range (1:19), the largest range available in the literature. The friction between spec-
imen ends and testing machine platens was reduced by using two layers of teflon
with oil in between. The experimental results show how, reducing the friction at
the ends, the nominal compressive strength is not clearly affected by scale effects
as is evident in tension. The tests performed on very small specimen sizes (10 mm
diameter) and the independence of the dimension for the compressive strength al-
lows us deep considerations for evaluating the effective strength of real concrete
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structures, that undergo deterioration of the mechanical properties and represent a
dramatic problem in Civil Engineering. The results can be considered as a staring
point in order to reconsider the standard dimension for evaluating the compressive
strength of high-strength concretes, using the same testing machines available in
the laboratories.

In addition, the full stress-strain curve in compression has been determined, and
from those results it can be evidenced a snap-through instability allowing to quan-
tify the energy required for fragmentation. The determination of the full curve is
also important in concrete recycling industry to quantify the energy necessary for
destroying concrete structures, even in blasting.

Finally, a theoretical explanation for the size effect on the dissipated energy density
has been proposed, from which it appears how the dissipation occurs in a fractal sub-
space of dimension comprised between a surface and a volume. A renormalization
procedure for determining a constant dissipated energy density is also proposed
and it comes out that, in the range of the tested specimens, the energy dissipation
occurs in a fractal space very close to a 2-dimensional surface. This is in a good
agreement with the hypothesis proposed by van Mier [22] and by Lee and Willam
[25], which stated that energy dissipation in the post-peak regime is a localized
surface-dominated fracture process, after the coalescence of microcracks in the peak
regime. This hypothesis is however valid only when small specimen sizes are used,
whereas for large specimen sizes a volumetric dissipation occurs, as proposed by
Carpinteri and Ferro [43] in a forthcoming paper.
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Specimen Diameter High A Weight Volume

no. (mm) (mm) (mm2) g (mm3)

C11 9.9 9.5 76.98 1.9 731.31

C12 9.9 9.9 76.98 2.0 762.10

C13 9.8 10.0 75.43 2.1 754.30

C14 9.8 9.8 75.43 1.9 739.21

C15 9.8 10.0 75.43 2.0 754.30

C16 9.8 9.9 75.43 1.7 746.76

C21 23.7 24.2 441.15 24.0 10676

C22 23.7 24.2 441.15 24.0 10676

C23 23.7 24.2 441.15 23.5 10676

C24 23.7 24.6 441.15 24.3 10852

C25 23.7 24.4 441.15 23.5 10764

C26 23.7 23.9 441.15 23.9 10543

C31 44.9 45.3 1583.4 160.0 71728

C32 45.1 44.6 1597.5 160.0 71248

C33 45.1 45.1 1597.5 161.0 72047

C34 44.8 45.4 1576.3 159.0 71564

C35 45.0 45.3 1590.4 161.0 72045

C36 45.1 45.6 1597.5 161.5 72846

C41 99.5 100.3 7775.6 1795 779893

C42 99.6 100.2 7791.3 1770 780688

C43 99.5 100.6 7775.6 1790 782225

C44 99.5 100.5 7775.6 1805 781448

C51 192.2 192.9 29013 12585 5596608

C52 192.1 191.7 28983 12580 5556041

C53 192.2 193.6 29013 12645 5616917

C54 192.2 191.4 29013 12585 5553088

Table 1. Summary of geometrical characteristics of specimens.
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Specimen Peak Load Stress at Peak Stress-Strain

no. (daN) Load (N/mm2) Area (N/mm2)

C11 295 38.32 6.12

C12 328 42.61 7.32

C13 327 43.35 7.12

C14 335 44.41 8.34

C21 1289 29.22 2.51

C22 1457 33.03 3.45

C23 1229 27.86 2.75

C24 1404 31.83 2.78

C31 5298 33.46 1.33

C32 6136 38.41 2.90

C33 5813 36.39 2.62

C34 6311 40.04 3.24

C41 27247 35.04 0.32

C42 39194 50.30 0.33

C43 39231 50.45 0.20

C44 29923 38.48 0.42

C51 142400 49.08 -

C53 132210 45.57 0.35

Table 2. Summary of experimental results for peak-load, stress at peak load and
critical compressive energy density.
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five specimen sizes; (c) particular of the three smallest specimens with the glued
strain-gauges.

26



CONCRETE

SPECIMEN

Teflon

original 
shape

deformed 
shape

steel
platen
(rigid)

rubber
platen
(soft)

potential 
splitting
cracks

τ12τ12
τ12τ12

σ1

σ1
σ1

σ1 σ1

Machine platen

Oil

σ1σ1σ1

σ1

τ12

τ12 τ12

σ1 σ1

σ1

τ12

Fig. 2. Effect of loading platen response: (a) steel rigid platens; (b) soft platens and
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Fig. 4. Typical failure of a specimen in the post-peak softening regime.
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Fig. 8. Dimensionless stress versus post-peak displacement for four different cylin-
drical specimen sizes.
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Fig. 9. Peak-stresses by varying specimen size.
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Fig. 10. Complete load versus displacement diagram up to compaction for the small-
est specimen.

35



0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1.0

C12
σ (N/mm2)

ε
1

A

B

C

D

E

Fig. 11. Complete nominal stress versus nominal strain curve up to compaction for
the smallest specimen size.
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(a) (b) (c) (d)

Fig. 12. Physical meaning of exponent D; (a) at each step only one cube is retained,
while all the others are divided into 27 equal-sized cubes with rn=1

3rn−1 (D=2.93),
very close to a volumetric fragmentation; (b) at each step the eight angular cubes
are retained, while all the others 19 are divided into 27 equal-sized cubes with
rn=1

3rn−1 (D=2.70);(c) and (d) at each step the nine central cubes are divided into
27 equal-sized cubes with rn=1

3rn−1, while the others 18 are retained (D=2.00),
showing a localization of the dissipation energy.
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Fig. 13. Cumulative statistics for the fragmentation models proposed in Fig.12.
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Fig. 14. Size effect on dissipated energy density in compression.
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Fig. 15. Size effect on dissipated energy density (experimental tests).
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Fig. 16. Renormalized value of dissipated energy density (experimental tests).
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Fig. 17. Stress vs renormalized strain for three different specimen sizes: (a) D=2.33;
(b) D=2.03.
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