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Ranking a set of objects: a graph based
least-square approach

Evgenia Christoforou, Member, IEEE , Alessandro Nordio, Member, IEEE ,
Alberto Tarable, Member, IEEE , Emilio Leonardi, Senior Member, IEEE

Abstract—We consider the problem of ranking N objects starting from a set of noisy pairwise comparisons provided by a crowd of
equal workers. We assume that objects are endowed with intrinsic qualities and that the probability with which an object is preferred to
another depends only on the difference between the qualities of the two competitors. We propose a class of non-adaptive ranking
algorithms that rely on a least-squares optimization criterion for the estimation of qualities. Such algorithms are shown to be
asymptotically optimal (i.e., they require O(N

ε2
log N

δ
) comparisons to be (ε, δ)-PAC). Numerical results show that our schemes are

very efficient also in many non-asymptotic scenarios exhibiting a performance similar to the maximum-likelihood algorithm. Moreover,
we show how they can be extended to adaptive schemes and test them on real-world datasets.

Index Terms—Ranking algorithms, noisy evaluation, applied graph theory, least-square estimation

F

1 INTRODUCTION

Ranking algorithms have many applications. For example
they are used for ranking pages, user preferences against
advertisements on the web, hotels, restaurants, or online
games [1], [2]. In general a ranking algorithm infers an
estimated order relation among objects starting from a set
of evaluations or comparisons. Sometimes, such evaluations
are performed by human “workers” in the framework of
crowdsourcing applications. However, since the behavior of
humans cannot be deterministically predicted, it is usually
described through the adoption of a probabilistic model.
Then, the challenge in designing algorithms is the ability to
infer reliable estimates of the ranking, starting from “noisy”
evaluations of the objects. Often ranking algorithms resort
to pairwise comparisons of objects. In this work, we focus
on such a class of ranking algorithms. Several stochastic
models have been proposed in the literature to represent
the outcome of comparisons and offer just examples of
possible workers’ behavior (see e.g. the Bradley-Terry-Luce
and the Thurstone models [3], [4], [5], [6]). Most of them
are based on the idea that objects to be compared have
an intrinsic quality and that the probability that object i is
preferred to object j depends on their qualities qi and qj . Up
to now, however, we are not aware of any work support-
ing experimental evidence for their applicability to general
contexts. In this scenario, we devise a class of efficient
algorithms, which reconstruct object qualities from pairwise
difference through a least-square (LS) approach. To do so,
we establish a parallelism between the estimation process
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and the average cumulative reward of random walks on a
weighted graph.

1.1 System model
Let Q ⊂ R be a compact set. We assume that N objects
are available for ranking: object i is endowed with an
intrinsic quality, qi ∈ Q, which is unknown to the system.
Qualities induce a true ranking r among objects, in which
r(i) ≺ r(j) iff qi > qj

1. A ranking algorithm resorts to a set
of observations (or answers) provided by workers, which
compare pairs of objects and return the identity of the object
they prefer. The comparison procedure implicitly contains
some randomness reflecting the workers’ behavior. Thus, in
general, workers’ answers can be modeled as a collection
of binary random variables, whose distribution depends on
the qualities of the objects to be evaluated.

Due to this randomness in the evaluation process, the
inferred ranking for object i, r̂(i), does not always coincide
with the true ranking r(i). The reliability of r̂(i) depends
on how the evaluation process is organized. In particular, it
depends on (i) the workers’ behavior, (ii) the choice of the set
of object pairs to be compared, (iii) the number of workers
assigned to each pair of objects, and (iv) the processing
algorithm used to infer the ranking from workers’ answers.

We assume that all workers behave similarly and that
their behavioral model is known by the system. They pro-
vide independent answers. In particular, a worker compar-
ing objects i and j, will express a preference for object i
against j with probability:

pi,j = 1− pj,i = F (qi − qj) (1)

where the function F (·) is differentiable and strictly increas-
ing in its argument (and therefore invertible) and such that
F (0) = 1

2 . Moreover, we assume that F ′(q) is bounded
away from zero for q ∈ Q̄ where Q̄ = {qi − qj |qi, qj ∈ Q}.

1. The symbol ≺ is a precedence operator. If r(i) ≺ r(j) then object i
“precedes” or “is preferable to” object j.
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When the object pair (i, j) is compared, the worker’s answer
is modeled as a binary random variable, wi,j ∈ {0, 1},
whose outcomes have probability

P(wi,j = 1) = pi,j ; P(wi,j = 0) = 1− pi,j . (2)

The model in (1) is pretty general. For example, it encom-
passes:

• the Thurstone model [5], where the preferred object
(in a pair) is chosen in accordance with the qualities
as perceived by the worker and defined as

q̃i = qi + ni, q̃j = qj + nj

respectively, where ni and nj are zero-mean random
variables that represent noise terms. In this case F (·)
is the cumulative distribution function of the zero-
mean random variable ηi,j = ni − nj , i.e.,

pi,j = P (ηi,j < qi − qj) (3)

• the Bradley-Terry-Luce (BTL) model [3], [4], where

pi,j =
eqi−qj

1 + eqi−qj
. (4)

Let V = {1, . . . , N} be the set of objects. We observe that
an arbitrary choice of a set of object pairs to be compared,
denoted by E ⊆ V ×V , automatically induces an undirected
graph G, whose vertex and edge sets are, respectively, V
and E . Clearly, it is possible to infer a total ranking of the
N objects only if the graph G is connected, hence in the
following we will always assume that G is connected.

Each object pair (i, j) ∈ E is assigned to a number of
workers W . In general, an increase of W leads to a more re-
liable estimate of the ranking. On the other hand, the overall
complexity, C , of the ranking algorithm is proportional to
the total number of workers employed in the process, i.e.,

C = |E|W.

Then, an efficient ranking algorithm must find a good trade-
off between the complexity C and the reliability of the
inferred ranking, i.e., by returning an almost correct ranking
of objects with a minimal number of pair comparisons.

About the reliability of the inferred ranking we say that
an estimated ranking is ε-quality approximately correct (or,
is an ε-quality ranking) if r̂(i) ≺ r̂(j) whenever qi ≥ qj+ε.
Moreover a ranking algorithm is (ε, δ)-PAC [7], [8], [9] if it
returns an ε-quality ranking with a probability larger than
1− δ.2

1.2 Paper contribution and related work
This paper contributes to a better understanding of the
fundamental limits of ranking algorithms based on noisy
pairwise comparisons. Our main results complement and
extend previous findings about minimal complexity of rank-
ing algorithms under different non-parametric preference
models, recently derived in [8], [9]. As shown in [8], [9],
the efficiency of ranking algorithms is crucially determined
by the structure of the underlying preference model.

2. Our definition of (ε, δ)-PAC algorithm slightly differs from the
original given in [7], [8], [9] since it applies to object qualities. However,
it can be easily shown to be asymptotically equivalent to the original.

On the one hand, under a non-parametric preference
model satisfying both Strong Stochastic Transitivity (SST)
and Stochastic Triangle Inequality (STI) properties,3 a prov-
ably asymptotically-optimal4 adaptive algorithm has been
proposed, under the restriction that δ > 1

N . In particular,
the algorithm proposed in [9] is (ε, δ)-PAC provided that
O(Nε2 log N

δ ) comparisons are dynamically allocated on the
basis of previous outcomes. On the other hand, in [8], [9],
it is shown that Ω(N2) comparisons are needed to obtain a
reliable ranking as soon as either STI or SST are relaxed.

When considering parametric models, estimating a rank-
ing is essentially related to estimating the underlying qual-
ities. The authors in [10], [11] provide a characterization of
the expected 2-norm distance between estimated and true
qualities (later on referred to as mean square error (MSE)),
in connection with the properties of a fixed graph G. In par-
ticular [10], under the assumption that F (·) is log-concave,
provides universal (i.e., applicable to optimal algorithms,
such as the maximum-likelihood (ML) algorithm) order-
optimal upper and lower bounds for the MSE, relating it
to the spectral gap of a certain scaled version of the Lapla-
cian of G. The very recent paper [11], for the BTL model
only, introduces an LS algorithm and provides upper and
lower bounds for a variant of the MSE and the relative tail
probabilities achievable by such algorithm, characterizing it
in terms of the graph resistance.

Interesting works are also [12], [13], [14], [15], [16], [17],
[18]. In [16], [17] an LS approach for ranking is first intro-
duced, but no theoretical guarantees are given. In particular,
[17] proposes Sync-Rank, a semi-definite programming al-
gorithm based on the angular synchronization framework.
In [12], [13], instead, an iterative algorithm that emulates
a weighted random walk of graph G is proposed and its
performance analyzed under the BTL model. The previous
papers provide bounds on the achievable MSE (i.e. the 2-
norm distance between true and estimated qualities) and
the corresponding tail probabilities (i.e. the probability that
the distance between true and estimated qualities exceeds a
given threshold). A direct comparison between the perfor-
mance of algorithms proposed in [11], [14], [15] is reported
in [11] where the LS approach is shown to be, in general,
asymptotically more efficient. Under the BTL model, [12],
[13] propose and analyze algorithms able to identify the top-
k objects. Finally, [18] describes a ranking algorithm based
on the singular value decomposition approach by assuming
that workers return unquantized noisy estimates of quality
differences.

Regarding online ranking algorithms, in [7], for the
BTL model, an online algorithm inspired by a finite-budget
version of quick sort is described, able to obtain an (ε, δ)-
PAC ranking with O(Nε2 logN log N

δ ) comparisons. In [19],
it is shown that, for online ranking algorithms, parametric
models help to reduce the complexity only by logarithmic
factors, in order sense.

3. A preference model is said to be non-parametric if pairwise pref-
erence probabilities are not necessarily induced by object qualities. It
satisfies the SST if pi,k ≥ max(pi,j , pj,k) whenever r(i) ≺ r(j) ≺ r(k).
It satisfies STI if pi,k + 1

2
< pi,j + pj,k whenever r(i) ≺ r(j) ≺ r(k).

4. A (ε, δ)-PAC ranking algorithm is asymptotically-optimal if its
complexity is O(N

ε2
log N

δ
).
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In this work, unlike [11], we introduce a rather general
parametric preference model according to which prefer-
ence probabilities are determined by an arbitrary smooth
monotonic function of object-quality differences. In this
scenario, we show that order-optimal non-adaptive algorithms
can be defined without the necessity of introducing any
restriction to parameter δ. In particular, differently from
[10], [11], we work with the PAC framework and show that
our algorithms are (ε, δ)-PAC, provided that O(Nε2 log N

δ )
comparisons are blindly allocated in a single round. Observe
that our preference model does not necessarily satisfy STI,
while it satisfies SST. Our ranking procedure is based on the
reconstruction of object qualities from pairwise quality dif-
ferences, by adopting a LS approach akin to the one in [11].
Notice however that the analysis in [11] only applies to the
case where Ω(N log2 N

δ ) total comparisons are performed,
and therefore it is not useful to answer questions about the
existence of order-optimal algorithms. Our analysis estab-
lishes a parallelism between the quality estimation process
and the cumulative reward of random walks on graphs. As
an original contribution, we also introduce a weighted LS
(WLS) algorithm with performance very close to the more
complex ML algorithm. Finally, by simulation, we show that
the performance of our algorithms is extremely good also in
non-asymptotic scenarios.

The paper is organized as follows: in Section 2 we
introduce a ranking algorithm based on the Maximum
Likelihood (ML) approach, which is used as a performance
reference. In Section 3 we describe our proposed LS estima-
tion algorithm, whose asymptotic analysis is investigated
in Section 4. The LS estimation algorithm is then tested in
Sections 5 and 6 against synthetic and real-world datasets,
respectively. Finally, in Section 7 we draw our conclusions.

1.3 Notation
Boldface uppercase and lowercase letters denote matrices
and vectors, respectively. I is the identity matrix. The trans-
pose of the matrix A is denoted by AT, while [A]i,j indi-
cates its (i, j) entry. For the sake of notation compactness,
we use the notation A = {ai,j} to define a matrix A whose
elements are ai,j . Calligraphic letters denote sets or graphs.
Finally, the symbol � represents the Hadamard product.

2 ML QUALITY ESTIMATION

Consider a connected graph G(V, E) with |V| = N vertices
where each pair of objects (i, j) ∈ E is evaluated W times
by independent workers 5. Without loss of generality we
assume that the indices of the objects connected by the
generic edge (i, j) ∈ E are such that i > j. Moreover, we
assume that the m-th worker evaluating the pair of objects
(i, j) outputs the binary random variable wi,j,m whose
distribution is given by (2).

In our proposed ML approach, the estimate of the
ranking can be obtained by sorting the quality estimates
q̂ = [q̂1, . . . , q̂N ]T which are obtained as follows:

q̂= arg max
q

log P ({wi,j,m, (i, j) ∈ E ,m = 1, . . . ,W}|q) .

(5)

5. The generalization to a number of evaluations that depends on the
specific edge is straightforward.

When workers are independent of each other and behave
similarly, the random variables wi,j,m can be modeled as
independent and identically distributed. Therefore, the con-
ditional probability in (5) factorizes as

P ({wi,j,m, (i, j) ∈ E ,m = 1, . . . ,W}|q)

=
∏

(i,j)∈E

W∏
m=1

P (wi,j,m|q) .

By using (2) we write

P (wi,j,m|q) = p
wi,j,m
i,j (1− pi,j)1−wi,j,m .

where we recall that pi,j = F (qi − qj). By substituting the
above result in (5), the ML estimate of the qualities q can be
rewritten as

q̂=arg max
q

log P ({wi,j,m, (i, j) ∈ E ,m = 1, . . . ,W}|q)

=arg max
q

∑
(i,j)∈E

W∑
m=1

log p
wi,j,m
i,j + log

[
(1−pi,j)(1−wi,j,m)

]
=arg max

q
Ψ(q) (6)

where

Ψ(q) =
∑

(i,j)∈E

si,j log pi,j + (1− si,j) log(1− pi,j) .

and si,j = 1
W

∑W
m=1 wi,j,m. The function Ψ(q) has a finite

global maximum. Indeed, since pi,j ∈ [0, 1], and si,j ∈ [0, 1],
it is straightforward to show that Ψ(q) ≤ 0. However, in
general, Ψ(q) is a non-convex function of q and its maxi-
mization is non trivial. Nevertheless, a local maximum can
be found by using standard techniques such as, for example,
the Newton-Raphson method, which works iteratively and
requires the function F (·) to be twice differentiable.

Let q̂t be the estimate of q at iteration t = 1, 2, . . . Then
the estimate of q at iteration t+1 can be updated as follows:

q̂t+1 = q̂t − [S(q̂t)]
−1∇Ψ(q)t

where ∇Ψ(q) and S(q) are, respectively, the gradient and
the Hessian matrix of Ψ(q). Specifically, [∇Ψ(q)]h , ∂Ψ(q)

∂qh

and [S(q)]h,k , ∂2Ψ(q)
∂qh∂qk

. In order to compute ∇Ψ(q) and
S(q) consider a generic node h ∈ V and the set Eh ⊆ E of
edges connecting node h to its neighbors. Then, the function
Ψ(q) can be rewritten as

Ψ(q) = c+
∑

(i,j)∈Eh

si,j log pi,j + (1− si,j) log(1− pi,j) (7)

where the term c does not depend on qh. Since pi,j = F (qi−
qj), we can write the partial derivatives of pi,j as follows:

∂pi,j
∂qi

, p′i,j ;
∂pi,j
∂qj

, −p′i,j

and, similarly

∂2pi,j
∂q2
i

=
∂2pi,j
∂q2
j

, p′′i,j ;
∂2pi,j
∂qj∂qj

= −p′′i,j .



4

It immediately follows that

[∇Ψ(q)]h =
∑

(h,j)∈Eh

p′h,j
sh,j − ph,j

ph,j(1− ph,j)

−
∑

(i,h)∈Eh

p′i,h
si,h − pi,h

pi,h(1− pi,h)

and

[S(q)]h,h =
∑

(h,j)∈Eh

[
p′′h,j

sh,j − ph,j
ph,j(1− ph,j)

−(p′h,j)
2
p2
h,j + sh,j(1− 2ph,j)

p2
h,j(1− ph,j)2

]

+
∑

(i,h)∈Eh

[
p′′i,h

si,h − pi,h
pi,h(1− pi,h)

−(p′i,h)2
p2
i,h + si,h(1− 2pi,h)

p2
i,h(1− pi,h)2

]
.

Moreover, for h 6= k

[S(q)]h,k=


0,

if (h, k) /∈ Eh or (k, h) /∈ Eh
(p′h,k)2 p

2
h,k+sh,k(1−2ph,k)

p2h,k(1−ph,k)2
−p′′h,k

sh,k−ph,k
ph,k(1−ph,k) ,

if (h, k) ∈ Eh or (k, h) ∈ Eh

The above equations can be specialized for both the
Thurstone model as well as for the BTL model, by using
the expressions for pi,j provided, respectively, in (3) and (4).

3 LEAST-SQUARES QUALITY ESTIMATION

In this section, we propose a simpler linear estimation
algorithm, based on a least-square criterion, that can be
applied on the connected graph G(V, E). Let the distance
between objects i and j be

di,j = qi − qj

and letWi,j be the set of binary answers, of cardinality W ,
provided by the workers comparing the pair (i, j). Also,
let Ki,j be the number of times object i is preferred to
object j. Then, by construction, Ki,j follows the binomial
distribution Ki,j ∼ Bin(W,pi,j), where pi,j = F (di,j). Out
of the evaluation results, an estimate d̂i,j of di,j is formed as

d̂i,j = F−1 (p̂i,j) = F−1(yi,j + pi,j) , (8)

where p̂i,j = Ki,j/W is the estimate of pi,j , and yi,j =
p̂i,j − pi,j represents the estimation error on the prob-
ability pi,j . Note that yi,j has zero mean and variance
E[y2

i,j ] =
pi,j(1−pi,j)

W . As a consequence, d̂i,j = di,j + zi,j ,
where zi,j represents the error on the estimate of di,j
induced by the presence of yi,j . From the set of noisy
estimates {d̂i,j , (i, j) ∈ E}, the estimate q̂ = [q̂1, . . . , q̂N ]T of
q = [q1, . . . , qN ]T can be obtained by solving the following
LS optimization problem

q̂ = arg min
x

∑
(i,j)∈E

ωi,j
(
xi − xj − d̂i,j

)2
(9)

where ωi,j are arbitrary positive weights, whose setting is
discussed in Section 3.1. The solution of (9) satisfies the
following linear equations:

q̂i =
∑
j∈Ni

ωi,j
q̂j + d̂i,j

ρi
, i = 1, . . . , N (10)

where Ni represents the neighborhood of node i (i.e., the
set of nodes connected to i in G), and ρi is its generalized
degree, i.e., ρi =

∑
j∈Ni ωi,j . We can compactly express the

previous linear system in terms of the N × N matrix H̃
associated to the graph G, whose elements are defined as

[H̃]i,j =

{
ωi,j/ρi, (i, j) ∈ E ,

0, otherwise.

Let I be the identity matrix, M̃ = I − H̃, and Z = {zi,j}.
Moreover let D = {di,j} and D̂ = {d̂i,j} be, respectively,
the antisymmetric matrices of the true and estimated quality
differences6. Thus, from (10) we can write:

M̃q̂ = (H̃� D̂)1 = (H̃�D)1 + (H̃� Z)1 . (11)

where 1 = [1, . . . , 1]T is a column vector of size N . We
observe that, since graph G is connected, by construction
rank(M̃) = N−1. Therefore M̃ is singular. Indeed M̃1 = 0,
as it can be easily checked. This implies that the associated
linear operator on RN is not injective and that, given a
solution q̂′ of (10), also q̂′′ = q̂′ + α1 is a solution of (10)
for any α ∈ R. Note, however, that, for the purposes of
object ranking, the actual value of α is irrelevant, since every
solution of the form q̂′′ = q̂′ + α1 induces the same object
ranking. Therefore, we can arbitrarily fix the quality of, say,
object N to 0 as a reference, i.e., qN = 0. To take into account
this constraint, we define the new matrices H and M as
follows:

[H]i,j =

{
[H̃]i,j i < N, ∀j
0 i = N, ∀j (12)

and M = I − H, respectively. We then replace M̃ and H̃
in (11) with, respectively, M and H. Since M is full rank,
solving for q we obtain

q̂ = M−1(H� D̂)1 = q + M−1(H� Z)1 (13)

where we have used the fact that q = M−1(H�D)1.

3.1 Weight optimization

In the following, we will consider two possible choices for
the weights ωi,j . The first, which will be studied in the next
section for its simplicity, corresponds to ωi,j = 1 for all i, j,
and will be called unweighted LS or simply LS. The second,
which will be called weighted LS (WLS), is dictated by the
fact that the estimates d̂i,j do not have the same reliability.
Indeed, by developing (8) at the first order for W →∞, we
obtain

zi,j = d̂i,j − di,j =
dF−1(p)

dp

∣∣∣∣
p=pi,j

yi,j +O
(
y2
i,j

)
.

6. Notice that the (i, j)-th entry of D̂ is defined only for (i, j) ∈ E .
The same is true for matrix Z.
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so that, if we neglect the higher-order term, zi,j is a zero-
mean random variable with variance

σ2
i,j =

(
dF−1(p)

dp

∣∣∣∣
p=pi,j

)2
pi,j(1− pi,j)

W

Given the values of qj , j ∈ Ni, the optimal weights for
W → ∞ in (10) are then proportional to σ−2

i,j . For our WLS
algorithm, we will then set ωi,j = σ̂−2

i,j , with

σ̂2
i,j =

(
dF−1(p)

dp

∣∣∣∣
p=p̃i,j

)2
p̃i,j(1− p̃i,j)

W
,

where p̃i,j = max(min(p̂i,j , 1 − ξ), ξ), for a small positive
parameter ξ such that dF−1(p)

dp

∣∣∣
p=ξ

exists finite. Note that,

under this setting, 0 < ωi,j <∞.

4 ASYMPTOTIC ANALYSIS OF THE LS ESTIMATOR

All the theoretical results in this section are obtained by
considering the unweighted LS estimator, for simplicity.
However, they can be extended to the general weighted case
as long as mini,j ωi,j/maxi,j ωi,j is bounded away from 0,
as in the case described in Section 3.1.

The following propositions derive the conditions for the
asymptotic convergence of the estimated qualities to their
true values. We always assume in the following a connected
graph G with matrix H defined as in (12) and M = I −H.
We start by presenting a preliminary asymptotic result on
the mean square error.
Proposition 4.1. Consider the unweighted LS estimator in

(10) applied to connected graph G. Assume that the node
degrees are upper-bounded and define ρinf , infi ρi.
Then the MSE on the estimates q̂ can be bounded by

E[(q̂− q)T(q̂− q)] ≤ O
(
λmax
C

N

Wρinf

)
(14)

where λmax
C is the largest eigenvalue of C =(

M−1
)
TM−1 and W ≥ β logN for a sufficiently large

β.

The proof is provided in Section 1 of the Supplemental
Material.

Even if an expression similar to (14) is reported in
[10], we remind that the latter was derived for perfect ML
estimators under the assumption that F (·) is log-concave;
our results, instead, apply to LS algorithm for a general,
strictly increasing F (·). Furthermore, (14) complements and
extends results in [11] under more general settings (we recall
that results in [11] apply to the BTL model only). It is also to
be noted that the theoretical results in [11] only apply to the
regime where W is large, i.e., W = Ω

(
log2 N

δ

)
. Under such

constraint, for any connected graph, the total complexity of
the algorithm in terms of number of comparisons is at least
Ω
(
N log2 N

δ

)
.

From (14), we can deduce that, whenever λmax
C is

bounded (as for example in the case of Ramanujan graphs),
by symmetry, E[(q̂i−qi)2] = O

(
1

Wρinf

)
, i = 1, . . . , N . Thus,

if W → ∞ for N → ∞, then q̂ converges in probability to
q.

To find out the minimum number of comparisons under
which the LS approach satisfies the (ε, δ)-PAC conditions,
we need to evaluate P(supi |q̂i − qi| > ε) for ε > 0. The
following proposition gives sufficient conditions in order
for the absolute error to converge to zero in the properly
defined limiting regime.
Proposition 4.2. Consider the unweighted LS estimator in

(10) applied to connected graph G. For any ε > 0, as N
grows, P(supi |q̂i − qi| > ε) < δ, provided that

i) lim supN→∞ ‖M−1‖∞ < ∞ (i.e., the ∞-norm of
M−1 is bounded),

ii) the total number of edges of G is O(N), and W >

β(ε, δ) logN for some β(ε, δ) = O
(

1
ε2

log N
δ

logN

)
.

Assumption i) can be weakened by the following condition
i’):

i’) lim supN→∞ supA:‖A‖∞≤1 ‖M−1(H � A)1‖∞ <
∞.

The proof is provided in Section 2 of the Supplemental
Material.

Remark 4.1. Note that Proposition 4.2 provides sufficient
conditions for the existence of an (ε, δ)-PAC ranking
algorithm with complexity O(Nε2 log N

δ ). In the following
subsection, we characterize classes of graphs meeting
condition (i) or (i’) of Proposition 4.2.

4.1 Considerations on graph structure
Proposition 4.2 grants that the absolute error supi |q̂i − qi|
can be well controlled as N →∞ under some conditions on
the matrix M (condition (i) or (i’)). Such conditions hold
depending on the structure of the graph G. In order to
characterize the class of graphs for which condition (i) or
condition (i’) holds, we first observe that (13) computes the
quality of object i as the average value of the sum of esti-
mated quality differences along all paths joining node i to
the reference node N . In other words, q̂i can be regarded as
the average total reward earned by a standard random walk
that starts from node i and stops as soon as it hits node N ,
when estimates d̂i,j are the elementary rewards associated
to graph edges [20]. Then, in Section 4.1.1 we restrict our
asymptotic analysis to directed and acyclic graphs. Finally,
in Section 4.1.2 we extend it to the more general class of
undirected graphs.

4.1.1 G is directed and acyclic
An explicit solution of (10) can be found when graph G is
turned into a directed graph, i.e., by choosing for all edges
one of the two possible directions. While this assumption is
suboptimal, since it constrains the random walk to a subset
of possible trajectories, it greatly simplifies the analysis. In-
deed, first observe that, for directed graphs and unweighted
LS estimation, (10) can be rewritten as:

q̂i =
∑
j∈N−i

q̂j + d̂i,j

ρ−i
.

where N−i represents the set of in-neighborhoods of i and
ρ−i = |N−i |. Then, when the graph is directed and acyclic,
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and has the reference node N as a common ancestor, an
explicit solution for q̂i, i = 1, . . . , N − 1, is

q̂i =
1

ρ−i

∑
j1∈N−i

d̂i,j1 +
1

ρ−j1

∑
j2∈N−j1

γj2

 (15)

where

γj2 = d̂j1,j2 + . . .+
1

ρ−j`i−1

∑
j`i∈N

−
j`i−1

d̂j`i−1j`i

and `i is the length of the longest (simple) path from node
i to the reference node. Proposition 4.3 gives sufficient
conditions for a directed acyclic graph to meet the require-
ments of Proposition 4.2. The proposition exploits the notion
of proximality between nodes according to the following
definition:
Definition 4.1. Given a family of graphs {GN}N , we say that

a node i is proximal to the reference node N , with param-
eters (τ, h), if a random walk starting from i reaches the
reference node N within h hops with a probability that
is bounded below by τ asymptotically with N .

Proposition 4.3. Given a family of directed and acyclic
weakly connected graphs {ĜN}N with bounded diam-
eter, condition (i’) of Proposition 4.2 is satisfied if one
of the following three conditions is met: (i) all paths
from any node to the reference have bounded length,
(ii) supi ρ

−
i < ∞, or (iii) a fraction bounded away from

0 of the in-neighbors of any node is (τ, h) proximal for
some τ > 0 and h <∞.

The proof is provided in Section 3 of the Supplemental
Material.

4.1.2 G is undirected
Now, let us go back to the original formulation (10) on
the undirected graph. In the following, we will show that,
considered from the point of view of a given node, the
solution of (10) for an undirected graph can be obtained
by defining an equivalent problem for a properly defined
directed acyclic graph.

Consider the graph G = (V, E) on N nodes and let T
be the (N − 1) × (N − 1) matrix obtained from matrix
H by removing the last row and column (i.e., those corre-
sponding to the reference node N ). Consider a given node
i, i = 1, . . . , N − 1, and notice that

[
(I−T)−1

]
i,j

gives the
average number of times that node j is visited in the random
walk starting from i, before ending in the reference node N
[21]. Define

θj,i =

{
[(I−T)−1]

i,j

ρj
, j < N

0, j = N
(16)

which can be seen to be the average number of times any
edge incident to node j is traversed in the direction from j
to its neighbors, in the standard random walk defined on G.

Using the above definition, we build a directed acyclic
graph and define a biased random walk on it that can
be proved to be stochastically equivalent to the standard
random walk on G, from the point of view of node i. Let

→
G i= (V,

→
E i) be a directed acyclic graph, where (j, `) ∈

→
E i if

and only if (j, `) ∈ E and θj,i > θ`,i.7 Let us also define a

biased random walk on graph
→
G i, for which, given that the

current node is j, the probability of taking outgoing edge
(j, `), ` ∈ N−ji is given by

ηj→`,i =
θj,i − θ`,i∑

`′∈N−ji
(θj,i − θ`′,i)

(17)

where N−ji is the set of in-neighbors of j in
→
G i.

The usefulness of defining the above biased random

walk on
→
G i stems from the following proposition, which

states that it is equivalent to the standard random walk on
G in a precise sense.
Proposition 4.4. The estimate of qi given by (13) on G can be

obtained by solving

q̌j =
∑
`∈N−ji

(q̌` + d̂j,`)ηj→`,i, i = 1, . . . , N (18)

on
→
G i, and then setting q̂i = q̌i.

The proof is provided in Section 4 of the Supplemental
Material.

According to Proposition 4.4, q̂i can be equivalently seen
as the average total reward of the standard random walk on
graph G or as the average total reward of the biased random

walk on graph
→
G i. The following proposition gives sufficient

conditions for a family of graphs to meet the conditions of
Proposition 4.2.
Proposition 4.5. Given a family of connected graphs
{GN}N∈N with bounded diameter, condition i’) of Propo-
sition 4.2 is satisfied if, for each node i, i = 1, . . . , N − 1
one of the following conditions is satisfied: (i) all paths

in
→
G i from i to the reference have bounded length, (ii) in

→
G i, a fraction bounded away from 0 of the in-neighbors
of any node is proximal.

The proof is provided in Section 5 of the Supplemental
Material.

In the remaining part of this section, we substantiate
our theoretical findings by giving a few examples of graph
families that meet the conditions of Proposition 4.5 and are
suitable for LS quality estimation.
Example 4.1. Consider the family of complete graphs on N

nodes, i.e., GN = KN .8 Because of symmetry, we can
easily see that, after a proper permutation of the nodes,

(
→
GN )i = (

→
GN )1 for every i = 1, . . . , N −1. For the same

reason, in (
→
GN )1, θj1,1 = θj2,1 for j1, j2 = 2, . . . , N − 1.

Thus, the only surviving edges in (
→
GN )1 are the edges

connected either to node 1 or to the reference node N .
Since the maximum path length from node 1 to the

reference in (
→
GN )1 is 2, this family of graphs meets

7. It is easy to prove that
→
G i is acyclic. Indeed, suppose that the

cycle (j1, j2, . . . , jr, j1) belongs to
→
G i. This implies that, by definition,

θj1,i > θj2,i > · · · > θjr,i > θj1,i, which is impossible.
8. Note that even if this class of graphs satisfies property (i’), it can

not used to build efficient ranking algorithms, since it hasO(N2) edges.
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condition i) of Prop. 4.5. In particular, the estimate of
qi is given by

q̂i =
2

N
d̂i,N +

1

N

N−1∑
j=1
j 6=i

(
d̂i,j + d̂j,N

)

Example 4.2. Let N ′ and ∆ be any two positive numbers.
Let us build the family of graphs {GN}N≥N ′ as follows.
Nodes N − N ′ + 1, . . . , N (a set that includes the ref-
erence) are “hubs” with potentially unbounded degree.
The subgraph induced by the hub nodes is a connected
arbitrary graph. The remaining nodes have maximum
degree ∆ and are divided into N ′ subsets S1, . . . ,SN ′ .
All nodes in subset Sj , j = 1, . . . , N ′, are neighbors of
hub nodeN−j+1, while their other neighbors all belong
to Sj . It is easy to see that, for this family of graphs, the
diameter is bounded by N ′ + 1.
Consider a node i ∈ Sj . Since all paths that reach the
reference must pass through the hub nodes, it is easy

to see that, in (
→
GN )i, node i is connected only to nodes

belonging to Sj ∪ {N − N ′ + 1, . . . , N}. Whenever the

biased random walk on (
→
GN )i leaves Sj (by reaching

hub node N − j + 1) does not enter it any more. Thus,
we can divide into two parts the biased random walk:

the first on the subgraph of (
→
GN )i induced by Sj , where

hub node N − j + 1 serves as reference, and the second
on the hub nodes. Then, we can deduce the following
facts.

• In the first part of the random walk, since hub node
N − j+ 1 is the reference, the probability of reaching
it in one step from any node in Sj is larger than 1/∆.
Thus, the probability of reaching it within D′ steps is
upper-bounded by τ = 1−

(
1− 1

∆

)D′
.

• The second part of the random walk lasts for at most
N ′ − 1 steps.

Thus, every node is proximal with parameters (τ,D′+N ′−
1), and condition ii) of Prop. 4.5 is satisfied.
Figure 1 (left) shows an example of an undirected graph
with N = 32 nodes, N ′ = 7 hubs and maximum degree
of non-hub nodes ∆ = 4. Figure 1 (right) shows the

directed graph
→
G i. As it can be seen, if i belongs to Sj ,

only the hub nodes and other nodes in Sj survive in
→
G i.

The direction of edges follows the net flow of probability
from node i to the reference, depicted as a square.

Example 4.3. Star graphs represent a particular sequence
{GN}N of acyclic graphs with bounded-length paths.
Therefore, they satisfy condition i) of Prop. 4.5. In such
a case, object N is taken as pivot (i.e., center of the star)
and qualities of all the other objects are estimated only
through direct comparison with it. Observe, that, in such
particular case, ranking among objects can be directly
inferred from p̂i,N without the necessity of inverting
function F (·), since objects can be ranked according to
the following rules: r̂(i) ≺ r̂(j) iff p̂i,N > p̂j,N and
r̂(i) ≺ r̂(N) iff p̂i,N > 1/2. Therefore, star graphs are
appealing when function F (·) (i.e. the precise worker
model) is not known.

(a) (b)

Fig. 1. Left: example of undirected graph according to example 4.2, with
N = 32 nodes, N ′ = 7 hubs and maximum degree of non-hub nodes
∆ = 4. The hubs are represented by big circles, the reference by a
square. Right: Directed graph

→
G i, with edge direction corresponding to

the net probability flow from node i to the reference.

Remark 4.2. Although our unweighted LS estimator is
akin to the one in [11], our analysis of its performance
differs substantially, also because we consider the PAC
approach. Consequently, our characterization of “good”
graphs does not coincide with that of [11]. For instance, a
particular case of Example 4.2 is the wheel graph, which
corresponds to choosing N ′ = 1 (the reference node as
the only hub) and ∆ = 3. From [11, Theorem 1], the
wheel graph would require W = O(N) comparisons
per edge in order for the upper bound on the estimation
error to hold. Instead, Prop. 4.5 allows to conclude that
W > β(ε, δ) logN is enough to achieve the (ε, δ)-PAC.
More in general, we remark that results in [11] can
be applied only to algorithms employing Ω(N log2 N

δ )
comparisons.

5 RESULTS WITH SYNTHETIC DATASETS

We present numerical results showing the performance of
LS, WLS and ML algorithms for moderate values of N . As
a performance reference we also consider the algorithms
“MergeRank” proposed in [22], and “Sync-rank” proposed
in [17]. We highlight that in order to adapt the latter to our
setting, the entries of the matrix C in [17, eq.(21)] have been
computed as follows

Ci,j = p̂i,j = F−1(p̂i,j)

for every edge (i, j) ∈ E . In other words Ci,j is a local
estimate of the distance between node i and node j, based
on the knowledge of the function F (·) and on the estimated
probability p̂i,j = 2

∑W
m=1 wi,j,m

W − 1.
In Figures 2–6 we compare the error probability achieved

by several ranking algorithms versus the complexity per
object C/N . The LS (which essentially coincides with the
algorithms proposed in [11], [16]), WLS 9, ML, and “Sync-
rank” algorithms have been applied to randomly generated
regular graphs [23] whose nodes have degree ρ. Workers’

9. Reported WLS results have been obtained by setting ξ = 10−4.
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Fig. 2. Error probability achieved by several ranking algorithms plotted
versus the complexity per object C/N , for N = 50 and ε = 0.04. Object
qualities are equally spaced in [0, 1) and the workers behave according
to the Thurstone model.
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Fig. 3. Error probability achieved by several ranking algorithms plotted
versus the complexity per objectC/N , forN = 500 and ε = 0.04. Object
qualities are equally spaced in [0, 1) and the workers behave according
to the Thurstone model.

behavior is described by the Thurstone model detailed in
Section 1.1 where pi,j = F (qi − qj) and F (·) is the cdf of
a Gaussian random variable with zero mean and standard
deviation σ, i.e., F (qi − qj) = erf

(
qi−qj√

2σ

)
, with σ = 0.4.

On the y-axis we display the empirical probability, Pe, of
generating an output which is not an ε-quality ranking.
Note that an error is counted whenever at least two objects,
whose quality difference exceeds ε, appear swapped in the
estimated ranking.

In Figures 2 and 3 we consider a system withN = 50 and
N = 500 objects, respectively. We generate random regular
graphs with degree ρ = 6 (lines with square markers)
and ρ = 12 (lines without markers). Object qualities are
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 0  1000  2000  3000  4000  5000

P
e

C/N

ML ρ=6

LS ρ=6

WLS ρ=6

Fig. 4. Performance of the ML, LS and WLS algorithms and their associ-
ated confidence intervals, plotted versus the complexity per object C/N ,
for N = 50 and ε = 0.04. Object qualities are equally spaced in [0, 1)
and the workers behave according to the Thurstone model.
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 ε=0.2 LS 

 ε=0.2 WLS

 ε=0.1 ML 

 ε=0.1 LS 

 ε=0.1 WLS

Fig. 5. Performance of the ML, LS and WLS algorithms, plotted versus
the complexity per object C/N , for N = 50 and for ε = 0.1, 0.2. Object
qualities are equally spaced in [0, 1) and the workers behave according
to the Thurstone model.

equally spaced in [0, 1) and ε = 0.04. The figure shows
that the “Sync-rank” and LS algorithms behave similarly,
while the WLS algorithm shows superior performance. It
is interesting to observe that the WLS algorithm provides
significant enhancements with respect to the LS algorithm
and almost perfectly matches the performance of the more
(computationally) complex ML approach. For N = 500 the
performance of the ML is not shown because of its high
computational complexity.

The accuracy of the proposed results are shown in
Figure 4 where confidence intervals are associated to each
curve. Each simulation point was obtained by counting
1000 error events, and the confidence level was set to 3
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Fig. 6. Performance of the LS and WLS ranking algorithms plotted
against the complexity per object C/N , for N = 200 objects. Object
qualities are drawn from a uniform distribution in [0, 1) and the workers
behave according to the Thurstone model.

standard deviations from the average of the dataset. As the
figure shows, the proposed results are highly accurate, thus
supporting the validity of our solutions.

In Figure 5 we focus on the caseN = 50 and vary the pa-
rameter ε. As ε increases, less stringent criteria are required
for declaring the correctness of the estimated ranking10 and,
therefore, fewer comparisons per edge, hence a smallerC/N
is required to achieve the same error probability. Also, we
observe that as W decreases, the weights employed in the
WLS algorithm tend to be less reliable. This explains why
for ε = 0.2 the WLS perform as the LS algorithm while for
smaller ε it approaches the ML performance.

Figure 6 compares the performance of the LS and of
the WLS algorithms for N = 200 objects. Object qualities
are randomly generated according to a uniform distribution
in [0, 1), and ε = 0.04. The figure reports the empirical
error probability for different values of the nodes’ degree
of the graph. We first observe that, given C/N , the number
of tests per edge of the graph decreases as the degree ρ
increases. Hence, as ρ increases, distances between pair of
objects (corresponding to edges of the graph) are estimated
with a decreasing accuracy. In spite of that, a larger number
of neighbors for each node (i.e., a larger ρ) leads to a
more reliable evaluation of object qualities. This effect is
more evident when the WLS algorithm is employed. Indeed,
because of the weights ωi,j , as ρ increases, WLS is able to
well exploit the increasing number of highly reliable edges
in the graph connecting objects with similar qualities; at the
same time WLS is able to limit the impact of the greater
number of scarcely reliable edges that connect objects with
largely different qualities.

10. We recall that an error is counted whenever at least two objects,
whose quality difference exceeds ε are swapped in the estimated
ranking
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Fig. 7. Error probability provided by ML and WLS algorithms when a 2-
stage adaptive approach is employed, for ρ = ρ(1) = ρ(2) = 6, 12, and
N = 50.

5.1 Adaptive multistage approach

The performance of the proposed ranking algorithms can
be improved by adopting a multistage approach where, at
each stage, new edges are added to the graph, depending
on the quality estimates obtained at the previous stage. The
rationale of this approach stems from the fact that such
algorithms provide approximate rankings, in which the
probability of swapping the order of two objects increases
as their distance (in terms of their qualities) decreases.
Therefore, in order to mitigate this phenomenon and, thus,
to improve the reliability of the estimate, it is convenient
to (i) add to the graph extra edges connecting neighboring
objects (in terms of their estimated qualities); (ii) assign
additional workers to the already existing edges connecting
the aforementioned neighboring objects. This procedure can
be iterated until a desired performance level is achieved.

In our simulation setup, we have considered a 2-stage
approach where we first apply the estimation algorithm
to a random regular graph, G(1)(V, E(1)), of degree ρ(1),
obtaining the vector of estimates q̂(1). In the second stage,
we create a new regular graph, G(2)(V, E(2)) of degree ρ(2),
where each node is connected to its ρ(2) closest neighbors,
according to the estimates q̂(1). Finally, the estimation al-
gorithm is applied to the graph G(1) ∪ G(2) obtaining the
output q̂(2) which is used to infer the ranking. In Figure 7
we show the performance of the ML and WLS algorithms
when the proposed multistage approach is employed. For
both algorithms we show the error probability versus the
number of tests per object, C/N , for ρ = ρ(1) = ρ(2) = 6, 12,
and N = 50. We observe that the second stage allows for a
significant improvement of the performance and a reduction
of about 60% of the required tests per object for ρ = 6 and
of about 30% for ρ = 12. In both cases the performance of
the WLS algorithm is very close to that provided by the ML
algorithm.
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Fig. 8. Distance between true and estimated ranking for Premier League
scores. The x-axis is the season. The y-axis is the Kendall tau distance
(number of inversions) between the final season ranking and the output
of the WLS algorithm, for different choices of the model and of the
parameters.

6 RESULTS WITH REAL-WORLD DATASETS

In this section, we show that our algorithm works well
even when considering a real-world scenario, where the
“evaluations” are the outcome of experiments, and not
synthetically generated by simulations. In particular, we
consider five recent seasons of the English Premier League
and build up a N = 20 complete graph, where nodes are
the football teams and edges are the matches between each
pair of them. The match between team i and team j is
considered as lasting for 180 minutes, since it includes both
the round when i is at home and the round where i is away.
If team i has scored xi,j goals in the match against team j,
we count Ki,j = αxi,j + β evaluations in favor of i when
compared to j, where α > 0 and β ≥ 0 are constant. The
total number of comparisons between i and j is then simply
Wi,j = Ki,j +Kj,i

11.
The WLS algorithm has been run with ξ = 10−4 and

both the Thurstone and BTL models, to see the influence of
the underlying worker model. The true ranking is assumed
to be the final season ranking. The results have been plotted
in terms of the Kendall tau distance, which counts the
number of inversions in the estimated ranking with respect
to the true ranking, i.e. the number of pairs (i, j) for which
i is ranked better than j in the true ranking and worse than
j in the estimated one.

Results are shown in Fig. 8. First, we can observe that
the performance is better with β > 0 than with β = 0,
since in the latter case there might be some edges for which
the estimated preference probability is very close to either
0 or 1. Such edges are automatically dropped by the WLS
algorithm, while in the former case each object in each
comparison receives at least β preferences, so that all edges
are used for ranking computation. Second, the Thurstone
model seems to be slightly better suited than the BTL model.
Third, while in most cases, the influence of parameters is
limited, there are cases (like season 16/17) that are more

11. With this definition, the edge between i and j may be actually
missing if xi,j = xj,i = 0 and β = 0.

sensible to the choice of α and β. It is worth mentioning that,
in [17], the Sync-Rank algorithm is applied to older Seasons
of the Premier League. Comparatively, for β > 0, Kendall
tau distance for our algorithm never goes beyond 20, giving
rise to a Kendall correlation larger than 0.90, which is a
better result than those shown in [17].

7 CONCLUSIONS

In this work, we have focused on the problem of ranking
N objects starting from a set of noisy pairwise comparisons.
Objects are assumed to be endowed with intrinsic quali-
ties. A general parametric model is introduced where the
probability pi,j that object i is preferred to j is given by
an arbitrary smooth monotonic function of the difference
between the qualities of the two competitors. For such a
scenario we developed a class of order-optimal ranking al-
gorithms, i.e. algorithms that are provably (ε, δ)-PAC when
O(Nε2 log(Nδ )) comparisons are blindly allocated in a single
round. Our ranking procedure is based on the reconstruc-
tion of object qualities, from pairwise quality differences,
by adopting a simple LS approach. The analysis establishes
a parallelism between the quality estimation process and
the cumulative reward accumulated by random walks on
graphs. Regarding the choice of the graph, we first provide
examples of graph families that are asymptotically suitable
for our proposed LS estimation technique (see Examples
4.1- 4.3). Then, through simulation results we show that,
even when the number of nodes is finite and the graph is
randomly generated, our proposed WLS algorithm provides
excellent performance and approaches that obtained by the
ML algorithm. Moreover, in order to further improve the
performance, we propose an effective “multistage” strategy
in which we aim at concentrating the comparisons between
objects whose qualities are not too different.

Our results complement and extend previous studies [7],
[8], [9] on the minimal complexity of ranking algorithms un-
der different non-parametric preference models. We remark
that the results of this work, as summarized above, have
wide applicability as they apply to a general parametric
model. Thus, they are independent of a specific worker
behavioral model and of the considered context.
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[7] B. Szörényi, R. Busa-Fekete, A. Paul, and E. Hüllermeier, “Online
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