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Abstract—Texture features are often used on ultrasound 
images in various applications to give forth important clinical 
information. Recently, many beamforming techniques have been 
developed to provide better resolution and contrast in the final 
image. It is currently unknown, however, how these different 
techniques may also alter pixel intensity spatial distribution, 
known as texture. We provide here a robustness analysis of first 
and second order texture features using six beamforming 
techniques, on both phantom and in vivo musculoskeletal images. 
We show that second order texture features are more robust 
compared to first order features, especially when considering in 
vivo musculoskeletal images. 
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I. INTRODUCTION 

Ultrasound images show a unique speckle pattern, which 
results from the interaction between tissue components and the 
ultrasonic wave [1]. The speckle pattern is also known as the 
ultrasound image texture. Texture features are commonly used 
on ultrasound images to provide important clinical information, 
such as tissue/organ functionality and health [2]. First-order 
texture features depend only on the global pixel distribution (i.e., 
the luminosity histogram), whereas second-order features 
depend on the spatial distribution of pixel intensities and their 
relationship between each other. Texture features have shown to 
help discriminate cancerous tissue in ultrasound images of the 
thyroid, ovaries, liver, prostate, and breast [2]. Studies have also 
shown how texture features are useful in other applications, such 
as musculoskeletal ultrasonography [3], [4]. 

Recently, numerous beamforming techniques have been 
developed that provide a better resolution and contrast than the 
traditional delay and sum (DAS) method [5]–[7]. It is currently 
unknown, however, how different beamforming techniques, 
while improving resolution and contrast, may also alter 
ultrasound image texture. In this work, we provide a robustness 
analysis of commonly used first-order and second-order texture 
features using different beamforming techniques. 

II. MATERIAL AND METHODS 

A. Acquisition and Formation of Ultrasound Images 

The dataset is composed of one phantom image (model 
040GSE, CIRS Inc, USA), shown in Fig. 1, and two in vivo 
transversal images of the vastus lateralis muscle of a healthy 
subject (Fig. 2). The images were acquired using a 192-element 
linear array probe (model LA533, Esaote s.p.a., Florence, Italy) 
at 5 MHz (for the phantom) or 7 MHz central frequency (in vivo 
images), connected to the ULA-OP open system [8]. A 64-
element aperture was used in transmission and reception. The 
transmitted signal was a 2-cycle, Hanning-tapered sinusoidal 
burst at the central frequencies mentioned. During phantom and 
in vivo acquisitions, the transmit focal depth was set to 20 mm 
and 25 mm, respectively. In reception dynamic focusing was 
always applied, and 192 scan lines were acquired. 

The acquired raw radiofrequency (RF) signals, sampled at 
50 MHz, were used to reconstruct B-mode ultrasound images 
using six different beamforming methods, which are now briefly 
described. A more comprehensive overview can be found in [5], 
[9].  

Briefly, the RF signals ŝi(t), with i=1…N, received by the N 
elements in the transducer array active aperture, were first 
focused by applying a proper set of focusing delays (τi) and then 
summed up, which is known as Delay and Sum (DAS) 
beamforming: 
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where yDAS is the DAS-beamformed output signal.  

The other five beamformers are based on the concept of 
backscattered- echo spatial coherence. Firstly, the Filtered Delay 
Multiply and Sum (FDMAS) algorithm [5] computes the 
beamformed signal yFDMAS as: 
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where BPfilter represents a band-pass filter, which was set to 
pass the second harmonic component at twice the frequency of 
the transmitted signal. 

The other implemented algorithms were the coherence factor 
(CF) [10], generalized CF (GCF) [6], phase and sign CF (PCF 
and SCF) [11]. These methods, differently from FDMAS, are 
based on the computation of a weighting matrix which is applied 
to the DAS-beamformed image in the following way: 
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where k represents the spatial frequency index, S(k) is the 
spectrum of si(t), M0 is a spatial frequency threshold, γ and p are 
two user-defined parameters that can be employed to tune the 
sensitivity of PCF and SCF, respectively, σ(φi(t)) is the standard 

deviation of the signal instantaneous phases φi(t), and bi(t) = 
sign(si(t)). 

In this work, the parameter M0 was set to 2, while γ and p 
were both set to 0.8. 

The final image in dB scale was obtained by computing the 
beamformed signal envelopes through the Hilbert transform, 
then normalizing it to its maximum value and applying a 
logarithmic compression. 

To obtain the final 8-bit pixel image, the dynamic range was 
automatically computed [12] and a calibration factor of 0.06 
mm/pixel was used in both directions.  

B. Texture Feature Extraction 

We analysed texture features computed on six different 
ultrasound images obtained using the same raw RF signals and 
reconstructed using the previously described beamforming 
techniques. To do so, four Regions-of-Interest (ROI) of the same 
dimensions (45x50 pixels2) were manually placed on the 
phantom image, to consider ROIs including both a hypoechoic 
and a uniform section (Fig. 1.A, ROI1), a uniform speckle region 
(Fig. 1.A., ROI2), a reflector (Fig. 1.A, ROI3), and a uniform 
hyperechoic region (Fig. 1.A, ROI4). In the two in vivo 
musculoskeletal images, a rectangular ROI (160x285 pixels2) 
was placed in between the two aponeurosis (Fig. 2.A). The ROI 
for the first in vivo musculoskeletal image is abbreviated as 
Vasto1, and the ROI for the second image as Vasto2.  

A total of 49 texture features, which are described in the 
following paragraphs, were computed in each ROI for each 
beamforming technique. 

 

Fig. 1.  Example of phantom image obtained with different beamforming 
techniques: A) DAS; B) FDMAS; C) CF; D) GCF; E) PCF; and F) SCF.  
Panel A) shows the manually-selected ROIs overlaid in white. The dynamic 
range value was automatically determinated for each image: DAS = 60 dB, 
FDMAS = 70 dB, CF = 85 dB,  GCF = 70 dB , PCF = 70 dB and SCF = 85 
dB. 

 

Fig. 2.  Example of in vivo transversal images of the vastus lateralis muscle 
(Vasto1) of a healthy subject obtained with different beamforming 
techniques: A) DAS; B) FDMAS; C) CF; D) GCF; E) PCF; and F) SCF. 
Panel A) shows the manually selected ROI. The dynamic range was 
automatically estimated for each image: DAS = 55 dB, FDMAS = 75 dB, CF 
= 85 dB, GCF = 75 dB, PCF = 65 dB and  SCF = 85 dB. 



1) First-Order Features 
Based on the first-order statistics, five features were 

extracted from the ROIs: mean, variance, entropy, kurtosis, 
skewness. Table I presents the mathematical description of these 
features.  

2) Haralick Features 
The Haralick features are based on the grey-level co-

occurrence matrix (GLCM) [13]. The GLCM measures the 
number of times a specific intensity pattern between adjacent 
pixels is repeated. GLCM was computed for four angles, i.e. 0°, 
45°, 90°, 135°, and the mean over all four directions was 
calculated. The mathematical description of the Haralick texture 
features are listed in the Table II.   

3) Galloway Features 
The Galloway features are mathematical descriptors of the 

run length matrix (RLM) [14]. The RLM is a matrix, in which 
each element represents the number of pixels with run length i 
and intensity j in a given direction. We estimated the Galloway 
features at the same 4 angles (0°, 45°, 90° and 135°), and 
computed the mean over all four directions. Table III shows the 
mathematical description of Galloway features.     

C. Robustness Analysis  

To evaluate the robustness of the texture features, we first 
computed the mean and standard deviation of each feature 
among the 6 analyzed beamforming methods. Then, the 
Coefficient of Variation (CoV) was computed as the ratio of the 
standard deviation and the mean, to evaluate the variability of 
the texture feature values among beamforming techniques. The 
CoV was computed on the average values over the four 
directions for the Haralick and Galloway features. A cut-off 
value of 0.1 was used; hence, if the CoV was equal or less than 
0.1, the beamforming methods showed similar texture parameter 
values which were therefore considered robust among 
beamforming techniques. On the other hand, a CoV higher than 
0.1 represented more variation in the texture feature values, and 
the texture features were not considered robust among 
beamforming methods.  

III. RESULTS 

Table IV shows the CoV values for the six different ROIs 
and the considered texture features. The values in bold are those 
that are above the considered threshold (i.e., 0.1). As can be 
seen, the first order mean and entropy features were robust 
between beamforming methods (CoV<0.1) for all four phantom 
image ROIs, whereas the other three first-order features (i.e., 
variance, skewness and kurtosis) showed more variation 
(CoV>0.1). Considering the musculoskeletal in vivo images, 
however, all first-order features showed a CoV>0.1. The second 
order Haralick and Galloway features showed similar robustness 
considering both phantom and clinical images. In particular, the 
features that were found to be robust and showed similar values 
among beamforming methods were the Haralick Icon, IEntr, Icor, 
IEner, and the Galloway SRE, GLNU, RLNU, and RP. 

TABLE III.       MATHEMATICAL DESCRIPTION OF GALLOWAY FEATURES 

Feature  Description 

Short run emphasis (SRE) SRE=

∑ ∑ RLM(i,j)
j2

Nr
j=1

Ng

i=1∑ ∑ RLM(i,j)Nr
j=1

Ng

i=1

 

Long run emphasis (LRE) LRE=
∑ ∑ j2RLM(i,j)Nr

j=1
Ng

i=1∑ ∑ RLM(i,j)Nr
j=1

Ng

i=1

 

Gray-level nonuniformity 
(GLNU) GLNU=

∑ ൫∑ RLM(i,j)Nr
j=1 ൯2Ng

i=1∑ ∑ RLM(i,j)Nr
j=1

Ng

i=1

 

Run length nonuniformity 
(RLNU) RLNU=

∑ ቀ∑ RLM(i,j)
Ng

j=1 ቁ2Nr
i=1∑ ∑ RLM(i,j)Nr

j=1

Ng

i=1

 

Run percentage (RP) RP=
∑ ∑ RLM(i,j)Nr

j=1
Ng

i=1

Ng Nr
 

RLM: run length matrix. Ng represents the number of gray levels in the image (i.e., 
the number of rows of the matrix R), Nr represents the number of runs (i.e., the 
number of columns of the R matrix). 

 

TABLE I.         MATHEMATICAL DESCRIPTION OF FIRST-ORDER FEATURES 

Feature Description 

Mean (m) m=෍ ෍ I(i,j)

M  N

N

j=1

M

i=1
 

Variance (σ2) σ2=
∑ ∑ ሼIሺi,jሻ-mሽ2N

j=1
M
i=1

M  N
 

Skewness (Sk) Sk=
1

M  N
 
∑ ∑ ሼIሺi,jሻ-mሽ3N

j=1
M
i=1

σ3  

Kurtosis (Kt) Kt=
1

M  N
 
∑ ∑ ሼIሺi,jሻ-mሽ4N

j=1
M
i=1

σ4  

Entropy (Ent1) Ent1= -෍ hist(x)* log2 (hist(x))
Ngx=1

 

I(i,j) denotes the input region of interest (ROI). M is the number of columns of the ROI. 
N is the number of rows of the ROI. Ng is the number of gray levels of the image. hist 
is the normalized histogram counts. 

TABLE II.        MATHEMATICAL DESCRIPTION OF HARALICK FEATURES 

Feature Description 

Symmetry (Isym) Isym=1-෍ ෍ |i-j|P(i,j)
Ng-1

j=0

Ng-1

i=0
 

Contrast (Icon) Icon=෍ n2 ቊ෍ ෍ P(i,j)
Ng-1

j=0

Ng-1

i=0
ቋNg-1

n=0
 

Homogeneity (Ihmg) Ihmg= ቊ෍ ෍ 1

1+(i-j)2 P(i,j)
Ng-1

j=0

Ng-1

i=0
ቋ 

Entropy (IEntr) IEntr=-෍ ෍ P(i,j) log P(i,j)
Ng-1

j=0

Ng-1

i=0
 

Correlation (Icor) Icor=
∑ ∑ (i-j)P(i,j)

Ng-1

j=0

Ng-1

i=0 - μxμy

σxσy
 

Energy (Ienrg) Ienrg= ෍ ෍ (P(i, j))2
Ng-1

j=0

Ng-1

i=0
 

P(i,j) is equal to 
C(i,j)∑C(i,j)

, where C(i,j) represents the gray level co-occurrence matrix. 

Ng is the number of gray levels. σx,σy,μx,μy are the standard deviations and means 

of Px, Py, the marginal probability density functions.  



IV. DISCUSSION 

In this preliminary study, we have analyzed if texture 
features computed on images obtained using different 
beamforming techniques are similar between each other or not. 
Specific features showed more variability among beamforming 
techniques, as shown in Table IV, but this should not be assumed 
to necessarily be a negative aspect. Here we have studied if 
texture features are robust among beamforming techniques, 
without taking into consideration if certain features computed on 
images obtained with different beamforming methods are able 
to better discriminate healthy from diseased tissue. Further 
studies are needed to confront this specific important aspect.  

There are some limitations to this study. Firstly, the 8-bit 
images used in this study were obtained by automatically 
determining the dynamic range. Considering the phantom 
image, the dynamic range values were the following: DAS = 60 
dB, FDMAS = 70 dB, CF = 85 dB, GCF = 70 dB, PCF = 70 dB 
and SCF = 85 dB. Both the in vivo musculoskeletal images were 
obtained using the same dynamic range: DAS = 55 dB, FDMAS 
= 75 dB, CF = 85 dB, GCF = 75 dB, PCF = 65 dB and SCF = 
85 dB. Varying the dynamic range will produce images that are 
visually different, mainly in terms of pixel intensity, but perhaps 
also in terms of speckle pattern, and this aspect was not 
considered in this study. The high CoV values, especially for the 
in vivo musculoskeletal first-order texture features, could be 
partially due to the different image dynamic ranges. Secondly, 
here we have provided a robustness analysis for first-order and 
commonly used second-order features, but there are numerous 
higher-order features (i.e., [15]) that have not been included 
here, which will be analyzed in future studies.  

 

 

 

V. CONCLUSION 

We have presented a robustness analysis of first-order and 
second-order texture features using six different beamforming 
algorithms. We demonstrated how second-order texture features 
typically show more similar values among beamforming 
techniques when compared to first-order features, especially 
when considering in vivo musculoskeletal ultrasound images.  
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TABLE IV.            COEFFICIENT OF VARIATION (COV) RESULTS 

 ROI1 ROI2 ROI3 ROI4 Vasto1  Vasto2 

Mean 0.057 0.064 0.051 0.070 0.189 0.189 
Variance 0.339 0.364 0.149 0.168 0.144 0.143 
Entropy 0.000 0.000 0.000 0.083 0.387 0.376 
Kurtosis 0.815 1.749 0.385 0.367 0.334 0.351 

Skewness 0.236 0.203 0.166 0.064 0.198 0.203 
Isym 0.218 0.118 0.321 0.101 0.179 0.179 
Icon 0.009 0.019 0.015 0.006 0.019 0.020 
Ihmg 0.233 0.155 0.506 0.196 0.234 0.233 
IEntr 0.047 0.035 0.069 0.050 0.040 0.040 
Icor 0.070 0.064 0.101 0.028 0.060 0.060 
IEner 0.028 0.022 0.043 0.052 0.030 0.029 
SRE 0.025 0.016 0.042 0.014 0.023 0.024 
LRE 0.142 0.081 0.180 0.250 0.183 0.164 

GLNU 0.097 0.081 0.110 0.046 0.069 0.074 
RLNU 0.079 0.057 0.147 0.039 0.083 0.084 

RP 0.035 0.025 0.062 0.053 0.040 0.039 
Isym: Haralick symmetry; Icon: Haralick contrast; Ihmg: Haralick homogeneity; IEntr: 
Haralick entropy; Icor: Haralick correlation; Ienrg: Haralick energy; SRE: Galloway short-
run emphasis; LRE: Galloway long run emphasis; GLNU: Galloway gray level non 
uniformity; RLNU: Galloway run length non uniformity; RP: Galloway run percentage. 

 


