
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Learning Localized Representations of Point Clouds with Graph-Convolutional Generative Adversarial Networks /
Valsesia, D.; Fracastoro, G.; Magli, E.. - In: IEEE TRANSACTIONS ON MULTIMEDIA. - ISSN 1520-9210. - 23:(2021),
pp. 402-414. [10.1109/TMM.2020.2976627]

Original

Learning Localized Representations of Point Clouds with Graph-Convolutional Generative Adversarial
Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TMM.2020.2976627

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2864112 since: 2021-01-20T16:23:40Z

Institute of Electrical and Electronics Engineers Inc.

1

Learning Localized Representations of Point Clouds
with Graph-Convolutional Generative Adversarial

Networks
Diego Valsesia, Member, IEEE, Giulia Fracastoro, Member, IEEE, and Enrico Magli, Fellow, IEEE

Abstract—Point clouds are an important type of geometric data
generated by 3D acquisition devices, and have widespread use in
computer graphics and vision. However, learning representations
for point clouds is particularly challenging due to their nature
as being an unordered collection of points irregularly distributed
in 3D space. Recently, supervised and semisupervised problems
for point clouds leveraged graph convolution, a generalization
of the convolution operation for data defined over graphs. This
operation has been shown to be very successful at extracting
localized features from point clouds. In this paper, we study
the unsupervised problem of a generative model exploiting graph
convolution. Employing graph convolution operations in gener-
ative models is not straightforward and it poses some unique
challenges. In particular, we focus on the generator of a GAN,
where the graph is not known in advance as it is the very output
of the generator. We show that the proposed architecture can
learn to generate the graph and the features simultaneously.
We also study the problem of defining an upsampling layer in
the graph-convolutional generator, proposing two methods that
respectively learn to exploit a multi-resolution or self-similarity
prior to sample the data distribution.

Keywords—Generative Adversarial Networks, Graph convolution,
Point clouds

I. INTRODUCTION

Convolutional neural networks (CNNs) are at the core of
highly successful models in image generation and understand-
ing. This success is due to the ability of the convolution
operation to exploit the principles of locality, stationarity and
compositionality that hold true for many data of interest. In
particular, convolution allows to extract local features, and
weight sharing across the data domain greatly reduces the
number of parameters in the model, simplifying training and
countering overfitting. However, while images are defined
on an underlying regular grid structure, several other data
types naturally lie on irregular or non-Euclidean domains [1].
Examples include problems in 3D models [2], [3], keypoints in
sketch images [4], computational biology [5], [6] or social net-
work graphs [7]. Being able to define CNN-like architectures is
key to exploit useful priors on the data to obtain more powerful
representations. In this paper we focus on point clouds [8],
[9], [10], which are a set of 3D coordinates representing the

The authors are with Politecnico di Torino – Department of Electronics and
Telecommunications, Italy. email: {name.surname}@polito.it. This research
has been funded by the Smart-Data@PoliTO center for Big Data and Machine
Learning technologies. We thank Nvidia for donating a Quadro P6000 GPU
through the GPU Grant Program.

geometry of an object or scene. Point clouds are becoming
increasingly popular due to their ability to provide a more
detailed and immersive representation of the real world, and
due to the increased availability of acquisition instruments
such as LiDAR scanners or sets of cameras. However, their
processing is challenging due to their irregular structure.

Graph convolution is emerging as one of the most successful
approaches to deal with data where the irregular domain can
be represented as a graph. In this case, the data are defined
as vectors on the nodes of a graph. Defining a convolution-
like operation for this kind of data is not a trivial task, as
even simple notions such as shifts are undefined over graphs.
The literature has identified two main approaches to define
graph convolution, namely spectral or spatial. In the former
case [11], [12], [7], the convolution operator is defined in
the spectral domain through the graph Fourier transform [13].
Fast polynomial approximations [12] exist that allow an effi-
cient implementation of this operation. This spectral approach
has been successfully used in problems of semi-supervised
classification [7] and link prediction [14]. However, the main
drawback of these techniques is that the structure of the graph
is supposed to be fixed and it is not clear how to handle
the case where the graph structure varies. The latter class
of methods [15], [16] defines the convolution operator using
a spatial approach, where the convolution is performed by
local aggregations, i.e., weighted combinations of the vectors
restricted to a neighborhood. Since in this case the convolution
is defined at a neighborhood level, the operation remains well
defined even when the graph structure varies.

Generative models are powerful tools in unsupervised learn-
ing that aim at learning the distribution of the data, which can
be used to sample new data or regularize inverse problems.
Generative Adversarial Networks [17] (GANs) have enjoyed
great success in recent years, thanks to their results on the
challenging image generation tasks where they have been
shown to create novel sharp and realistic images. In particular,
they seem to provide better approximations of the data distri-
bution with respect to other methods such as Variational Auto-
Encoders [18] (VAEs). Their latent space has also been shown
to capture semantic representations of the data [19]. However,
so far very little work has been done on generative models
for point clouds. In the first work on the topic, Achlioptas
et al. [20] studied some GAN architectures to generate point
clouds. However, their generator network is composed of
densely connected layers and it is therefore unable to generate
localized feature representations, which may capture useful

2

prior knowledge of the data distribution.

In this paper, we study a generative model for point clouds
based on graph convolution. In particular, we focus on the gen-
erator of a GAN. Our goal is to create localized representations
in the hidden layers so that useful data priors can be exploited.
In particular, localized features can exploit a compositionality
prior in the data, where the representation of the whole can
be constructed from the representations of its parts. Also,
we study how to exploit two other priors of the point cloud
data: i) a multiresolution structure whereby a low-resolution
(low number of points) representation can coarsely describe
the high-resolution (high number of points) object; ii) a self-
similarity structure whereby the representation of a part of
the point cloud is similar to the representation of another part.
GAN generators are not well explored in the graph convolution
literature as they pose a unique challenge: how can one apply
a localized operation (the graph convolution) without knowing
the domain (the graph) in advance because it is the very output
of the generator? We show that the construction presented in
this paper learns domain and features simultaneously and pro-
motes the features to be graph embeddings, i.e. representations
in a vector latent space of the local dependencies between a
point and its neighbors. Furthermore, we address the problem
of upsampling at the generator, i.e. increasing the number
of points in the hidden layers. While downsampling, in the
form of graph coarsening, is a staple in supervised or semi-
supervised problems using graph convolution, it is not obvious
how to properly upsample the intermediate layers of a graph-
convolutional GAN generator. We propose two alternative
methods: one that leverages the multiresolution prior, the other
the self-similarity prior.

An earlier version of this work first appeared in [21], intro-
ducing the concept of a graph-convolutional GAN generator
and providing a preliminary set of results. This paper extends
[21] by presenting i) a novel point upsampling method (proba-
bilistic upsampling) for the hidden layers of the generator; ii) a
detailed analysis of its properties which exploit a different data
prior with respect to the other methods; iii) new qualitative and
quantitative experimental results, including additional object
classes and a deeper analysis of the representations learned by
the network; iv) a discussion on complexity issues.

This paper is organized as follows. Section II introduces the
notation, some background material on GANs and discusses
related works using neural networks for point cloud analysis
and generation. Section III presents the proposed architecture
for a GAN generator using graph convolution. Section IV
expands the proposed architecture by introducing upsampling
layers, for which we propose two alternative approaches.
Section V suggests an interpretation of the features learned
by the proposed architecture in terms of graph embeddings.
Section VI provides quantitative and qualitative experiments
as well a detailed analysis of the properties of the features
learned by the proposed generator. Finally, Section VII draws
some conclusions.

II. BACKGROUND

A. Notation and Definitions
We denote vectors and matrices by lowercase and uppercase

boldface characters, respectively.
The notation a ∼ N (µ,Σ) means that the random vector

a is Gaussian distributed, its mean is µ, and its covariance
matrix is Σ.

B. Generative Adversarial Networks
GANs [17] are state-of-the-art generative models that learn

the distribution of training data and allow to draw new samples
from it. The key insight of GANs is treating the training
process as a game between two neural networks: a generator
G, whose goal is to generate realistic samples reproducing
the data distribution, and a discriminator D, whose goal is
recognize the fake samples from real ones. The generator
learns a function that maps a random vector z in a latent
space to a sample x from the data distribution. In the original
formulation, the discriminator worked as a traditional binary
classifier trained to separate real samples from generated ones.
This formulation was discovered [22] to be minimizing the
Jensen-Shannon divergence between the true data distribution
and the distribution of the generated data. However, it suffered
from mode collapse and training instability issues, where the
generator would get stuck on a mode of the distribution and
always generate the same samples or would not converge at
all. Recently, the Wasserstein GAN [23] addressed such issues
by modifying the loss function to be a dual formulation of an
optimal transport problem using the Wasserstein metric. This
formulation requires constraining the discriminator to have a
bounded Lipschitz constant and the optimal G and D can be
obtained by solving the following optimization problem:

min
G

max
‖D‖L≤1

Ex∼pdata
[D(x)]− Ez∼pz

[D(G(z))] , (1)

being pdata the distribution of training data and pz a prior
distribution on the latent vectors, typically uniform or spherical
Gaussian. In this paper, we use the gradient penalty method
[24] to enforce the Lipschitz constraint at the discriminator.

Extensive literature is available on using GANs to generate
natural images [25], [26], [27], showing the ability to produce
sharper and more realistic images when compared with other
methods, such as Variational Auto-Encoders (VAEs) [28]. The
adversarial training principle, i.e., using a game between two
networks to approximate a distribution, has also been used to
augment the training objective of several problems such as
superresolution [29], inpainting [30], regularization of inverse
problems [31], and many more [32], [33], [34], [35], yielding
improved results.

C. Related work
Point clouds provide a challenge for traditional convolu-

tional models due to the irregular positioning of the points
and to being an unordered set of points. This means that any
permutation of the order of its members, while changing the
representation, does not change its semantic meaning.

3

Earlier work on point cloud data has been typically focused
on supervised problems such as classification and segmentation
of point clouds, while little work has been done on generative
models. Classification and segmentation has been addressed
using three approaches: voxelization, permutation-invariant
networks, and graph convolution. Voxelization [36], [37] is
based on the idea of approximating the irregular point struc-
ture with a regular 3D grid. Instead, networks like PointNet
[38], [39] address the problem of permutation invariance by
processing each point identically and independently before
applying a globally symmetric operation such as average or
max pooling. The most recent approaches [15], [16] build
graphs in the Euclidean space of the point cloud and use graph
convolution operations. This has shown multiple advantages
in i) reducing the degrees of freedom in the learned models
by enforcing some kind of weight sharing, and ii) extract-
ing localized features that successfully capture dependencies
among neighboring points. Notice that the PointNet++ model
[39] also proposes to use localized operations, while not fitting
the definition of graph convolution.

This paper, however, studies a generative model for point
clouds, which has unique challenges and has been less studied
in the literature. Some approaches use VAEs: Fan et al. [40]
generate point clouds conditioned on an input image; Nash and
Williams [41] use object segmentation labels to generate point
clouds by parts; Litany et al. [42] focus on generating vertices
on meshes with a fixed and given topology. The work closest
to this paper is the one by Achiloptas et al. [20] where a GAN
to generate point clouds is studied for the first time. However,
this GAN has a generator composed of fully connected layers,
which is unable to generate interpretable localized features for
the points and is not able to exploit the powerful priors for
point cloud data leveraged by the convolution operation.

Finally, it is worth mentioning a different class of generative
problems, i.e., the ones involving generation of graphs [43],
[44] where the objective is to learn the distribution of the
adjacency matrix of a class of graphs. Generating point clouds
is different due to the fact that each vertex has a signal
composed of the x,y,z coordinates (and optionally color), so
that it is not enough to generate an adjancency matrix to
actually generate the point cloud.

III. PROPOSED GRAPH-CONVOLUTIONAL GAN

In this section, we describe the proposed generative model.
GANs have provided outstanding results for image generation
and they have shown that they can approximate the data
distribution better than other generative models such as VAEs
[18]. For this reason, designing a GAN to generate point clouds
can be of high interest.

As explained in the previous section, a GAN is composed
by a generator and a discriminator network. The focus of
this paper is on the generator network, where we propose a
new generator based on graph convolution operations. This
can provide several advantages, because it allows us to learn
localized features and also reduce the number of parameters by
exploiting weight sharing. The work in [20] already presents
a GAN to generate point clouds, but in this case it uses a

fully-connected generator network. Therefore, it is unable to
provide any localized interpretation of its hidden layers.

Introducing graph convolution operations at the generator is
not straightforward since the graph is not known in advance
but it should be an output of the network. For this reason,
the definition of the architecture of a graph-based generator
is a very interesting and challenging problem. Instead, at the
discriminator the graph is known in advance, because in this
case the input of the network is a point cloud. However, since
point clouds are unordered set of points, we need to define
an architecture that employs permutation invariant operations.
So, the discriminator can use one of the architectures that have
been developed for supervised problems on point clouds, such
as [38], [39], [15], [16].

In the following, we first present the definition of the graph
convolution operation employed in this work at the generator,
then we describe the architecture of the proposed graph-
convolutional generator.

A. Edge-Conditioned Convolution
In the proposed graph-based generator, we use the Edge-

Conditioned Convolution presented in [15] which falls under
the category of spatial approaches to graph convolution. This
operation exploits edge labels in order to perform weighted
local aggregations. Using this operation, we can define filters
whose weights are conditioned on edge labels and are dynam-
ically generated for each input. This allows us to use the same
filter on different graphs and it represents a strong advantage
with respect to other definitions of the graph convolution
operation, where it is not possible to deal with multiple graphs.

Let us consider a layer l with N l feature vectors of di-
mensionality dl and the corresponding graph Gl(V l, E l) where
V l is the set of vertices with |V l| = N l and E ⊆ V l × V l

is the set of edges. We assume that the edges of the graph
are labeled, i.e. there exists a function L : E → Rs that
assigns a label to each edge. The convolution performs, for
each node i of the graph Gl, a weighted local aggregation
of the feature vectors Hl

j ∈ Rdl

on the neighboring nodes
j ∈ N l

i , where N l
i is the neighborhood of node i. The

weights of the local aggregation are defined by a fully-
connected network F l : Rdl → Rdl×dl+1

, which takes as
input the edge labels and outputs the corresponding weight
matrix Θl,ji = F l

wl (L(i, j)) ∈ Rdl×dl+1

. In the following, we
define the edge labeling function as the difference between the
features of the two nodes of the edge, i.e. L(i, j) = Hl

j −Hl
i.

Hence, the convolution operation is defined as:

Hl+1
i =σ

∑
j∈N l

i

F l
wl

(
Hl

j −Hl
i

)
Hl

j

|N l
i |

+ Hl
iW

l + bl

= σ

∑
j∈N l

i

Θl,jiHl
j

|N l
i |︸ ︷︷ ︸

neighborhood

+ Hl
iW

l︸ ︷︷ ︸
node

+bl

 , (2)

4

DENSE GCONV GCONV GCONV

GRAPH GRAPH GRAPH

...
z xh1 h2 hL

A1 A2 AL

DENSE GCONV GCONV GCONV

GRAPH GRAPH GRAPH

...
z XH1 H2 HL

A1 A2 AL

DENSE GCONV GCONV GCONV

NN-
GRAPH

NN-
GRAPH

NN-
GRAPH

...
z XH1 H2 HL

A1 A2 AL

Fig. 1: Graph-convolutional generator without upsampling. The feature matrices Hl are N × dl, being N the number of points
in the point cloud and dl the number of features at layer l. The NN-GRAPH block at layer l computes the adjacency matrix
Al of a k-nn graph using `2 distances between feature vectors.

where wl are the weights parameterizing network F l, Wl ∈
Rdl×dl+1

is a linear transformation of the node itself, bl a bias,
and σ a non-linearity. It is worth noting that the filter weights
Θl,ij depend only on the difference between the features of
the two nodes. This means that two pairs of nodes that have
the same difference will have the same weight Θl,ij , even if
they are in two different regions of the space. This behaviour
produces weight sharing as in the classical CNNs and results in
a lower number of degrees of freedom. It is also important to
note that the standard convolution operation is a special case of
the Edge-Conditioned Convolution, where the edge labels are
encoded as one-hot vectors [15]. In addition, if the edge labels
are defined as function of the node features (as for example
in (2)), the Edge-Conditioned Convolution can be seen as a
data-dependent convolution.

B. Graph-based generator
The main focus of this paper is to design a generator for a

GAN that is able to use localized operations in the form of
graph convolutions. As seen in the previous section, these op-
erations are able to deal with data that lie on irregular domains,
such as point clouds. However, introducing graph convolution
operations at the generator raises some issues specifically
related to generative problems. In particular, the main problem
to overcome is that, differently from supervised problems [15],
[16] or unsupervised settings involving autoencoders [45],
the intermediate layers of the GAN generator do not know
the point cloud in advance as it is the very result of the
generation operation. It is therefore not obvious how to define
an operation that is localized to neighborhoods of a graph that
is not known in advance. We propose to solve this issue by
exploiting the pairwise distances (‖Hl−1

j − Hl−1
i ‖) between

node features of the preceding layer to build a k-nearest
neighbor graph. Fig. 1 shows a block diagram of a graph-based
generator where each graph convolution block uses the graph
constructed from the input features of the block itself. The
intuition behind this solution is that this architecture promotes
the features to become graph embeddings, i.e., representations
in a high-dimensional metric space of relationships between

points. Going through the generator network from the latent
space towards the point cloud output, these embeddings are
assembled hierarchically and their associated graphs are better
and better approximations of the graph of the output point
cloud.

IV. UPSAMPLING

The previous section presented the basic outline of a graph-
based generator in a GAN. However, one evident shortcoming
is the fixed number of points throughout the generator, which
is determined by the number of output points. This leads to a
network with a high number of parameters, which can easily
cause overfitting. Moreover, many data of interest typically
display some kind of regularity in the form of multi-resolution
or other kinds of compositionality whereby points can be
predicted by a smaller number of neighboring points. In the
case of 2D images, lower resolutions provide a prediction of
higher resolutions by supplying the low-frequency content.
However, image pixels are aligned on a 2D grid and it is
straightforward to upsample by adding new pixels in the
positions defined by the grid before filling the high-frequency
content. In fact, convolutional GANs for image generation
are composed of a sequence of upsampling and convolutional
layers. Extending upsampling to deal with the generation of
sets of points without a total ordering is not a trivial task.
Many works have addressed the problem of upsampling 3D
point clouds, e.g., by creating grids in the 3D space [46].
Notice, however, that introducing upsampling to interleave the
graph-convolutional layers outlined in the previous section is
a more complex problem because the high dimensionality of
the feature vectors makes the gridding approach unfeasible.

If we consider the l-th layer of the generator, we want to
define an upsampling operation U that, starting from the output
of the graph convolution Hl ∈ RN l×dl

, generates N l new
feature vectors H̃l ∈ RN l×dl

. The upsampling operation U
can be defined as

U : RN l×dl

→ RN l×dl

,

H̃l = U(Hl).

5

DENSE GCONV GCONV GCONV

GRAPH GRAPH GRAPH

z xh1 h2 hL

A1 A2 AL

UPSAMP

GRAPH

UPSAMP

GRAPH

h2,UP h3 h3,UP
...

B2 B3

DENSE GCONV GCONV GCONV

GRAPH GRAPH GRAPH

z XH1 H2 HL

A1 A2 AL

UPSAMP

GRAPH

UPSAMP

GRAPH

H2,UP H3 H3,UP

...

B2 B3

DENSE GCONV GCONV GCONV

NN-
GRAPH

NN-
GRAPH

NN-
GRAPH

z XH1 H2 HL

A1 A2 AL

UPSAMP

NN-
GRAPH

UPSAMP

NN-
GRAPH

H2,UP H3 H3,UP
...

B2 B3

Fig. 2: Graph-convolutional generator with upsampling. The feature matrices Hl have size N l × dl being N l the number of
points at layer l and dl the number of features at layer l. The NN-GRAPH block computes the adjacency matrix of a k-nn graph
using `2 distances between feature vectors. At layer l, Al and Bl are the adjacency matrices computed for the GCONV and
UPSAMP blocks, respectively. The UPSAMP block computes N l+1−N l new points and concatenates them to the input ones.

Then, in order to obtain the output Hl,up ∈ R2N l×dl

these
new feature vectors are concatenated to Hl as follows

Hl,up =

[
Hl

H̃l

]
∈ R2N l×dl

.

In the following, we propose two approaches to define such up-
sampling operator. Both these methods are localized, i.e. a new
point is generated by exploiting only the information about its
generating point and the corresponding neighborhood. For this
reason, the upsampling operation requires the knowledge of the
graph of the input data. To define this graph we exploit the
pairwise distances between the input node features, as done for
the graph convolution operation. Fig. 2 shows a block diagram
of a graph-based generator with upsampling.

A. Probabilistic approach

The first upsampling approach that we analyze is based on
creating a hierarchy of latent variables, i.e., random vectors
zl that are used as the input of the upsampling layers. This
method generalizes the architecture without upsampling where
the only latent variable is z, used as the input to the network.
We will refer to this approach as “probabilistic upsampling”.
The intuition behind this model is that the hierarchy of
variables should exploit a multiresolution prior on the data,
i.e., using a representation with a lower number of points as a
predictor for the representation with a higher number of points,
in such a way that each latent variable used in the upsampling
operations controls finer details of the generated point cloud.

More in detail, for each point i represented by its feature
vector Hl

i at layer l, we select a set of neighbors and use them
to fit a Gaussian distribution of the feature vectors belonging
to that neighborhood. Then, we obtain a new feature vector
by sampling from this distribution. In particular, given the i-th
feature vector Hl

i ∈ Rdl

and its corresponding neighborhood

z

H1

H1,UP z1

z2

...

H2,UP

H2

Fig. 3: Probabilistic graphical model of generator with prob-
abilistic upsampling. A hierarchy of latent variables controls
finer and finer details of the generator output.

N l
i , we sample the new feature vector H̃l

i ∈ Rdl as

H̃l
i ∼ N (µ(i),Σ(i)) (3)

µ(i) =
1

|N l
i |
∑
j∈N l

i

Hl
j

Σ(i) = diag
(
Σ(i)

uu

)
,Σ(i)

uu =
1

|N l
i |
∑
j∈N l

i

(Hl
ju − µ(i)

u)2

Fig. 3 shows the probabilistic graphical model of the gen-
erator when the proposed probabilistic approach is used at the
generator. Notice that sampling H̃l

i from the distribution de-
fined in Eq. (3) is equivalent to sampling a latent variable from
a standard Normal distribution, zl,(i) ∼ N (0, I), and then

6

transforming it by H̃l
i = µ(i) + Σ(i)

1
2 zl,(i). Using a diagonal

covariance is a way to promote features to be uncorrelated
as far as the generation of a new point is concerned. Finally,
notice that this approach to upsampling does not require extra
parameters to be trained and acts as a static generative model
of neighborhoods in the hidden layers.

B. Local aggregation approach
Another possible approach to define the upsampling opera-

tion is using local aggregations. In this case, the upsampling
operation becomes similar to a graph convolution. Given a
feature vector Hl

i ∈ Rdl

, we consider a set of neighbors N l
i

and we define the new feature vector H̃l
i ∈ Rdl as follows

H̃l
i = σ

∑
j∈N l

i

diag
(
Fup,l
w̃l

(
Hl

j −Hl
i

))
Hl

j

|N l
i |

+ Hl
iΓ

l + bl

= σ

∑
j∈N l

i

Γl,jiHl
j

|N l
i |

+ Hl
iΓ

l + bl

where Γl is a diagonal matrix and Fup,l : Rdl → Rdl

is a
fully-connected network which given the difference between
Hl

i and Hl
j outputs the weight vector γl,ij ∈ Rdl

, which is
used to create the diagonal matrix Γl,ji = diag

(
γl,ji

)
.

A key difference from the graph convolution described in
Eq. (2) is that where Θl,ij , and Wl were dense matrices, now
Γl,ji and Γl are diagonal matrices. This means that during
the upsampling operation the local aggregation treats each
feature independently. The intuition behind this definition of
upsampling is that we want to generate a new point in the same
space of the original points (hence not mixing the features)
with scaling and translation operations. Notice that if we are
generating two points starting from two root points sharing
the same neighborhood, the operation will in some way add a
“residual” to the root point that depends on the neighborhood
and since both points share the neighborhood this residual
will be similar, thus approximately preserving the structure
of the neighborhood in the position in the space. This allows
to exploit a self-similarity prior in the data.

Finally, it is important to note that, in contrast with the
previously described probabilistic approach, this upsampling
technique requires extra parameters to be trained. In particular,
w̃l and bl and Γl are all trainable model parameters. The
choice of using diagonal matrices is therefore also motivated
by reasons of complexity and in order to avoid overparame-
terization of the upsampling layer.

V. GRAPH EMBEDDING INTERPRETATION

Graph embeddings [47] are representations of graphs in a
multidimensional vector space where a feature vector is associ-
ated to each node of the graph. For what concerns this paper we
consider the following definition of graph embedding, focused
on predicting edges from feature vectors.

Definition 1. Given a graph G = (V, E), a graph embedding
is a mapping f : i→ hi ∈ Rd, ∀i ∈ V , such that d� |V| and

No upsampling Upsampling
Layer Output size Layer Output size
Latent 1× 128 Latent 1× 128
dense 2048× 32 dense 128× 96
gconv 0 2048× 32 gconv 0 128× 48

upsamp 0 256× 48
gconv 1 2048× 24 gconv 1 256× 32

upsamp 1 512× 32
gconv 2 2048× 16 gconv 2 512× 16

upsamp 2 1024× 16
gconv 3 2048× 8 gconv 3 1024× 8

upsamp 3 2048× 8
gconv 4 2048× 3 gconv 4 2048× 3

TABLE I: Generator architecture

the function f is defined such that if we consider two pairs of
nodes (i, j) and (i, k) where (i, j) ∈ E and (i, k) /∈ E then
‖hi − hj‖ < ‖hi − hk‖.

The graph-convolutional generator presented in this paper
can be interpreted as generating graph embeddings of the
nearest-neighbor graph of the output point cloud at each hidden
layer, thus creating features that are able to capture some
properties of the local topology. In order to see why this is
the case, we analyze the architecture in Fig. 1 backwards from
the output to the input. The final output x is the result of a
graph convolution aggregating features localized to the nearest-
neighbor graph computed from the features of the preceding
layer. Since the GAN objective is to match the distribution of
the output with that of real data, the neighborhoods identified
by the last graph must be a good approximation of the
neighborhoods in the true data. Therefore, we say that features
HL are a graph embedding in the sense that they allow to
predict the edges of the output graph from their pairwise
distances. Proceeding backwards, there is a hierarchy of graph
embeddings as the other graphs are constructed from higher-
order features.

Notice that the upsampling operation in the architecture
of Fig. 2 affects this chain of embeddings by introducing
new points. While the graph convolution operation promotes
the features of all the points after upsampling to be graph
embeddings, the upsampling operation affects which points
are generated. In the experiments we show that the points
generated with the probabilistic method are approximately
uniformly distributed over the output point cloud and that
the upsampling operation is localized, i.e. the new points
fall in the same neighborhood of the generating point. This
suggests a generation mechanism exploiting a hierarchy of
multiple resolution with new points filling in the details. On the
other hand, the aggregation method approximately maintains
the neighborhood shape but copies it elsewhere in the point
cloud. This suggests a generation mechanism exploiting self-
similarities between the features of the point cloud at different
locations.

7

(a) No upsampling

(b) Upsampling - local aggregation approach

(c) Upsampling - probabilistic approach

Fig. 4: Generated point clouds.

No upsampling Upsampling
Prob. upsampling Aggr. upsampling

Layer Size 1 Size 2 Layer Size 1 Size 2 Size 1 Size 2
gconv 0 512 1024 gconv 0 1024 4608 1024 4608

upsamp 0 - - 48 48
gconv 1 256 768 gconv 1 768 1536 768 1536

upsamp 1 - - 32 32
gconv 2 128 384 gconv 2 256 512 256 512

upsamp 2 - - 16 16
gconv 3 64 128 gconv 3 64 128 64 128

upsamp 3 - - 8 8
gconv 4 16 24 gconv 4 16 24 16 24

TABLE II: Architecture of networks F l and Fup,l

VI. EXPERIMENTS

We tested the proposed architecture by using four object
classes taken from the ShapeNet repository [48]: “chair”,
“airplane”, “table” and “sofa”. The point clouds are obtained
by sampling 2048 uniformly distributed points for each 3D
model of the considered classes. The points clouds in each
class are split as 85% training data, 5% testing and 10%
validation, resulting in at least 2500 training point clouds per
class. A class-specific model is trained for the desired class of
point clouds. Since the focus of this paper is on the features
learned by the generator, the architecture for the discriminator
is the same as that of the r-GAN in [20], with 4 layers with

weights shared across points (number of output features: 64,
128, 256, 512) followed by a global maxpool and by 3 dense
layers. The generator architecture is reported in Table I. The
fully-connected networks F l and Fup,l are composed by 2
dense layers, and their architecture is described in Table II.
The graph is built by selecting the 20 nearest neighbors in
terms of Euclidean distance in the feature space. This value
has been cross-validated as a good tradeoff between visual
quality and computational complexity. We use Leaky ReLUs
as nonlinearities and RMSProp as optimization method with
a learning rate equal to 10−4 for both generator and discrim-
inator. Batch normalization follows every graph convolution.
The batch size is 50. The gradient penalty parameter of the
WGAN is 1 and the discriminator is optimized for 5 iterations
for each generator step. The models have been trained for 1000
epochs. For the “chair” class this required about 5 days without
upsampling and 4 days with upsampling. Code and pretrained
models are available online1.

A. Assessment of generated point clouds

In this section we perform qualitative and quantitative com-
parisons with the generated point clouds.

Visual results: We first visually inspect the generated point
clouds for the four classes, as shown in Fig. 4. The results

1https://github.com/diegovalsesia/GraphCNN-GAN

https://github.com/diegovalsesia/GraphCNN-GAN

8

G(zA) G((1− α)zA + αzB) G(zB)

Fig. 5: Latent space interpolation (model with aggregation upsampling).

TABLE III: Quantitative comparisons

Class Model JSD MMD-CD MMD-EMD COV-CD COV-EMD

Chair

r-GAN-dense 0.238 0.0029 0.136 33 13
r-GAN-conv 0.517 0.0030 0.223 23 4

Proposed (no up.) 0.119 0.0033 0.104 26 20
Proposed (aggr. up.) 0.100 0.0029 0.097 30 26
Proposed (prob. up.) 0.104 0.0034 0.106 39 31

Sofa

r-GAN-dense 0.221 0.0020 0.146 32 12
r-GAN-conv 0.293 0.0025 0.110 21 12

Proposed (no up.) 0.095 0.0024 0.094 25 19
Proposed (aggr. up.) 0.063 0.0020 0.083 39 24
Proposed (prob. up.) 0.119 0.0022 0.113 32 19

Airplane

r-GAN-dense 0.182 0.0009 0.094 31 9
r-GAN-conv 0.350 0.0008 0.101 26 7

Proposed (no up.) 0.164 0.0010 0.102 24 13
Proposed (aggr. up.) 0.083 0.0008 0.071 31 14
Proposed (prob. up.) 0.095 0.0010 0.075 34 19

Table

r-GAN-dense 0.217 0.0031 0.139 33 15
r-GAN-conv 0.359 0.0031 0.247 29 4

Proposed (no up.) 0.171 0.0045 0.123 24 18
Proposed (aggr. up.) 0.148 0.0035 0.131 36 29
Proposed (prob. up.) 0.167 0.0037 0.124 33 34

are convincing from a visual standpoint and the variety of the
generated objects is high, suggesting no mode collapse in the
training process. The distribution of points on the object is
quite uniform, especially for the method with aggregation up-
sampling. In order to evaluate the latent space representation,
we perform a linear interpolation between two different points
in the latent space and observe the corresponding point clouds
output by the generator. Fig. 5 shows that interpolating in the
latent space provides a smooth semantic transition between
two endpoints. In this case we can see a short armchair
progressively become a tall chair.

Comparisons with state of the art: To the best of our
knowledge, this is the first work addressing GANs for point
clouds learning localized features. We compare the proposed
GAN for point cloud generation with other GANs able to deal
with unordered sets of points. In particular, the “r-GAN-dense”
architecture in [20] has a dense generator, which is unable to
generate localized representations because there is no mapping
between points and feature vectors. As an additional baseline

variant, dubbed “r-GAN-conv”, we study the use of a generator
having as many feature vectors as the points in the point cloud
and using a size-1 convolution across the points. Notice that
the employed graph convolution can be seen as a generalization
of this model, aggregating the features of neighboring points
instead of processing each point independently. We point out
that we cannot compare the proposed method in a fair way with
the variational autoencoders mentioned in Sec. II-C: indeed,
[40] generates point clouds conditioned on an input image;
[41] uses object segmentation labels to generate point clouds
by parts; and [42] focuses on generating vertices on meshes
with a fixed and given topology.

In order to perform a quantitative evaluation of the generated
point clouds we use the evaluation metrics proposed in [20],
employing three different metrics to compare a set of generated
samples with the test set. The first one is the Jensen-Shannon
divergence (JSD) between marginal distributions defined in the
3D space. Then, we also evaluate the coverage (COV) and
the minimum matching distance (MMD), as defined in [20].

9

(a) Original sample
(b) Proposed
(No upsampling)

(c) Proposed
(Aggr. upsampling)

(d) Proposed
(Prob. upsampling)

(e) r-GAN-dense
[20] (f) r-GAN-conv

Fig. 6: Generated point clouds from different methods.

The coverage metric measures the fraction of generated point
clouds that were matched to point clouds in the test set. The
closeness between two point clouds can be measured using
two different point-set distances, the earth mover’s distance
(EMD) and the Chamfer distance (CD), thus yielding two
different metrics, COV-EMD and COV-CD. A high coverage
score means that the generated point clouds can represent most
of the test set. However, this metric does not evaluate how
well the covered examples are represented by the generated
point clouds. For this reason, [20] also introduces the minimum
matching distance metric that measures the fidelity of the
generated point clouds with respect to the test set. This metric
measures the average minimum matching distance between
the generated point clouds and the test set. Also in this
case, either point-set distances can be used obtaining two
different metrics, MMD-EMD and MMD-CD. Table III shows
the obtained results. As can be seen, the proposed methods
achieve better values for the metrics under consideration. In
particular, the method with aggregation upsampling shows the
best overall performance. However, it is interesting to observe
that the method with probabilistic upsampling shows a high
coverage score, often outperforming all the other methods.
Notice also that [20] reports that the Chamfer distance is often
unreliable as it fails to penalize non-uniform distributions of
points. Fig. 6 visually shows two samples from the test set and
two point clouds generated by each method. We can see that
the proposed method has better-distributed points, confirming
the quantitative results. In particular, the r-GAN-dense shows
clusters of points, while the r-GAN-conv also exhibits noisy
shapes.

Graph embedding and feature radius: With reference to
Table I, the output of each layer is a matrix where every
point is associated to a vector of features. In Sec. V we
claimed that these features learned by the generator are graph
embeddings. We tested this hypothesis by measuring how
much the adjacency matrix of the final point cloud, constructed
as a nearest-neighbor graph in 3D, is successfully predicted by
the nearest-neighbor adjacency matrix computed from hidden
features. This is shown in Fig. 7 which reports the percentage

of edges correctly predicted as function of the number of
neighbors considered for the graph of the output point cloud
and a fixed number of 20 neighbors in the feature space.
Notice that layers closer to the output correctly predict a
higher percentage of edges and in this sense are better graph
embeddings of the output geometry.

Fig. 8 shows another experiment concerning localization of
features. We applied k-means with 6 clusters to the features
of intermediate layers and represented the cluster assignments
onto the final point cloud. This experiment confirms that the
features are highly localized and progressively more so in the
layers closer to the output.

We further investigated the effective receptive field of the
convolution operation in Fig. 9. This figure reports histograms
of Euclidean distances measured on the output point cloud
between neighbors as determined by the nearest neighbor
graph in one of the intermediate layers. We can see that layers
closer to the output aggregate points which are very close in
the final point cloud, thus implementing a highly localized
operation. Conversely, layers close to the latent space perform
more global operations.

B. Upsampling results

The main drawback of the model without upsampling is the
unnecessarily large number of parameters in the first dense
layer. This is solved by the introduction of the upsampling
layers which exploit multi-resolution or self-similarity patterns
to lower the number of parameters by starting with a lower
number of points and progressively predicting new points from
the generated features.

Probabilistic approach: The probabilistic approach models
the features in a neighborhood as being drawn from a Gaussian
distribution whose mean and covariance are estimated from the
neighboring points. This model is based on the assumption
that the upsampling operation should be localized, i.e., the
generated point should be close to its generating point and
its neighborhood. We experimentally tested this behaviour by
measuring how “typical” is the distance between the generated

10

20 50 100 150 200
Output neighbors

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

dense_0
gconv_0
gconv_1
gconv_2
gconv_3

Fig. 7: Accuracy of edge prediction from intermediate layer
features.

Percentage Distance
of neighbors correlation

upsamp 0 (71.8± 7.6) % (0.56± 0.15)
upsamp 1 (69.6± 2.8) % (0.60± 0.03)
upsamp 2 (61.6± 3.3) % (0.53± 0.03)
upsamp 3 (66.4± 3.5) % (0.61± 0.04)

TABLE IV: Upsampling self-similarity

point and its generator with respect to the distance between
the generator and its neighbors. While the neighborhoods are
defined in the feature space, the distances are measured as
Euclidean distances on the output 3D point cloud. Fig. 10a
shows a histogram of the ratio between the generator-generated
distance and the average neighborhood distance. We can see
that this ratio is concentrated around 1 implying that the
generated point is as typical as the original neighbors.

In Fig. 11 we repeat the clustering experiment we previously
performed on the model without upsampling. Besides the
previously explained graph embedding behaviour, we also
notice that the few points in the first layers are generally
uniformly distributed and the new points that are generated
are localized, creating a multi-resolution hierarchy.

Local aggregation approach: The local aggregation ap-
proach computes a new point as a weighted aggregation of
neighboring points. The weights of the aggregation are learned
by the network, thus letting the network decide the best way
to create a new point from a neighborhood, at the expense
of an increased number of total parameters. The experiment
in Figs. 10b and 12 shows an interesting behavior. First, the
generated points are not close to the original point: Fig. 10b
shows the ratio between the generator-generated distance and
the average neighborhood distance (neighborhoods are defined
in the feature space, while distances are measured as Euclidean

distances on the output 3D point cloud) and since it is usually
significantly larger than 1, we can conclude that the generated
point is far from the original generating neighborhood. Then,
the clusters in Fig. 12 show that the points in the first layers are
not uniformly distributed over the point cloud, but rather form
parts of it. The mechanism learned by the network to generate
new points is essentially to apply some mild transformation to
a neighborhood and copy it in a different area of the feature
space. The generated points will no longer be close to their
generators, but the structure of the neighborhood resembles the
one of the generating neighborhood. This notion is similar to
the second-order proximity in the graph embedding literature
[47] and it seems that this operation is exploiting the inherent
self-similarities between the data features at distant points. To
validate this hypothesis we measured two relevant quantities.
First, we considered a point i, its neighbors N l

i before upsam-
pling, their corresponding points generated by the upsampling
operation {iup,N l,up

i } and the neighborhood N l
iup of point iup.

We measured the average percentage of points in N l,up
i that

were generated from points in N l
i , i.e. |N l

iup ∩N l,up
i |/|N l

i |, as
reported in Table IV. The result shows that the neighborhood of
a generated point is almost entirely generated by the points that
were neighbors of the generator, and that the new points are not
neighbors of the original ones. This behavior is consistent over
different layers. Then, we measured the Euclidean distances
in the feature space between point i and its neighbors N l

i and
between point iup and N l,up

i . Table IV reports the correlation
coefficient between those distance vectors, which suggests that
the shape of the neighborhood is fairly conserved.

C. Complexity considerations
The overall computational complexity of the proposed gen-

erator is mainly determined by three operations: i) the graph
construction; ii) the computation of the aggregation weights
from feature differences; iii) the local aggregations. We now
analyze in detail the complexity of each of them.

According to the schemes in Fig. 1 and Fig. 2 every graph
convolutional layer requires the construction of the graph from
its input features. The graph is constructed by choosing the k
nearest neighbors of each point according such some distance
metric, e.g., the Euclidean distance, in the feature space. If the
number of points is N , then this operation has complexity
O(N2) due to the need to compute all pairwise distances
between points. This is clearly a bottleneck for large point
clouds. However, some solutions can be devised to deal with
this issue. First, we proposed the use of upsampling layers,
which gradually increase the number of points in the network
layers. As discussed in the previous sections, this is motivated
by the fact that the data admit hierarchical priors such as a
multiresolution structure or self-similarities which allow to use
a smaller number of points to learn a coarser representation
and then increase it to learn finer details. Conveniently, due
to the quadratic dependence of graph construction, halving the
number of points reduces complexity by a factor of four. Also
notice that the graph that needs to be constructed from the
output of an upsampling layer can reuse the pairwise distances
computed from its input since the features of the old points are

11

Fig. 8: No upsampling: k-means clustering of features of intermediate layers, highlighted onto the output point cloud (leftmost:
output of dense layer, rightmost: output point cloud). Notice how layer features generate clusters that are progressively more
localized in the output geometry.

0 0.2 0.4 0.6 0.8
Euclidean distance

0

200

400

C
ou

nt

dense_0
gconv_0
gconv_1
gconv_2
gconv_3

Fig. 9: Histogram of intra-neighborhood distances. Neighbor-
hoods are computed as 20-nearest neighbors in the feature
space of each layer. Distances in abscissa are distances in the
3D point cloud. The layer features create neighborhoods that
are progressively more localized with respect to the output
geometry.

not modified by the upsampling operation and only distances
among new points and between old and new points need to be
computed. An alternative approach to graph construction that
may be considered in future work is limiting the computation
of pairwise distances to a search window instead of considering
all possible pairs.

The computation of aggregation weights is performed by
means of a small neural network F with fully-connected
layers. This network contains most of the parameters of the
generator. Table II shows the network used for the experiments
in this paper, which is composed of two fully connected layers.
It can be readily noticed that the last layer packs most of the
parameters. In fact, the output of the network is a matrix of
aggregation weights of size dl−1 × dl, which means that for
a middle layer with d features, the number of parameters is
d · dl · dl−1 (since typically dl−1, dl = Ω(d), then the number
of parameters is Ω(d3)). This shows that the total number of
parameters is dominated by the last layer of the F network
and grows cubically with the number of features. This creates
computational issues, a risk of overparameterization of the
operation, and vanishing gradient problems when the number
of features grows. Future work may focus on reducing the

number of parameters needed by this operation, thus allowing
deeper networks or reducing complexity.

Finally, the aggregation weights must be used in the ag-
gregation operation itself as shown in Eq. 2. This operation
requires O(Nkd2) multiplications for a neighborhood of size
k, and N points with d features. We notice that this operation is
currently not optimized by frameworks such as Tensorflow [49]
and large speedups may be achieved by suitable data structure
optimization (e.g., notice that a point may appear in multiple
neighborhoods).

VII. CONCLUSIONS

We presented a GAN using graph convolutional layers
to generate 3D point clouds. In particular, we showed how
constructing nearest neighbor graphs from generator features
to implement the graph convolution operation promotes the
features to be localized and to approximate a graph embedding
of the output geometry. We also proposed two upsampling
schemes for the generator that exploit multi-resolution decom-
position or self-similarities in the samples to be generated.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond Euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[2] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 3189–
3197.

[3] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proceed-
ings of the IEEE International Conference on Computer Vision work-
shops, 2015, pp. 37–45.

[4] H. Zhang, P. She, Y. Liu, J. Gan, X. Cao, and H. Foroosh, “Learning
structural representations via dynamic object landmarks discovery for
sketch recognition and retrieval,” IEEE Transactions on Image Process-
ing, vol. 28, no. 9, pp. 4486–4499, Sep. 2019.

[5] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning,”
Nature Biotechnology, vol. 33, no. 8, p. 831, 2015.

12

0 1 2 3 4
Euclidean distance ratio

0

50

100

150

200
C

ou
nt

upsamp_3
upsamp_2
upsamp_1
upsamp_0

(a) Probabilistic upsampling

0 5 10 15 20 25 30
Euclidean distance ratio

0

50

100

150

200

C
ou

nt

upsamp_3
upsamp_2
upsamp_1
upsamp_0

(b) Aggregation upsampling

Fig. 10: Locality of upsampling.

Fig. 11: Probabilistic upsampling: k-means clustering of features of intermediate layers after upsampling, highlighted onto
the output point cloud (leftmost: output of dense layer, rightmost: output point cloud). Black points are not yet generated at
the intermediate layers. Notice how the generated points are almost uniformly distributed and how the layer features create
neighborhoods that are progressively more localized with respect to the output geometry.

[6] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in Neural Information
Processing Systems, 2015, pp. 2224–2232.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[8] J. Chen, C. Lin, P. Hsu, and C. Chen, “Point cloud encoding for 3d
building model retrieval,” IEEE Transactions on Multimedia, vol. 16,
no. 2, pp. 337–345, Feb 2014.

[9] P. Wu, Y. Liu, M. Ye, J. Li, and S. Du, “Fast and adaptive 3d
reconstruction with extensively high completeness,” IEEE Transactions
on Multimedia, vol. 19, no. 2, pp. 266–278, Feb 2017.

[10] P. d. O. Rente, C. Brites, J. M. Ascenso, and F. M. B. Pereira, “Graph-
based static 3d point clouds geometry coding,” IEEE Transactions on
Multimedia, pp. 1–1, 2018.

[11] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems, 2016, pp. 3844–3852.

[13] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,

2013.

[14] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” arXiv preprint arXiv:1703.06103, 2017.

[15] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
29–38.

[16] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” arXiv
preprint arXiv:1801.07829, 2018.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[18] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,” in Pro-
ceedings of The 33rd International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. F. Balcan and K. Q.
Weinberger, Eds., vol. 48. New York, New York, USA: PMLR, 20–22
Jun 2016, pp. 1558–1566.

[19] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

13

Fig. 12: Aggregation upsampling: k-means clustering of features of intermediate layers after upsampling, highlighted onto the
output point cloud (leftmost: output of dense layer, rightmost: output point cloud). Black points are not yet generated at the
intermediate layers.

[20] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Represen-
tation learning and adversarial generation of 3d point clouds,” arXiv
preprint arXiv:1707.02392, 2017.

[21] D. Valsesia, G. Fracastoro, and E. Magli, “Learning Localized Gener-
ative Models for 3D Point Clouds via Graph Convolution,” in Interna-
tional Conference on Learning Representations (ICLR), 2019.

[22] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” arXiv preprint arXiv:1701.04862,
2017.

[23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv
preprint arXiv:1701.07875, 2017.

[24] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” in Advances in Neural
Information Processing Systems, 2017, pp. 5769–5779.

[25] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 1486–1494.

[26] D. Berthelot, T. Schumm, and L. Metz, “Began: boundary equilibrium
generative adversarial networks,” arXiv preprint arXiv:1703.10717,
2017.

[27] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
gans for improved quality, stability, and variation,” in 2018 International
Conference on Learning Representations (ICLR), 2018.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[29] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, pp. 105–114.

[30] R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson,
and M. N. Do, “Semantic image inpainting with deep generative
models,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, pp. 6882–6890.

[31] J. H. R. Chang, C. Li, B. Póczos, and B. V. K. V. Kumar, “One
network to solve them all — solving linear inverse problems using
deep projection models,” in 2017 IEEE International Conference on
Computer Vision (ICCV), Oct 2017, pp. 5889–5898.

[32] M. Yang, W. Zhao, W. Xu, Y. Feng, Z. Zhao, X. Chen, and K. Lei,
“Multitask learning for cross-domain image captioning,” IEEE Trans-
actions on Multimedia, pp. 1–1, 2018.

[33] G. Song, D. Wang, and X. Tan, “Deep memory network for cross-modal
retrieval,” IEEE Transactions on Multimedia, pp. 1–1, 2018.

[34] X. Zhang, X. Zhu, . X. Zhang, N. Zhang, P. Li, and L. Wang,
“Seggan: Semantic segmentation with generative adversarial network,”

in 2018 IEEE Fourth International Conference on Multimedia Big Data
(BigMM), Sept 2018, pp. 1–5.

[35] X. Liang, L. Lee, W. Dai, and E. P. Xing, “Dual motion gan for
future-flow embedded video prediction,” in 2017 IEEE International
Conference on Computer Vision (ICCV), Oct 2017, pp. 1762–1770.

[36] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural
network for real-time object recognition,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 922–928.

[37] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1912–1920.

[38] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 77–85.

[39] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5105–5114.

[40] H. Fan, H. Su, and L. Guibas, “A point set generation network for 3d
object reconstruction from a single image,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
2463–2471.

[41] C. Nash and C. K. Williams, “The shape variational autoencoder: A
deep generative model of part-segmented 3d objects,” in Computer
Graphics Forum, vol. 36, no. 5. Wiley Online Library, 2017, pp.
1–12.

[42] O. Litany, A. M. Bronstein, M. M. Bronstein, and A. Makadia,
“Deformable shape completion with graph convolutional autoencoders,”
CoRR, vol. abs/1712.00268, 2017.

[43] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative Generative
Modeling of Graphs,” arXiv preprint arXiv:1803.10459, 2018.

[44] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang,
X. Xie, and M. Guo, “Graphgan: Graph representation learning
with generative adversarial nets,” CoRR, vol. abs/1711.08267, 2017.
[Online]. Available: http://arxiv.org/abs/1711.08267

[45] Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point Cloud
Auto-encoder via Deep Grid Deformation,” in 2018 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 3, 2018.

[46] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2015, pp.
922–928.

http://arxiv.org/abs/1711.08267

14

[47] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” arXiv preprint arXiv:1705.02801, 2017.

[48] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[49] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

http://tensorflow.org/

