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Abstract

Bladed disks can be found in engines used to power aircrafts and power plants.
Due to their high modal density and the broad frequency range of the aerodynamic
excitation forces, resonance-crossings on Campbell diagram are very likely during
the design phase. High cycle fatigue (HCF) failure of turbine/compressor blades
due to high vibration amplitudes in resonance frequency is one of the main concerns
in their design stage. To suppress excessive vibrations in the blades and prevent
HCF, dry friction damping has been widely incorporated into the design of bladed
disks. However, due to the nonlinear nature of friction contacts, analysis of such
systems becomes complicated. In addition to that, the inevitable presence of small
variations between blades and consequently the loss of cyclic symmetry properties,
known as mistuning, could considerably affect the dynamic behavior of bladed disks.
Compared with that of a tuned bladed disk, which is a bladed disk with identical
blades/sectors, the vibration response levels of a mistuned system can be much
higher, that can ultimately result in premature HCF of blades.

Motivated by the turbomachinery community’s need for practical design tools
that can account for realistic operating conditions, one main focus of this dissertation
is to develop models for nonlinear forced response analysis of bladed disks with
friction interfaces. The developed models can be constructed by minimal compu-
tational effort (sector-level) and are suitable for statistical analyses, tailored for
industrial applications. In addition, this dissertation faces the inherent complexity
of experimental investigations of nonlinear dynamics of mistuned bladed disks. To
this end, a detailed experimental campaign is conducted to evaluate the effects of
mistuning on nonlinear forced response levels of an integrally bladed disk. The
provided experimental benchmark can be used to validate the tools developed for
nonlinear forced response of mistuned bladed disks.
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Chapter 1

Introduction

1.1 Dynamics of Bladed Disks

In turbomachinery applications, bladed disks are critical components subjected
to high levels of oscillating forces (e.g. unbalancing, fluctuating fluid flow) [2].
Because of their high modal density and the broad operating range of the engine,
critical resonance crossings on the Campbell diagram are inevitable. This results
in high amplitude vibrations and ultimately the high cycle fatigue (HCF) failure of
the system. Accordingly, forced response calculations for predicting the maximum
response levels, evaluating high stress situations and finally estimating the fatigue
life is of crucial importance in the bladed disks design [3].

To reduce the vibration amplitude of the bladed disks, dry friction damping has
been extensively incorporated into their design, since:

• Bladed disks are typically found lacking material damping.

• Other external damping sources like viscous and aerodynamic damping are
usually very small. The latter one might even transfer the energy, conversely
into the system (negative aerodynamic damping).

Friction damping is introduced into bladed disks through contact interfaces
(i.e. mating surfaces with relative motion) and in different forms such as: blade
attachments [4–6], shrouds [7, 8] or underplatform dampers [9–12]. Common types
of friction joints used in bladed disks can be seen in Fig. 1.1.



2 Introduction

Dissipation can also have non-aerodynamical and non-

mechanical, e.g. electromagnetic origin. Such dissipation

mechanisms are accounted for in Drest.

The most important sub-group of joint damping, Djoints,

is friction damping, which refers to the dissipative effects

related to dry frictional local sliding in mechanical joints.

Friction damping is certainly the most established damping

technology of bladed disks. A major drawback of friction

damping is that it comes at the cost of wear effects. It

should be remarked that many damping technologies with

successful applications in other fields, cannot cope with the

harsh environment (high temperatures, high centrifugal

stresses, corrosive gases), and the strictly limited design

space. Also, the application of active or semi-active

vibration control strategies is hampered by the requirement

of fail-safe operation of aircraft engines. Noteworthy

alternatives to friction damping include piezoelectric shunt

damping [60, 178], eddy current damping [88, 89], vis-

coelastic material damping of coatings [62, 177], and

impact or particle damping.

Friction damping takes place in mechanical joints that

are either inherent to bladed disks, such as the ones

between the blade root and the disk, or can be introduced

additionally, e.g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints are

illustrated in Fig. 3. Besides damping, additional joints also

increase the elastic coupling among adjacent blades. This

changes the structure’s modal characteristics and is in fact

sometimes the primary motivation for the introduction of

these joints. By means of an appropriate design of

mechanical joints, a considerable mitigation of vibrations

and resulting dynamic stresses can be achieved. This, in

turn, leads to an improved structural reliability and

decreases fatigue-related costs. Furthermore, this can lead

to an increased feasible blade design space and an extended

range of tolerable operating conditions, and, thus, con-

tributes to an increased efficiency of the turbomachine.

1.2 Scientific Complexity of the Topic

The design of bladed disks with mechanical joints relies on

a profound understanding of the relevant physical phe-

nomena and adequate tools for the assessment of the

structural dynamic characteristics. Important characteris-

tics in this context are the vibration level, the resonance

frequencies and the mechanical damping. During the

design phase, these measures are determined largely by

means of vibration prediction, whereas tests are mainly

carried out for validation. The vibration prediction is par-

ticularly difficult due to the following aspects.

(a) Nonlinearity The contact interactions in mechanical

joints represent strongly nonlinear phenomena. This non-

linearity leads to a strong coupling of different time and

length scales. More specifically, the local stick, slip and

liftoff phenomena in the mechanical joints, occurring on

relatively short time and length scales, have considerable

effects on the global vibration behavior of bladed disks,

occurring on much longer time and length scales, and vice-

versa. Moreover, the dependence on the vibration level

needs to be taken into account in the analysis of structural

dynamic characteristics, such as resonance frequencies,

effective damping and deflection shape. Also, nonlinearity

can give rise to phenomena such as co-existence of mul-

tiple stable vibration states, and steady-state vibrations that

exhibit significant frequency components not present in the

excitation spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model Order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and often

consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out using

finite elements. Moreover, the different components have a

number of extended contact interfaces where nonlinear

contact interactions may take place. A fine spatial dis-

cretization is required to accurately resolve the local con-

tact interactions and the dynamic stress field. This leads to

a comparatively high order of the mathematical model.

(c) Multi-disciplinary Character: Since the most

important vibration mechanisms are of aeroelastic nature,

both the structural mechanical and the fluid dynamical

domain need to be taken into account. These domains can

in general not be regarded as independent of each other.

For instance, the aeroelastic interaction is essential to

understand the physical phenomenon of flutter [102, 153].

Besides aerodynamics and structural mechanics, tribology

is another scientific field inherently associated with friction

damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted for

using probabilistic methods. Finally, many turbomachines

undergo a large range of operating conditions. The struc-

tural mechanical and aerodynamical properties can vary

considerably with the operating condition and with opera-

tion time due to damaging (wear, creep, corrosion), which
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Fig. 3 Common types of friction joints [144]: a roots joints, b tip

shrouds, c underplatform dampers, d damper wires, e damper pins
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(a)

Dissipation can also have non-aerodynamical and non-

mechanical, e.g. electromagnetic origin. Such dissipation

mechanisms are accounted for in Drest.

The most important sub-group of joint damping, Djoints,

is friction damping, which refers to the dissipative effects

related to dry frictional local sliding in mechanical joints.

Friction damping is certainly the most established damping

technology of bladed disks. A major drawback of friction

damping is that it comes at the cost of wear effects. It

should be remarked that many damping technologies with

successful applications in other fields, cannot cope with the

harsh environment (high temperatures, high centrifugal

stresses, corrosive gases), and the strictly limited design

space. Also, the application of active or semi-active

vibration control strategies is hampered by the requirement

of fail-safe operation of aircraft engines. Noteworthy

alternatives to friction damping include piezoelectric shunt

damping [60, 178], eddy current damping [88, 89], vis-

coelastic material damping of coatings [62, 177], and

impact or particle damping.

Friction damping takes place in mechanical joints that

are either inherent to bladed disks, such as the ones

between the blade root and the disk, or can be introduced

additionally, e.g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints are

illustrated in Fig. 3. Besides damping, additional joints also

increase the elastic coupling among adjacent blades. This

changes the structure’s modal characteristics and is in fact

sometimes the primary motivation for the introduction of

these joints. By means of an appropriate design of

mechanical joints, a considerable mitigation of vibrations

and resulting dynamic stresses can be achieved. This, in

turn, leads to an improved structural reliability and

decreases fatigue-related costs. Furthermore, this can lead

to an increased feasible blade design space and an extended

range of tolerable operating conditions, and, thus, con-

tributes to an increased efficiency of the turbomachine.

1.2 Scientific Complexity of the Topic

The design of bladed disks with mechanical joints relies on

a profound understanding of the relevant physical phe-

nomena and adequate tools for the assessment of the

structural dynamic characteristics. Important characteris-

tics in this context are the vibration level, the resonance

frequencies and the mechanical damping. During the

design phase, these measures are determined largely by

means of vibration prediction, whereas tests are mainly

carried out for validation. The vibration prediction is par-

ticularly difficult due to the following aspects.

(a) Nonlinearity The contact interactions in mechanical

joints represent strongly nonlinear phenomena. This non-

linearity leads to a strong coupling of different time and

length scales. More specifically, the local stick, slip and

liftoff phenomena in the mechanical joints, occurring on

relatively short time and length scales, have considerable

effects on the global vibration behavior of bladed disks,

occurring on much longer time and length scales, and vice-

versa. Moreover, the dependence on the vibration level

needs to be taken into account in the analysis of structural

dynamic characteristics, such as resonance frequencies,

effective damping and deflection shape. Also, nonlinearity

can give rise to phenomena such as co-existence of mul-

tiple stable vibration states, and steady-state vibrations that

exhibit significant frequency components not present in the

excitation spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model Order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and often

consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out using

finite elements. Moreover, the different components have a

number of extended contact interfaces where nonlinear

contact interactions may take place. A fine spatial dis-

cretization is required to accurately resolve the local con-

tact interactions and the dynamic stress field. This leads to

a comparatively high order of the mathematical model.

(c) Multi-disciplinary Character: Since the most

important vibration mechanisms are of aeroelastic nature,

both the structural mechanical and the fluid dynamical

domain need to be taken into account. These domains can

in general not be regarded as independent of each other.

For instance, the aeroelastic interaction is essential to

understand the physical phenomenon of flutter [102, 153].

Besides aerodynamics and structural mechanics, tribology

is another scientific field inherently associated with friction

damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted for

using probabilistic methods. Finally, many turbomachines

undergo a large range of operating conditions. The struc-

tural mechanical and aerodynamical properties can vary

considerably with the operating condition and with opera-

tion time due to damaging (wear, creep, corrosion), which
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Fig. 3 Common types of friction joints [144]: a roots joints, b tip

shrouds, c underplatform dampers, d damper wires, e damper pins
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(b)

Dissipation can also have non-aerodynamical and non-

mechanical, e.g. electromagnetic origin. Such dissipation

mechanisms are accounted for in Drest.

The most important sub-group of joint damping, Djoints,

is friction damping, which refers to the dissipative effects

related to dry frictional local sliding in mechanical joints.

Friction damping is certainly the most established damping

technology of bladed disks. A major drawback of friction

damping is that it comes at the cost of wear effects. It

should be remarked that many damping technologies with

successful applications in other fields, cannot cope with the

harsh environment (high temperatures, high centrifugal

stresses, corrosive gases), and the strictly limited design

space. Also, the application of active or semi-active

vibration control strategies is hampered by the requirement

of fail-safe operation of aircraft engines. Noteworthy

alternatives to friction damping include piezoelectric shunt

damping [60, 178], eddy current damping [88, 89], vis-

coelastic material damping of coatings [62, 177], and

impact or particle damping.

Friction damping takes place in mechanical joints that

are either inherent to bladed disks, such as the ones

between the blade root and the disk, or can be introduced

additionally, e.g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints are

illustrated in Fig. 3. Besides damping, additional joints also

increase the elastic coupling among adjacent blades. This

changes the structure’s modal characteristics and is in fact

sometimes the primary motivation for the introduction of

these joints. By means of an appropriate design of

mechanical joints, a considerable mitigation of vibrations

and resulting dynamic stresses can be achieved. This, in

turn, leads to an improved structural reliability and

decreases fatigue-related costs. Furthermore, this can lead

to an increased feasible blade design space and an extended

range of tolerable operating conditions, and, thus, con-

tributes to an increased efficiency of the turbomachine.

1.2 Scientific Complexity of the Topic

The design of bladed disks with mechanical joints relies on

a profound understanding of the relevant physical phe-

nomena and adequate tools for the assessment of the

structural dynamic characteristics. Important characteris-

tics in this context are the vibration level, the resonance

frequencies and the mechanical damping. During the

design phase, these measures are determined largely by

means of vibration prediction, whereas tests are mainly

carried out for validation. The vibration prediction is par-

ticularly difficult due to the following aspects.

(a) Nonlinearity The contact interactions in mechanical

joints represent strongly nonlinear phenomena. This non-

linearity leads to a strong coupling of different time and

length scales. More specifically, the local stick, slip and

liftoff phenomena in the mechanical joints, occurring on

relatively short time and length scales, have considerable

effects on the global vibration behavior of bladed disks,

occurring on much longer time and length scales, and vice-

versa. Moreover, the dependence on the vibration level

needs to be taken into account in the analysis of structural

dynamic characteristics, such as resonance frequencies,

effective damping and deflection shape. Also, nonlinearity

can give rise to phenomena such as co-existence of mul-

tiple stable vibration states, and steady-state vibrations that

exhibit significant frequency components not present in the

excitation spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model Order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and often

consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out using

finite elements. Moreover, the different components have a

number of extended contact interfaces where nonlinear

contact interactions may take place. A fine spatial dis-

cretization is required to accurately resolve the local con-

tact interactions and the dynamic stress field. This leads to

a comparatively high order of the mathematical model.

(c) Multi-disciplinary Character: Since the most

important vibration mechanisms are of aeroelastic nature,

both the structural mechanical and the fluid dynamical

domain need to be taken into account. These domains can

in general not be regarded as independent of each other.

For instance, the aeroelastic interaction is essential to

understand the physical phenomenon of flutter [102, 153].

Besides aerodynamics and structural mechanics, tribology

is another scientific field inherently associated with friction

damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted for

using probabilistic methods. Finally, many turbomachines

undergo a large range of operating conditions. The struc-

tural mechanical and aerodynamical properties can vary

considerably with the operating condition and with opera-

tion time due to damaging (wear, creep, corrosion), which
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Fig. 3 Common types of friction joints [144]: a roots joints, b tip

shrouds, c underplatform dampers, d damper wires, e damper pins
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(c)

Dissipation can also have non-aerodynamical and non-

mechanical, e.g. electromagnetic origin. Such dissipation

mechanisms are accounted for in Drest.

The most important sub-group of joint damping, Djoints,

is friction damping, which refers to the dissipative effects

related to dry frictional local sliding in mechanical joints.

Friction damping is certainly the most established damping

technology of bladed disks. A major drawback of friction

damping is that it comes at the cost of wear effects. It

should be remarked that many damping technologies with

successful applications in other fields, cannot cope with the

harsh environment (high temperatures, high centrifugal

stresses, corrosive gases), and the strictly limited design

space. Also, the application of active or semi-active

vibration control strategies is hampered by the requirement

of fail-safe operation of aircraft engines. Noteworthy

alternatives to friction damping include piezoelectric shunt

damping [60, 178], eddy current damping [88, 89], vis-

coelastic material damping of coatings [62, 177], and

impact or particle damping.

Friction damping takes place in mechanical joints that

are either inherent to bladed disks, such as the ones

between the blade root and the disk, or can be introduced

additionally, e.g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints are

illustrated in Fig. 3. Besides damping, additional joints also

increase the elastic coupling among adjacent blades. This

changes the structure’s modal characteristics and is in fact

sometimes the primary motivation for the introduction of

these joints. By means of an appropriate design of

mechanical joints, a considerable mitigation of vibrations

and resulting dynamic stresses can be achieved. This, in

turn, leads to an improved structural reliability and

decreases fatigue-related costs. Furthermore, this can lead

to an increased feasible blade design space and an extended

range of tolerable operating conditions, and, thus, con-

tributes to an increased efficiency of the turbomachine.

1.2 Scientific Complexity of the Topic

The design of bladed disks with mechanical joints relies on

a profound understanding of the relevant physical phe-

nomena and adequate tools for the assessment of the

structural dynamic characteristics. Important characteris-

tics in this context are the vibration level, the resonance

frequencies and the mechanical damping. During the

design phase, these measures are determined largely by

means of vibration prediction, whereas tests are mainly

carried out for validation. The vibration prediction is par-

ticularly difficult due to the following aspects.

(a) Nonlinearity The contact interactions in mechanical

joints represent strongly nonlinear phenomena. This non-

linearity leads to a strong coupling of different time and

length scales. More specifically, the local stick, slip and

liftoff phenomena in the mechanical joints, occurring on

relatively short time and length scales, have considerable

effects on the global vibration behavior of bladed disks,

occurring on much longer time and length scales, and vice-

versa. Moreover, the dependence on the vibration level

needs to be taken into account in the analysis of structural

dynamic characteristics, such as resonance frequencies,

effective damping and deflection shape. Also, nonlinearity

can give rise to phenomena such as co-existence of mul-

tiple stable vibration states, and steady-state vibrations that

exhibit significant frequency components not present in the

excitation spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model Order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and often

consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out using

finite elements. Moreover, the different components have a

number of extended contact interfaces where nonlinear

contact interactions may take place. A fine spatial dis-

cretization is required to accurately resolve the local con-

tact interactions and the dynamic stress field. This leads to

a comparatively high order of the mathematical model.

(c) Multi-disciplinary Character: Since the most

important vibration mechanisms are of aeroelastic nature,

both the structural mechanical and the fluid dynamical

domain need to be taken into account. These domains can

in general not be regarded as independent of each other.

For instance, the aeroelastic interaction is essential to

understand the physical phenomenon of flutter [102, 153].

Besides aerodynamics and structural mechanics, tribology

is another scientific field inherently associated with friction

damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted for

using probabilistic methods. Finally, many turbomachines

undergo a large range of operating conditions. The struc-

tural mechanical and aerodynamical properties can vary

considerably with the operating condition and with opera-

tion time due to damaging (wear, creep, corrosion), which
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Fig. 3 Common types of friction joints [144]: a roots joints, b tip

shrouds, c underplatform dampers, d damper wires, e damper pins
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(d)

Dissipation can also have non-aerodynamical and non-

mechanical, e.g. electromagnetic origin. Such dissipation

mechanisms are accounted for in Drest.

The most important sub-group of joint damping, Djoints,

is friction damping, which refers to the dissipative effects

related to dry frictional local sliding in mechanical joints.

Friction damping is certainly the most established damping

technology of bladed disks. A major drawback of friction

damping is that it comes at the cost of wear effects. It

should be remarked that many damping technologies with

successful applications in other fields, cannot cope with the

harsh environment (high temperatures, high centrifugal

stresses, corrosive gases), and the strictly limited design

space. Also, the application of active or semi-active

vibration control strategies is hampered by the requirement

of fail-safe operation of aircraft engines. Noteworthy

alternatives to friction damping include piezoelectric shunt

damping [60, 178], eddy current damping [88, 89], vis-

coelastic material damping of coatings [62, 177], and

impact or particle damping.

Friction damping takes place in mechanical joints that

are either inherent to bladed disks, such as the ones

between the blade root and the disk, or can be introduced

additionally, e.g. in the form of underplatform dampers.

Some of the most common forms of mechanical joints are

illustrated in Fig. 3. Besides damping, additional joints also

increase the elastic coupling among adjacent blades. This

changes the structure’s modal characteristics and is in fact

sometimes the primary motivation for the introduction of

these joints. By means of an appropriate design of

mechanical joints, a considerable mitigation of vibrations

and resulting dynamic stresses can be achieved. This, in

turn, leads to an improved structural reliability and

decreases fatigue-related costs. Furthermore, this can lead

to an increased feasible blade design space and an extended

range of tolerable operating conditions, and, thus, con-

tributes to an increased efficiency of the turbomachine.

1.2 Scientific Complexity of the Topic

The design of bladed disks with mechanical joints relies on

a profound understanding of the relevant physical phe-

nomena and adequate tools for the assessment of the

structural dynamic characteristics. Important characteris-

tics in this context are the vibration level, the resonance

frequencies and the mechanical damping. During the

design phase, these measures are determined largely by

means of vibration prediction, whereas tests are mainly

carried out for validation. The vibration prediction is par-

ticularly difficult due to the following aspects.

(a) Nonlinearity The contact interactions in mechanical

joints represent strongly nonlinear phenomena. This non-

linearity leads to a strong coupling of different time and

length scales. More specifically, the local stick, slip and

liftoff phenomena in the mechanical joints, occurring on

relatively short time and length scales, have considerable

effects on the global vibration behavior of bladed disks,

occurring on much longer time and length scales, and vice-

versa. Moreover, the dependence on the vibration level

needs to be taken into account in the analysis of structural

dynamic characteristics, such as resonance frequencies,

effective damping and deflection shape. Also, nonlinearity

can give rise to phenomena such as co-existence of mul-

tiple stable vibration states, and steady-state vibrations that

exhibit significant frequency components not present in the

excitation spectrum. Suitable simulation methods are often

based on iterative, numerical procedures which are com-

paratively time-consuming.

(b) Model Order Turbomachinery bladed disks exhibit

blades with generic, three-dimensional profiles and often

consist of a large number of components, possibly

including additional devices such as friction dampers.

Hence, spatial discretization is commonly carried out using

finite elements. Moreover, the different components have a

number of extended contact interfaces where nonlinear

contact interactions may take place. A fine spatial dis-

cretization is required to accurately resolve the local con-

tact interactions and the dynamic stress field. This leads to

a comparatively high order of the mathematical model.

(c) Multi-disciplinary Character: Since the most

important vibration mechanisms are of aeroelastic nature,

both the structural mechanical and the fluid dynamical

domain need to be taken into account. These domains can

in general not be regarded as independent of each other.

For instance, the aeroelastic interaction is essential to

understand the physical phenomenon of flutter [102, 153].

Besides aerodynamics and structural mechanics, tribology

is another scientific field inherently associated with friction

damping.

In addition to these aspects, several system parameter

are considered uncertain, and may have to be accounted for

using probabilistic methods. Finally, many turbomachines

undergo a large range of operating conditions. The struc-

tural mechanical and aerodynamical properties can vary

considerably with the operating condition and with opera-

tion time due to damaging (wear, creep, corrosion), which
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Fig. 3 Common types of friction joints [144]: a roots joints, b tip

shrouds, c underplatform dampers, d damper wires, e damper pins
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(e)

Fig. 1.1 Common friction joints in bladed disks [1]: (a) root joints, (b) shrouds, (c) under-
platform dampers, (d) damper wires, (e) damper pins.

Boundary conditions at contact interfaces, and as a result the friction damping
and the system natural frequencies, are highly dependent on vibration amplitudes.
In other words, contact forces are state-dependent and nonlinear in nature [13].
Therefore, to accurately assess the amount of the friction damping and changes in
natural frequencies, nonlinear analysis is mandatory.

Ideally, bladed disk sectors are designed to be identical. By assuming symmetry
and in the absence of geometric nonlinearities, a single sector model is sufficient
to compute the nonlinear forced response levels of the full system by defining the
proper phase conditions at sector interfaces [14, 15].

Forced response calculations become more challenging in the presence of mis-
tuning. The word mistuning refers to the differences which exist between the
blades/sectors due to geometrical tolerances, material inhomogeneity, assembly
process or due to the operating conditions such as the wear phenomena [16].

According to the literature, mistuning can be divided into two categories, namely
small and large. There is no solid metric to quantify the level of mistuning, but it
can be stated that in the presence of small mistuning, linear vibration modes of a
mistuned system can be represented as a linear combination of its tuned vibration
modes.

Small mistuning is basically modeled as small deviations of a structural property
of the system from its nominal value. The most commonly varied structural proper-
ties are Young’s modulus (this type of mistuning is also called stiffness or frequency
mistuning) [17], damping [18] and even contact stiffness [19].
Large mistuning on the other hand, refers to significant changes in structural prop-
erties of the bladed disk (usually mass and stiffness) such that the assumption of
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small mistuning fails to accurately predict system dynamics. Large mistuning, is
usually modeled by using some modal properties of the underlying tuned system
plus complementary bases which overall can predict the vibratory response of the
original mistuned system [20].

Mistuning may have considerable effects on vibratory response of bladed disks.
It is shown that, in the presence of mistuning vibration energy can be localized
around few number of blades which can result in premature HCF of the blades [16].

From computational point of view, mistuning destroys cyclic symmetry and
makes the full wheel model essential to predict the possible vibration localization
and to correctly assess the HCF life of blades. On top of that, the random nature of
mistuning demands Monte Carlo simulations to statistically characterize its effect
on the response levels, which simply makes the nonlinear analysis of highly refined
industrial finite element (FE) models unaffordable [21].

In the last three decades, nonlinear methods [22] based on Harmonic Balance
Method (HBM) have established themselves as highly accurate and numerically
efficient methods to compute the steady-state response of assemblies with contact
interfaces, such as bladed disks [1].

Despite the huge time savings achievable by using the HBM with respect to
Time Domain Analysis (TDA), the typical size of industrial finite element (FE)
models of bladed disks (i.e. millions of degrees of freedom per sector) makes the
analysis unfeasible for design purposes, unless reduced order models (ROMs) [23]
are implemented to shorten the computational time.

In this regard, many ROMs have been developed for forced response analysis of
linear mistuned bladed disks [16, 1, 24].

Based on their construction, they can be divided into component-mode-based
[25, 26] or system-mode-based [27, 28] ROMs. The component-mode-based ROMs
are developed based on Component Mode Synthesis (CMS) and substructuring tech-
niques and by dividing the bladed disk system into blades and the disk components.
In general, the CMS-based ROMs are suitable for any types of mistuning.
It is well known in the literature that any time a CMS-based approach is used, the
interface degrees of freedom (DOFs) of the components may become the largest
portion of the ROM, although their contribution to the dynamics of the system may
be marginal. In order to overcome this problem, interface reduction (also known as
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secondary reduction) methods have been developed [29, 30, 26] to reduce the size of
the interface DOFs.

The system-mode-based ROMs are developed by incorporating the system-level
vibration modes of the tuned system, into the reduction basis. This idea was initially
introduced by Yang and Griffin [27] and was referred to as the subset of nominal
modes (SNM).
The SNM was tailored for integrally bladed disks (also called blisk) with small
frequency mistuning and by assuming that normal modeshapes of the mistuned
blisks in a high modal density region, can be represented as a linear combination of
its tuned vibration modes in the same frequency range.

This hypothesis implies that one can compute the reduction basis (i.e. the
modeshapes of the tuned system) only once at the beginning of the forced response
analysis, by performing single sector (called fundamental sector) computations, with
the appropriate cyclic symmetry boundary conditions [31], without any need to
develop the FE model of the full system.

The fundamental assumption of SNM was widely used and extended in further
reduced order modeling techniques such as the: fundamental mistuning model
(FMM) [32], component mode mistuning (CMM) [17], integral mode mistuning
(IMM) [33], pristine–rogue–interface modal expansion (PRIME) [20] and nodal
energy weighted transformation (NEWT) [28]. Compared to CMS-based techniques,
system-mode-based reductions result in a very compact ROM with no retained
interface DOFs.

A detailed description of ROMs developed for linear mistuned bladed disks can be
found in [24, 34]. In both cases (either component-mode or system-mode based
ROMs), the winning strategies are those which end up with a ROM in which:

• The reduction basis includes the modes of the tuned system, since only single-
sector analysis is sufficient.

• The reduction basis is invariant of the mistuning pattern and is only computed
once (necessary for statistical analyses).

• Interface degrees of freedom (DOFs) that are shared between adjacent com-
ponents are not retained in the ROM, otherwise, performing extra secondary
reductions is mandatory to reduce the ROM size.
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1.2 Nonlinear Dynamics of Mistuned Bladed Disks

One cannot naturally extend the ROMs developed for linear systems to the nonlinear
case, since:

• There is no proof that any set of modeshapes of the tuned system are a suitable
basis for nonlinear forced response.

• The equivalent stiffness provided by the contact interfaces depends on the
vibration amplitude and therefore there is not a single tuned linear system
suitable as a projection basis for the governing equations of the nonlinear
mistuned system.

In CMS-based ROMs for systems with localized nonlinearities master DOFs not
only include the boundary DOFs that are used for CMS assembly but also contact
DOFs at friction interfaces. Consequently, the performance of the final ROM will
be tightly dependent on the choice of component normal modes and their assumed
boundary conditions at boundary DOFs. Additionally, the effect of mistuning on
statically condensed partitions of the ROM (that are associated with the retained
master DOFs) should be addressed and needs more clarification, especially for
different configurations of bladed disks.

In system-mode-based ROMs, that are developed for linear analysis of bladed
disks (i.e. no contact DOF is retained in the ROM), it is not clear how to retain
contact DOFs in the final ROM and yet be able to perform a system-level modal
synthesis. This needs to be addressed in developing system-mode-based ROMs for
nonlinear analysis of bladed disks with localized nonlinearities.

The literature about nonlinear mistuned bladed disks is much smaller, compared
to the literature on linear mistuned systems [16] and nonlinear tuned systems [1], the
reasons for that being the difficulties either in performing nonlinear analyses of full
systems or in developing effective ROMs for the mistuned system.

Tang et al. [35] developed a ROM for nonlinear dynamics of blisks with ring
dampers; the so-called coherent ring damper (CoRiD) method. They also combined
the CoRiD with the method of N-PRIME [36] and were able to model the effect of
both small and large mistuning, simultaneously.
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In [37], Tang et al. introduced an extension of the Craig-Bampton [38] component
mode synthesis (CB-CMS) with the component mode mistuning (CMM) method
[17]. Using the CoRiD method along with the CB-CMS-CMM, they developed
an efficient ROM for nonlinear dynamics of blisks with ring dampers and blade
frequency mistuning.
The above-mentioned methods took advantage of a specific feature of ring dampers:
they affect the response amplitude of the bladed disk with negligible effects on the
system resonance frequencies.

Joannin et al. [39] used the concept of complex nonlinear modes to develop a
ROM for mistuned bladed disks subjected to dry friction damping at blade roots.
They obtained a compact ROM after performing three consecutive steps to reduce
linear, nonlinear and interface DOFs. In this case, the friction contact (i.e. the blade
root) was inside the bladed disk sector and this feature is at the basis of the nonlinear
substructuring strategy proposed by the authors.

Unfortunately, in the presence of some of the vastly used friction damping
sources, such as blade shrouds and underplatform dampers, the above-mentioned
approaches are not satisfactory, since the friction contacts occur at the interfaces
between adjacent sectors and strongly affect both the response amplitude and the
resonance frequencies.

In [40], Mitra et al. developed the so-called Adaptive Microslip Projections
(AMPs) to obtain a ROM for shrouded bladed disks, without discriminating between
contact and non-contact DOFs. In this case, the reduction basis includes normal
modes of multiple linear systems, characterized by different boundary conditions at
contact interfaces.

In contrast to linear mistuned bladed disks, also fewer experimental studies have
been devoted to nonlinear mistuned bladed disks with friction contacts. This might
be due to the inherent complexity of performing such measurements (especially the
nonlinear forced response measurements) which necessitates a carefully designed
experimental set-up.

The adopted modeling techniques (for predicting the nonlinear forced response
levels) in some few available studies [41–43] is typically based on cyclic symmetry
assumptions and neglecting the effects of mistuning. In such strategies, the only
possible comparison is between the numerical tuned response and the envelope of
the experimental maximum response.
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Although neglecting the effect of mistuning can be conditionally successful
[42, 43], its limitations and validity conditions are not known a priori. Accurate
prediction of nonlinear forced response levels of mistuned bladed disks with friction
interfaces is quite challenging due to the strong nonlinearities induced at contact
surfaces and also rich dynamics of the underlying linear mistuned system itself. This
highlights the need for a detailed experimental campaign.

1.3 Objectives and Outline

As it was highlighted in section 1.1, accurate prediction of the forced response levels
of bladed disks is a key design tool to access high vibration amplitudes, high stress
situations and eventually to estimate fatigue life of the engine components.
In order to get close to realistic operating conditions, nonlinear friction damping
(present at contact interfaces) and inevitable presence of the mistuning should be
taken into account.

Accordingly, an important milestone of this thesis is the development of reduced
order models tailored for nonlinear forced response of mistuned bladed disks with
friction contacts.
The proposed models in this thesis work, give insight into efficient and accurate
prediction of the nonlinear response levels of mistuned bladed disks with typical
configurations of friction joins such as: shrouds, blade-root joints and underplatform
dampers.

In the development of the ROMs, the following requirements and features are
addressed:

• The ROM must be obtained by performing only sector-level calculations.

• The reduction basis must be invariant of the mistuning pattern. In this way, the
reduction is performed only once and the mistuning can be introduced into the
final ROM, necessary for statistical analyses.

• It is preferable that the ROM retains physical DOFs associated with contact
interfaces for an efficient forced response calculation.



8 Introduction

• It is preferable to enhance the accuracy of reduction basis by incorporating
modal basis with boundary conditions close to actual kinematics at friction
interfaces, especially at microslip (neither fixed nor free).

• It is preferable to implement system-level reductions, to obtain highly compact
ROMs and avoid ending up with component assembly and the need of multiple
secondary reductions.

Another milestone of the thesis is the experimental and numerical study carried
out on an integrally bladed disk with full set of underplatform dampers. In the past
few years, undeplatform dampers have attracted considerable attention as a source of
dry friction damping.

Accurate prediction of nonlinear forced response levels of mistuned bladed disks
with friction dampers is quite challenging due to the strong nonlinearities induced at
contact surfaces and also rich dynamics of the underlying linear mistuned system
itself. This highlights the need for a detailed experimental campaign. This part of
the thesis works aims at providing:

i. An experimental benchmark for nonlinear dynamics of a mistuned bladed
disks with UPDs.

ii. A numerical model that can account for features of a mistuned forced response
level.

The thesis is organized as following:

• Chapter 2 presents a component-based-mode reduced order model for nonlin-
ear dynamics of mistuned bladed disks with shroud friction contacts. In the
proposed ROM, the blades are reduced using the Craig-Bampton (CB) CMS
technique to simply introduce frequency mistuning into the reduced space of
the blades. Loaded interface modeshapes of the disk is then used to reduce the
disk and the blade-disk interface component. This modal synthesis results in a
very compact ROM with no need to perform a secondary reduction, which is a
typical requirement after CMS-based reductions. The adopted logic implies
that in the presence of friction contacts such as shrouds and underplatform
dampers, the friction damping at the blade root joints is negligible and one can
model the blade-disk joint as perfectly linearly elastic.
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• Chapter 3 presents a mixed-boundary model reduction technique for nonlin-
ear forced response analysis of mistuned bladed disks with shroud friction
contacts. The presented ROM is developed based on the the reduction tech-
nique introduced in Chapter. 2. The new approach benefits from the favorable
features of the previous ROM and enhances some of its elements by: (i) re-
ducing the blades in a more realistic mixed-boundary fashion, (ii) modeling
the small sector-level frequency mistuning. The latter is especially beneficial
when the mistuning is distributed through the sector or is not negligible at
blade-disk interface DOFs.

• Chapter 4 introduces a new reduced order modeling technique based on a
Relative Cyclic Component Mode synthesis (RCCMS) approach. The de-
veloped ROM is tailored for nonlinear forced response analysis of bladed
disks subjected to different sources of friction damping (friction interfaces).
RCCMS is a highly compact system-mode-based ROM which only retains
relative contact DOFs and a set of generalized coordinates associated with the
system in fully stick condition. One of the interesting features of RCCMS
is that the reduced space is divided into separate parts, one associated with
nonlinear contact DOFs and the other one associated with the underlying linear
system. This enables designers and analysts to efficiently employ methods that
were initially developed for dynamic analysis of linear mistuned bladed disks.

• Chapter 5 presents experimental and numerical investigation of mistuned
forced responses of an integrally bladed disk with full set of underplatform
dampers (UPDs). Accordingly, a detailed experimental campaign is conducted
on a static test rig called Octopus. This rig is specifically designed to investigate
the dynamics of a full-scale integrally bladed disk (blisk) with UPDs in a
noncontact manner so that the dynamic response of the system is not modified.
This chapter of the thesis provides an experimental benchmark that can be
used for nonlinear dynamics of a mistuned bladed disks with UPDs. Moreover,
a numerical model that can account for features of a mistuned forced response
level.



Chapter 2

Reduced Order Models for Nonlinear
Dynamics of Bladed Disks with
Shrouds: Fixed-Boundary
Component Mode Substitution

2.1 Introduction

In this chapter a component-mode-based reduced order modeling technique is intro-
duced for nonlinear dynamics of mistuned bladed disks with shroud friction contacts.
The adopted logic implies that in the presence of friction contacts such as shrouds
and underplatform dampers, the friction damping at the blade root joints is negligible
and one can model the blade-disk joint as perfectly linearly elastic. Accordingly,
eliminating the blade-disk interfaces from the final ROM (without performing any
secondary reduction technique) is one of the objectives and features of the method.

In detail, the blades are reduced with the CB-CMS approach, retaining as master
DOFs, shroud contact DOFs and interface DOFs between blades and the disk. Then,
after performing the so-called primal assembly between the reduced blades and the
full disk; at the interface DOFs; the loaded interface modeshapes of the disk are used
to approximate the dynamics of the disk and interfaces.
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Here, loaded interface modeshapes refer to normal modes of the disk component
where blades are statically condensed (loaded) on blade-disk interfaces [44]. The
resulting ROM only retains as master DOFs the contact DOFs and, if deemed
necessary by the analyst, additional auxiliary DOFs on the blades.

Finally, it is shown that, the CB-CMS reduction matrix of the blades is invariant
with respect to the blade frequency mistuning. Accordingly, in the case of small
frequency mistuning, a general formulation is derived which enables analysts and
designers to obtain the mistuned ROM of the full system based on sector level
calculations.

2.2 Reduced Order Modeling Technique

In order to better clarify the mathematical formulation of the reduced order model,
the method is firstly applied to a single sector (i.e. disk fundamental sector + 1 blade)
and only afterwards it is shown how to extend the sector reduced matrices to the
full system and how to introduce blade frequency mistuning into the final reduced
system.

2.2.1 Methodology

In the newly developed reduction technique, the fundamental sector of a tuned bladed
disk is divided into blade and disk components. First, the CB-CMS reduction is
applied to the blade component. Then the modal reduction is performed to project
the physical interface and disk DOFs onto the modal coordinates of the disk loaded
interface modeshapes. As a preliminary step, the blade and the disk sector DOFs
and their corresponding stiffness matrices are partitioned as follows (see Fig. 2.1):

xB =


xI

xN

xb
γ

 , Kb =

 kb
II kb

IN kb
Iγ

kb
NI kb

NN 0
kb

γI 0 kb
γγ


xD =

{
xd

γ

xO

}
, Kd =

[
kd

γγ kd
γO

kd
Oγ

kd
OO

]
(2.1)
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where xb
γ and xd

γ correspond to interface DOFs of the blade and the disk, respectively,
xN represents contact nonlinear DOFs of the blade (e.g. contact nodes at shrouds), xI

represents remaining interior DOFs of the blade and xO corresponds to other DOFs
of the disk except interface DOFs. Note that in more general context, xN could
represent any group of active DOFs that are retained during CB-CMS reduction.
Throughout this chapter, all mass matrices are partitioned exactly in the same way as
their corresponding stiffness matrices.

I
x

b
x


d
x


N
x

O
x

Fig. 2.1 Fundamental sector of a simplified
shrouded bladed disk and its partitioned DOFs.

It is worth mentioning that the structural matrices defined in Eq. 2.1 correspond
to the linear sector of the bladed disk and the xN partition denotes DOFs at which
friction contact will be modeled during the nonlinear forced response analysis.

2.2.2 Blade Component Reduction

In order to apply CB-CMS on the blade component, blade DOFs are grouped into
xm and xs vectors to separate master (physical retained) and slave DOFs. Master
DOFs include interface DOFs xb

γ , necessary to enforce CMS primal assembly and
nonlinear DOFs xN , retained for the nonlinear forced response computations. The
partitioned blade displacement vector and the corresponding stiffness matrix, take
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the following form:

xB =


xI

xN

xb
γ

=

{
xs

xm

}

Kb =

[
kss ksm

kms kmm

]
=

 kb
II kb

IN kb
Iγ

kb
NI kb

NN 0
kb

γI 0 kb
γγ

 (2.2)

The blade DOFs can now be reduced using the CB-CMS transformation matrix
RCB, as follows: {

xs

xm

}
= RCB

{
η

xm

}
, RCB =

[
Φ f Ψc

0 I

]
(2.3)

where Φ f are fixed-interface modeshapes of the blade constrained at its master
DOFs and Ψc =−k−1

ss ksm are static constraint modes. Projecting the blade structural
matrices onto the CB-CMS coordinates, yields:

KCB = RT
CBKbRCB =

[
Λb

i 0
0 Kb

cb

]

MCB = RT
CBMbRCB =

[
I mηm

mmη Mb
cb

]
(2.4)

where KCB and MCB are blade CB-CMS reduced stiffness and mass matrices, respec-
tively. Different partitions of KCB and MCB are given below:

Kb
cb = kmm − kmsk−1

ss ksm

Λ
b
i = Φ

T
f kssΦ f

Mb
cb = mmm +Ψ

T
c mssΨc +mmsΨc +Ψ

T
c msm

Mηm = Φ
T
f mssΨc +Φ

T
f msm (2.5)

Note that the lower right partition of KCB represents the blade CB-CMS reduced
stiffness matrix corresponding to retained physical DOFs (i.e. blade nonlinear and
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interface DOFs) and is expanded as follows:

Kb
cb =

[
kb

cb,NN kb
cb,Nγ

kb
cb,γN kb

cb,γγ

]
=

[
kb

NN − kb
NIk

b−1

II kb
IN −kb

NIk
b−1

II kb
Iγ

−kb
γIk

b−1

II kb
IN kb

γγ − kb
γIk

b−1

II kb
Iγ

]
(2.6)

Different partitions of MCB are presented in Appendix B.1.

2.2.3 Interface and Disk Reduction

The proposed modal reduction operates on the disk DOFs plus the interface DOFs
retained during the blade CB-CMS reduction, by projecting them to a set of general-
ized coordinates. Loaded interface modeshapes of the disk are obtained by statically
condensing the blade interior DOFs on blade-disk interface DOFs xb

γ and then solving
the eigenvalue problem of the loaded disk system. Static condensation of interior
blade DOFs on interface DOFs can be obtained by:

xB =


xI

xN

xb
γ

=

{
xb

i

xb
γ

}
=

[
ψb

c

I

]
xb

γ = βxb
γ (2.7)

where xb
i are interior DOFs of the blade and ψb

c are static constraint modes, given by:

ψ
b
c =−k−1

ii kiγ =−

[
kb

II kb
IN

kb
NI kb

NN

]−1[
kb

Iγ

0

]
(2.8)

Note that, in contrast to the blade CB-CMS reduction where both xN and xb
γ DOFs

are retained as master DOFs, here, the blade DOFs are statically condensed only
on interface DOFs xb

γ and thus the ψb
c matrix includes the constraint modes of the

cantilevered blade. The Guyan reduced mass and stiffness matrices of the blade can
be obtained by:

kb
Guyan = ψ

bT
c Kbψ

b
c = kb

γγ − kγik−1
ii kiγ

mb
Guyan = ψ

bT
c Mbψ

b
c = mb

γγ +ψ
bT
c Miiψ

b
c +Mγiψ

b
c +ψ

bT
c Miγ (2.9)
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As a final step, the mass and stiffness matrices of the loaded disk are obtained:

K̃ =

[
kd

γγ + kb
Guyan kd

γO

kd
Oγ

kd
OO

]

M̃ =

[
md

γγ +mb
Guyan md

γO

md
Oγ

md
OO

]
(2.10)

Solving the following eigenvalue problem:(
K̃ −ΛLIM̃

)
ϕ̃ = 0 (2.11)

gives the disk loaded interface modeshapes ϕ̃ and eigenvalues ΛLI . Prior to applying
the interface-disk modal reduction, one should perform a CMS assembly to cast
the partially reduced blisk structural matrices. Enforcing interface compatibility
between the CB-CMS reduced blade and the disk component, yields:

K1 =


Λb

i 0 0 0
0 kb

cb,NN kb
cb,Nγ

0
0 kb

cb,γN kb
cb,γγ

+ kd
γγ kd

γO

0 0 kd
Oγ

kd
OO



M1 =


I mηN mηγ 0

mNη mb
cb,NN mb

cb,Nγ
0

mγη mb
cb,γN mb

cb,γγ
+md

γγ md
γO

0 0 md
Oγ

md
OO

 (2.12)

Now, the further reduction can be achieved by expressing the interface and disk
DOFs of the displacement vector in terms of loaded interface modal coordinates:

η

xN{
xγ

xO

}
=

 I 0 0
0 I 0
0 0 ϕ̃




η

xN

η̃

= RLI


η

xN

η̃

 (2.13)

where RLI denotes the LI reduction matrix. The final reduced mass and stiffness
matrices of the fundamental sector is obtained by implementing the following pro-
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jections:

Krom = RT
LIK1RLI

Mrom = RT
LIM1RLI (2.14)

Final reduced stiffness matrix and its different partitions take the following form:

Krom =


I 0 0
0 I 0

0 0

[
ϕ̃γ

ϕ̃O

]


T 
Λb

i 0 0 0
0 kb

cb,NN kb
cb,Nγ

0
0 kb

cb,γN kb
cb,γγ

+ kd
γγ kd

γO

0 0 kd
Oγ

kd
OO




I 0 0
0 I 0

0 0

[
ϕ̃γ

ϕ̃O

]


=

 Λb
i 0

0 kb
cb,NN

0
kb

cb,Nγ
ϕ̃γ

0 ϕ̃T
γ kb

cb,γN [k̂]

 (2.15)

where

k̂ =

[
ϕ̃γ

ϕ̃O

]T [
kb

cb,γγ
+ kd

γγ kd
γO

kd
Oγ

kd
OO

][
ϕ̃γ

ϕ̃O

]
. (2.16)

The evolution of the original set of DOFs of the fundamental sector during the
reduction is depicted in Fig. 2.2.
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Fig. 2.2 Evolution of DOFs during the reduction.
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2.2.4 Full Bladed Disk ROM

Without losing any generality of the presented formulation for the single sector, this
reduction approach can be easily extended to the full system. In this case, each
partition of matrices in Eq. (2.1) should be replaced by a block diagonal matrix,
representing the contribution of all sectors in the structural matrices. Accordingly,
the blade and the disk stiffness matrices of the full structure can be expressed as
follows:

KB =

 I ⊗ kb
II I ⊗ kb

IN I ⊗ kb
Iγ

I ⊗ kb
NI I ⊗ kb

NN 0
I ⊗ kb

γI 0 I ⊗ kb
γγ


KD =

[
I ⊗ kd

γγ I ⊗ kd
γO

I ⊗ kd
Oγ

k̄d
OO

]
(2.17)

where I is an identity matrix of size N (number of blades) and ⊗ denotes the
Kronecker product. In Eq. (2.17), k̄d

OO is the partition of the full disk component
corresponding to xO DOFs. Note that k̄d

OO is not a pure block diagonal partition,
due to the presence of internal interfaces between disk sectors. Since the blades are
uncoupled to each other and identical as no mistuning is introduced yet, the CB-CMS
transformation matrix of N-blades structure, can be obtained from the single blade
transformation matrix, as follows:

R̄cb =

[
I ⊗Φ f I ⊗Ψc

0 I

]
(2.18)

The CB-CMS reduced stiffness matrix of the full set of blades, can be described as:

K̄CB =

 I ⊗Λb
i 0 0

0 I ⊗ kb
cb,NN I ⊗ kb

cb,Nγ

0 I ⊗ kb
cb,γN I ⊗ kb

cb,γγ

 (2.19)

Enforcing the interface compatibility over the interface DOFs, yields an assembly
composed of CB-CMS reduced blades attached to the full disk at the blade-disk
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interfaces. The stiffness matrix of this partially reduced system is expressed as:

KI =


I ⊗Λb

i 0 0 0
0 I ⊗ kb

cb,NN I ⊗ kb
cb,Nγ

0
0 I ⊗ kb

cb,γN I ⊗ krom
γγ I ⊗ kd

γO

0 0 I ⊗ kd
Oγ

k̄d
OO

 (2.20)

where krom
γγ = kb

cb,γγ
+ kd

γγ denotes the interface stiffness partition, made of the CB-
CMS reduced stiffness of the blade interface added to the interface stiffness of the
disk component. The KI matrix must be now further reduced by means of loaded
interface modeshapes of the full disk (i.e. Φ̃). Due to the cyclic symmetry of the
system, modeshapes of the full disk can be obtained by expanding modeshapes of
the loaded fundamental sector computed with cyclic symmetry boundary conditions
[31]. The final reduced stiffness matrix of the tuned bladed disk is:

KROM =


I ⊗Λb

i 0
0 I ⊗ kb

cb,NN

0(
I ⊗ kb

cb,Nγ

)
Φ̃γ

0 Φ̃T
γ

(
I ⊗ kb

cb,γN

)
[K̂]

 (2.21)

with

K̂ =

[
Φ̃γ

Φ̃O

]T
 Bdiag

n=1..N
[krom(n)

γγ ] I ⊗ kd
γO

I ⊗ kd
Oγ

k̄d
OO

[ Φ̃γ

Φ̃O

]
(2.22)

where Bdiag
n=1..N

[krom(n)

γγ ] = I ⊗ krom
γγ .

Note that, the same discussion and methodology is used to obtain the reduced mass
matrix of the full system i.e. MROM (a detailed description is given in Appendix B.1).

2.2.5 Mistuning Modeling

The presented reduction technique is tailored for small blade mistuning. Accordingly,
the disk is treated as a tuned cyclic structure and mistuning is introduced as variations
in Young’s modulus of blades (blade frequency mistuning). In order to introduce
mistuning to the final reduced model; in terms of Young’s modulus variation of
blades; it is beneficial to recall that based on the Hooke’s law for isotropic materials,
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the element stiffness matrix ke which relates nodal forces to nodal displacements, is
linearly dependent to Young’s modulus as follows:

ke = E · ke′ (2.23)

As described before, the CB-CMS method is used to reduce the blades. Therefore,
the effect of blade Young’s modulus variation on the CB-CMS reduction matrix
Rcb, defined by Eq. (2.3), is investigated. It turns out that for a single component of
nominal Young’s modulus E, the corresponding CB-CMS transformation matrix is
invariant of Young’s modulus, and the resultant CB-CMS reduced stiffness matrix is
linearly dependent to E as follows:

KCB =

[
E ·Λ′b

i 0
0 E ·

(
k′mm − k′msk′−1

ss k′sm
) ] (2.24)

In the case of mistuned systems, the random Young’s modulus can be defined as:

En = E · (1+δn) (2.25)

where En is the Young’s modulus of the nth blade, E is the nominal Young’s modulus
and δn is a non-dimensional mistuning parameter used to perturb E. Accordingly,
one may obtain the final reduced form of the mistuned stiffness matrix as follows:

KROM =
diag

n=1..N
(1+δn)⊗Λb

i 0 0

0 diag
n=1..N

(1+δn)⊗ kb
cb,NN

(
diag

n=1..N
(1+δn)⊗ kb

cb,Nγ

)
Φ̃γ

0 Φ̃T
γ

(
diag

n=1..N
(1+δn)⊗ kb

cb,γN

)
[K̂]


(2.26)

with

K̂ =

[
Φ̃γ

Φ̃O

]T
 Bdiag

n=1..N
[k∗rom(n)

γγ ] I ⊗ kd
γO

I ⊗ kd
Oγ

k̄d
OO

[ Φ̃γ

Φ̃O

]
(2.27)
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where

Bdiag
n=1..N

[k∗rom(n)

γγ ] = Bdiag
n=1..N

[k∗b(n)
cb,γγ ]+Bdiag

n=1..N
[kd(n)

γγ ]

= diag
n=1..N

(1+δn)⊗ kb
cb,γγ + I ⊗ kd

γγ (2.28)

Note that superscript (.)∗; first introduced in Eq. (2.27); will be used to denote a
mistuned partition. For ROMs to be useful in stochastic nonlinear analysis, necessary
to assess statistically the effect of mistuning on the response level of the blades,
direct introduction of mistuning in the final ROM is necessary to prevent multiple
reductions, one per each analyzed mistuning pattern. KROM as formulated in Eq.
(2.26), allows for direct introduction of mistuning in all its blocks except for K̂,
which depends on all random variables δn and needs to be recomputed for each
mistuning pattern. In order to overcome this issue, one option is to assume that
the blade mistuning has a negligible effect on this partition and K̂ remains constant
regardless of the mistuning pattern. It is worth mentioning that, the interface portion
of the blade CB-CMS stiffness matrix (i.e. k∗b(n)

cb,γγ
) is the only source of mistuning

introduced in K̂, as a byproduct of CMS assembly. From physical point of view,
assuming a constant K̂ matrix is equivalent to neglect the effect of mistuning on a
portion of constraint modes corresponding to interface DOFs of the blades. The
validity of this assumption is discussed in the result section.

Another option is to efficiently compute K̂ without neglecting the effect of
mistuning on this partition. This alternative solution requires a special treatment.
To this end, an exact solution is developed based on sector level computations
and modeshapes that have already been computed during the reduction steps. The
alternative method is illustrated in the next section.

It is worth mentioning that the interface-disk reduction approach is based on
loaded interface modeshapes of the disk. As discussed in section 2.2.3, loaded
interface modeshapes are obtained by adding Guyan reduced matrices of the tuned
blades to the interface partition of the disk matrices and solving the eigenvalue
problem of the loaded disk system. In fact the loaded interface modeshapes obtained
in the reduction approach are calculated by statically condensing the tuned blades
onto the blade-disk interfaces. However, in the reduction process of a mistuned
system, one may consider the effect of blade mistuning on the loaded interface
modeshapes of the disk. In this context, mistuned loaded interface modeshapes refer
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to those modeshapes that are calculated by condensing the mistuned blades onto the
blade-disk interfaces. Note that, neglecting the effect of mistuning on loaded interface
modeshapes of the disk could be a valid assumption. Since, the dominant portion
of K̃ is composed of the tuned disk stiffness matrix, the added mistuned portion
(i.e. Guyan stiffness of mistuned blades Bdiag

n=1..N
[k∗b(n)

Guyan] = diag
n=1..N

(1+δn)⊗ kb
Guyan) to

the interface DOFs could not considerably change the modeshapes of the full disk.
Therefore, it is predictable that neglecting the effects of mistuning only on Guyan
stiffness of the blades, provides acceptable accuracy. Recall that, in the context of
small frequency modeling, it is shown that mistuned modeshapes can be represented
as a linear combination of the tuned modes [27]. The validity of this assumption is
discussed later in the result section.

2.2.6 Sector Level Computations (Requisites)

As it is seen in Eq. (2.26) all partitions of KROM are linearly dependent to mistuning
parameters except for its extreme lower right partition K̂, which is dependent to
all random parameters δn. Thus, to take into account the effect of mistuning on
this partition, one should compute K̂ for each mistuning pattern. This would be
cumbersome for statistical analyses. Moreover, all other partitions of KROM are
constructed from a single sector stiffness matrix and cyclic loaded interface modes
of the disk. However, in industrial applications, projecting the full disk matrix onto
the cyclic loaded interface modeshapes is a formidable task due to its computational
costs. Therefore, an alternative way for computation of K̂ based on sector level
computations is needed. For simplicity of notation the following operator is defined
as:

blkdg[.] = Bdiag
n=1..N

[.]⊕0k =


Bdiag
n=1..N

[.] 0 · · · 0

0
...
0

 0 · · · 0
... . . . ...
0 · · · 0


k×k

 (2.29)

where 0k denotes additive identity in k (k by k null matrix) and ⊕ denotes direct sum
of matrices which is defined in Appendix B.2. This operator will be used to denote,
in a compact way, a block diagonal matrix of size equal to the total number of disk
DOFs with all entries equal to zero except for the partition corresponding to the
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blade-disk interface DOFs. By introducing Eq. (2.29) into the loaded disk stiffness
matrix which is composed of the disk stiffness matrix KD (defined by Eq. (2.17)) and
the Guyan-reduced stiffness matrices of the blades added to the blade-disk interfaces,
it can be represented in the following compact way:

K̃ =

 I ⊗ kd
γγ +Bdiag

n=1..N
[kb(n)

Guyan] I ⊗ kd
γO

I ⊗ kd
Oγ

k̄d
OO

= KD +blkdg[kb
Guyan] (2.30)

By substituting Eq. (2.17) into Eq. (2.27) and using the compact notation defined by
Eq. (2.29), K̂ can be written as:

K̂ = Φ̃
T

 Bdiag
n=1..N

[k∗rom(n)

γγ ] I ⊗ kd
γO

I ⊗ kd
Oγ

k̄d
OO

Φ̃

= Φ̃
T

 Bdiag
n=1..N

[K∗b(n)
cb,γγ

]+ I ⊗ kd
γγ I ⊗ kd

γO

I ⊗ kd
Oγ

k̄d
OO

Φ̃

= Φ̃
T
(

KD +blkdg[k∗b
cb,γγ ]

)
Φ̃ (2.31)

As previously stated, K̂ is composed of tuned disk stiffness matrix and mistuned
CB-CMS stiffness of blade interfaces. By adding and subtracting the Guyan stiffness
matrix of the tuned blades to the interface DOFs of the K̂ central core and using Eq.
(2.30), one may cast K̂ as follows:

K̂ = Φ̃
T
(

KD +blkdg[kb
Guyan]−blkdg[kb

Guyan]+blkdg[k∗b
cb,γγ ]

)
Φ̃

= Φ̃
T
(

K̃ −blkdg[kb
Guyan]+blkdg[k∗b

cb,γγ ]
)

Φ̃

= diag(ΛLI)− Φ̃
T
γ Bdiag

n=1..N
[kb(n)

Guyan]Φ̃γ + Φ̃
T
γ Bdiag

n=1..N
[k∗b(n)

cb,γγ ]Φ̃γ (2.32)

Now, based on the derived formulation, K̂ can be computed using sector level
calculations. According to Eq. (2.32), K̂ is mainly constructed from the terms that are
independent to mistuning (i.e. the first two terms of Eq. (2.32)) and are just computed
for once. In addition, the mistuning is introduced (i.e. the third term of Eq. (2.32)) by
projecting a sparse matrix onto the interface portion of loaded interface modeshapes.
All those mentioned above, make the alternative formulation computationally cheap
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and suitable for statistical analyses. Note that, no approximation is made in derivation
of Eq. 2.32 and it calculates the exact K̂ as is defined in Eq. 2.27.

2.3 Numerical Solution

The reduced equations of motion of the system can be written as:

Mromẍr(t)+Cromẋr(t)+Kromxr(t) = Fnl(xr(t), ẋr(t))+Fex(t) (2.33)

where xr(t) is the displacement vector of the final reduced system comprised of
nonlinear contact DOFs and CB and LI generalized coordinates. Mrom, Crom and Krom

are mass, damping and stiffness matrices of the final reduced system, respectively.
Fnl is the vector of nonlinear contact forces and it depends on relative displacements
of contact nodes. Fex is the vector of the external forces applied on the system. Note
that, the reduced damping matrix Crom can be computed in a systematic manner using
the proposed reduction technique. However, by assuming a proportional damping for
the ROM, Crom matrix can be simply constructed from reduced mass and stiffness
matrices.

The HBM is used to compute the steady state response of the system under
periodic external excitation.
An iterative approach based on an alternating frequency/time (AFT) domain ap-
proach [45] is used to solve the nonlinear harmonic balance equations, where the
nonlinear contact forces are modeled by means of node-to-node state-of-the-art
contact elements ([46]).
The numerical solution is described thoroughly in Appendix A.

2.4 Results and Discussions

2.4.1 FE Model

The considered test case in this study is a simplified turbine bladed disk with 12
blades developed in ANSYS. The single sector model contains 429 elements and
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460 nodes and the full model comprises 11429 nodes and 34,287 DOFs in total. The
FE model of the academic bladed disk and a single sector model are depicted in Fig.
2.3.

Contact Area

Fig. 2.3 FE model of the academic bladed disk and the single sector model.

The bladed disk is fixed at two circular rows of node lying on the outer faces of
the disk. In the fundamental sector, each contact surface at the shroud comprises
4 nonlinear contact nodes and also the blade-disk interface contains 6 nodes. All
the linear analyses (e.g. natural frequencies, modeshapes and etc.) are performed
on a blisk in fully stick condition, in order to have boundary conditions at shroud
interfaces more similar to microslip condition, which are typical operating conditions
for shrouds. Fully stick condition is modeled by merging contact node pairs at
adjacent shrouds.

Natural frequencies versus the number of nodal diameters (NDs) for the tuned bladed
disk in stick condition is depicted in Fig. 2.4.
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Fig. 2.4 Natural frequency versus nodal diameters for the tuned
bladed disk in fully stick condition.

This plot reveals underlying characteristics of system dynamics such as frequency
veerings and disk/blade dominated modeshapes. In frequency veering regions blade
and disk dominated modeshapes veer from each other by further increasing the ND.
Note that, since the adjacent blades are coupled at the shrouds, blade dominated
modes are not pure horizontal lines and a slight softening/stiffening behavior is seen
for blade mode families. In fact, in some frequency ranges, the vibratory motion of
the coupled shrouds (which resemble a ring component attached to the blade tips)
has a dominant out of plane component along axial direction. This will introduce
an additional compliance to the system. In contrary, increasing the ND in some
other ranges, results in a circumferential mode of the coupled shrouds (in tangential
direction), which will decrease the system compliance (please see Fig. 2.5). In Fig.
2.4, slanted lines could also be representative of inter-blade couplings which makes
it more difficult to distinguish them from disk dominated modes.
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Fig. 2.5 Contour plot of modeshapes at different nodal diameters.

2.4.2 Results for Linear Tuned Bladed Disk

In order to evaluate the accuracy of the proposed reduction technique, eigenvalues of
the final reduced system are compared with the exact eigenvalues of the full FE model,
obtained in ANSYS. The eigenvalue deviation is defined as ((λROM −λ f ull))/λ f ull

where λROM denotes eigenvalues of the reduced system and λ f ull denotes exact
eigenvalues of the full model.

Here, the first 100 natural frequencies of the tuned system are compared. Since,
the reduction is based on two distinct sets of component modes, the number of
retained modes of each set, defines the accuracy of the final ROM. Here, number of
retained modes is selected based on the convergence analysis. This is a preliminary
step, especially for nonlinear analyses, since, the contribution of higher modes or the
presence of modal interaction in the system, are not known a priori.

In addition, “the frequency range of interest” should be taken into account. For
instance, near the blade dominated modeshapes, increasing the number of retained
loaded interface modeshapes (which are representative of disk dynamics) beyond a
certain limit, does not enhance the accuracy of the ROM. In all results, the indicated
number of CB modes, refers to the full system and not the retained modes per blade.
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Fig. 2.6 The influence of loaded interface (LI) modeshapes on the
eigenvalue deviation between ROM and ANSYS results (tuned
blisk in stick).

The effect of retained loaded interface modeshapes in the ROM on the accuracy
of the computed eigenvalues is shown in In Fig. 2.6. As it is seen, increasing the
number of loaded interface modes in the ROM, increases the accuracy up to a certain
level. From a certain level, adding extra modeshapes (corresponding to higher
frequencies) does not contribute to the accuracy of the results in the studied range
(first 100 modes).

Figure 2.7 shows the influence of the CB modes used in the ROM, on the
accuracy of the computed eigenvalues. The number of CB modes used in the ROM
can considerably affect the accuracy of the results. It should be noted that the
real boundary conditions at the shrouds are different with the CB-CMS boundary
conditions where blades are clamped at interface and nonlinear contact nodes. Thus,
increasing the number of retained CB modes, will increase the accuracy more
significantly. These results, reveal the capability of proposed reduction technique in
accurately predicting the natural frequencies of the system.
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Fig. 2.7 The influence of CB modes on the eigenvalue deviation
between ROM and ANSYS results (tuned blisk in stick).

2.4.3 Results for Linear Mistuned Bladed Disk

The performance of the proposed ROM in predicting the eigenvalues of a mistuned
blisk is assessed here. The mistuned bladed disk model is obtained by varying the
blades Young’s modulus (3%) from its nominal value. The random mistuning pattern
considered for the test case is listed in Table. 2.1.

Table 2.1 Blade frequency mistuning pattern

Blade number Mistuning parameter,δn

1 0
2 0.0114
3 0.0149
4 -0.0030
5 -0.0250
6 -0.0163
7 0.0248
8 -0.0209
9 0.0195
10 0.0023
11 0.0298
12 -0.0253
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The influence of the number of LI and CB modes used in the ROM on the
eigenvalue deviations is illustrated in Figs. 2.8 and 2.9, respectively.
As can be observed, similar to the case of tuned blisk, increasing the number of
retained modes enhances the results by decreasing the deviation from the exact
eigenvalues obtained in ANSYS.

 

Fig. 2.8 The influence of loaded interface (LI) modeshapes on
the eigenvalue deviation between ROM and ANSYS results (mis-
tuned blisk in stick).

Figures 2.8 and 2.9, demonstrate the high accuracy of the reduction approach in
predicting the eigenvalues of the mistuned model. Note that sufficient number of
LI and CB modes should be retained in the ROM to achieve acceptable accuracy.
For instance, the maximum error for predicted eigenvalue of the mistuned system;
obtained from a ROM containing 300 CB and 180 loaded interface modes; is about
0.137 %.

2.4.4 Results Based on Mistuned Loaded Interface Modeshapes

The effect of mistuned loaded interface modeshapes on the performance of the ROM
is investigated. Figure 2.10 shows the accuracy of two ROMs (based on tuned and
mistuned loaded interface modeshapes), in predicting the natural frequencies of the
mistuned bladed disk.



30
Reduced Order Models for Nonlinear Dynamics of Bladed Disks with Shrouds:

Fixed-Boundary Component Mode Substitution

 

Fig. 2.9 The influence of CB modes on the eigenvalue deviation
between ROM and ANSYS results (mistuned blisk in stick).

 

Fig. 2.10 The effect of mistuned loaded interface (LI) mode-
shapes on the accuracy of the predicted eigenvalues by the ROM.

As can be seen results coincide well for both ROMs. In other words, considering
mistuned loaded interface modeshapes as the reduction basis does not improve the
accuracy of the ROM. The demonstrated results are of great importance, especially
for statistical analyses, since, changing and computing the reduction basis for each
mistuning pattern is not practical. In addition the tuned and mistuned loaded interface
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modeshapes are compared with each other using the modal assurance criterion
(MAC).

 

Fig. 2.11 Modal correlation between tuned and mistuned loaded
interface (LI) modeshapes.

Figure 2.11 shows a comparison between the tuned and the mistuned loaded
interface modeshapes. As it is seen, most part of the MAC diagonal is almost unity
indicating that the modeshapes are similar. However, a weak correlation is seen
between two dozen modes (i.e. 13-24 and 25-36). Note that the MAC matrix has
a block diagonal structure in this range. So, any modeshape chosen from either of
these two sets, has modal properties similar to that of modes lying in the same set
and is orthogonal to all other modes. For instance, the mistuned loaded interface
modeshape number 15 can be represented as a linear combination of tuned loaded
interface modeshapes 13 to 24. In this sense, negligible modal property is missed
while using tuned loaded interface modeshape.
It is worth mentioning that in the modeling of small frequency mistuning ([27]) it
is assumed that the introduced mistuning does not alter the vibration motion type.
That is to say, a bending mode remains a bending mode in the presence of mistuning
although it will not have a perfect nodal diameter shape.
Another comparison is made between the eigenvectors corresponding to the nonlinear
DOFs, obtained from the final ROM. In one of which, mistuned loaded interface
modeshapes are used as one of the reduction basis. The diagonal MAC of the
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final ROM eigenvectors corresponding to the retained nonlinear DOFs is shown in
Fig. 2.12. Note that, modeshapes of ROMs corresponding to Fig. 2.10 are used in
computation of the diagonal MAC. As can be seen, modeshape are in an excellent
correlation (higher than 0.99) with each other. Thus, the ROMs obtained based on
either mistuned or tuned loaded interface modeshapes, give practically identical
eigenvectors.

 

Fig. 2.12 Modal correlation between ROM eigenvectors based
on tuned and mistuned loaded interface (LI) modes.

2.4.5 Results Based on Tuned K̂ Partition

As discussed in the mistuning modeling section, one assumption to simplify the
mistuning introduction into the final reduced stiffness matrix is to neglect the effect of
mistuning on the constraint modes corresponding to interface DOFs (i.e. considering
a tuned K̂ partition in the KROM). The validity of this assumption is investigated here.

Figure 2.13 shows the difference between exact natural frequencies of a mistuned
bladed disk (obtained from full FE in ANSYS) and those obtained from two different
ROMs. The red curve shows the results obtained from the ROM with a tuned
K̂ partition while the black curve represents the ROM results with a mistuned K̂
partition. As it is seen, results of the ROM with tuned K̂ are in good accordance
with results of the ROM with mistuned K̂. In fact, due to the minimal contribution of
interface DOFs to system dynamics, neglecting the effect of mistuning on them is a
valid assumption.
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Fig. 2.13 The influence of neglecting the mistuning in K̂ partition
on the accuracy of predicted eigenvalues by the ROM.

2.4.6 Localized Modeshapes

The presence of mistuning can result in localization of vibration modes. This con-
fines the vibration energy around few number of blades and increases their vibration
amplitude, significantly. The capability of the proposed reduction technique in ac-
curately predicting the mode localization is assessed here. To this end, a localized
vibration mode, namely 107th mistuned mode with corresponding natural frequency
of 372 Hz, is studied. It is worth mentioning that the ROM predicted the mistuned
eigenvalue by 0.0096% error.
Figure 2.14 shows a comparison between localized modeshapes obtained by ROM
and FE model, for the 107th mistuned modeshape. Only axial component of modal
displacements of an identical contact node on each blade, is used to plot the mode-
shapes. As can be seen, the proposed ROM can accurately model the localized
modeshape and its results coincide with exact FE result.

2.4.7 Results for Nonlinear Forced Response Analysis

For the nonlinear forced case, it is assumed that the global tangential and normal
contact stiffnesses (i.e. ktx, kty and kn, respectively) have same values, and, the global
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Fig. 2.14 Localized modeshapes obtained from ROM and FE
model.

tangential stiffness is uniformly distributed among all local contact nodes. Here,
the considered nominal values of the global contact stiffnesses are ktx = kty = kn =

1e4 N
/

µm. The effect of static loads (e.g. centrifugal forces), are modeled by
applying a constant normal preload (i.e. N0) on each contact node pair, otherwise
a preliminary nonlinear static analysis should be performed to compute the static
preloads at contact nodes. Note that the stiffness matrix generally depends on the
rotational velocity of the rotor due to stress stiffening and spin softening, however
these effects are neglected here.
Periodic external forces are modeled by a traveling wave type excitation of amplitude
F0. Note that, two extra master nodes on each blade (located at the blade-shroud
tip) are retained as the response and forcing nodes. The amplitude of the periodic
response is computed based on a mono-harmonic balance procedure (only including
the first harmonic). The tangential component of the periodic solution (calculated
at the response node located on blade #1) is used to plot the forced response levels.
In all forced cases, a very small viscous damping (with damping ratio ξ = 0.001,
similar for all modes) is considered to better evaluate the effect of friction damping
on the system response. A ROM comprised of 240 CB and 180 loaded interface
modes, is used to carry out forced response computations.

The accuracy of the ROMs (one with tuned K̂ and the other with mistuned K̂)
in predicting the nonlinear forced response levels of a mistuned turbine bladed disk
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Fig. 2.15 Comparison of nonlinear forced response levels of mistuned
ROMs and FE model (EO = 5).

under EO excitation 5 is depicted in Fig. 2.15. As the reference, a CB-CMS reduced
FE model; by retaining a large number of CB modes (namely 1200 modes) and
retaining the same master DOFs as in the ROMs; is considered. This system is
referred to as the Ref FE and in the case of nonlinear forced response analyses, all
ROM results are compared with the results of the so-called Ref FE. As it is seen
in Fig. 2.15, forced response results of the ROM with tuned K̂ is in an excellent
accordance with the results of the ROM with mistuned K̂ partition. This indicates that
the effect of blade frequency mistuning on interface DOFs are negligible. Moreover,
the results of both ROMs are in a very good agreement with Ref FE results. The
predicted peaks around the resonance are in excellent match with the Ref FE for
different values of preload-to-excitation ratio (i.e. N0/F0). A very slight frequency
shift (about 0.04 Hz or 0.025% error) is observed in the response levels predicted by
ROMs, which is typical of reduced order models. It is evident from the figure, that
decreasing the N0/F0 ratio will change the contact state from fully stick condition
towards the gross slip. As a result, the increased damping introduced from the
shrouds in microslip, decreases the response amplitudes.
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(a)

 

(b)

 

(c)

 

(d)

Fig. 2.16 Nonlinear forced response levels of the mistuned ROM versus ref FE. (a) N0/F0 =
5, (b) N0/F0 = 2, (c) N0/F0 = 1, (d) N0/F0 = 0.5.

Nonlinear forced response levels for EO 5 excitation within a high modal density
region are shown in Fig. 2.16. Results of the ROM with tuned K̂ is presented and
compared with Ref FE results. It is expected that the ROM with mistuned K̂ partition
will give results of the same/higher accuracy. The investigated frequency range is
selected near a softening region of Fig. 2.4 and it comprises multiple blade dominated
modes. As discussed before (in Fig. 2.4), blades and shrouds within this frequency
range experience complex dynamic motions, blades undergo a torsional motion
which results in a wavy motion (with a dominant component along axial direction)
in the coupled shrouds. In the mistuned system, other ND modeshapes besides ND
5, are also present in the selected range. The accuracy of the ROM in predicting the
nonlinear forced response levels is evaluated in this frequency range. As it is seen,
the forced response levels predicted by the ROM are in an excellent accordance with
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the Ref FE results. In Fig. 2.16a, the response levels of the tuned bladed disk, both in
fully stuck and microslip conditions, are shown. It is seen that the response level of
the fully stuck tuned system is higher than that of the mistuned one (for this specific
considered blade), and that, despite the engine order excitation, multiple peaks are
present within the frequency range. Moreover, for the considered blade (namely
blade #1) the mistuned nonlinear response level is higher than that of the tuned one.
It is an interesting result, that in microslip conditions, the mistuning can increase
the nonlinear damped response levels. It should be noted that, the investigated
frequency range is far from blade-disk veering regions and in this frequency range,
disk does not contribute to the system dynamics, significantly. The effect of preload-
to-excitation ratio on the damping performance is evident in Figs. 2.16a to 2.16d.
For relatively higher values of N0/F0, it is seen that the contacts are in stick near
low amplitude peaks and they behave like linear springs with no damping effects,
while near high amplitude peaks, due to the higher relative displacements at contact
nodes, the contacts are in microslip and the damping provided by the slip, decreases
the periodic response amplitude. Further decreasing of N0/F0 values, increases the
slip levels and as a result, the amplitude of the vibration is damped within the full
frequency range.

 

Fig. 2.17 Nonlinear response amplification of the mistuned bladed disk
(EO = 5 and N0/F0 = 5).
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Figure 2.17 demonstrates the response amplification phenomenon for a mistuned
bladed disk in microslip condition. The system is under EO 5 excitation and N0/F0
is equal to 5. It is well known that, for linear systems, mistuning could increase the
response levels. Here, the maximum nonlinear response of all blades is computed at
each frequency. The depicted nonlinear response curve, is in fact the envelope of the
maximum response of all blades. As it is seen the ROM (with tuned K̂) results are in
excellent accordance with the Ref FE results. It is evident that, even in the presence
of friction damping, the damped response of the mistuned system is increased by
the amplification factor of 79% (with respect to the maximum response of the
tuned system). It can be concluded that, since in the presence of friction damping,
mistuning can increase the damped response levels by localizing the response around
few number of blades, for an optimum design, the effect of mistuning and friction
damping must be modeled simultaneously.

2.5 Conclusion

In this chapter, a new component-mode-based reduced order model was presented
for nonlinear dynamics of mistuned turbine bladed disks with shroud friction con-
tacts. The novel reduction technique is based on small mistuning assumption (blade
frequency mistuning). As a preliminary step, a single sector composed of one blade
and the fundamental sector of the cyclic symmetry disk was considered. Based on
the proposed reduction approach, a CB-CMS reduction was applied to the blade com-
ponent, where shroud contact DOFs and blade-disk interface DOFs were retained
as master DOFs, and a modal reduction based on loaded interface modeshapes of
the disk applied to the interface and disk components. Finally, it was shown how to
extend the single sector results to the full structure.
Based on the developed formulation, the reduced stiffness matrix of the mistuned
system is computed by sector level calculations. Both linear analyses and nonlinear
forced response results revealed the accuracy of the new reduction technique in
predicting the dynamics of the mistuned system especially in high modal density
regions. It was revealed that the mistuning can increase the damped response levels.
It was shown that the effect of blade frequency mistuning on interface DOFs can be
neglected without losing accuracy. This assumption, inevitably, results in a cheaper
computational cost for statistical analyses. However, if deemed necessary by the
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analyst to take into account the effect of mistuning on interface DOFs, an exact for-
mulation, based on sector level calculations, is provided with minimal computational
cost, suitable for statistical analyses.
In this chapter, the method was successfully applied to a mock-up bladed disk with
shrouded blades, although the entire process can be applied to bladed disks with
underplatform dampers. In that context, master DOFs during the CB-CMS blade
reduction should comprise both the blade-disk and the blade-damper interface DOFs.

The research findings of this chapter are published in [47].



Chapter 3

Reduced Order Models for Nonlinear
Dynamics of Bladed Disks with
Shrouds: Mixed-Boundary
Component Mode Substitution

3.1 Introduction

In this chapter a new mixed-boundary model reduction technique is presented for
nonlinear forced response analysis of mistuned bladed disks with shroud friction
contacts. The presented ROM is constructed based on the main idea of the developed
reduction technique in Chapter. 2.

In CMS-based ROMs for systems with localized nonlinearities master DOFs not
only include the boundary DOFs that are used for CMS assembly but also contact
DOFs at friction interfaces. Consequently, the performance of the final ROM will
be tightly dependent on the choice of component normal modes and their assumed
boundary conditions at boundary DOFs.

In general, at the so-called constrained boundary DOFs that are shared with
other components, fixed boundary condition is a favorable assumption, while, at the
so-called active boundary DOFs that are free or interact (without being shared) with
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neighboring substructures (as in the case of contact DOFs), assuming a free boundary
condition is more realistic as those DOFs are not fixed in the actual dynamics.

In the developed ROM in this chapter, in contrast to conventional fixed- or free-
mode Component Mode Synthesis (CMS) techniques, blades are reduced in a mixed-
boundary fashion.
Accordingly, blade component normal modes with a more realistic mixed boundary
condition (fixed at blade-disk interface and free at shroud contacts) are incorporated
into the reduction basis. The new approach benefits from the favorable features of
the previous ROM and enhances some of its elements by:

• Reducing the blades in a more realistic mixed-boundary fashion.

• Modeling the small sector-level frequency mistuning.

The latter is especially beneficial when the mistuning is distributed through
the sector or is not negligible at blade-disk interface DOFs. As shown in [33], in
case of mistuning at the blade-disk interface, possibly due to machining tolerances
and mounting errors, ROMs based on blade mistuning may not allow to accurately
predict the response levels and sector mistuning is therefore necessary. Moreover, it
is known that ROMs based on blade-mistuning only (e.g. CMM [17]), work best in
frequency ranges where vibration motion is mostly characterized by blade-dominated
modes.
In the proposed ROM, introduction of the mistuning is flexible and can be simply
limited to the blade-level if deemed needed by the designer. The final ROM is
constructed using one single sector model which makes it suitable for highly refined
FE models, typical of industrial applications.
In addition, the reduction basis is invariant of mistuning pattern and computed only
once, makes it favorable for statistical analyses.
It should be noted that the presented methodology for modeling the sector-level
mistuning is independent of the CMS-based reduction applied to the blades (either
fixed, free or mixed) and can be used in constructing the ROM introduced in Chapter
2.

The developed reduction technique in this chapter is applied to a mock-up
shrouded blisk. For validation purposes, ROM results were compared with the
results of the full-order simulation in ANSYS and a converged CMS-based ROM
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(referred to as the baseline ROM). Numerical simulations revealed the excellent
accuracy of the developed ROM in predicting the forced response levels of the
system.

3.2 Methodology

In this section, first the main idea of the developed reduction technique is described
on a typical shrouded bladed disk model (Fig. 3.1). In the remainder, a detailed
mathematical description for each reduction step, is provided. In the developed
method, the bladed disk is divided into the blades and the full disk component, as
depicted in Fig. 3.1a. Nodes lying on blade-disk (crossed circles) and blade-to-blade
shroud interfaces (filled circles) are denoted as constrained and active boundary
DOFs, respectively. The purpose is to efficiently and accurately reduce the structure
such that the retained physical set, only comprises active boundary DOFs.

In the first step, blades are reduced in a mixed-boundary CMS fashion (Fig.
3.1b). To this end, the principle idea of the mixed-boundary reduction technique
[48], is utilized and the reduction basis is composed of three mutually orthogonal
components:

I. Static constraint modes, corresponding to constrained boundary DOFs.

II. Static residual attachment flexibility modes, corresponding to active boundary
DOFs.

III. Mixed-boundary normal modes (fixed at constrained and free at active bound-
ary DOFs).

The reduced set of blades includes constrained boundary DOFs, active boundary
DOFs and generalized coordinates associated with mixed-boundary normal modes
of the blades.
Note that, either all fixed boundary (e.g. CB-CMS [38]) or all free boundary (e.g.
Rubin [49]) CMS techniques have been widely used in dynamic substructuring.
Reducing a shrouded blade with those methods will incorporate normal modes
of either a doubly clamped blade or a free blade with rigid body motion into the
reduction basis. Neither of them is ideal for describing the kinematics of a bladed
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(a)

 

(b)

 

(c)

Fig. 3.1 A typical shrouded bladed disk and its reduction based on the developed reduction
technique (filled circles: active boundary DOFs; crossed circles: constrained boundary
DOFs; open circles: generalized coordinates).

disk with shrouds, since they necessitate retaining a large number of vibration modes
in the reduction basis to achieve the desired accuracy.
In the final step of the reduction, a modal synthesis based on tuned loaded interface
modeshapes of the disk is performed to reduce the disk component and the redundant
blade-disk interface DOFs (Fig. 3.1c). Here, loaded interface modeshapes denote
vibration modes of a component in an assembly, where other neighboring structures
are statically interconnected to it [44].
Note that in Fig. 3.1 crossed, filled and open circles denote constrained boundary
DOFs, active boundary DOFs and generalized coordinates.
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The proposed method assumes that, in the presence of friction damping sources,
such as, shrouds and underplatform dampers, the energy dissipated by friction at the
blade root is negligible and thus the corresponding contact DOFs at the blade-disk
interface become redundant.
During the reduction steps, small sector-level frequency mistuning can be efficiently
introduced into the ROM. Construction of the mistuned ROM based on sector-level
calculations is explained in details in the following sections.

3.2.1 Blade Component – Mixed Boundary Reduction

As explained in section 3.2, the first step in computing the proposed ROM is reduction
of the blades. The displacement vector of one single blade and its corresponding
structural matrices can be partitioned as follows (see Fig. 3.2):

xb =


xb

a

xb
i

xb
c

 , kb =

 kb
aa kb

ai 0
kb

ia kb
ii kb

ic

0 kb
ci kb

cc

 , mb =

 mb
aa mb

ai 0
mb

ia mb
ii mb

ic

0 mb
ci mb

cc

 (3.1)

where the partitioned DOFs are defined as follows:

I. Blade active boundary DOFs xb
a: that are not shared with adjacent components

and are collected to be used in the solution/post-processing steps (e.g. con-
tact DOFs for calculating friction forces, response DOFs for monitoring the
response, and etc.).

II. Blade constrained boundary DOFs xb
c : that are shared between the blade and

the disk and couple blades to the disk at blade-disk interfaces.

III. Blade internal DOFs xb
i : that comprises all other blade DOFs except bound-

aries.

Based on the utilized mixed-boundary reduction scheme, the displacement vector
of one blade, is expressed as [48]:

xb ≈ Ψarga +Φmη +Ψcxb
c (3.2)
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Fig. 3.2 Fundamental sector of a mock-up shrouded blisk and its
partitioned DOFs.

where Ψar are residual flexibility attachment modes computed at active DOFs xb
a

(with respect to the fixed boundaries); Φm are blade cantilever modes (fixed at
blade-disk interface and free at active DOFs); and Ψar are static constraint modes
corresponding to the constrained DOFs xb

c . Note that here constraint modes are
computed by imposing a unitary displacement at each retained constrained boundary
DOF while holding the others fixed. Moreover, attachment modes are the static
response due to the unit force applied at active boundary DOFs. Excluding the
flexibility information already included in the retained mixed-boundary normal
modes from the set of attachment modes yields the residual flexibility attachment
modes.

In Eq. (3.2), ga are active boundary forces at active DOFs xb
a and η are generalized

coordinates associated with the mixed-boundary normal modes Φm. Equation (3.2)
can be written in matrix form as:

xb
a

xb
i

xb
c

=

[
Ψar Φm Ψc

0 0 I

]
ga

η

xb
c

 (3.3)
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As it is seen in Eq. (3.3), the reduced displacement vector of the blade component
includes physical displacements only at constrained DOFs xb

c . To keep physical
displacements at active DOFs (i.e. xb

a) in the reduced displacement vector, rather
than active boundary forces ga, one may recast the active partition of Eq. (3.3) as
follows:

ga = Ψ
−1
ar,a

(
xb

a −Φm,aη −Ψc,axb
c

)
(3.4)

Using Eqs. (3.3) and (3.4), blade internal DOFs can be expressed in terms of
blade boundary DOFs and generalized coordinates associated with blade cantilever
modes, as follows:

xb
i =

(
Ψar,iΨ

−1
ar,a
)

xb
a +
(
Φm,i −Ψar,iΨ

−1
ar,aΦm,a

)
η

+
(
Ψc,i −Ψar,iΨ

−1
ar,aΨc,a

)
xb

c (3.5)

Accordingly, the mixed-boundary transformation matrix of the blade component;
that retains physical displacements at active and constrained DOFs; is given by:

xb
a

xb
i

xb
c

= Rmb


xb

a

η

xb
c

 ,Rmb =

 I 0 0
Ψ̄ar Φ̄m Ψ̄c

0 0 I

 (3.6)

where

Ψ̄ar = Ψar,iΨ
−1
ar,a

Ψ̄c = Ψc,i −Ψar,iΨ
−1
ar,aΨc,a

Φ̄m = Φm,i −Ψar,iΨ
−1
ar,aΦm,a (3.7)

The mixed-boundary transformation matrix Rmb, introduced in Eq. (3.6), can
be used to reduce the structural matrices of the blade component. For instance, the
reduced stiffness matrix of the blade component is given by:

k̄b = RT
mbkbRmb =

 k̄b
aa k̄b

aη k̄b
ac

k̄b
ηa k̄b

ηη k̄b
ηc

k̄b
ca k̄b

cη k̄b
cc

 (3.8)
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Note that, the reduced mass matrix of the blade is computed and partitioned in
the same way. Due to the cyclic symmetry of the bladed disks, structural matrices
of the blades are identical. Therefore, single blade matrices can be directly used
to assemble the reduced matrices of the full set of tuned blades. The vector of the
generalized coordinates and the corresponding structural matrices of the reduced
blades take the following form:

xb
rom =


xa

η

xb
c

 , Kb
rom =

 IN ⊗ k̄b
aa IN ⊗ k̄b

aη IN ⊗ k̄b
ac

IN ⊗ k̄b
ηa IN ⊗ k̄b

ηη IN ⊗ k̄b
ηc

IN ⊗ k̄b
ca IN ⊗ k̄b

cη IN ⊗ k̄b
cc


Mb

rom =

 IN ⊗ m̄b
aa IN ⊗ m̄b

aη IN ⊗ m̄b
ac

IN ⊗ m̄b
ηa IN ⊗ m̄b

ηη IN ⊗ m̄b
ηc

IN ⊗ m̄b
ca IN ⊗ m̄b

cη IN ⊗ m̄b
cc

 (3.9)

where ⊗ denotes the Kronecker product and IN is the identity matrix of size N
(number of blades). Note that, by keeping the DOFs of the same type together, the
vector of the generalized coordinates of the blades (i.e. xb

rom) is divided into xa, η

and xb
c partitions which denote active boundary DOFs, mixed-boundary generalized

coordinates and constrained boundary DOFs of the blades. The superscript b is
removed from the notation of active boundary DOFs of the blades, given the fact that
this partition has no counterpart on the disk component and is readily distinguishable.

3.2.2 Loaded Disk Component – Component Mode Substitution

In order to perform the final step of the reduction, one first needs to compute the
loaded interface modeshapes of the tuned disk. Here loaded interface modes refer to
vibration normal modes of the disk in which blades are statically condensed on the
blade-disk interfaces (i.e. constrained DOFs).
This modal synthesis was introduced as the component mode substitution by Ben-
field and Hruda [44]. These modeshapes can be efficiently computed using cyclic
symmetry properties and sector-level calculations.

The cyclic sector model of the loaded disk can be obtained by adding the so-
called Guyan reduced mass and stiffness matrices of the blade to the disk sector (at
constrained DOFs) and by applying cyclic symmetry constraints at disk interfaces
[31].
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Once the loaded interface modeshapes of the disk are computed, a modal reduc-
tion can be performed on the CMS-assembly of reduced blades and the full disk (Fig.
3.1b). This reduction is performed on the disk partition of the CMS-assembly and
will reduce the full disk and the redundant blade-disk interfaces (i.e. constrained
DOFs) (Fig. 3.1c). The displacement vector of the full disk component and its
corresponding structural matrices is partitioned as follows:

xd =

{
xd

c

xd
i

}
, Kd =

[
IN ⊗ kd

cc IN ⊗ kd
ci

IN ⊗ kd
ic kd

ii

]
,

Md =

[
IN ⊗md

cc IN ⊗md
ci

IN ⊗md
ic md

ii

]
(3.10)

In the partitioned disk stiffness matrix, kd
cc denotes the stiffness matrix corre-

sponding to the constrained DOFs of a disk sector; IN ⊗ kd
cc is a block diagonal

partition corresponding to the constrained DOFs of the full disk; and kd
ii denotes the

stiffness partition corresponding to the disk internal DOFs and is block circulant
due to the disk-disk interface couplings. The partitioned mass matrix has also the
same shape. Enforcing the interface compatibility between the reduced blades and
the full disk (at constrained boundary DOFs), yields the displacement vector and the
corresponding stiffness matrix of the CMS-assembly:

Xasm =


xa

η

xasm
c

xd
i

 ,

Kasm =


IN ⊗ k̄b

aa IN ⊗ k̄b
aη IN ⊗ k̄b

ac 0
IN ⊗ k̄b

ηa IN ⊗ k̄b
ηη IN ⊗ k̄b

ηc 0
IN ⊗ k̄b

ca IN ⊗ k̄b
cη IN ⊗ kasm

cc IN ⊗ kd
ci

0 0 IN ⊗ kd
ic kd

ii

 (3.11)

where IN ⊗kasm
cc = IN ⊗ k̄b

cc+ IN ⊗kd
cc is the coupling partition in the assembly, where

the mixed-boundary reduced stiffness of the blade constrained DOFs xb
c , are loaded

on the disk interface DOFs xd
c . In the displacement vector of the CMS assembly (in

Eq. (3.11)), xasm
c denotes displacements of the constrained DOFs. The mass matrix

of the CMS-assembly is constructed in the same fashion and has the same shape. By
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assuming that in the presence of shroud contacts the friction damping at blade root
is negligible, one only needs to retain active boundary DOFs xa in the final ROM.
Accordingly, the final reduction can now be performed on the CMS-assembly by
expressing the displacements of the disk partition in terms of loaded interface modal
coordinates, as follows:

Xasm =


xa

η

xasm
c

xd
i

=

 I 0 0
0 I 0
0 0 Φ̃




xa

η

η̃

= RLIxrom (3.12)

where Φ̃ are loaded interface modeshapes of the disk; η̃ are generalized coordinates
corresponding to Φ̃; RLI is the loaded interface transformation matrix; and xrom

denotes the vector of generalized coordinates of the final ROM.

The ROM of the bladed disk can be obtained by projecting the CMS-assembly
onto the RLI modal basis. Accordingly, final reduced stiffness and mass matrices can
be expressed as:

Krom = RT
LIK

asmRLI =

 IN ⊗ k̄b
aa IN ⊗ k̄b

aη

(
IN ⊗ k̄b

ac
)

Φ̃c

IN ⊗ k̄b
ηa IN ⊗ k̄b

ηη

(
IN ⊗ k̄b

ηc
)

Φ̃c

Φ̃T
c
(
IN ⊗ k̄b

ca
)

Φ̃T
c
(
IN ⊗ k̄b

cη

)
[K̂]

 ,
Mrom = RT

LIM
asmRLI (3.13)

where Φ̃c are a partition of loaded interface modeshapes corresponding to constrained
DOFs. In Eq. (3.13), the lower right partition of Krom denotes the disk partition of
the CMS-assembly projected onto Φ̃ modal basis:

K̂ = Φ̃
T

[
IN ⊗ kasm

cc IN ⊗ kd
ci

IN ⊗ kd
ic kd

ii

]
Φ̃ (3.14)

Computation of the K̂ using the projection shown in Eq. (3.14), demands the full
disk matrix and is a formidable task. However, it can be simply split into multiple
sector-level calculations as follows:

K̂ = ∑
n=1..N

Φ̃
T
n K̃0Φ̃n (3.15)
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where K̂0 denotes the stiffness matrix of the disk partition in the fundamental sector
of the CMS-assembly and Φ̃n are cyclic loaded interface modeshapes of the nth
sector of the disk component.

An alternative method for efficient calculation of K̂ was introduced in section
2.2.6. Accordingly, adding and subtracting the Guyan stiffness matrix of the blades
to the interface partition of K̂, yields:

K̂ = diag(ΛLI)− ∑
n=1..N

Φ̃
T
n,ckb

GuyanΦ̃n,c + ∑
n=1..N

Φ̃
T
n,ck̄ccΦ̃n,c (3.16)

where ΛLI are squared natural frequencies of the loaded disk system; Φ̃n,c are a por-
tion of cyclic loaded interface modeshapes of the nth sector of the disk corresponding
to constrained DOFs; and kb

Guyan is the Guyan reduced stiffness matrix of a nominal
blade in which blade DOFs are condensed on its constrained DOFs. Note that, K̂ is a
p× p matrix and p is the number of retained loaded interface modes.

Both kb
Guyan and ΛLI are readily available from the computation of loaded inter-

face modes Φ̃ and no extra pre-calculation is needed to obtain K̂ by Eq. (3.16). The
K̂ partition of the ROM stiffness matrix can be computed by either Eq. (3.15) or
(3.16), although in Eq. (3.16) the size of projections drops dramatically (i.e. to the
blade-disk interface of one sector).

As a concluding remark, the ingredients for the final ROM, constructed by using
Eqs. (3.13) and (3.16) and single sector calculations, are here summarized:

I. Mixed-boundary reduced matrices of 1 blade (Eq. (3.8)).

II. Loaded interface modeshapes Φ̃ and natural frequencies ΛLI of the disk (cyclic
symmetry).

III. Guyan reduced matrices of 1 blade (readily available from step II.).

3.2.3 Introduction of the Mistuning

Up to this point, the developed ROM is only suitable for tuned bladed disks. It is
well known that the nominally identical components of bladed disks are slightly
different from one to another one [16] it is assumed that the mistuning is small and
is efficiently modeled as a random perturbation of the Young’s modulus of each
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sector. Such capability is especially important when the mistuning is not negligible
at blade-disk interface DOFs [33]. The blade frequency mistuning which is the
most common form of mistuning in bladed disks, is also addressed at the end of this
section. More in detail, being δn the nondimensional mistuning parameter of the nth
sector, the Young’s modulus of the nth sector is written as:

En = E · (1+δn) (3.17)

where E is the Young’s modulus of the tuned sector.

The mixed-boundary transformation matrix Rmb (introduced in Eq. (3.8)) is
invariant of Young’s modulus. Accordingly, the Rmb of one nominal blade is sufficient
to reduce mistuned blades with different Young’s moduli. As a result, the reduced
stiffness matrix of the nth mistuned blade is linearly scaled by its Young’s modulus
(i.e. En) and the mistuning parameter can be directly injected into the blade partitions
of the ROM stiffness matrix. To obtain the mistuned disk stiffness matrix, the
principle assumption of SNM theory [27], is employed here. It is assumed that
in the presence of small frequency mistuning, mistuned loaded interface modes,
can be represented as a linear combination of the tuned loaded interface modes.
Accordingly, each sector of the mistuned disk is projected onto its cyclic loaded
interface modeshapes. Finally, the reduced stiffness matrix of the mistuned ROM
can be obtained by:

Kmist
rom =

diag
n=1..N

(1+δn)⊗ k̄aa diag
n=1..N

(1+δn)⊗ k̄aη

(
diag

n=1..N
(1+δn)⊗ k̄ac

)
Φ̃γ

diag
n=1..N

(1+δn)⊗ k̄ηa diag
n=1..N

(1+δn)⊗ k̄ηη

(
diag

n=1..N
(1+δn)⊗ k̄ηc

)
Φ̃γ

Φ̃T
γ

(
diag

n=1..N
(1+δn)⊗ k̄ca

)
Φ̃T

γ

(
diag

n=1..N
(1+δn)⊗ k̄cη

) [
K̂mist

]


(3.18)

The lower right partition of mistuned ROM stiffness matrix, denotes the pro-
jection of the disk partition of the mistuned CMS-assembly onto the tuned loaded
interface modes of the disk, and can be computed sector-wise as follows:

K̂mist = ∑
n=1..N

(1+δn)Φ̃
T
n K̃0Φ̃n (3.19)
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An efficient construction of K̂mist can be achieved based on the alternative method
introduced in Eq. (3.16). To do so, only the last term of Eq. (3.8) should be updated:

K̂mist = diag(ΛLI)− ∑
n=1..N

Φ̃
T
n,ckb

GuyanΦ̃n,c + ∑
n=1..N

(1+δn)Φ̃
T
n,ck̄ccΦ̃n,c (3.20)

Note that, one could only model the effect of blade frequency mistuning by
substituting K̂mist in Eq. (3.18) with the tuned K̂ from either Eq. (3.15) or (3.16).

3.3 Numerical Solution

The reduced equations of motion of a shrouded bladed disk can be expressed as:

Mromẍrom(t)+Cromẋrom(t)+Kromxrom(t) = Fnl(xrom(t), ẋrom(t))+Fex(t) (3.21)

where xrom(t) is the vector of DOFs of the reduced bladed disk and it comprises
active boundary DOFs of the blades xa, generalized coordinates η associated with
mixed-boundary normal modes, and generalized coordinates η̃ corresponding to
the loaded interface modes; Mrom and Krom are reduced mass and stiffness matrices;
Crom denotes the reduced damping matrix and is assumed to be proportional to the
reduced stiffness matrix (i.e. Crom = β ·Krom); Fnl denotes the state dependent vector
of nonlinear contact forces acting on the retained nonlinear contact DOFs; and Fex

represents the vector of external periodic excitation and acts on retained forcing
DOFs. Note that, nonlinear contact DOFs and response/force DOFs, are grouped
together into active boundary DOFs (see Fig. 3.2).

In the simulation, shroud contacting interfaces are modeled using the semi-3D
contact elements. The considered contact element is composed of two perpendicular
Jenkins contact elements with variable normal loads and is imposed at each contact
node pair. It is assumed here that the static equilibrium solutions are not affected by
higher harmonic solutions, and thus, are solved separately from dynamic solutions.
The solution of the static balance equations will give as an output the normal preload
acting over the contact surfaces, used as an input in the dynamic analysis.

The steady state response of the reduced system is computed using the HBM and
assuming that the response of the system under a periodic excitation remains periodic.
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The pseudo-arclength path following technique was implemented to compute the
evolution of nonlinear forced response levels with respect to the excitation frequency.

Note that the continuation scheme demands calculation of the Jacobian matrix at
each iteration step, which can become a rigorous task. The computational burden
was extremely reduced by implementing the analytical Jacobian as described in [15].
The numerical solution is described thoroughly in Appendix A.

3.4 Results and Discussions

The numerical simulations are performed on the mock-up shrouded blisk shown in
Fig. 3.3. The full model is composed of 27 sectors and each sector comprises 6052
DOFs. Shroud contact surfaces (shown in Fig. 3.2) contain 25 contact nodes and
the full-wheel model comprises 4050 nonlinear contact DOFs. By using the relative
notation, only 2025 nonlinear DOFs were solved in the iterative solver.

 

Fig. 3.3 The studied mock-up shrouded blisks.

It is assumed that the blisk is made of the steel with nominal Young’s modulus
equal to 200 GPa and mass density equal to 7800 kg/m3. Random Young’s moduli
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with a uniform distribution and standard deviation of 5% (from the nominal value)
were used to model the mistuned shrouded blisk and a uniform normal preload
is applied at each shroud contact. The numerical results are presented in the two
parts. First, in section 3.4.1 modal analysis results are presented, followed by forced
response results in section 3.4.2.

3.4.1 Modal Analysis Results

This section evaluates the performance of the ROM in accurately predicting the
natural frequencies and modeshapes of the full mistuned model. To do so, ROM
results are compared with the results of the full order model in ANSYS. In the real
practice, shroud friction surfaces are mostly subjected to the microslip. Since the
stick boundary conditions are more consistent with microslip conditions (compared
to free boundaries at shrouds that are more consistent to the gross slip) all the results
in the section 3.4.1 are presented for a shrouded blisk with closed contact surfaces.
The blisk with closed contacts can be simply modeled by merging the contact node
pairs in ANSYS and by clamping the partition of the relative contact DOFs in the
ROM.

 

Fig. 3.4 Natural frequencies versus nodal diameter plot for the
tuned shrouded blisk with closed contact surfaces.

Figure 3.4 depicts the natural frequency versus nodal diameter plot for the tuned
shrouded blisk with closed contact surfaces. In lower families a complex blade-to-
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shroud coupling can be seen that is characterized by softening/stiffening behavior.
As a result, blade dominated modes are not perfect horizontal lines and blade-disk
couplings and veering regions are shifted towards the higher families. This is typical
of mock-up shrouded blisks with small number of blades and was also observed
in [19, 40]. The specified zones in Fig. 3.4 depict the considered wave number
and frequency range of the traveling wave excitations used in section 3.4.2. The
performance of the ROM in predicting the natural frequencies of the mistuned
shrouded blisk is evaluated in Fig. 3.5. The error metric is defined as the absolute
percentage deviation between the natural frequencies predicted by the ROM and the
exact natural frequencies computed in ANSYS:

eROM
λ

=

∥∥∥∥λ ROM −λ ANSY S

λ ANSY S

∥∥∥∥×100 (3.22)

For the sake of simplicity, the new developed ROM is denoted by MixBCs in
the rest of the paper. The accuracy of the ROM is tightly dependent on its modal
basis and the number of retained modes during the reduction. Accordingly, the
accuracy of the MixBCs ROM is influenced by both blade component modes (with
mixed-boundary conditions) and the loaded interface modes of the disk.

 

Fig. 3.5 The influence of number of retained (denoted by Rx)
blade mixed-boundary modes on the performance of the MixBCs
ROM.
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A convergence analysis is crucial to guarantee the adequacy of the number of
retained modes and the performance of the ROM in the frequency range of interest.
Figure 3.5 shows a convergence analysis with regard to the blade mixed-boundary
modes in the frequency range of the first five modal families. The number of retained
modes per blade are denoted by Rx (where x is a natural number) in Fig. 3.5. It is
seen that the ROM shows an excellent accuracy in the frequency range bounded to
the frequency range of retained modes and accuracy will drop rapidly for the higher
modes.
For instance, by retaining 6 mixed-boundary component modes per blade, the least
accurate ROM (i.e. MixBCs R6) can accurately predict the natural frequencies of the
first 91 mistuned modes (3 modal families). It is evident that increasing the number
of retained modes per blade will significantly improve the accuracy of the ROM for
the higher modes.
A similar convergence analysis was performed with respect to loaded interface modes
of the disk and is not shown here for the sake of brevity. A converged ROM can
be obtained in the frequency range of the first five modal families by retaining 100
loaded disk modes. Note that, all the simulations here (section 3.4) are performed on
ROMs containing 100 loaded interface modes.
To better assess the performance of MixBCs ROMs, their accuracy is compared with
the ROM obtained in a similar manner except for the blade components that are
reduced using the classical CB method. This ROM is referred to as CBCMS ROM.
Note that, the only difference between MixBCs and CBCMS ROMs is the type of
blade component modes used during the reduction.

Figure 3.6 shows a comparison between the mixed-boundary and fixed-boundary
ROMs (i.e. MixBCs vs. CBCMS) in predicting the natural frequencies of the
mistuned shrouded blisk with closed contact surfaces. The performance of the ROMs
is investigated in a wider frequency range of the first 300 mistuned modes.

It is seen that, the MixBCs ROMs consistently outperformed the CBCMS ROM
within their effective frequency range (roughly where the error is below 1%). For
instance, the least accurate free-boundary ROM (i.e. MixBCs R6) is much more ac-
curate in predicting the first 91 mistuned natural frequencies than the fixed-boundary
ROM (i.e. CBCMS R10) which is obtained by retaining 10 CB modes per blade.
Also the mixed-boundary ROM of the same size (i.e. MixBCs R10) shows a higher ac-
curacy in its effective frequency range (first 190 modes) compared with the CBCMS
ROM. Beyond this limit, the introduced error by MixBCs ROM grows faster than
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Fig. 3.6 Performance of mixed- and fixed- boundary ROMs in
predicting the natural frequencies of the mistuned shrouded blisk.

that of the CBCMS ROM. This is due to the fact that, fixed-boundary modes naturally
vibrate at higher frequencies, and thus the introduced error at higher frequencies
grows more slowly than that of the free-boundary modes. This can be also verified by
visualizing the full system modeshapes at higher frequencies, or more precisely, by
computing the modal participation factors at boundary DOFs. To this end, the con-
tour plot of the 142th modeshape of the full blisk is depicted in Fig. 3.7. It is evident
that assuming fixed-boundaries at shrouds is a reasonably accurate assumption.

It is should be recalled that the performance of different ROMs (i.e. CBCMS
and MixBCs) is evaluated in predicting the natural frequencies of a blisk with
closed contacts condition, although they were obtained from a blisk with open
contacts. To compute the natural frequencies of the blisk with closed contacts,
relative displacements between contact DOFs were introduced into the ROM and
then were fixed to resemble the closed contact conditions.
For the sake of completeness, in Fig. 3.8 a comparison is make between CBCMS
and MixBCs ROMs in predicting the natural frequencies of the mistuned blisk with
open shrouds. As it is expected MixBCs outperforms CBCMS and shows a better
accuracy especially up to the 162th (6*27) mode.
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Fig. 3.7 Contour plot of the 142th modeshape of the full mistuned
shrouded blisk.

 

Fig. 3.8 Performance of mixed- and fixed- boundary ROMs in
predicting the natural frequencies of the mistuned shrouded blisk
with open contacts.

In order to quantify the enhanced accuracy of MixBCs ROMs with respect to the
CBCMS ROM, a relative error metric is defined as follows:

erel =

∥∥∥∥∥eCBCMS
λ

− eMixBCs
λ

eMixBCs
λ

∥∥∥∥∥ (3.23)
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Equation (3.23) can be used to measure the difference between errors introduced
by different ROMS in predicting the natural frequencies of the mistuned blisk.
Figure 3.9 depicts the relative difference between eigenvalue deviations introduced
by CBCMS ROM with respect to MixBCs ROMs. It is evident that, the CBCMS
ROM introduces considerably larger errors compared to MixBCs ROMs, especially
in lower mode families.

 

Fig. 3.9 Relative difference between eigenvalue deviations intro-
duced by mixed- and fixed- boundary ROMs.

The performance of the ROM in accurately predicting the modeshapes of the
mistuned blisk is of great importance. In fact, forced response levels of the mistuned
blisk will be computed using its mistuned modeshapes. To assess the performance
of the ROM in predicting the mistuned modeshapes, a metric based on the Modal
Assurance Criterion (MAC) is defined as follows:

emac = (1−diag(MAC))×100 (3.24)

The metric defined in Eq. (3.24), demonstrates the percentage deviation of
mistuned modeshapes computed by the ROM from the exact modes computed in
ANSYS.

The performance of the MixBCs and CBCMS ROMs in modeling the mistuned
modeshapes is evaluated in Fig. 3.10. Only the modal displacements at the response
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nodes (located at the blade tips, on both leading and trailing edges) were used to
compute the MAC values. As it can be seen in Fig. 3.10, the mistuned modeshapes
computed by the MixBCs R10 are in an excellent correlation with the modeshapes
of the full-order model. The correlation between the MixBCs ROM and the full-
order model is above 90% in the selected range (99.87% in average). However, the
CBCMS ROM of the same size demonstrates the lack of accuracy (below 90%) at
multiple modes.

 

Fig. 3.10 Performance of mixed- and fixed- boundary ROMs in
predicting the modeshapes of the mistuned shrouded blisk.

It is evident that the MixBCs ROM can model the modeshapes more accurately
in comparison with the CBCMS ROM, at almost every mode in the selected range.
In other words, to obtain the similar level of accuracy in the selected frequency
range, one might demand a larger fixed-boundary ROM. Figure 3.10 highlights
the capability of the MixBCs R10 ROM in accurately predicting the mistuned
modeshapes in the presence of localization.

A localized mode, namely the 98th mistuned modes that vibrates at ≈ 6.28 kHz,
is selected to assess the ROM. Modeshapes of response nodes (locating at blade tips,
on leading edges) are plotted in axial UZ, tangential Uθ , and radial UR directions.
As it is seen the predicted mistuned modes is in excellent accordance with full-order
model modeshapes, computed by ANSYS.
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Fig. 3.11 A mistuned modeshape in the presence of vibration
localization.

3.4.2 Forced Response Results

In this section the results of forced response analysis are presented. First part is
dedicated to the MixBCs ROM and demonstrates its performance in predicting
the linear/nonlinear forced responses. In the second part performance of the new
proposed MixBCs ROM is compared to that of the classical CBCMS ROM. Forced
response levels in either of parts are computed using the same strategy and is
described below. Shroud friction surfaces are modeled by imposing a semi-3D
contact element at each contact node pair. A homogeneous distribution is considered
for both normal preload and the contact stiffness. The contact stiffness is set equal
to 1000 N/µm in both normal and tangential directions and a constant friction
coefficient of 0.5 is considered. The external excitation is applied on the forcing
nodes located at blade tips, in the form of a traveling wave with the amplitude of
F0. In details, the dynamics behavior of the mistuned shrouded blisk is investigated
around two different resonances depicted in Fig. 3.4, namely under Engine Order
(EO) 3 and EO 12 excitations. In order to assess the efficiency of the friction damping
in reducing the vibration amplitudes, a very slight stiffness-proportional damping
with the coefficient of β = 1.2e-7 is used in forced response calculations. It is worth
mentioning that the stick condition in this section is modeled slightly different from
the so-called closed contact state (obtained by merging the contact node pairs) in
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section 3.4.1. Here, stick condition refers to a linear state of the system where contact
elements act as fully engaged linear springs (no slip nor separation takes place) when
the system undergoes large preload values (engagement is at all DOFs of contact
node pairs, i.e. in one normal and two tangential directions of the contact surface).
Note that, the chosen values for the contact stiffness are high enough that result in
stick natural frequencies with less than 1% deviation from the natural frequencies
of the blisk with closed contact surfaces. To validate the nonlinear forced response
results, a converged CMS-based ROM is used as the reference. This reference ROM
is called Baseline through the rest of the paper and is obtained by applying the Free-
Interface substructuring method in ANSYS. The especial linear stick case is validated
with both the Baseline and the full-order model simulations in ANSYS. Note that,
the linear stick state in ANSYS can be modeled by imposing COMBIN40 spring
elements at all contact node pairs. All the forced response calculations are performed
on the MixBCs/CBCMS R10 ROM. These ROMs only contain 370 generalized
(slave) coordinates (corresponding to 10 mixed/fixed -boundary component modes
per blade plus 100 loaded interface modes). In order to reduce the computational
time, nonlinear calculations are performed based on the monoharmonic balance
approach. It is shown in the literature that monoharmonic simulation can be very
accurate especially if the nonlinearity is weak [19]. Note that sufficient number
of harmonics is case-dependent and not known a-priori (convergence analysis is
inevitible). All response curves depict the tangential component of the solution at a
response node located on blade #1, unless otherwise stated.

3.4.2.1 MixBCs ROM Results

Figure 3.12 shows the linear forced response of the mistuned blisk in fully stick
condition. The blisk is subjected to an EO 3 excitation under a relatively large
preload to excitation ratio. Note that, in the fully stick condition the system behaves
linearly and no friction damping is introduced into the system. Since the mistuned
modes are not pure nodal diameter modeshapes, multiple resonance peaks are present
in the response. The relative error between the ROM and the Baseline is denoted
by eamp and is shown at resonance peaks. It is seen that the ROM is in a very good
accordance with the full-order simulation in ANSYS. It should be noted that the
frequency shift in ROM prediction is about 1 Hz which is negligible in the selected
frequency range. Figure 3.13 shows the linear forced response of the mistuned
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Fig. 3.12 Performance of the ROM in predicting the linear forced
response of the mistuned blisk in stick condition under EO 3
excitation. eamp denotes the relative error between the ROM and
the Baseline.

blisk in fully stick condition and under EO 12 excitation. Two resonance peaks are
evident in the frequency range of the excitation. That is due to the fact that mistuned
modes with the dominant 12th harmonic component are few in this range or already
hidden under the dominant peaks. It is evident that the ROM result is in an excellent
accordance with ANSYS results. Note that, the frequency shift in this case is below
1 Hz.

In order to validate the nonlinear forced response predictions of the ROM, the
envelope of the response levels is computed and compared with the Baseline results.
Note that, the envelope of the maximum nonlinear response is obtained by computing
the maximum nonlinear forced response of the blisk (considering the response of all
blades) at each excitation frequency. Figure 3.14 demonstrates the performance of
the ROM in accurately predicting the envelope of the maximum nonlinear response
of the mistuned blisk under EO 3. It is seen that the ROM predictions are in an
excellent accordance with the baseline results. The effect of mistuning on increasing
the forced response level is evident in Fig. 3.14. For the blisk in stick condition, the
mistuned response level has increased by the amplification factor of 59% with respect
to the tuned response level. It is worth mentioning that, in the nonlinear regime, the
maximum error is within [0.1 - 0.15]% depending on the loading condition and is
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Fig. 3.13 Performance of the ROM in predicting the linear forced
response of the mistuned blisk in stuck under EO 12 excitation.
eamp denotes the relative error between the ROM and the Base-
line.

much smaller than that of the linear stuck case which is about 0.39%. This is due to
the fact, the friction damping flattens the steep resonance curves, and reduces the
maximum error especially at resonance peaks.

The performance of the ROM in accurately predicting the envelope of the maxi-
mum nonlinear response of the mistuned blisk under EO 12 is depicted in Fig. 3.15.
The ROM predictions are in an excellent accordance with the Baseline results in this
case as well. As it is seen, the effect of mistuning on amplifying the linear response
level (about 8%) is not notable. Note that the dynamics of the stuck blisk in this
frequency range is characterized by torsion-bending vibrations of blades coupled
with dominant vibrations of the shrouds. In this case, the shroud-to-shroud coupling
is high enough to allow for a uniform distribution of the vibration energy among
all the blades, thus preventing vibration localization. The maximum error in forced
response levels is about 0.08% and occurs in fully stick condition near the resonance
peak at 2286 Hz.

In order to evaluate the effectiveness of the friction damping, response levels of
the ROM are computed under different loading conditions. Figure 3.16 shows the
effect of nonlinear friction damping on the response of the mistuned blisk subjected
to EO 3 excitation. The simulation is carried out for different preload-to-excitation
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Fig. 3.14 Performance of the ROM in accurately predicting the
envelope of the maximum nonlinear response of the mistuned
blisk under EO 3.

 

Fig. 3.15 Performance of the ROM in accurately predicting the
envelope of the maximum nonlinear response of the mistuned
blisk under EO 12.

ratios (i.e. N0/F0), by decreasing the preload value and keeping the excitation
amplitude fixed. For high values of the normal preload, the shroud contacts are in
stick and the blisk vibrates linearly. Note that no friction damping is introduced
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into the system in stick condition. Decreasing the preload values and relaxing the
Coulomb limit, develop microslip at shroud friction interfaces. In details, near the
resonance peaks with high amplitudes, the relative displacements between contact
node pairs are large enough to put the contact into the slip condition and as a
result the vibration amplitude starts decreasing by the introduced friction damping.
Although, near the peaks with lower amplitudes contacts are still in stick condition
with no friction dissipated energy. Further decreasing the N0/F0 values, increases the
amount of microslip and the dissipated energy at contact interfaces and ultimately
damps the vibration amplitude within the full excitation range. The dependency of
the resonance frequencies (shifted towards the left of the frequency axis) and the
nonlinear friction damping on vibration amplitudes is evident in Fig. 3.16.

 

Fig. 3.16 The effect of nonlinear friction damping on forced
response levels of the mistuned blisk under EO 3 excitation and
different preload-to-forcing conditions.

The effect of nonlinear friction damping on forced response levels of the mistuned
blisk under EO 12 excitation and different preload-to-forcing conditions is presented
in Fig. 3.17. As it is seen, decreasing the N0/F0 values, initially increases the
nonlinear dissipative effects at contact nodes, as the vibration amplitude decreases.
Further decreasing the preload value introduces the separation at contact nodes and
the efficiency of friction damping drops as the slip decreases at friction interfaces.
The increase of separation (i.e. partial contact) at shroud friction interfaces reduces
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the blisk stiffness and will ultimately shift the response curve towards the response
of the blisk with open contacts.

 

Fig. 3.17 The effect of nonlinear friction damping on forced
response levels of the mistuned blisk under EO 12 excitation and
different preload-to-forcing conditions.

3.4.2.2 MixBCs vs. CBCMS

As stated earlier, since forced response levels of the mistuned blisk are constructed
based on its modal properties, it can be expected that the performance of the ROMs
in forced response analysis will vary depending on the frequency range and quality
of the predicted modal properties by either of the ROMs.

To better illustrate this, two different frequency ranges around the second and
third modal families (shown in Fig. 3.4) are considered for comparison. Figure
3.18 compares the performance of MixBCs and CBCMS ROMs in predicting the
envelope of the maximum linear/nonlinear responses of the mistuned blisk under
EO 3 excitation and around the second modal family. Forced response levels are
dominated by mistuned modes in the range of 2640 to 2665 Hz (namely 51st to
54th mistuned modes in Figs. 3.6 and 3.10). It can be seen that, MixBCs ROM
performs slightly better, however, CBCMS ROM can predict both modal properties
and forced response levels with comparable accuracy in this frequency range. Figure
3.19 depicts the envelope of the maximum linear/nonlinear responses of the mistuned



68
Reduced Order Models for Nonlinear Dynamics of Bladed Disks with Shrouds:

Mixed-Boundary Component Mode Substitution

 

(a)

 

(b)

Fig. 3.18 Performance of the mixed- and fixed- boundary ROMs in predicting the envelope
of the maximum response of the mistuned blisk under EO 3 excitation and in (a) fully stick
and (b) microslip conditions.
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blisk under EO 12 excitation and around the third modal family. Figures 3.6 and 3.10
show that in this frequency range (namely 62nd to 72nd mistuned modes), MixBCs
ROM outperforms the CBCMS ROM more noticeably. Consequently, the forced
response levels computed by the CBCMS ROM are less accurate compared to that of
the MixBCs ROM and this is evident in Fig. 3.19. For instance, the CBCMS ROM
introduces about 0.7% error at resonance peak near 3717 Hz for fully stick condition,
which is about 9 times bigger than the error introduced by the MixBCs ROM (i.e.
0.077%). In the nonlinear regime, the error introduced by the CBCMS ROM varies
between [0.42 – 4.4]% compared to [0.24 – 1.72]% error introduced by the MixBCs
ROM.
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(a)

 

(b)

Fig. 3.19 Performance of the mixed- and fixed- boundary ROMs in predicting the envelope
of the maximum response of the mistuned blisk under EO 12 excitation and in (a) fully stick
and (b) microslip conditions.
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3.5 Conclusion

This chapter, presented a new reduced order model based on a mixed-boundary
component mode substitution for nonlinear dynamics of mistuned bladed disks with
shroud friction contacts. It benefits from the following features:

– The final mistuned ROM is computed with minimal computational effort and
sector-level calculations.

– Blades are reduced in a more realistic mixed-boundary fashion. Accordingly,
mixed-boundary component modes of the blades (fixed at blade-disk interface
and free at shroud friction contacts) are incorporated into the reduction basis.
It was shown that this could remarkably increase the accuracy of the ROM
compared with classical fixed-boundary CMS methods.

– Only active boundary DOFs are retained in the Final ROM. Blade-disk in-
terface DOFs were eliminated during the disk reduction by implementing
the loaded interface modeshapes of the disk, without performing a secondary
reduction scheme.

– Small frequency mistuning is modeled in sector levels.

– The reduction basis is invariant of mistuning and is computed only once which
makes the ROM favorable for statistical analyses.

The accuracy of ROM in accurately modeling the mistuned system modal prop-
erties and also forced response levels was validated both in ANSYS and the Baseline
reference. It was shown that the ROM results are in an excellent accordance with
the reference results. In the test case analyzed in this paper, shrouds are modeled as
inter-locked working in microslip conditions, being this scenario typical of the earlier
part of the blade life. Nevertheless, the mixed-boundary approach looks promising
also for modeling the dynamics of bladed disks with (one or more) loose shrouds,
being this scenario possible in the later part of the blade life due to the unavoidable
fretting wear.

The research findings of this chapter are published in [50].



Chapter 4

Reduced Order Models for Nonlinear
Dynamics of Bladed Disk Assemblies
with Friction Interfaces: Relative
Cyclic Component Mode Synthesis

4.1 Introduction

This chapter introduces a new reduced order modeling technique based on Relative
Cyclic Component Mode synthesis (RCCMS). The developed ROM is tailored for
nonlinear forced response analysis of bladed disks subjected to different sources of
friction damping (friction interfaces).

In its development, the following requirements and features are addressed:

• The ROM must be obtained by performing only sector-level calculations.

• The ROM must include relative displacements between contact surfaces, ly-
ing either inside the sector boundaries or located where cyclic symmetry
boundaries imposed.

• In the presence of mistuning, the reduction must be performed only once and
the small frequency mistuning (either sector-level or blade-level) is directly
introduced into the final ROM.
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• It is preferable to enhance the accuracy of reduction basis by incorporating
modal basis with boundary conditions close to actual kinematics at friction
interfaces, especially at microslip (neither fixed nor free).

• It is preferable to implement system-mode-based reductions, to obtain compact
ROMs and avoid ending up with component assembly and the need of multiple
secondary reductions.

• It is preferable that the ROM retains physical DOFs associated with contact
interfaces for an efficient forced response calculation.

The developed ROM is basically consists of two steps:

I. Representing the absolute displacements of the nodes lying on adjacent friction
interfaces in terms of relative displacements between the node pairs.

II. Performing the Craig-Bampton Component Mode Synthesis (CB-CMS) on
the full-order model already transformed into relative coordinates.

Although, RCCMS is a CMS-based ROM, it can be distinguished from the
previously developed ROMs in Chapters 2 and 3 in different ways:

• In contrast to the ROMs in Chapters 2 and 3 that were originally tailored for
shrouded bladed disks, RCCMS is suitable for general contact problems.

• The number of unknowns (i.e. nonlinear DOFs) in the reduced space is halved
(due to the implementation of relative coordinates).

• Normal modes implemented in the reduction basis are in fact stuck modeshapes
of the full system (system-level modes with merged friction interfaces). This
results in a highly compact ROM, as only one substructure exists. Moreover,
stuck modeshapes are more accurate modal basis for the microslip regime (see
section 4.2 for more discussion).

It is worth recalling that, the development of reduced order models in this thesis,
initially started by assuming fixed-boundary conditions at the blade interfaces, in
Chapter 2. Based on this assumption, normal modes of doubly clamped blades
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(i.e. zero displacements at boundary DOFs) were incorporated into the ROM. This
assumption was improved in Chapter 3, by incorporating the normal modes of
cantilevered blades into the ROM.
In this chapter, this assumption will be further improved by incorporating the normal
modes of the full system in stick condition (neither fixed nor free). This objective
will be fulfilled by taking the advantage of relative coordinates at interface DOFs
and the classical CB-CMS technique.

This chapter is organized as follows: section 4.2 presents the theory and develops
ROMs in RCCMS coordinates and sections 4.3.1 and 4.3.2 applies RCCMS to
different case studies and evaluate its performance.

4.2 Methodology

This section describes the basic idea of the RCCMS. The RCCMS theory is based on
the smart application of relative displacements of friction interfaces and implementa-
tion of the CB-CMS reduction technique. The idea of using relative coordinates was
first introduced in [51], for forced response analysis of cracked bladed disks. The
purpose was to somehow include the vibration modes of the pristine/uncracked blade
into the reduction basis. The procedure which was introduced in [51] is described
here.
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Fig. 4.1 Schematic view of a (a) cracked blade, (b) pristine blade.

Figure 4.1 shows a schematic view of a cracked and a pristine blade. Contact
DOFs of crack surfaces of the blade in Fig. 4.1a are denoted by x1

c and x2
c . In the
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pristine blade x2
c is used to denote the contact DOF although the crack surfaces are

merged. Other remaining DOFs of the blades is denoted by xo.

The stiffness matrix and displacement vector of the cracked blade shown in Fig.
4.1a can be described as follows: K1

cc 0 K1
co

0 K2
cc K2

co

K1
oc K2

oc Koo

 x1
c

x2
c

xo

(4.1)

By introducing the relative displacements between contact DOFs (i.e. xrel =

x1
c − x2

c) into the full displacement vector, one may obtain the new displacement
vector and stiffness matrix as follows:

x1
c

x2
c

xo

=

 I I 0
0 I 0
0 0 I




xrel

x2
c

xo


⇒

 K1
cc K1

cc K1
co

K1
cc K1

cc +K2
cc K1

co +K2
co

K1
oc K1

co +K2
oc Koo

 xrel

x2
c

xo

(4.2)

After introduction of the relative DOFs into the full displacement vector, per-
forming a CB-CMS reduction and retaining xrel as master DOFs gives:

xrel

x2
c

xo

= RCB

{
xrel

η

}
(4.3)

In this way, authors in [51] were able to include normal modes of the pris-
tine blade into their ROM. Note that, in the context of CB-CMS, fixed interface
modes are obtained by clamping the master DOFs. Accordingly, fixing the relative
displacements between crack interfaces is equivalent to the following system: 0 0 0

0 K1
cc +K2

cc K1
co +K2

co

0 K1
co +K2

oc Koo

 0
x2

c

xo

(4.4)
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which in fact describes the pristine blade shown in Fig. 4.1b.
It is evident that by performing a CB-CMS only afterwards, relative DOFs are
included in the full displacements vector, not only half the number of retained
contact DOFs but also incorporates fully stick modeshapes (where contact interfaces
are merged).
In the RCCMS, the application of relative notation is extended and generalized for
nonlinear forced response analysis of mistuned bladed disks with friction interfaces.

In the remainder, section 4.2.1 presents a cyclic multiharmonic RCCMS-based
ROM for nonlinear dynamics of tuned bladed disks with friction interfaces located
not only inside the sector boundaries (e.g. the blade-root) but also where cyclic
symmetry boundaries are imposed (e.g. shroud surfaces).
The tuned ROM is described on a shrouded bladed disk with blade-root joints and
the reason is twofold:

i. fill the gap in the literature and utilize relative coordinates when contact DOFs
are located at cyclic boundaries.

ii. computational burden of constructing a RCCMS-based mistuned ROM for
bladed disks with shroud contacts (this will be elaborated in section section
4.2.2).

Finally, in section 4.2.2, a mistuned ROM is developed in RCCMS coordinates
for nonlinear dynamics of mistuned bladed disk with blade-root damping. Different
solutions are addressed to construct an efficient ROM invariant of the mistuning
pattern, which is necessary for statistical analyses.

4.2.1 Application to Cyclically Symmetric Bladed Disks

The idea of using relative coordinates was applied to a tuned shrouded balded disk
in [52]. In that study, the FE model of the fundamental sector was manipulated to
define an unconventional cyclic symmetry boundaries such that the shroud contact
nodes were lain inside the sector boundaries. However, in real industrial applications
such manipulations of the FE model is not favorable and thus a solid formulation
and straightforward modeling approach is needed.
The purpose of this section is to remove such limitations by providing a solid and
efficient approach. Accordingly, a ROM based on RCCMS is developed for nonlinear
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forced response analysis of cyclic bladed disks with multiple friction joints especially
at sector boundaries.
The construction of the proposed ROM consists of three steps:

i. First, applying the proper phase conditions at interfaces of the sector model
with cyclic symmetry boundary conditions.

ii. Second, representing the absolute displacements of the nodes lying on adjacent
friction interfaces in terms of relative displacements between the node pairs.

iii. Finally, performing the CB-CMS on the full-order sector model already trans-
formed into relative cyclic coordinates.

These steps are explained in details in the remainder.

4.2.1.1 Equations of Motion

In this section, the RCCMS is applied to a shrouded bladed disk subjected to
nonlinear friction damping at both shrouds and blade root joints (see Fig. 4.2).

LxHx

cLxcHx

cBx
cDx

Ix

Fig. 4.2 Fundamental sector of the
studied shrouded bladed disk and its
partitioned DOFs.

It is assumed that the bladed disk is tuned and thus forced response levels of
the full system can be computed by using one cyclic sector only. Prior to applying
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the RCCMS, it is convenient to partition the displacement vector of the bladed disk
fundamental sector as follows :

x =


[xc]

xI

xL

xH

 , [xc] =


xcL

xcH

xcB

xcD

 (4.5)

where

– xc denotes the displacement vector of all contact DOFs.

– xcL and xcH denote displacements of shroud contact nodes lying on the low
and high shroud interface, respectively.

– xcB and xcD denote displacements of contact nodes at the blade root, lying on
the blade and the disk interface, respectively.

– xL and xH denote displacements of the nodes lying on the low and high
interfaces of the disk sector where cyclic symmetry boundary conditions are
to be applied.

– xI denotes displacements of all other remaining (i.e. internal) nodes of the
sector.

Note that, the blade and the disk partitions are uncoupled to each other and the
blade-disk coupling will be introduced through nonlinear interactions at the blade
root friction interfaces.
It is assumed that the bladed disk is subjected to a periodic wave excitation and its
response remains periodic. The steady state vibration response of an isolated sector
of the bladed disk can be rep-resented as follows:

[−(nω)2M+ inωC+K](n)x̄(n) = F̄(n)
nl + F̄(n)

ex (4.6)

in the frequency domain, where K, M and C are stiffness, mass and the damping ma-
trices of the isolated sector respectively, x̄(n), F̄(n)

ex and F̄(n)
nl are complex amplitudes

of the response, wave excitation and friction forces of the nth harmonic, respectively.
In addition, ω is the frequency of the external wave excitation and can be expressed
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by ω = eoΩ, where eo is the engine order of the excitation and Ω is the angular
speed of the rotating bladed disk.

4.2.1.2 Cyclic Symmetry Constraints

In the absence of vibration localizations, forced response of bladed disks with
localized nonlinearities (e.g. friction contacts), can be assumed symmetric and can
be efficiently computed by imposing proper phase conditions at the low and high disk
interfaces of the fundamental sector. Cyclic symmetry constraints can be imposed to
the fundamental sector by:

x̄(n) =


x̄c

x̄I

x̄L

x̄H


(n)

=


I 0 0
0 I 0
0 0 I
0 0 einϕ




x̄c

x̄I

x̄L


(n)

= T (n)
cs q̄(n) (4.7)

In Eq. (4.7) n denotes the harmonic index and ϕ = 2πeo/Ns denotes the inter-
blade phase angle where Ns defines the number of sectors. By using the cyclic
symmetry transformation matrix defined in Eq. (4.7), the multiharmonic balance
equations of the cyclic sector can be obtained as:

[−(nω)2M̄+ inωC̄+ K̄](n)q̄(n) = f̄ (n)nl + f̄ (n)ex (4.8)

where M̄, C̄ and K̄ are complex valued structural matrices obtained by applying the
proper cyclic symmetry phase conditions according to the harmonic index [14].

4.2.1.3 Introduction of Relative Coordinates

The next step in RCCMS approach is representing the absolute displacements of
contact nodes in terms of relative displacements between the contact node pairs. A
schematic view of shroud contact boundaries is depicted in Fig. 4.3.

The relative displacements between the contact nodes at the blade root are
referred to as the internal relative DOFs and can be determined by:

x̄(n)rel,i = x̄(n)cB − x̄(n)cD (4.9)
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Fig. 4.3 Boundary contact DOFs at adjacent
shroud contact surfaces.

In contrast to internal contact nodes at the blade root, shroud contacts are located
at the sector boundaries (see Fig. 4.3). As a result, relative displacements between
contact nodes lying on adjacent shrouds are referred to as boundary relative displace-
ment. Boundary relative displacements at the low interface of the kth shroud can be
expressed as:

(k)x̄(n)rel,b =
(k−1)x̄(n)cH − (k)x̄(n)cL (4.10)

where (k)x̄(n)cL denotes the low (i.e. right) shroud contact displacements of the kth
sector and (k−1)x̄(n)cH denotes high (i.e. left) shroud contact displacements of the
(k−1)th sector.
The boundary relative displacements defined in Eq. (4.10) can be represented in
terms of shroud contact displacements of one sector by employing cyclic symmetry
properties as follows:

x̄(n)rel,b = e−inϕ x̄(n)cH − x̄(n)cL (4.11)

In Eq. (4.11), the sector index (i.e. (k)) is omitted for the sake of brevity.
Finally, the full displacement vector of the cyclic sector can be represented in relative
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coordinates using the following transformation matrix:

q̄(n) =



x̄cL

x̄cH

x̄cB

x̄cD

x̄I

x̄L



(n)

=



−I 0 e−inϕ 0 0 0
0 0 I 0 0 0
0 I 0 I 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I





x̄rel,b

x̄rel,i

x̄cH

x̄cD

x̄I

x̄L



(n)

= T (n)
rel q̄(n)r

(4.12)

The final relative displacement vector q̄r (defined in Eq. (4.12)) comprises two
distinct groups of DOFs and can be partitioned as follows:

q̄(n)r =

{
x̄N

x̄L

}(n)

with x̄N =

{
x̄rel,b

x̄rel,i

}
and x̄L =


x̄cH

x̄cD

x̄I

x̄L

 (4.13)

where x̄N denotes relative contact DOFs that are used to compute nonlinear friction
forces and x̄L denotes the vector of linear coordinates and contains the DOFs of the
cyclic sector with merged friction interfaces (i.e. fully stick condition). Introducing
Eq. (4.13) into Eq. (4.8), yields the dynamic balance equations in relative cyclic
coordinates, as follows:

[−(nω)2M̄r + inωC̄r + K̄r]
(n)

{
x̄N

x̄L

}(n)

=

{
f̄n

0

}(n)

+

{
0
f̄ex

}(n)

,

with fn =

{
f̄ b
n

f̄ i
n

}
(4.14)

where subscript r refers to structural matrices in relative cyclic coordinates.
In Eq. (4.14) f̄n denotes the amplitude of nth harmonic of the nonlinear friction
forces which is composed of boundary friction forces at shrouds (i.e. f̄ b

n ) and internal
friction forces at the blade root (i.e. f̄ i

n).
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Note that, in the RCCMS reduction technique, moving to relative coordinates is a
preliminary step and size reduction comes only afterwards.

4.2.1.4 CB-CMS Reduction

Refined FE models of industrial bladed disks contain numerous DOFs even at the
sector level. Thus, computing the forced response levels of the full order model by
solving Eq. (4.14) might become prohibitively expensive. To overcome this, the
CB-CMS reduction technique is employed to reduce the size of the sector model. The
objectives of performing the CB-CMS on equations of motion in relative coordinates,
is threefold:

i. First, to retain the relative contact DOFs after the reduction, for nonlinear
forced response calculations.

ii. Second, to enhance the accuracy of the reduction basis by employing normal
modes with fully stuck boundary conditions.

iii. Third, to achieve a highly reduced ROM by performing a system level reduc-
tion.

The CB-CMS reduction method is applied to the cyclic sector in relative coor-
dinates (Eq. (4.14)), by retaining x̄N as master DOFs and representing x̄L in terms
of modal coordinates corresponding to the fully stick modeshape of the sector. The
final reduced displacement vector in RCCMS coordinates can be obtained by:

q̄(n)r =

{
x̄N

x̄L

}(n)

= T (n)
cb q̄(n)rom =

[
I 0
Ψ Ω

](n){
x̄N

η̄

}(n)

(4.15)

where T (n)
cb and η̄(n) are the CB-CMS transformation matrix and the generalized

coordinates of the nth harmonic, respectively. In Eq. (4.14), Ψ(n) denotes relative
cyclic constraint modes of the nth harmonic and are obtained by imposing a unitary
relative displacement at each retained relative DOF while holding other relative
DOFs fixed. Also, Φ(n) denotes fixed interface cyclic modes of the nth harmonic and
are obtained by solving the eigenvalue problem of the linear partition of the cyclic
sector.
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By introducing Eq. (4.15) into Eq. (4.14), the final reduced dynamic balance equa-
tions in RCCMS coordinates, yields:

[−(nω)2M̄rom + inωC̄rom + K̄rom]
(n)

{
x̄N

η̄

}(n)

=

{
f̄n

0

}(n)

+

{
ΨH f̄ex

ΦH f̄ex

}(n)

(4.16)

where subscript rom refers to the reduced structural matrices in RCCMS coordinates
and superscript H denotes the Hermitian transpose.

4.2.1.5 Remarks on Local/Global Coordinate Systems

It should be noted that, the nonlinear contact forces are computed in the local Carte-
sian coordinate systems of the contact surfaces. Conventional strategies for solving
the cyclic dynamic balance equations, demand conversion of contact relative dis-
placements from global cyclic to local contact coordinates and converting back the
local friction forces to global cyclic coordinates.
However, a new strategy is introduced here which does need require changing the
coordinate systems. The basic idea is to have the relative contact DOFs and their
corresponding partition in the cyclic dynamic balance equations written in the local
coordinate systems of contact surfaces.
In this way, all the rows and columns of the dynamic balance equations, correspond-
ing to nonlinear DOFs, are already written in local coordinate systems. One only
need to show that the cyclic symmetry properties can be also applied to the relative
contact displacements written in local Cartesian coordinate systems of contact sur-
faces.
It is intuitive in the way that, local coordinate systems are attached to the contact
surfaces and are rotating in circumferential direction with a phase angle similar to
the inter-blade phase angle. In the following, this symmetry property is investigated
for one specific shroud contact pair.
The relative displacement of the considered contact node pair in cyclic coordinates
are:

(k)Qrel (t) = (k+1)QL (t)− (k)QH (t) (4.17)
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in time domain. By employing the cyclic symmetry properties, Eq. (4.17) can be
written in terms of cyclic displacements of one sector as:

(k)Qrel (t) = (k)QL (t +δ t)− (k)QH (t) (4.18)

where δ t denotes the time delay between the adjacent sectors. To compute the
nonlinear friction forces one needs to convert the cyclic relative displacements into
the local Cartesian shroud coordinates. This can be done by using a nominal rotation
matrix R, as follows:

(k)Xrel (t) = R
[
(k)Qrel (t)

]
= R

[
(k)QL (t +δ t)− (k)QH (t)

]
(4.19)

Equation (4.19) can be further simplified as:

(k)Xrel (t) = R
{

RT
[
(k)XL (t +δ t)

]
−RT

[
(k)XH (t)

]}
= (k)XL (t +δ t)− (k)XH (t)

(4.20)

which implies that cyclic symmetry properties hold in local Cartesian coordinates.
Based on Eq. (4.20), it is convenient to convert the nonlinear partition of the dynamic
balance equations into local coordinate systems. In this way, the computed relative
displacements and nonlinear forces are readily available in the contact coordinate
systems and are injected into the portions of balance equations, written in the same
coordinate systems.
In this study, portions of structural matrices corresponding to contact DOFs are
simply projected into local contact coordinate systems by using the nrotat command
in ANSYS.

4.2.2 Application to Mistuned Bladed Disks

As it was stated in section 4.2.1, the idea of using relative coordinates was introduced
in [51] and used for linear forced response analysis of a bladed disk with one cracked
blade. Staying within the scope (i.e. modeling a bladed disk with a cracked blade),
the introduced strategy was adopted and improved in series of studies. For instance
in [53], the CMM [17] method was used to model small blade mistuning in the
pristine/uncracked structure, in the absence of contact interactions between crack
surfaces.



4.2 Methodology 85

The main focus of these studies was to take into account the effects of mistuning
(ranging from small [53], to large [54]) and to develop ROMs for linear forced
response of mistuned balded disks with a cracked blade.
Although there are studies in the literature on linear mistuned bladed disks with
a cracked blade and they use the idea of relative coordinates, RCCMS adopts the
initial idea and introduces a solid formulation that can be used in a more general
application, that is nonlinear forced response analysis of mistuned bladed disks with
friction interfaces.
It should be noted that, even by including nonlinear damping effect between the crack
surfaces of one blade, dealing with a bladed disk with multiple friction interfaces at
shrouds, blade root joints and etc. demands a more advanced treatment.
In RCCMS coordinates, the final ROM is composed of a statically reduced compo-
nent corresponding to relative contact DOFs (referred to as nonlinear partition), and
a modal reduced component corresponding to the linear system with merged friction
interfaces (referred to as linear partition).
This makes the RCCMS unique and very flexible when modeling the mistuning is
deemded needed. Since it allows analysts and designers; in a systematic way; to
benefit from powerful theories of mistuning modeling of linear system (e.g. SNM
[27], CMM [17], IMM [33] and NEWT [28]) for mistuning analysis of nonlinear
system with friction interfaces.
In particular, the current study introduces the small frequency mistuning in the
sector-level by employing the principle assumption of the SNM theory. This results
in a highly reduced ROM by using system-level modes.
In order to reduce the overall computational burden and to build the ROM using one
single sector only, the developed mistuned ROM is tailored for bladed disks with
friction interfaces inside the sector boundaries and remote from the blade tip motion
(e.g. blade-root joints, underplatform dampers, ring dampers), although the general
formulation is applicable to bladed disks with different configurations and all kinds
of mistuning.
In the remainder, a mistuned ROM is developed for nonlinear dynamics of bladed
disks with blade-root friction damping. The reduction basis is invariant of the mistun-
ing pattern which makes it favorable for statistical characterization of the nonlinear
response levels.
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4.2.2.1 Equations of Motion

The equations of motion of a general bladed disk system can be represented as:

Mẍ(t)+Cẋ(t)+Kx(t) = Fnl(x(t), ẋ(t))+Fex(t) (4.21)

where

– M and K are system mass and stiffness matrix, respectively.

– C denotes the linear viscous damping and is assumed to be proportional to
mass and stiffness (i.e. C = αM+βK ).

– x(t) denotes the displacement vector of the full system.

– Fnl represents the vector of nonlinear friction forces and is dependent on
relative displacements and velocities at contact nodes.

– Fex denotes the external periodic forces applied on the system.

Figure 4.4 shows the fundamental sector of the studied mock up bladed disk and
the defined partition of DOFs. To assess the friction damping at blade roots, the
nodes laying on blade-disk interfaces, are denoted as contact nodes (subscripts c).
Other remaining DOFs are denoted by subscripts o. Superscripts b and d are used
to distinguish between the blade and the disk DOFs. Prior to performing the new
reduction steps, it is convenient to first reorder the full displacement vector and the
corresponding structural matrices, as follows:

x =


xb

c

xd
c

xb
o

xd
o


K =


Kb

cc 0 Kb
co 0

0 Kd
cc 0 Kd

co

Kb
oc 0 Kb

oo 0
0 Kd

oc 0 Kd
oo

 , M =


Mb

cc 0 Mb
co 0

0 Md
cc 0 Md

co

Mb
oc 0 Mb

oo 0
0 Md

oc 0 Md
oo

 (4.22)



4.2 Methodology 87

b
ox

d
ox

(a)

b
cx

(b)
d
cx

(c)

Fig. 4.4 Fundamental sector of the studied bladed disk and its partitioned DOFs.

It should be noted that, Eq. (4.21) represents the partitioned full displacement
vector of the system and for instance, xb

c denotes the contact DOFs of all blades.
As evident from Fig. 4.4, the partitions corresponding to blade DOFs are block
diagonal and the partition corresponding to other DOFs of the disk (i.e. Kd

oo and Md
oo)

are block circulant, due to the coupling between the interfaces of disk sectors.

4.2.2.2 Introduction of Relative Coordinates

The first step in RCCMS, as stated in section 4.2.1, is to represent the absolute
displacements of contact nodes in terms of the relative displacements between contact
node pairs. The relative displacements between contact nodes can be determined by:

xrel = xb
c − xd

c (4.23)
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Note that, xrel denotes relative displacements in local coordinate systems of
contact surfaces. Accordingly, the full displacement vector can be expressed in
relative coordinates by using Eq. (4.23) and introducing the following transformation:

xb
c

xd
c

xb
o

xd
o

=


I I 0 0
0 I 0 0
0 0 I 0
0 0 0 I




xrel

xd
c

xb
o

xd
o

= [T ]{xr} (4.24)

It is evident that, the displacement vector in relative coordinates (i.e. xr in Eq.
(4.24)), can be divided into two distinct groups, namely nonlinear and linear DOFs,
as follows:

xr =


[xrel] = xN xd

c

xb
o

xd
o

= xL

=

{
xN

xL

}
(4.25)

In Eq. (4.25), xN is the vector of nonlinear coordinates and only contains relative
displacements of contact nodes which is used to calculate nonlinear friction forces.
On the other hand, xL is the vector of linear coordinates and contains DOFs of the
linear system with no friction interfaces. In fact, xL denotes a linear system in fully
stuck condition (i.e. merged contact nodes).
Introducing Eq. (4.24) into Eq. (4.21), yields the transformed equations of motion in
relative coordinates:

Mr

{
ẍN

ẍL

}
+Cr

{
ẋN

ẋL

}
+Kr

{
xN

xL

}
=

{
fnl

0

}
+

{
0
fex

}
(4.26)

where

Kr = T T KT =


Kb

cc Kb
cc Kb

co 0
Kb

cc Kb
cc +Kd

cc Kb
co Kd

co

Kb
oc Kb

oc Kb
oo 0

0 Kd
oc 0 Kd

oo

=

[
KNN KNL

KLN KLL

]

Mr = T T MT, Cr = T TCT (4.27)
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In Eq. (4.27), Mr and Cr matrices are partitioned in the same fashion as the
stiffness matrix and are not shown here for brevity. Fnl is the vector of nonlinear
friction forces, acting on nonlinear (relative) partition. Fex is the vector of external
force and it is assumed that it applies on linear partition only.
Note that, in RCCMS, moving to relative coordinates is a preliminary step, and size
reduction comes only afterwards. The benefits of this transformation will become
apparent in the following sections.

4.2.2.3 CB-CMS Reduction

Computing the forced response levels of the full order model by solving Eq. (4.26)
is prohibitively expensive. To overcome this, the CB-CMS reduction technique is
employed to reduce the size of the full order model. The benefits of performing
a CB-CMS reduction on a system already represented in relative coordinates is
threefold and is addressed in section 4.2.1.
It should be noted that, in classical CB-CMS techniques, the contact nodes laying
on both blade and the disk interfaces are retained as master nodes. This could result
in a final ROM with large number of retained nodes (usually a secondary reduction
technique should be performed as an extra step [25]).
Moreover, the utilized modeshape have boundary conditions (clamped at interface),
different from real kinematics of friction interfaces. Consequently, to reduce the
errors arisen from the choice of modal bases, usually more number of modes should
be retained in the reduction basis.
The new reduction technique; based on RCCMS; could alleviate many of these
difficulties. To do so, xN (relative DOFs) is retained as master DOFs while xL is
represented by modal coordinates. The final reduced displacement vector in RCCMS
coordinates is given by:

xr =

{
xN

xL

}
=

[
I 0

Ψc Φ f

]{
xN

η

}
= Rcbxrom (4.28)

where Rcb is the CB-CMS transformation matrix composed of static constraint modes
Ψc and fixed interface modeshapes Φ f .
In the relative context, constraint modes can be obtained by imposing a unitary
relative displacement at each retained contact node pair while holding the other node
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pairs fixed. Moreover, fixed interface modeshapes are normal modes of a bladed disk
system with zero relative displacement at contact node pairs, which are in fact the
vibration modes of a fully stuck system.
At this step, both Φ f and Ψc can be computed using the cyclic symmetry properties
of the system.
The equations of motion of the final reduced system in RCCMS coordinates can be
represented as:

Mrom

{
ẍN

η̈

}
+Crom

{
ẋN

η̇

}
+Krom

{
xN

η

}
= Fnl +Fex (4.29)

where

Krom = RT
cbKrRcb =

[
KGuyan 0

0 Λi

]

Mrom = RT
cbMrRcb =

[
MGuyan MNη

MηN I

]

Fex =

{
Fn

ex

F l
ex

}
=

{
ΨT

c fex

ΦT
f fex

}
, Fnl =

{
fnl

0

}
(4.30)

Different partitions of final reduced mass and stiffness matrices are given below:

Λi = Φ
T
f KLLΦ f

KGuyan = KNN −KNLK−1
LL KLN

MGuyan = MNN +Ψ
T
c MLN +MNLΨc +Ψ

T
c MLLΨc

MNη = MNLΦ f +Ψ
T
c MLLΦ f (4.31)

4.2.2.4 Mistuning

Since the proposed reduction technique is a CMS-based approach, in general, it is
suitable for both small and large mistuning problems. However, the focus of this
study is on small frequency mistuning (either blade or sector level).
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A general reduced stiffness matrix of a mistuned system can be written as:

Kmist
rom =

[
ΨT

mistK
mist
r Ψmist ΨT

mistK
mist
r Φmist

ΦT
mistK

mist
r Ψmist ΦT

mistK
mist
r Φmist

]
=

[
Kmist

Guyan 0
0 Λmist

i

]
(4.32)

where Ψmist =
[

I Ψmist
c

]T
defines mistuned static constraint modes.

So far, no assumption has been made on the mistuning and the general formula-
tion of Eq. (4.32) is applicable to all types of mistuning (considering tht the same
logic is applicable to mass matrix as well). However, the focus here will be on
small frequency mistuning and the general formulation of Eq. (4.32) will be further
simplified to fulfill the following requirements: 1. sectorl-level computations 2.
reduction basis invariant of the mistuning pattern (necessary for statistical analyses).

In the RCCMS coordinates, the final ROM is composed of two distinct partitions:

1. Statically reduced component corresponding to relative displacements between
contact node pairs (retained for nonlinear forced response calculations); called
the nonlinear partition.

2. Modal reduced component corresponding to the fully stuck system (with
merged friction interfaces); called the linear partition.

This will split the introduction of mistuning into a classical linear mistuning
problem (for the linear partition) and the mistuning problem of the static component
(for the nonlinear partition). In practice, these two components are dealt with, inde-
pendently.
This makes the RCCMS unique and very flexible for mistuning modeling. Since,
powerful classical theories (e.g. SNM, CMM, and etc.), are readily applicable for
the reduction of the so-called linear partition.
Here, the principle assumption of SNM theory is employed, to make the ROM
suitable for statistical analyses and also to obtain a highly compact ROM by using
system-level modes.
Accordingly, it is assumed that modeshapes of the mistuned system can be repre-
sented as a linear combination of the tuned system modes (in the presence of small
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mistuning). This assumption yields:

Kmist
rom =

[
Kmist

Guyan 0
0 ΦT Kmist

r Φ

]
(4.33)

where Φ are cyclic tuned modeshapes of the linear system in fully stuck conditions.
It should be noted that, even implementing tuned modeshapes in Eq. (4.33), the
linear and nonlinear partitions/DOFs of the system are still statically uncoupled.

In practice, the lower right partition of the mistuned ROM stiffness matrix
(Eq. (4.33)), is calculated by sector-level calculations. One may only need sector-
level tuned modeshapes that are computed by imposing cyclic symmetry boundary
conditions at disk interfaces.
By defining a non-dimensional mistuning parameter δ , as small deviations of nominal
Young’s modulus of the fundamental sector, the final stiffness matrix of the mistuned
ROM can be determined by:

Kmist
rom =

 Kmist
Guyan 0
0 ∑

n=1..N
(1+δn)Φ

T
n K0Φn

 (4.34)

where K0 is the tuned stiffness matrix of a single sector and Φn are tuned sector-level
modeshapes of nth sector DOFs.
The next step in mistuning modeling, which is needed whenever contact node pairs
are retained for nonlinear forced response analysis, would be the computation of the
mistuned nonlinear partition.

According to Eq. (4.34), this can be ideally achieved by computing the:

Kmist
Guyan = Ψ

T
mistK

mist
r Ψmist = Kmist

NN −Kmist
NL
(
Kmist

LL
)−1

Kmist
LN (4.35)

which in general may become a formidable task. Since, the computation of the
system-level static modes demands the inversion of the stiffness matrix of the fully
stuck system.
Thus, the objective is to develop cost-efficient approaches to compute the mistuned
nonlinear partition of the RCCMS stiffness matrix that can yield a trad-off between
the solution accuracy and the computational efficiency.
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Accordingly, to alleviate the computational burden, two solutions are proposed to
estimate the full-order mistuned relative constraint modes, based on sector-level
calculations:

i. Isolated static modes: that assumes mistuned static modes are confined to the
sector-level.

ii. Cyclic static modes: that assumes the effect of frequency mistuning on the
statically condensed partition is small, and thus the so-called nonlinear partition
can be approximated by its tuned counterpart.

It should be noted that, a relative constraint mode is the static responses due to a
unitary relative displacement applied on a retained contact DOF while other contact
DOFs are held fixed.

Considering that the blade-disk coupling is located at the blade-root joints and
also the overall contribution of the disk stiffness (note that this configuration of
bladed disks is very common, especially at compressor stages), the strain imposed
by the unitary displacement will be mostly confined in the neighborhood of the
blade-disk interface and within the sector level.
Accordingly, one may assume that relative static modes are confined to sector-levels
and are isolated as if the sector interfaces were clamped. This assumption is referred
to as isolated static modes. This assumption isolates the static response of each
sector. In other words, it is assumed that the imposed unitary displacement at retained
contact DOFs of a given sector results in a nonzero static response only in the sector-
level and zero static response in other sectors.
By introducing the isolated static modes assumption into Eq. (4.34), the final stiffness
matrix of the mistuned ROM is constructed as follows:

Kmist
rom ≈

 Bdiag
n=1..N

[
(1+δn)K0

Guyan

]
0

0 ∑
n=1..N

(1+δn)Φ
T
n K0Φn

 (4.36)

where Bdiag denotes a block diagonal matrix and K0
Guyan is the Guyan stiffness

matrix of the tuned fundamental sector with fixed interfaces. Note that, in Eq. (4.36),
mistuning is directly introduced into the decoupled statically reduced sectors. The
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same logic can be applied to the mass matrix and yields:

Mrom ≈

 IN ⊗M0
Guyan ∑

n=1..N
ΨT

f ,nM0Φn

∑
n=1..N

ΦT
n M0Ψ f ,n I

 (4.37)

where M0 denotes the nominal mass matrix of the fundamental sector, M0
Guyan denotes

the Guyan reduced mass matrix of the fundamental sector and Ψ f ,n =
[

I Ψc

]T

n
denotes the static constraint modes of the nth clamped sector of the bladed disk.
Note that, since the static problem is decoupled and shrunk into sector-levels, in
practice one sector is sufficient to construct Ψ f ,n.

It should be noted that, in many industrial applications, the disk component
is stiffer than other components. In this case, it can be expected that, the relative
constraint modes are restricted to the sector level and are not distributed along the
full wheel, considerably. This assumption is assessed in section 4.3.2.

The stiffness matrix of the mistuned ROM (i.e. Eq. (4.34)) can be also constructed
based on the alternative assumption of cyclic static modes.

Since, nonlinear DOFs are located at the blade-disk interface, the static response
(due to a unitary relative displacement at nonlinear DOFs) is mainly localized at
the blade-disk interface level. It can be expected that, near the blade-dominated
modes, when disk and interface are not contributing to system dynamics, the effect
of mistuning on the static response is negligible and thus using tuned static modes is
a reasonable assumption.

Accordingly, relative static constraint modes can be computed using cyclic
symmetry properties and the reduction basis (i.e. Rcb) introduced in Eq. (4.28) can
be used to reduce the stiffness matrix of the mistuned system.

Prior to constructing the stiffness matrix of the mistuned ROM based on the
cyclic static modes assumption, it is convenient to recast the mistuned stiffness
matrix as:

Kmist
r = Kr +Kδ

r (4.38)

where Kδ
r denotes the mistuning component of the stiffness matrix. Note that, Kδ

r

can include either blade or sector frequency mistuning.
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Projecting the mistuned stiffness matrix in Eq. (4.38) onto tuned Rcb reduction
basis, yields:

Kmist
rom ≈

 KGuyan + ∑
n=1..N

ΨT
n Kδ

n Ψn ∑
n=1..N

ΨT
n Kδ

n Φn

∑
n=1..N

ΦT
n Kδ

n Ψn ∑
n=1..N

(1+δn)Φ
T
n K0Φn

 (4.39)

where Ψn defines the tuned static constraint modes of the nth cyclic sector.

Recalling that the nonlinear DOFs are located at blade-disk interface, and also
the the overall contribution of the disk is not negligible in this configuration, it can
be assumed that the static response due to unitary displacements at nonlinear DOFs
is not significant, especially at the blade portion. Thus, the stiffness matrix in Eq.
(4.39) can be further simplified by neglecting the effect of mistuning components on
static terms as follow:

Kmist
rom ≈

 KGuyan 0
0 ∑

n=1..N
(1+δn)Φ

T
n K0Φn

 (4.40)

Note that, the mass stiffness matrix can be simply computed using the cyclic
symmetry properties.

The stiffness matrix of the mistuned ROM can be constructed using either Eq.
(4.36) or (4.40), and based on sector-level calculations. In addition, the mistuning is
directly introduced into the final ROM, which makes the ROM suitable for statistical
nonlinear forced response analyses.

4.3 Numerical Results

In the final ROM, node-to-node state-of-the-art contact elements are imposed at all
retained contact node pairs to model the friction contacts. Nonlinear friction forces
are then calculated based on the contact states and relative displacements at each
contact node pair.

The steady state response of the system is computed using the HBM. It is assumed
that the response of the system under a periodic excitation is periodic.
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The pseudo-arclength path following technique was implemented to compute the
evolution of nonlinear forced response levels with respect to the excitation frequency.

Note that the continuation scheme demands calculation of the Jacobian matrix at
each iteration step, which can become a rigorous task. The computational burden
was extremely reduced by implementing the analytical Jacobian.
The numerical solution is described thoroughly in Appendix A.

4.3.1 Tuned Bladed Disk with Friction Contacts at Shrouds and
Blade Roots

To evaluate the performance of the RCCMS-based ROM developed in section 4.2.1 in
nonlinear forced response prediction of bladed disks with friction interfaces at sector
boundaries, it is applied to the bladed disk shown in Fig. 4.5. The nonlinear friction
damping is modeled at both shroud contact surfaces (cyclic symmetry boundaries)
and at blade-root joints (inside sector boundaries).

(a)

(b)

(c)

Fig. 4.5 (a) Full wheel FE model of the mock up bladed disk with friction interfaces at (b)
shrouds and (c) blade-root joints.

The mock-up bladed disk is composed of 40 blades, and is made of steel of
Young’s modulus E = 200GPa, density ρ = 7800Kg/m3 and Poisson’s ratio ν = 0.3.
The fundamental sector model comprises 436 contact nodes in total (20 contact nodes
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on each shroud surface and 33 contact nodes on each blade root contact surface) and
thus 654 nonlinear relative contact DOFs.
To model the friction contacts, semi-3D contact elements (two perpendicular Jenkins
contact elements with variable normal load) are imposed at all retained contact node
pairs. The contact stiffness is set equal to 100 N/µm in both normal and tangential
directions and a constant friction coefficient of 0.5 is considered.
The external excitation is applied on the forcing node located at blade tip. It is
assumed that the static solutions are not affected by dynamic state of the system.
Thus, the static equilibrium state and the corresponding static nonlinear forces are
calculated by applying nodal static loads (due to centrifugal forces) to contact node
pairs and solving the zeroth order balance equation. Forced response levels are
computed based on a monoharmonic balance procedure and by retaining 10 first
stuck modeshapes during the construction of the ROM.

 

Fig. 4.6 Natural frequencies versus nodal diameters for the tuned
bladed disk in fully stick condition.

Figure 4.6 depicts the natural frequencies versus the number of nodal diameters
plot for the tuned bladed disk in fully stick condition. All forced response calculations
are performed under engine order one excitation (EO 1) and near the first mode of
the first family. The tangential component of steady state solutions (calculated for a
response node located at the blade tip) are plotted here.
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Fig. 4.7 Effect of nonlinear friction damping on forced response
levels of the bladed disk under EO 1 excitation.

The effect of nonlinear friction damping on forced response levels of the bladed
disk under different preload-to-forcing conditions is presented in Fig. 4.7.
A very slight stiffness-proportional damping was considered to evaluate the perfor-
mance of the friction damping. As it is seen, decreasing the preload-to-excitation
values (i.e. N0/F0), initially increases the nonlinear dissipative effects at contact
nodes, as the vibration amplitude decreases.
Further decreasing the preload value introduces the separation at contact nodes and
the efficiency of friction damping remarkably drops as the slip decreases at friction
interfaces. The increase of separation (i.e. partial contact) at friction interfaces
reduces the bladed disk stiffness and will ultimately shift the response curve towards
the response of the system with open contacts.

4.3.2 Mistuned Bladed Disk with Friction Contacts at Blade Roots

The developed RCCMS-based mistuned ROM (section 4.2.2) is applied to the bladed
disk shown in Fig. 4.8, to evaluate its performance in nonlinear forced response
analysis. The mock-up bladed disk is composed of 12 blades and is made of steel.
The full-order FE model where the blades are attached to the disk, comprises 42,432
nodes and 127,296 DOFs in total. Each contact surface (see Fig. 4.4) contains 21
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contact node pair and the full-order model is composed of 1512 relative contact
DOFs.

 

Fig. 4.8 Full wheel FE model of the mock up bladed disk with
friction interfaces at blade-root joints.

Accordingly, the nonlinear partition of the ROM consists of 1512 DOFs, and its
linear partition is composed of generalized coordinates associated with the R retained
system stick modes (total DOFs: 1512 + R).
Not that, since the ROM is already constructed based on the system-level stick
modes, it predicts natural frequencies and modeshapes of the stuck bladed disk with
perfect accuracy and the main focus here is the accuracy of the ROM in predicting
the forced response levels.
All the forced response calculations are performed on a ROM composed of 300
linear DOFs: i) to have a highly accurate ROM for validation purposes ii) yet very
small compared to the nonlinear partition.

The reference model for validating the ROM forced response results, is a CB-
CMS reduced model of the full wheel. The mistuned bladed disk model is obtained
by defining a random mistuning pattern with uniform distribution and standard
deviation of 3%.
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Fig. 4.9 Natural frequencies versus nodal diameters for
the tuned bladed disk in fully stick condition.

Natural frequencies versus the number of nodal diameters plot for the tuned
bladed disk in fully stick is shown in Fig. 4.9. Red circles show the frequency ranges
in which forced response calculation are carried out. The simulation results of the
mistuned bladed disk is presented into two subsection based on the construction of
the mistuned ROM. In the remainder, the results of the ROM based on isolated static
modes is presented, followed by the results of the ROM based on cyclic static modes
assumption.

4.3.2.1 Isolated Static Modes Approach

In simulations in this section, friction contacts are modeled using the semi-3D contact
elements (two perpendicular Jenkins contact elements with variable normal load).
The contact stiffness is set equal to kt = 100N/µm, in both normal and tangential
directions. This value is defined in a way to have the stuck natural frequencies of the
ROM (computed by introducing linear springs of kt stiffness into the ROM) close to
the ANSYS stuck natural frequencies (computed by merging contact node pairs).

All forced response calculations are performed under engine order one excitation
(EO 1) of amplitude F0 and around the second modal family. To better evaluate the
friction damping, a very slight modal damping (0.1%) was considered for all the
modes.
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Static loads are modeled by applying a constant normal preload (i.e. N0) on all
the retained contact node pairs.
Forced response levels are computed based on a monoharmonic balance procedure.
The tangential component of steady state solutions (calculated for a response node
located at the tip of nominal blade #1) are plotted here.
The mistuned stiffness matrix is obtained by introducing the secter-level frequency
mistuning into the ROM using the Eq. (4.36).

 

Fig. 4.10 Forced response level of the mistuned bladed
disk in fully stuck (EO 1 excitation).

Forced response level of the mistuned bladed disk in fully stuck condition is
depicted in Fig. 4.10. As it is seen, RCCMS can mimics the Baseline behavior very
good. A frequency shift of about 0.12% is evident in the RCCMS predicted response.
This is because of the simplifying assumption made on computation of the relative
static modes.
In fact, restricting the relative static modes into the sector level, introduces more
stiffness into the ROM. This becomes more evident for the bladed disk with a thinner
disk component (like the considered case study) and near lower ND modeshapes.

Figure 4.11 shows nonlinear forced response levels of the mistuned bladed disk
in microslip regime. RCCMS shows a good accuracy in predicting the nonlinear
behavior of the system. A slight frequency shift is seen for higher values of N0/F0
ratio and near the resonance peaks.
The effect of preload-to-excitation ratio on the damping performance is evident in
Figs. 4.11a and 4.11b. Near high amplitude resonance peaks, because of high relative
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(a)
 

(b)

Fig. 4.11 Nonlinear forced response levels of the mistuned bladed disk in microslip regime
(EO 1 excitation).

displacements at contact nodes, contacts are in microslip and the friction damping
decreases the response amplitude.
By further decreasing of N0/F0 ratios, contact states will change into gross slip and
as a result, the amplitude of the vibration will be damped within the full frequency
range.

The studied mock up bladed disk is composed of a rather thin disk component. It
is also favorable to evaluate the performance of the RCCMS in predicting the forced
response levels of systems with a stiffer disk component. To this end, the Young’s
modulus of the disk component was artificially doubled to resemble a stiffer disk
component.

Figure 4.12 shows the forced response levels of the mistuned bladed disk with an
artificially stiffer disk component. The system is under an EO 5 excitation. As it can
be seen, RCCMS has predicted forced response levels with an excellent accuracy. In
fact, restricting the relative constraint modes to sector levels, becomes a more valid
assumption as the disk stiffness increases.

Figure 4.13 shows nonlinear forced response levels of the mistuned bladed disk
under EO 5 excitation, for the system with the stiffened disk component. Results
reveal the high accuracy of RCCMS in predicting the response of system in microslip.
In fact, the simplifying assumption of using sector-level relative constraint modes
for computation of RCCMS, will result in highly accurate ROMs for systems with a
stiff disk component.
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Fig. 4.12 Forced response level of the mistuned bladed
disk with an artificially stiffer disk component, in fully
stuck (EO 5 excitation).

 

(a)

 

(b)

Fig. 4.13 Nonlinear forced response levels of the mistuned bladed disk with an artificially
stiffer disk component in microslip regime (EO 5 excitation).

4.3.2.2 Cyclic Static Modes Approach

In simulations in this section, friction contacts are modeled using the full-3D contact
elements with variable normal load [55]. The contact stiffness is remained unchanged
(equal to kt = 100N/µm in both normal and tangential directions).
Forced response calculations are performed in two different frequency ranges:

i. low frequency range: under EO 1 excitation and around the second modal
family.
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ii. high frequency range: under EO 5 excitation and around a densely packed
modal families.

To better assess the effect of friction damping, a very slight stiffness-proportional
damping with the coefficient of β = 1.5e-8 is used in forced response calculations.
To model the effect of centrifugal forces, radial static loads (i.e. N0) are applied on
forcing nodes at both leading and trailing edges of the blades. Note that here, N0
defines the static load applied on forcing nodes and not the pure normal preload at
contact DOFs.

A nonlinear quasi-static analysis is carried out to compute the initial nonlinear
static forces and equilibrium positions. To reduce the computational burden, multi-
harmonic and coupled static/dynamic HBM simulations are carried out only once to
evaluate their effect on forced response levels. The rest of simulations are performed
based on a monoharmonic HBM method and by assuming that static equilibrium is
not affected by dynamic response.

Forced response levels are presented in terms of the envelope of the maximum
response (maximum response of all the blades at every excitation frequency) in
tangential direction, calculated at response nodes at blade tips.

In this section, the mistuning is modeled as blade frequency mistuning (using Eq.
(4.40)) unless otherwise stated.

Figure 4.14 shows the performance of the RCCMS in predicting the forced
response of the mistuned bladed disk in stick condition. The forced response is
calculated under EO 1 excitation and around the second modal family. As it is
expected, the RCCMS prediction is in excellent accordance with ANSYS result,
since the ROM is constructed based on the stick modeshapes. It should be noted
that mistuned modeshapes are not pure nodal diameter modes and thus multiple
resonance peaks are evident in forced response levels.

The performance of the RCCMS in accurately predicting the forced response
levels of the mistuned bladed disk in a high modal density region is depicted in Fig.
4.15. The system in under EO 5 excitation. As it can be seen, RCCMS prediction is
in an excellent accordance with ANSYS results. Figure 4.15 reveals that a highly
accurate forced response prediction can be achieved using a highly compact ROM
in RCCMS coordinates. Note that, the CMS-based baseline ROM contains 500
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Fig. 4.14 Performance of the RCCMS in predicting the envelope
of the maximum linear response of the mistuned bladed disk
(with blade-frequency mistuning) under EO 1 excitation.

generalized coordinates only corresponding to the disk component to reach the same
accuracy.

 

Fig. 4.15 Performance of the RCCMS in predicting the envelope
of the maximum linear response of the mistuned bladed disk
(with blade-frequency mistuning) under EO 5 excitation.
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Figure 4.16 demonstrates the performance of the RCCMS in accurately predicting
the envelope of the maximum nonlinear response of the mistuned blisk under EO
1. The predicted nonlinear response levels are in excellent accordance with the
baseline results. It is evident that decreasing the preload-to-excitation ratio eventually
decreases the vibration amplitude by introducing more friction damping at friction
interfaces. The effect of mistuning on increasing the forced response level is depicted
for the stick case. It can be seen that the mistuned response level has increased by
the amplification factor of 28% with respect to the tuned response level.

 

Fig. 4.16 Performance of the RCCMS in predicting the nonlinear
response levels of the mistuned bladed disk (with blade-frequency
mistuning) under EO 1 excitation.

Table 4.1 Computational costs of computing the
nonlinear forced response levels in Fig. 4.16.

ROM N0/F0 = 5e3 N0/F0 = 5e2

RCCMS 0.47h 0.3h
Baseline 1h 0.7h

The computational costs of computing the nonlinear forced response levels shown
in Fig. 4.16 is reported in Table 4.1. Note that, a thorough efficiency evaluation,
should take into account the offline costs of computing different ROMs. Another
factor that highly affects the computational cost is the number of nonlinear DOFs
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in the ROM. It should be noted that, the improvements achieved by the RCCMS
ROM in halving the number of nonlinear contact DOFs, cannot be directly seen in
Table 4.1. This is due to the fact that, for computing the forced response levels of
the baseline ROM, only relative contact DOFs were solved in the iterative solver,
although the absolute contact DOFs were retained in the ROM.

 

Fig. 4.17 Performance of the RCCMS in predicting the nonlinear
response levels of the mistuned bladed disk (with blade-frequency
mistuning) under EO 5 excitation.

The performance of the RCCMS in accurately predicting the envelope of the
maximum nonlinear response of the mistuned blisk under EO 5 is depicted in Fig.
4.17. The ROM predictions are in an excellent accordance with the baseline results
in this case as well. The effect of mistuning on the linear response level in terms
of amplification factor is about 35% near the resonance peak at 14700 Hz and 14%
near the resonance peak at 15000 Hz.

Table 4.2 Computational costs of computing the
nonlinear forced response levels in Fig. 4.17.

ROM N0/F0 = 5e2 N0/F0 = 5e1

RCCMS 2.2h 1.4h
Baseline 6.2h 5.7h
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The computational costs of computing the nonlinear forced response levels shown
in Fig. 4.17 is reported in Table 4.1.

One common practice in computing the forced response levels of bladed disks
with friction joints is to compute the static preloads acting on contact DOFs in
advance by assuming that the static equilibrium is not changed during the vibration.
However, it is shown that this approach (the so-called uncoupled static/dynamic ap-
proach) can result in poor predictions [56, 57]. The so-called coupled static/dynamic
approach in which static and dynamic balance equations are solved simultaneously,
is the remedy to obtain accurate results.

 

(a)

 

(b)

Fig. 4.18 Nonlinear forced response levels: coupled versus uncoupled static/dynamic HBM.
The mistuned bladed disk is under EO 1 excitation and (a) N0/F0 = 5e3, (b) N0/F0 = 5e2.

The effect of static/dynamic HBM approach on nonlinear forced response levels
is examined Fig. 4.18. The mistuned balded disk is undergone EO 1 excitation and
two different preload-to-excitation ratios. In Fig. 4.18a and for relatively higher
preload values, the uncoupled approach prediction is in accordance with the coupled
approach. Given the high preload values, friction contacts are mostly characterized
by stick condition and static equilibrium (especially static preload) is not affected
by the dynamic solutions. In contrast, in Fig. 4.18b and for relatively lower preload
values, friction contacts experience considerable amount of slip. Note that in the
coupled approach the Coulomb limit is implemented by taking into account both
static and dynamic solutions. As a result, the static equilibrium is modified (relaxed)
and overall less slip is introduced by the coupled approach.

The effect of including higher harmonics in HBM on nonlinear forced response
levels is investigated in Fig. 4.19. It is evident that the monoharmonic HBM overes-
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Fig. 4.19 Nonlinear forced response levels for different number
of harmonics. The mistuned bladed disk is under EO 1 excitation
and N0/F0 = 5e3.

timated the response and including more than 3 harmonics will not have a significant
effect on predictions. In the MHBM simulations, the size of the unknowns vec-
tor corresponding to the nonlinear DOFs, varies from 3024 to 15120. Recall that,
in the uncoupled static/dynamic HBM approach, size of the unknowns vector is
equal to 2nHN where nH and N denote number of harmonics and nonlinear DOFs,
respectively.

In the remainder the performance of the RCCMS is evaluated in accurately pre-
dicting the forced response levels of the mistuned bladed disk with sector frequency
mistuning. The mistuned ROM is constructed based on the Eq. (4.40) and using
the same mistuning pattern used in section 4.3.2, but present in both blade and disk
partitions.

Figure 4.20 shows the envelope of the maximum linear response of the bladed
disk with sector frequency mistuning. The bladed disk is in fully stick condition
and is subjected to an EO 1 excitation around the second modal family. Overall,
the RCCMS prediction is in a very good accordance with ANSYS result, although
inclusion of sector frequency mistuning has slightly reduced the accuracy compared
to the case of blade mistuning. Note that, the exact definition of the nonlinear
partition of the mistuned stiffness matrix (see Eq. (4.32)) demands the inversion of
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Fig. 4.20 Performance of the RCCMS in predicting the envelope
of the maximum linear response of the mistuned bladed disk
(with sector-frequency mistuning) under EO 1 excitation.

 

Fig. 4.21 Performance of the RCCMS in predicting the envelope
of the maximum nonlinear response of the mistuned bladed disk
(with sector-frequency mistuning) under EO 1 excitation.

the full mistuned stiffness matrix.
In the proposed assumption of cyclic static modes this partition is approximated
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with the tuned Guyan stiffness matrix (see Eq. (4.40)). Thus, it can be expected, this
simplifying assumption is more accurate in the case of blade frequency misuning,
as only small partitions of the full stiffness matrix (i.e. corresponding to blade
components) are varied from their tuned counterparts.

The performance of the RCCMS in predicting the nonlinear response levels of
the bladed disk with sector frequency mistuning is depicted in Fig. 4.21. Similar
to the linear stick case (i.e. Fig. 4.20) very good accuracy is observed in RCCMS
predictions.

It is worth mentioning that, in the nonlinear regime, the overall accuracy is better
compared to the linear stuck case. This is because the friction damping flattens the
steep resonance curves and reduces the error especially at resonance peaks.

4.4 Conclusion

In this chapter, a new reduction order modeling technique was developed for non-
linear dynamics of bladed disks with (multiple) friction interfaces. The method is
called Relative Cyclic Component Mode Synthesis (RCCMS), as it is actually a
component-based reduction technique with a reduction basis composed of compo-
nent modes of the cyclic model represented in relative coordinates of the contact
surfaces. RCCMS results in an efficient and highly compact ROM suitable for
nonlinear forced response analysis, as it is constructed based on system-level stick
modeshapes and only includes relative DOFs between the contact nodes.

For the tuned bladed disks with friction contacts, a cyclic multiharmonic version
of the RCCMS was developed which can include stick modeshapes of the system
where contact DOFs are located at cyclic boundaries. This ROM was successfully
tested on a cyclic bladed disk with friction damping at shroud interfaces and blade-
root joints. The RCCMS formulation in general is applicable to all kinds of mistuning
and any configuration of bladed disks, however, to reduce the computational burden,
it was simplified and tailored for bladed disks with blade-root damping and small
frequency mistuning.

The mistuned ROM in RCCMS coordinates benefits from different features, such
as:
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• Final ROM is obtained by performing sector-level calculations.

• Mistuning is introduced directly into the final ROM at sector-levels (i.e. both
blade and disk).

• Physical DOFs corresponding to relative displacements of contact nodes are
retained for highly efficient forced response calculations.

• Fully stick modeshapes are implemented in the reduction basis, with boundary
conditions more similar to kinematics of friction interfaces.

• Highly compact ROM, due to the implementation of system-level modes, with
no need of secondary reduction techniques.

The accuracy of the mistuned ROM in predicting the nonlinear forced response
levels was evaluated on a bladed disk with blade-root friction damping. Numerical
simulations revealed a good accuracy of the mistuned ROM constructed based on
the isolated static modes assumption, especially for bladed disks with stiff disk
component. An excellent accuracy was observed in the mistuned ROM constructed
based on the cyclic static modes assumption, especially in the presence of blade
frequency mistuning.

The research findings of this chapter are published in [58, 59].



Chapter 5

Experimental and Numerical
Investigation of Mistuning Effects on
Nonlinear Dynamics of a Bladed Disk
with Underplatform Dampers

5.1 Introduction

As it was highlighted in the first chapter of the thesis (see section 1.1), underplatform
dampers (UPDs) have attracted considerable attention in the past few years, as a
source of dry friction damping in the bladed disks.

In [60–63] the effects of UPDs on nonlinear dynamics of a simplified two bladed
structures were studies numerically and experimentally. There are few studies in the
literature [41–43, 64], measuring/modeling the effects of UPDs on dynamics of a
bladed disks with full set of dampers.

This might be due to the inherent complexity of performing such measurements
(especially the nonlinear forced response measurements) which necessitates a care-
fully designed experimental set-up. The adopted modeling techniques (for predicting
the nonlinear forced response levels) in previous studies is typically based on cyclic
symmetry assumptions. In such strategies, the only possible comparison is between
the numerical tuned response and the envelope of the experimental maximum re-
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sponse.
It should be noted that neglecting the effects of mistuning on nonlinear forced
response levels of such systems might not be a strong assumption, at least when:

• The response is highly characterized by slip condition. In this situation nonlin-
ear friction damping flattens the response curve and reduces the scatter of the
forced response.

• The effect of mistuning on vibration modes is small and small distortion is
expected (e.g. at low nodal diameter modes). In this situation tuned vibration
modes could predict the envelope of the response in an average sense.

Although neglecting the effect of mistuning can be conditionally successful
[42, 43], its limitations and validity conditions are not known a priori. Accurate
prediction of nonlinear forced response levels of mistuned bladed disks with friction
interfaces is quite challenging due to the strong nonlinearities induced at contact
surfaces and also rich dynamics of the underlying linear mistuned system itself. This
highlights the need for a detailed experimental campaign.

To this end, a particular test rig, where both the excitation and the response
measurement systems are non-contact is used here. In this way, excitation and
response measurement systems do not interfere with the dynamics of the bladed disk
and, therefore, they do not introduce additional mistuning.

The bladed disk carries UPDs that are in contact with the blade platforms. The
produced excitation force on the blades is also large enough to trigger slipping
between the UPDs and the platforms. The rig excitation system has, compared with
similar test rigs in literature, the two features of being both non-contact and able to
produce the same large force amplitude on each blade.

In literature in fact, in [64, 65] the rig produces a traveling wave but with piezo-
actuators in contact with the blade. The same happens in [66], where they use
shakers. In [67, 68] the rig is equipped with non-contact excitation force but based
on acoustic speakers, which give very low excitation force amplitude.
This chapter is organized as follows: section 5.2 presents the campaign results of
the mistuned bladed disks and section 5.3 describes the proposed numerical model
accounting for mistuning effects.
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5.2 Experiments

5.2.1 Motivation

In order to investigate the dynamics of mistuned bladed disk with UPDs a detailed
experimental campaign is needed which can reproduce the well-known phenomena
originated from nonlinear friction damping and mistuning. The experimental part
of this research aims to provide such information. This has a great importance for
validation purposes and also for better understanding the impact of key parameters
on dynamics of a bladed disk with full set of dampers.

5.2.2 Set-Up Description

The experimental campaign is performed on the static test rig shown in Fig. 5.1a, the
so-called Octopus rig. Octopus is purposely designed to investigate the nonlinear
dynamics of bladed disks with UPDs or shrouds. The rig is thoroughly described in
[69–72] and has been successfully used to evaluate the effects of cylindrical UPDs
on the nonlinear forced response of a blisk (i.e. integrally bladed disk) [73].

 

(a)
 

1 

2 

3 

(b)

Fig. 5.1 (a) Octopus test rig. (b) 3-point-contact damper.
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Due to the presence of nonlinearities, the control of the excitation force is
of primary importance since the force induces local displacements at the contact
surfaces, which influence the forced response levels. The Octopus test rig is equipped
with a travelling wave excitation system, based on electromagnets, which was
designed to have the essential requirements for tests in presence of both mistuning
and non-linarites due to friction. These requirements are:

– The absence of contact between blade and exciter.

– The same excitation force on each blade amplitude (with a difference from
blade to blade within 2%) modulated with a given time lag which is determined
by the engine order index.

– A high excitation force amplitude in order to produce slipping between the
friction contacts.

– An accurate measurement of the force amplitude of the rotating force pattern.

The measurement system is a laser scanning vibrometer detecting the response
in the out-of-plane (OOP) direction of the blades. The disk is a 24 bladed blisk
with well-isolated modal families. A custom-made UPD with a 3-point-contact
configuration (sphere-on-flat) was designed to be used in the experiments (Fig. 5.1b).
The UPDs are kept in contact with the blade platforms using a static load applied to
the center of the mass of the damper using a wire-pully system. The damper is in
contact with two blade platforms simultaneously: one on the left-hand-side of the
damper and through the spheres 1 and 2, and one on right-hand-side of the damper
and through the sphere 3 (Fig. 5.1b).
The objective of the customized design is twofold:

– To highly localize the contact area (in contrast to line contact in wedge/cylindrical
dampers). This might be helpful to reduce the uncertainties at contact inter-
faces.

– To reduce the effect of dampers on system modes of the underlying linear blisk.
This might be helpful to assess the effect of dampers on structural mistuning.
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5.2.3 Impact Testing

Impact testing was performed by exciting the blisk with an instrumented test hammer
at a fixed point on the reference blade foot and the OOP response of all the 24 blade
tips is measured using a laser scanning vibrometer. A high frequency resolution
(i.e. 0.0195 Hz) was set in the analyzer to capture the frequency split of the mode
pairs typical of mistuned blisks. Modal parameters were identified by performing
a classical multi-FRF curve fitting technique [74]. An example of the performed
modal identification process is shown in Fig. 5.2. Figure shows the measured point
mobility FRF at blade 8 and the corresponding reconstructed numerical FRF.

 

Fig. 5.2 Modal identification of the mistuned blisk without UPDs – point
mobility FRF at blade 8.

The identified mistuned natural frequencies and the dominant nodal diameter
(ND) modeshape associated with them are reported in Table 5.1. The modal parame-
ters (i.e. mode shapes and natural frequencies) of the 1st modal family are used (see
section 5.3.2) to identify the sector mistuning.
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Table 5.1 Identified mistuned natural frequencies of the 1st bending family.

Identified
Mistuned
Natural

Frequency (Hz)

Dominant
ND

Shape

Identified
Mistuned
Natural

Frequency (Hz)

Dominant
ND

Shape

118.2852 ND0 251.9606 ND6
114.3370 ND1 258.0815 ND7
114.5294 ND1 259.1599 ND7
129.0931 ND2 262.2658 ND8
129.2549 ND2 263.3164 ND8
175.7519 ND3 265.0755 Not Clear
175.9512 ND3 265.3190 Not Clear
216.5900 ND4 266.1091 Not Clear
216.7793 ND4 268.1980 Not Clear
239.2471 ND5 268.2336 Not Clear
240.0025 ND5 269.2743 Not Clear
251.6163 ND6 271.3699 Not Clear

5.2.4 Linear Forced Response Levels

Linear forced response is first measured for the blisk without UPDs for two main
reasons:

– To have a reference response to be used to estimate the UPD effect.

– To assess the capability of the modal model, identified by the impact testing,
to predict the response of the blisk before UPDs are installed.

Accordingly, forced response measurement have been carried out around the
resonance frequencies of the 1st bending family with the dominant ND2 and ND3
components as they are well-isolated and frequency splitting is evident at the corre-
sponding peaks (see Fig. 5.2).

Figure 5.3 shows the frequency response functions of all the blades of the
blisk without UPDs. The blisk is subjected to an engine order (EO)2 excitation
of amplitude 0.1N. The frequency sweep is performed in the neighborhood of the
identified mistuned modeshapes of the blisk showing a dominant ND2 component.
The effect of mistuning and the frequency split on FRFs is evident in Fig. 5.3. Note
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Fig. 5.3 Measured mistuned FRFs of the blisk without UPDs and under
EO2 excitation of amplitude 0.1N. Dotted-dashed curve depicts the spatial
wave (due to mistuning) at resonance frequency of 129.05Hz.

that, in the ideal tuned case the response of all blades at a given frequency - the
so-called Operating Deflection Shape (ODS) - is the same and thus the envelope
of the response peaks resembles a straight line. However, the depicted ODS in Fig.
5.3 (i.e. the dotted-dashed curve) is modulated and resembles a spatial wave with 4
maxima. The FRF modulation, typical of bladed disks with small mistuning and due
to the frequency splitting of the mode pairs (see [71] for more discussion), was also
observed in a rotating blisk using a Blade Tip Timing measurement system [75].

5.2.5 Nonlinear Forced Response Levels

Forced response measurements of the blisk with UPDs and under a traveling wave
excitation is given here. This section investigates the effect of nonlinear damping
and excitation level on the dynamic response of the mistuned blisk. Moreover, in
the presence of dampers, a repeatability check is also performed. The purpose is
to ensure a controlled and robust measurement procedure in the presence of UPDs.
Note that in all the measurements in the presence of UPDs, a static preload of 9.81N
is applied to the dampers using the cables and pulley system shown in Fig. 5.1a.
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Fig. 5.4 Measured mistuned FRFs of the blisk with UPDs and under EO3
excitation of amplitude 0.1N. Dotted-dashed curve depicts the spatial wave
(due to mistuning) at resonance frequency of 186.04Hz.

Figure 5.4 depicts measured mistuned FRFs of the blisk with UPDs and un-
der EO3 excitation of amplitude 0.1N. The frequency sweep is performed in the
neighborhood of the identified mistuned modeshapes of the blisk with a dominant
ND3 component. A very small excitation level (0.1N) was applied in this set of
experiments to resemble a stick-like condition at the friction interfaces. It can be
seen that the modulation of FRFs (e.g. Dotted-dashed curve depicts at 186.04 Hz) is
more distorted compared with ODS of the blisk with no UPDs, although a ND3 wave
(6 maxima) can be recognized. This is due to the fact that the introduced coupling in
the system (added by UPDs) has affected the energy distribution among the blades.
It should be noted that in the case of ideal stick condition a strong coupling would
be present in the system and less localization would be expected. However, due to
the nature of the spherical contacts between the dampers and the blade platforms,
full-stick conditions cannot be reached in practice and microslip (weaker coupling)
will always occur In order to have consistent measurements in the presence of UPDs,
each measurement is repeated three times.

The repeatability of the measurements for the blisk with UPDs and under EO3
excitation of amplitude 0.1N is depicted in Fig. 5.5. The mean, the maximum and the
minimum of the FRFs of all blades is computed at each repetition and is shown in
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Fig. 5.5 Repeatability of the measured mistuned FRFs of the
blisk with UPDs and under EO3 excitation of amplitude 0.1N.
Solid, dashed and dotted curves depict the mean, maximum and
minimum of the forced response levels at each repetition.

the figure. A very good agreement can be seen between the measurements especially
farther from the resonance. The lower repeatability observed near the resonance
is due to the variation of friction damping introduced by the UPDs. The effect of
excitation level on forced response levels of the blisk with UPDs is shown in Fig. 5.6.
The FRFs are measured under EO3 excitation and the forcing value is varied from
0.1N to 1N. Measurements are repeated for three times at each excitation level and
mean and envelopes of FRFs are shown in the figure. It is evident that by increasing
the excitation level FRF amplitude decreases constantly. In Fig. 5.6b the so-called
performance curve (i.e. maximum resonance amplitude versus excitation level) is
depicted. It can be seen that, by increasing the excitation level from 0.1N to 1N, the
resonance amplitude is only increased 3 times due to the friction damping. Note
that increase of excitation amplitude in the system has improved the repeatability of
measurements. This behavior is in agreement with the contact model theories and
with the experimental findings available in the literature about oscillating friction
contacts.

As the vibration amplitude increases, the hysteresis cycle of the tangential contact
force fully develops into a parallelogram, whose area (the dissipated energy) is mostly
dependent on the friction coefficient, that experiment demonstrates to be a very robust
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(a)

 

(b)

Fig. 5.6 (a) Effect of excitation level on measured mistuned FRFs of the blisk with UPDs
under EO3 excitation. Measurements are repeated for 3 times at each excitation level. Solid
lines depict the mean value of the forced response levels. (b) Maximum resonance amplitude
versus excitation level (i.e. performance curve) computed using the average response of 3
repetitions.

parameter. On the contrary, as the vibration amplitude decreases, the hysteresis cycle
of the tangential contact force tends to assume a more elongated shape, whose area
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mostly depends on the tangential contact stiffness and on the microslip portion of
the curve, more subjected to uncertainty and variability.

5.3 Modeling

In this section the development of the numerical model of the test rig and its validation
is discussed. In the adopted methodology it is assumed that the mistuning introduced
by dampers is negligible and hence the mistuning identification process is based on
the modeshapes obtained from the hammer test (section 5.2.3) of the blisk without
dampers. Note that one of the main purposes of designing a 3-point-contact damper
is to localize the contact area and minimize the effect of the damper on system modes
(compared with the wedge or cylindrical damper configurations). Being this the
scenario at contact interfaces, it can be assumed that the effect of dampers on the
mistuning pattern identified from the underlying linear system would be negligible.
This assumption is verified later in section 5.3.4.
The adopted modeling procedure is summarized below:

– Construction of a high-fidelity FE model of the tuned blisk.

– Mistuning identification and FE model updating.

– Assessment of the numerical model in predicting the effect of mistuning on
dynamics of the blisk.

5.3.1 FE Modeling

The FE model of the tuned blisk and its three first modal families is depicted in Fig.
5.7. Boundary conditions at the disk flange were carefully selected to have natural
frequencies of the tuned model in agreement with the identified frequencies from the
hammer test.

5.3.2 Mistuning Identification and Model Validation

Since the modal family of interest (i.e. 1st bending) is well isolated from other
families (as can be seen in Fig. 5.7b) the Fundamental Mistuning Model Identification
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(a)

 

(b)

Fig. 5.7 (a) FE Model of the blisk. (b) Natural frequency vs. nodal diameter plot of the tuned
linear blisk (without UPDs).

(FMM ID) is employed to identify the mistuning of the blisk. The method was first
introduced in [76] and is tailored for identifying the sector mistuning in integrally
bladed disks. The performance of FMM ID in accurately predicting the mistuning
pattern of blisks has been shown in many studies (e.g. [77–79]).
The both variants of the FMM ID (i.e. the so-called Basic and Advanced) were
implemented and their performance in accurately predicting the identified natural
frequencies and modeshapes is evaluated. Note that, the Basic ID uses the tentative
tuned frequencies of the system as an input, although the Advanced ID is totally
based on the measured data. A better correlation achieved by removing the modes
with a considerable disk participation from the input parameters (namely the three
first mistuned modes with dominant ND0 and ND1 components). Note that, FMM
ID is based on the assumption that the strain energy of the modal family is mainly
confined in the blades.
Figure 5.8 shows the identified sector mistuning using the FMM ID. Generally
speaking, the mistuning identified by the Basic ID is slightly higher than that of the
Advanced ID.

To evaluate the mistuning identification, the tuned FE model was updated with
the mistuning patterns and its modal properties were compared with the identified
frequencies and modeshapes. Figure 5.9 shows the eigenvalue deviation between the
modeled and measured mistuned natural frequencies of the blisk without UPDs. Both
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Fig. 5.8 Identified sector mistuning of the blisk without UPDs
based on Basic and Advanced FMM ID.

Basic and Advanced IDs show a very good performance in modeling the mistuned
natural frequencies, although Advanced ID predictions are generally better.

 

Fig. 5.9 Performance of the mistuned FE models in predicting the
measured natural frequencies of the linear blisk without UPDs.

The maximum error (about 1.45%) was introduced by the Basic ID-based model,
in predicting a ND1-like disk mode natural frequency. The Advanced ID shows an
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excellent performance (error below 0.02%) in predicting the natural frequencies of
the 6th and 7th modes with dominant ND3 component. Recall that forced response
measurements were performed under a traveling wave excitation with ND3 shape.
To evaluate the numerical modeshapes (computed using the mistuned FE model)
the Modal Assurance Criterion (MAC) is employed. Figure 5.10 shows the modal
correlation between the experimental and Basic ID-based FE model, modeshapes.

 

Fig. 5.10 Modal correlation between the experimental and FE
model (based on the Basic FMM ID) modeshapes of the blisk
without UPDs.

Overall, a good agreement can be seen between the numerical and experimental
modes. The correlation decreases for the modes with dominant ND7 to ND9 com-
ponents. These modes correspond to the high modal density region shown in Fig.
5.2. Note that the main focus of the identification is to get the best correlation near
the modes with dominant ND3 components (i.e. 6th and 7th mistuned modes) in-line
with the applied EO3 excitation in forced response measurements.
Figure 5.11 shows the modal correlation between the experimental and Advanced
ID-based FE model modeshapes. An improved correlation can be seen between the
experimental and numerical modeshapes, especially around the modes of interest (i.e.
the 6th and 7th mistuned modes with the dominant ND3 component). The Advanced
ID-based model will be used in the subsequent numerical simulations as it showed a
better performance in predicting the modal properties of the mistuned blisk.



5.3 Modeling 127

 

Fig. 5.11 Modal correlation between the experimental and FE
model (based on the Advanced FMM ID) modeshapes of the
blisk without UPDs.

As it was stated before, one purpose of designing 3-point-contact UPDs was
to minimize the effect of dampers on the modeshapes of the blisk. A quantitative
comparison is made between the numerical mistuned modeshapes (only 1st family)
of the blisk in the presence and the absence of UPDs. The blisk with UPDs is
modeled as fully-stuck by merging the contact nodes between the dampers and blade
platforms. Note that, the FE mesh of the dampers are not updated with the mistuning
pattern as they were not present in identification.

Figure 5.12 shows the modal correlation between the numerical mistuned mode-
shapes of the blisk in free and fully stick condition. Higher modeshapes with
dominant higher ND components are more affected by the presence of damper (the
frequency deviation is also higher for these modes), since the inter-blade mechanical
coupling provided by the dampers is higher and thus the effect of blade mistuning
on the mode shapes changes significantly. On the contrary, the mistuned modes of
interest (i.e. 6th and 7th modes) are less distorted by dampers and show about 71%
correlation.
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Fig. 5.12 Modal correlation between numerical mistuned mode-
shapes of the blisk in free and fully stick condition.

5.3.3 Effect of Mistuning on FRFs in the Absence of UPDs

As it was observed in the experiments (sections 5.2.4 and 5.2.5), mistuning can
significantly modulate the forced response levels. For instance, this can be recognized
from the scatter of FRFs of the blades in Fig. 5.3. The blisk is under EO2 excitation
and the ODS of the response is modulated by a fixed spatial wave whose number of
lobes is twice the number of EO. The performance of the mistuned numerical model
in predicting the FRF modulation can be used as a measure of acceptable simulation
and mistuning identification. To this end, a hybrid numerical model is defined for
the computation of the forced response levels as follows:

X =
N

∑
n=1

φnφ T
n

ω2
n −ω2 + i2ξnωnω

F (5.1)

where X denotes the displacement vector, ωn denotes the nth angular natural fre-
quency, ξn denotes the nth modal damping ratio, φn defines the nth vibration mode-
shape, F defines the excitation force vector and ω denotes the angular excitation
frequency. The advantage of the hybrid model is that both experimental and numer-
ical data can be employed together. Accordingly, in Eq. (5.1) employed vibration
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modes are computed based on the mistuned FE model, and damping ratios and reso-
nance frequencies are defined based on the measurements. Linear forced response
levels of the experimental measurements shown in Fig. 5.3 are computed here. To
this end, 4th and 5th mistuned modes with dominant ND2 components were retained
in the hybrid model and an EO2 wave excitation of amplitude 0.1N was defined
similar to the experiment conditions.
Figure 5.13 shows the comparison between the numerical and experimental normal-
ized ODSs of the blisk without UPDs at 129.25 (Hz) and under EO2 excitation of
amplitude 0.1N. The predicted modulation of the blade FRFs (due to the mistuning)
is in a very good agreement with the experiments. This can ensure the effectiveness
of the mistuned model in predicting the dynamics of the linear blisk without UPDs.

 

Fig. 5.13 Normalized ODS of the blisk without UPDs at 129.25
(Hz) and under EO2 excitation of amplitude 0.1N.

5.3.4 Effect of Mistuning on FRFs in the Presence of UPDs

In modeling the vibratory response of mistuned bladed disks with UPDs one principal
and valid question to be answered is:

– Is the sector frequency mistuning pattern, identified by means of the linear
blisk without dampers, still valid when dampers are included in the system?
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The importance of the above question is that: if the effect of dampers on the
blisk sector mistuning is negligible, one could use the mistuned vibration modes
of the underlying linear system in further nonlinear simulations, otherwise, an
identification scheme that takes account of the dampers should be selected over the
proposed approach. Recall that one purpose of designing a 3-point-contact damper
was to minimize the mistuning and uncertainty induced by dampers.
To assess the effect of dampers on the mistuning pattern of the underlying linear
blisk, the hybrid model (Eq. (5.1)) is used to predict the modulation of the measured
FRFs of the blisk with UPDs.
Note that in the presence of UPDs, especially at higher excitation levels, the proposed
linear hybrid model is not capable of predicting forced response levels due to the
presence of nonlinear friction damping in the system. Although at lower excitation
levels, when the resonance frequency is already stabilized to the fully-stick value,
the system behavior is relatively close to the linear stick condition and the induced
friction damping might be negligible. This was observed numerically in [3] and [3]
where nonlinear dynamics of mistuned bladed disks with shroud friction contacts
were studied.
Accordingly forced response levels of the blisk with UPDs are computed for the
experimental set-up shown in Fig. 5.5 where the measurement is performed under
EO3 excitation of amplitude 0.1N, resembling a stick-like condition. Based on the
measured FRFs (Fig. 5.5), it can be expected that this linearization assumption might
be more reasonable around the second resonance peak (at 188.04 Hz) as the vibration
amplitude and consequently the induced friction damping is lower compared to that
of the first peak (at 186.04 Hz).

To compute the linearized FRFs, 6th and 7th modes (i.e. ND3-like modes) of
the mistuned FE model in stick condition were employed in the hybrid model and
an EO3 wave excitation of amplitude 0.1N was defined similar to the experiment
conditions. The application of stick modeshapes in the hybrid model is in accordance
with the assumed contact state of the test set-up and is in-line with observations in
Fig. 5.12.
Figure 5.14 shows the comparison between the numerical and experimental nor-
malized ODSs of the blisk with UPDs at 186.04 (Hz) and under EO3 excitation of
amplitude 0.1N. The measured ODS is depicted in terms of the mean and standard
deviation of all three repetitions.
It can be seen that the linearization assumption fails to accurately predict the modu-
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Fig. 5.14 Normalized ODS of the blisk with UPDs at 186.04 (Hz)
and under EO3 excitation of amplitude 0.1N.

lation of the mistuned FRFs. This is due to the fact that at this resonance frequency
the induced friction damping is not negligible and the nonlinear coupling introduced
by the dampers changes the energy distribution among the blades. A slight vibration
localization is evident around the 11th blade that might be due to the weak coupling
in the presence of microslip. In contrast the linearized model resembles the stick
condition (rather strong coupling) and shows a uniform vibration distribution among
the blades.

Figure 5.15 shows the comparison between the numerical and experimental
normalized ODSs of the blisk with UPDs at 188.04 (Hz) and under EO3 excitation
of amplitude 0.1N. The measured ODS is depicted in terms of the mean and standard
deviation of all three repetitions. At this resonance frequency the linearized model is
able to predict the clocking of the mode shape and the relative phase of the blades
with respect to the 1st one (either in-phase or out-of-phase), although underestimating
some peaks localized in specific blades.
This is due to the fact that the response ODS at this frequency (around the second
peak in Fig. 5.5 vibrates with lower amplitude and neglecting the friction damping is
not a very strong assumption in this case.
It was observed that the proposed mistuned model (in which the mistuning was
identified from the linear blisk without dampers) can predict the dynamics of the



132
Experimental and Numerical Investigation of Mistuning Effects on Nonlinear

Dynamics of a Bladed Disk with Underplatform Dampers

 

Fig. 5.15 Normalized ODS of the blisk with UPDs at 188.04 (Hz)
and under EO3 excitation of amplitude 0.1N.

blisk with UPDs in linearized stick regime. Thus, it can be concluded that adding
the dampers does not influence the structural mistuning of the system. This allows
to use the computed mistuned modes of the linear system as a reduction basis in
advanced nonlinear calculations.

5.4 Conclusion

In this chapter, experimental and numerical characterization of vibratory response
of a mistuned blisk (i.e. integrally bladed disk) with UPDs was presented. The 1st

bending family of the linear mistuned blisk without UPDs was identified and the
frequency splitting of the mode pairs was observed. The measured modal properties
were used to identify the structural mistuning of the linear blisk. A careful mistuning
identification carried out using the FMM ID and the effectiveness of the identified
patterns in modeling the system modal properties was evaluated.
Forced response investigations were performed on the mistuned blisk in the presence
and absence of UPDs. A noncontact system for applying a travelling wave excitation
and a laser scanning vibrometer for measuring the response at the blade tips was
employed to avoid affecting the system response.
The effect of UPDs on dynamic response of the mistuned blisk was investigated. A
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very good repeatability observed in measuring the nonlinear forced response levels
in the presence of UPDs.
A linearized hybrid model was proposed to model the effect of mistuning on forced
response levels. The model successfully predicted the modulation of linear mistuned
FRFs due to the mistuning.
The linearized model was also able to predict the modulation of nonlinear mistuned
FRFs in stick condition (when nonlinear friction damping is negligible) with a good
accuracy.
This shows that adding the dampers did not influence the structural mistuning of
the system which is in accordance with the initial objective of designing a 3-point-
contact damper. Based on this observation one may use the same mistuning pattern
identified from the linear blisk to build a mistuned numerical model for nonlinear
dynamics of the mistuned blisk with UPDs.
As one of the objectives of this research is to provide an experimental benchmark for
nonlinear dynamics of a mistuned blisk with underplatform dampers, the FE model
and raw experimental data will be available to public, one year after the publication
of this paper. The benchmark might be helpful for researchers to test and validate
numerical models of mistuned bladed disks with friction contacts.

The research findings of this chapter are accepted for publication in the journal
Engineering for Gas Turbines and Power.
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Appendix A

Remarks on Numerical Computation
of Nonlinear Forced Response Levels

The reduced equations of motion of a generic bladed disk with friction interfaces
can be expressed as:

Mromẍrom(t)+Cromẋrom(t)+Kromxrom(t) = Fnl(xrom(t), ẋrom(t))+Fex(t) (A.1)

where

• xrom(t) is the vector of DOFs of the reduced bladed disk and in general it com-
prises nonlinear contact DOFs, active DOFs (e.g. force and response DOFs)
and generalized coordinates associated with the vibration modes retained in
the reduction basis.

• Mrom and Krom denote reduced mass and stiffness matrices, respectively.

• Crom denotes the reduced damping matrix and is usually assumed to be pro-
portional to the reduced stiffness and mass matrices (i.e. Crom = α ·Mrom +β ·
Krom).

• Fnl denotes the state dependent vector of nonlinear contact forces acting on
the retained nonlinear contact DOFs.

• Fex represents the vector of external periodic excitation in the reduced coor-
dinates. Depending on the employed reduction technique, Fex can contain
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physical forces acting on the retained forcing DOFs (e.g. the ROMs developed
in chapters 2 and 3) or can represent the modal force vector acting on the ROM
(e.g. RCCMS-based ROMs in chapter 4).

Contact surfaces are modeled using the state-of-the-art node-to-node contact
elements. The employed contact models are imposed at each contact node pair and
characterize:

i. unilateral contact force in normal direction based on an elastic unilateral
contact law.

ii. friction force in tangential plane based on a regularized Coulomb’s law (the
regularization is achieved by introducing the penalty stiffness to the model).

The employed contact models are referred to as semi-3D [46, 80, 81] and full-
3D [82–84] contact elements. The schematic plot of the contact elements can be
seen in Fig. A.1. The semi-3D contact model is composed of two perpendicular
Jenkins contact elements with variable normal loads and assumes that the tangential
components of contact forces are independent from each other. The full-3D contact
model avoids such an assumption and describes a fully coupled tangential contact.

Fig. A.1 Schematic plot of a generic 3D contact element.

In general, blades can undergo a complex vibratory motion which is a combina-
tion of fundamental vibration motions in different planes (e.g. bending and torsion).
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As a results, contact points at friction interfaces will experience an elliptical trajec-
tory. Although a semi-3D contact element consists of two uncoupled perpendicular
Jenkins elements, it is shown that (see [46, 80, 81]) they perform reasonably well
compared to the more accurate full-3D contact elements.

Note that, the construction of the proposed ROMs in this thesis are independent
of the contact models. In majority of the simulations performed, the semi-3D contact
element is used due to efficiency reasons. It is intuitive that due to the complexity of
the elliptical trajectory, more iterations is needed for the convergence of the contact
model.

The nonlinear contact forces are computed using a predictor-corrector approach
[46], and in general, the semi-3D contact model demands less iterations for conver-
gence. The semi-3D contact model is employed in chapters 2 and 3 to reduce the
computational burden.

The steady state response of the reduced system is computed using the HBM [22]
and assuming that the response of the system under a periodic excitation remains
periodic. Displacements and forces in Eq. (A.1) can be approximated as a sum of
harmonic functions, as follows:

xrom(t)≈ X0
rom +ℜ

(
∑

h=1..H
X̄ (h)

romeihωt

)

Fex(t)≈ F0
ex +ℜ

(
∑

h=1..H
F̄(h)

ex eihωt

)

Fnl(xrom(t), ẋrom(t))≈ F0
nl +ℜ

(
∑

h=1..H
F̄(h)

nl eihωt

)
(A.2)

where ℜ indicates the real part of a complex valued function; H indicates the number
of retained harmonics; ω denotes the frequency of the excitation force; and X̄ (h)

rom, F(h)
nl

and F(h)
ex are vectors of the hth Fourier coefficients corresponding to displacements,

nonlinear friction forces and external excitation, respectively.

In Eq. (A.2), superscript 0 indicates zeroth harmonic terms. In details, X0
rom

denotes the static equilibrium position, F0
nl and F0

ex denote the static contact and the
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static external force (e.g. centrifugal loads), respectively.

The static equilibrium is computed using either of following approaches [56, 57]:

• Uncoupled static/dynamic approach: in which, a preliminary nonlinear quasi-
static analysis is performed. It is assumed that static equilibrium solutions
are not affected by higher harmonic solutions, and thus, are solved separately
from dynamic solutions. The solution of the static balance equations will give
as an output the normal preload acting over the contact surfaces, used as an
input in the dynamic analysis.

• Coupled static/dynamic approach: in which, the fully coupled balance equa-
tions are solved, simultaneously. No assumption is made, and thus, this method
can capture the changes in the static equilibrium due to the system vibrations.

Since, in the coupled static/dynamic approach, static and dynamic balance equa-
tions are solved simultaneously, it is computationally more expensive. In this thesis,
the coupled approach is only used in chapter 4 for some comparison purposes.

By introducing Eq. (A.2) into Eq. (A.1) and performing a Galerkin projection,
the algebraic balance equations for each harmonic index, can be expressed as:

D̄(h)
romX̄ (h)

rom − F̄(h)
nl − F̄(h)

ex = 0 (A.3)

where D̄(h)
rom = [−(hω)2Mrom + ihωCrom +Krom]

(h) denotes the ROM dynamic stiff-
ness corresponding to the hth harmonic.

The nonlinear balance equations in Eq. (A.3) can be solved using an iterative
(predictor-corrector) Newton-Raphson method and the alternating frequency/time
domain(AFT) algorithm [45]. In nonlinear forced response simulations, the pseudo-
arclength path following technique [46] is used to compute the evolution of nonlinear
forced response levels with respect to the excitation frequency.

The ROM dynamic stiffness in Eq. (A.3) can be partitioned as:[
D̄NN D̄NL

D̄LN D̄LL

](h){
X̄N

X̄L

}(h)

−

{
F̄nl

0

}(h)

−

{
F̄n

ex

F̄ l
ex

}(h)

= 0 (A.4)
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where X̄N denotes the vector of nonlinear DOFs and contains the relative displace-
ments of contact node pairs; and X̄L indicates the vector of linear DOFs and contains,
in general, the remaining physical DOFs and generalized coordinates.

Note that, depending on the construction of the ROM, the X̄rom vector may already
contain the relative displacements between contact node pairs (e.g. RCCMS-based
ROMs developed in chapter 4), and thus the X̄N partition is readily available. Never-
theless, the absolute displacements of nonlinear contact DOFs, can be represented in
terms of relative displacements between contact node pairs [19, 40] and afterwards
the X̄N partition will be available. Note that, the application of the relative notation,
reduces the number of unknowns in the nonlinear core by half and considerably
increases the computational efficiency.

Equation (A.4) can be first solved for the nonlinear DOFs by condensing the
linear partitions on nonlinear DOFs), as follows:

[
DNN −DNLD−1

LL DLN
]h

X̄h
N = F̄h

nl +
[
F̄n

ex −DNLD−1
LL F̄ l

ex

]h
(A.5)

and the solution of linear DOFs can be obtained outside of the iterative solver (offline
solution) using the already calculated nonlinear solutions:

X̄h
L = D−1

LL
h
(

F̄ l
ex

h −Dh
LNX̄h

N

)
(A.6)

It should be noted that, the nonlinear friction forces are dependent on all harmonic
functions of the displacement vector. So, the algebraic balance equations (h = 1..H)

are coupled to each other through the nonlinear F̄h
nl terms, and they should be solved

simultaneously.

It is worth mentioning that the efficiency of solving the nonlinear core of balance
equations can be further increased by employing the spectral expansion of the
dynamic stiffness and avoiding its inversion. For instance, the nonlinear core of
balance equations in Eq. (A.3), that is associated with relative displacements of
nonlinear contact DOFs, can be obtained by:

X̄ (h)
N = Φr,Ndiag

(
1

ω2
r,s − (hω)2 + i2hζr,sωr,sω

)(
Φ

T
r,NF̄(h)

nl +Φ
T
r,E F̄(h)

ex

)
(A.7)
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where

– Φr,N denotes a partition of the ROM normal modes corresponding to relative
nonlinear contact DOFs.

– Φr,E denotes a partition of the ROM normal modes corresponding to forcing
DOFs (where modal forces are nonzero).

– ωr,s denotes the sth natural frequency of the ROM.

– ζr,s denotes the damping ratio associated with the sth normal mode of the ROM
and can be expressed in terms of mass and stiffness proportional damping by
ζr,s =

α

2ωr,s
+ β

2 ωr,s.

Note that the continuation scheme demands calculation of the Jacobian matrix at
each iteration step, which can become a rigorous task. The computational burden
was extremely reduced by implementing the analytical Jacobian as described in
[15, 55].



Appendix B

Construction of the Reduced Mass
Matrix Based on the Fixed-Boundary
Component Mode Substitution
Technique

B.1 Reduced Mass Matrix Construction

Mass matrices in each reduction step are partitioned exactly in the same way as
their corresponding reduced stiffness matrices. A more detailed description for mass
matrices are given here. Accordingly, different partitions of MCB are:

Mb
cb =

[
mb

cb,NN mb
cb,Nγ

mb
cb,γN mb

cb,γγ

]
(B.1)

where

mb
cb,NN = mb

NN +
(

kb
NIk

b−1

II

)
mII

(
kb−1

II kb
IN

)
−mNI

(
kb−1

II kb
IN

)
−
(

kb
NIk

b−1

II

)
mIN

mb
cb,γγ

= mb
γγ +

(
kb

γIk
b−1

II

)
mII

(
kb−1

II kb
Iγ

)
−mγI

(
kb−1

II kb
Iγ

)
−
(

kb
γIk

b−1

II

)
mIγ

mb
cb,Nγ

=
(

kb
NIk

b−1

II

)
mII

(
kb−1

II kb
Iγ

)
−mNI

(
kb−1

II kb
Iγ

)
−
(

kb
NIk

b−1

II

)
mIγ

mb
cb,γN =

(
kb

γIk
b−1

II

)
mII

(
kb−1

II kb
IN

)
−mγI

(
kb−1

II kb
IN

)
−
(

kb
γIk

b−1

II

)
mIN

(B.2)
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Construction of the Reduced Mass Matrix Based on the Fixed-Boundary

Component Mode Substitution Technique

Implementing the same procedure as for stiffness matrix, final reduced mass
matrix of a single sector yields:

Mrom =

 I mηN

mNη mb
cb,NN

0
mb

cb,Nγ
ϕ̃γ

0 ϕ̃T
γ mb

cb,γN [m̂]

 (B.3)

where

m̂ =

[
ϕ̃γ

ϕ̃O

]T [
mb

cb,γγ
+md

γγ md
γO

md
Oγ

md
OO

][
ϕ̃γ

ϕ̃O

]
(B.4)

One may obtain the final reduced stiffness matrix of the full system, as follows:

MROM =


I ⊗Λb

i I ⊗mNη

I ⊗mNη I ⊗mb
cb,NN

0(
I ⊗mb

cb,Nγ

)
Φ̃γ

0 Φ̃T
γ

(
I ⊗mb

cb,γN

)
[M̂]


M̂ =

[
Φ̃γ

Φ̃O

]T
 Bdiag

n=1..N
[mrom(n)

γγ ] I ⊗md
γO

I ⊗md
Oγ

m̄d
OO

[ Φ̃γ

Φ̃O

]
(B.5)

where Bdiag
n=1..N

[mrom(n)

γγ ] = I ⊗mrom
γγ = I ⊗

(
mb

cb,γγ
+md

γγ

)
.

Finally, the alternative formulation for M̂ is expressed below. Using the operator
introduced by Eq. (2.30), the compact notation for M̂ takes the following form:

M̂ = Φ̃
T
(

MD +blkdg[mb
cb,γγ ]

)
Φ̃ (B.6)

By adding and subtracting the Guyan mass matrix of the tuned blades to the
interface DOFs of the M̂ central core and using Eq. (B.6), one may cast M̂ as follows:

M̂ = Φ̃
T
(

MD +blkdg[mb
Guyan]−blkdg[mb

Guyan]+blkdg[mb
cb,γγ ]

)
Φ̃

= Φ̃
T
(

M̃−blkdg[mb
Guyan]+blkdg[mb

cb,γγ ]
)

Φ̃

= [I]− Φ̃
T
γ Bdiag

n=1..N
[mb(n)

Guyan]Φ̃γ + Φ̃
T
γ Bdiag

n=1..N
[mb(n)

cb,γγ ]Φ̃γ (B.7)
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Note this alternative formulation enables constructing the final reduced mass
matrix by sector level calculations.

B.2 Direct Sum of Matrices

The direct sum of two matrices of arbitrary size is defined as:

A⊕B =

[
A 0
0 B

]
=



a11 . . . a1n
... . . . ...

am1 · · · amn

0 . . . 0
... . . . ...
0 · · · 0

0 . . . 0
... . . . ...
0 · · · 0

b11 . . . b1q
... . . . ...

bp1 · · · bpq


(B.8)


