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Dynamic VNF Placement, Resource Allocation and
Traffic Routing in 5G

Morteza Golkarifard, Carla Fabiana Chiasserini, Francesco Malandrino, and Ali Movaghar

Abstract—5G networks are going to support a variety of
vertical services, with a diverse set of key performance indi-
cators (KPIs), by using enabling technologies such as software-
defined networking and network function virtualization. It is the
responsibility of the network operator to efficiently allocate the
available resources to the service requests in such a way to honor
KPI requirements, while accounting for the limited quantity of
available resources and their cost. A critical challenge is that
requests may be highly varying over time, requiring a solution
that accounts for their dynamic generation and termination.
With this motivation, we seek to make joint decisions for
request admission, resource activation, VNF placement, resource
allocation, and traffic routing. We do so by considering real-world
aspects such as the setup times of virtual machines, with the goal
of maximizing the mobile network operator profit. To this end,
first, we formulate a one-shot optimization problem which can
attain the optimum solution for small size problems given the
complete knowledge of arrival and departure times of requests
over the entire system lifespan. We then propose an efficient and
practical heuristic solution that only requires this knowledge for
the next time period and works for realistically-sized scenarios.
Finally, we evaluate the performance of these solutions using
real-world services and large-scale network topologies. Results
demonstrate that our heuristic solution performs better than
state-of-the-art online algorithms and close to the optimum.

I. INTRODUCTION

5G networks are envisioned to support a variety of services
belonging to vertical industries (e.g., autonomous driving,
media, and entertainment) with a diverse set of requirements.
Services are defined as a directed graph of virtual network
functions (VNFs) with specific and varying key performance
indicators (KPIs), e.g., throughput, and delay. Requests for
these services arrive over time and mobile network operators
(MNOs) are responsible for efficiently satisfy such a demand,
by fulfilling their associated KPI while minimizing the cost
for themselves.

As a result of the softwarization of 5G-and-beyond net-
works, enabled by software-defined networking (SDN) and
network function virtualization (NFV), it is now feasible
to use general-purpose resources (e.g., virtual machines) to
implement the VNFs required by the different service. The
decision on which resources to associate with which VNF and
service is made by a network component called orchestrator,
as standardized by ETSI [1]. Without loss of generalityi, we
focus only on computational and communication resources
(e.g., virtual machines and the links connecting them); notice,
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however, that our proposed framework is applicable to other
resource types (e.g., storage).

The network orchestrator makes the following decisions [1]:
• admission of requests;
• activation/deactivation of VMs;
• placement of VNF instances therein;
• assignment of CPU to VMs for running the hosted VNF

instances;
• routing of traffic through physical links.

These decisions are clearly mutually dependent, and therefore
should be made jointly, in order to account for the – often
nontrivial – ways in which they influence one another. The
focus of this paper is thus to consider the joint requests
admission, VM activation/deactivation, VNF placement, CPU
assignment, and traffic routing problem in order to maximize
the MNO profit, while considering:
• the properties of each VNF,
• the KPI requirements of each service,
• the capabilities of VMs and PoPs (points of presence,

e.g., datacenters) and their latency,
• the capacity and latency of physical links,
• the VMs setup times,
• the arrival and departure times of service requests.
As better discussed in Sec. II, some of these factors are

simplified, or even neglected, in existing works on 5G orches-
tration. Notably, we account for the VM setup time, which
becomes a significant factor in (for example) IoT applications,
when requests are often short-lived. Ignoring setup (and tear-
down) times can reduce the optimality of existing solutions.

Furthermore, we account for the fact that different VNFs
may have different levels of complexity, therefore, different
quantities of computational resources may be needed to attain
the same KPI target. Inspired by several works in the litera-
ture [2], we model individual VNFs as queues and services
as queuing networks. Critically, unlike traditional queuing
networks, the quantity of traffic (i.e., the number of clients
in queues) can change across queues, as VNFs can drop some
packets (e.g., firewalls) or change the quantity thereof (e.g.,
video transcoders). Our model accounts for this important
aspect by replacing traditional flow conservation constraints
with a generalized flow conservation law, allowing us to
describe arbitrary services with arbitrary VNF graphs.

Given this model, we formulate a one-shot optimization
problem which, assuming perfect knowledge of future re-
quests, allows us to maximize the MNO profit. Given the
NP-hardness of such a problem and the fact that knowledge of
future requests is usually not available, we propose MaxSR, an
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efficient heuristic algorithm which will be invoked periodically
based on the knowledge of requests within each time period.
The proposed method can achieve a near-optimal solution for
large-scale network scenarios. We evaluate MaxSR compared
to the optimum and other benchmarks using real-world ser-
vices and different network scenarios.

In summary, the main contributions of this paper are as
follows:
• we propose a complete model for the main components of

5G, both in terms of vertical services (dynamic requests,
VNFs, and services KPIs) and in terms of resources (e.g.
VMs and links);

• our model accounts for the time variations of service
requests, and dynamically allocates the computational and
network resources while considering VMs setup times.
It can also accommodate a diverse set of VNFs in
terms of computational complexity and KPI requirements,
multiple VNF instances, and arbitrary VNF graphs with
several ingress and egress VNFs, rather than a simple
chain or directed acyclic graph (DAG);

• we formulate a one-shot optimization problem as a
Mixed-Integer Programming (MIP) to make a joint deci-
sion on VM state, VNF placement, CPU assignment, and
traffic routing based on the complete requests statistics
over the entire system lifespan;

• we propose MaxSR, an efficient near-optimal heuristic
algorithm to solve the aforementioned problem based on
the knowledge of the near future for large scale network
scenarios;

• finally, we compare MaxSR with optimum and the online
approach Best-Fit, through extensive experiments using
synthetic services and requests, and different network
scenarios.

The rest of the paper is organized as follows. Sec. II
reviews related works. Sec. III describes the system model
and problem formulation, while Sec. IV clarifies our solution
strategy. Finally, Sec. V presents our numerical evaluation
under different network scenarios, and Sec. VI concludes the
paper.

II. RELATED WORK

Several works have addressed VNF placement and traffic
routing, as exemplified by the survey paper [3]. In most of
these works, the problem is formulated as a Mixed Integer
Linear Program (MILP) with a different set of objectives
and constraints. Such an approach can yield exact solutions,
but merely works for small instances; therefore, heuristic
algorithms that offer a near-optimal solution have also been
presented.

In particular, a first body of works provides a one-time
VNFs placement, given the incoming service requests. Since
this method leaves already placed VNFs intact, it can lead to a
sub-optimal solution when the traffic varies over time. Exam-
ples of such an approach can be found in [4], [5], [6], [7], [8],
[9], which aim at minimizing a cost function, e.g., operational
cost, QoS degradation cost, server utilization, or a combination
of them, and assume that there are always enough resources

to serve the incoming requests. Among them, Cohen et al. [4]
propose an approximation algorithm to place sets of VNFs in
an optimal manner, while approximating to the constraints by a
constant factor. Pham et al. [7] introduce a distributed solution
based on a Markov approximation technique to place chains
of VNFs where the cost enfolds the delay cost, in addition to
the cost of traffic and server. [8], instead, addresses the same
problem but aims at minimizing the energy consumption, given
constraints on end-to-end latency for each flow and server
utilization. Pei et al. [9] propose an online heuristic for this
problem, by which VNF instances are deployed and connected
using the shortest path algorithm, in order to minimize the
number VNF instances and satisfy their end-to-end delay
constraint.

Another thread of works focuses on an efficient admission
policy that maximizes the throughput or revenue of admitted
requests [10], [11], [12], [13]. In particular, Sallam et al. [10]
formulate joint VNF placement and resource allocation prob-
lem to maximize the number of fully served flows considering
the budget and capacity constraints. They leverage the sub-
modularity property for a relaxed version of the problem
and propose two heuristics with a constant approximation
ratio. [11] studies the joint VNF placement and service chain
embedding problem, so as to maximize the revenue from the
admitted requests. A similar problem is tackled in [13] and
[12] but for an online setting where the requests should be
admitted and served upon their arrival. Zhou et al. [12], on
the other hand, first formulate a one-shot optimization problem
over the entire system lifespan and then leverage the primal-
dual method to design an online solution with a theoretically
proved upper bound on the competitive ratio.

A different approach is adopted in [14], [15], [16], [17],
[18], [19], [20] where VNF placement can be readjusted
through VNF sharing and migration, to optimally fit time-
varying service demands. [14] and [15] propose algorithms
that properly scale over-utilized or under-utilized VNF in-
stances based on the estimation of future service demands.
Jia et al. [16] propose an online algorithm with a bounded
competitive ratio that dynamically deploys delay constrained
service function chains across geo-distributed datacenters min-
imizing operational costs.

Request admission control has instead been considered in
[17], [18], [19], [20]. More in detail, Li et al. [17] propose a
proactive algorithm that dynamically provisions resources to
admit as many requests as possible with a timing guarantee.
Similarly, [18] admits requests and places their VNFs in the
peak interval, but minimizes the energy cost of VNF instances
by migration and turning off empty ones in the off-peak inter-
val. Liu et al. [19] envision an algorithm that maximizes the
service provider’s profit by periodically admitting new requests
and rearranging the current-served ones, while accounting
for the operational overhead of migration. Finally, leveraging
VNF migration and sharing, [20] proposes an online algorithm
to maximize throughput while minimizing service cost and
meeting latency constraints.

Relevant to our work are also studies that target specifically
5G systems, although they merely consider the link delay and
neglect processing delays in the servers. An example can be
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found in [2], which models VMs as M/M/1 PS queues, and
proposes a MILP and a heuristic solution to minimize the
average service delay, while meeting the constraints on the
links and host capacities. The works in [21] and [22] aim
instead to minimize, respectively, the operational cost and the
energy consumption of VMs and links while ensuring end-to-
end delay KPI. [22] also allows for VNF sharing and studies
the impact of applying priorities to different services within
a shared VNF. Zhang et al. [23] tackle the request admission
problem to maximize the total throughput, neglecting instead
queuing delay at VMs.

We remark that most of the above works present proactive
approaches, and only deal with either cost minimization or
request admission. On the contrary, we focus on dynamic
resource activation, VNF placement, and CPU assignment to
maximize the revenue from admitted requests over the entire
system lifespan, while minimizing the deployment costs and
accounting for some practical issues. Our proactive MILP
formulation of the problem extends existing models by ac-
counting for the maximum end-to-end delay as the main KPI,
while our heuristic is a practical and scalable solution, which
periodically admits new requests and readjusts the existing
VNF deployment. To the best of our knowledge, this is the first
dynamic solution for service orchestration in 5G networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first we describe our system model supported
by a simple example. Later, we formulate the joint requests
admission, VM activation, VNF placement, CPU assignment,
and traffic routing problem; a discussion of the problem time
complexity follows. The frequently used notation is summa-
rized in Table I.

A. System Model

Physical infrastructure. Let G = (M, E) be a directed
graph representing the physical infrastructure network, where
each node m ∈ M is either a VM or a network node (i.e.,
a router or a switch). A VM m has maximum computational
capacity Cvm(m). Set E denotes the physical links connecting
the network nodes. We define B(e) and Dphy(e) as, respec-
tively, the bandwidth and delay of physical link e ∈ E. Time
is discretized into steps, T = {1, 2, . . . ,T}, and we assume that
at every time step a VM may be in one of the following states:
terminated, turning-on, or active. Specifically, VMs can only
be used when they are active, and they need to be turned-on
one time step before being active. Based on the measurements
reported in [15], we also consider the traffic flow migration
time to be negligible with respect to the VM setup time.

Each VM can host one VNF and belongs to a datacenter d ∈
D; we denote the available amount of computational resources
in datacenter d by Cdc(d) and the set of VMs within d with
Md . In the physical graph G, physical links within datacenters
are assumed to be ideal, i.e., they have no capacity limit and
zero delay. Let logical link l ∈ L be a sequence of physical
links connecting two VMs, src(l) and destination dst(l), then
we define end-to-end path p ∈ P as a sequence of logical
links.

Services. We represent each service s ∈ S with a VNF
Forwarding Graph (VNFFG), where the nodes are VNFs
q ∈ Q, and the directed edges show how traffic traverses the
VNFs. VNFFG can be any general graph with possibly several
ingress and egress VNFs. We denote the total new traffic,
entering the ingress VNFs of service s, by λnew(s). A traffic
packet of service s, processed in VNF q1, is forwarded to VNF
q2 with probability of P(s, q1, q2). Similarly, P(s, ◦, q) is the
probability that a new traffic packet of service s starts getting
service in ingress VNF q, and P(s, q, ◦) is the probability
that a traffic packet of service s, already served at egress
VNF q, departs service s. For each service s, we consider
its target delay, DQoS(s), as the most critical KPI, specifying
the maximum tolerable end-to-end delay for the traffic packets
of s.

VNFs can have different processing requirements depending
on their computational complexity. We denote by ω(q) the
computational capability that VNF q needs to process one
unit of traffic. Some VNFs may not find sufficient resources
on a single VM to completely serve the traffic while satisfying
the target delay. Thus, multiple instances can be created, with
N(s, q) being the maximum number of instances of VNF q at
each point in time. Instances of the same VNF can be deployed
either within the same datacenter or at different datacenters; in
the latter case, the traffic between each pair of VNFs must be
splitted through different logical links that connect the VMs
running the corresponding VNF instances.

Different requests for the same services may arrive over
time; we denote with Ks the set of all service requests for
service s, and characterize the generic service request k ∈ K
with its arrival time tarv(k) and departure time tdpr(k). Due
to slice isolation requirements [24], we assume that the VNF
instances of different service requests are not shared with other
service requests.

Example. Fig. 1 represents a possible deployment of two
sample services, vehicle collision detection (VCD) and video
on-demand (VoD), on the physical graph (Fig. 1c) in a single
time step. VCD is a low-latency service with a very low target
delay DQoS, and VoD is a traffic intensive service with a high
λnew. Fig. 1a and Fig. 1b depict the VNFFGs of the VCD and
VoD services, respectively, where the numbers on the edges
represent the transition probability of traffic packets between
corresponding VNFs. The physical graph contains a set of
datacenters D = {d1, d2, d3} with computational capability
Cdc. Datacenters are connected to each other using a switch
and physical links with bandwidth B and a latency Dphy. VMs
within each datacenter are denoted by sets Md1 = {m1,m2},
Md2 = {m3,m4}, and Md3 = {m5,m6,m7}, each with
computational capability Cvm. As depicted in Fig. 1c, service
VCD is deployed within datacenter d2 to avoid inter-datacenter
network latency. Service VoD is deployed across datacenter
d1 and third-party datacenter d3. VNF transcoder, having
high computational complexity ω, requires two instances in
datacenters d3 to fully serve the traffic.

B. Problem Formulation
In this section, we first describe the decisions that have to be

made to map the service requests onto network resources. Then
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TABLE I: Notation (sets, variables, and parameters)

Symbol Description

D Set of datacenters
E Set of physical links
K Set of service requests
L Set of logical links
M Set of VMs
P Set of end-to-end paths
Q Set of VNFs
S Set of services
T Set of time steps
Ws Set of paths from ingress VNFs to egress VNFs in VNF

graph of service s

A(k,m, q, t) Whether to deploy VNF q of service request k at VM m
at time t

D(k,m, q, t) Traffic departing VM m for VNF q of service request k
at time t

F(k, l, q1, q2, t) Equal to 1 when ρ(k, l, q1, q2, t) > 0
I (k,m, q, t) Traffic entering VM m for VNF q of service request k at

time t
L(e, t) Traffic on physical link e at time t
O(m, t) Whether VM m is active at time t
R(m, t) Average time for a request to be processed at VM m at

time t
U(m, t) Whether VM m is turning-on at time t
V (k, t) Whether service request k is active at time t
µ(k,m, q, t) Service rate to assign to VM m for VNF q of service

request k at time t
ρ(k, l, q1, q2, t) Fraction of traffic from VNF q1 to q2 of service request

k, through logical link l at time t

Symbol Description

B(e) Bandwidth of physical link e
Cdc(d) Computational capacity of datacenter d
Cvm(m) Computational capacity of VM m
DQoS(s) Target delay for service s
Dlog(l) Delay of logical link l
Dphy(e) Delay of physical link e
N (s, q) Maximum number of instances for VNF q of service s
Xcpu(m) Cost for VM m to process one unit of computation in one

time step
Xidle(m) Fixed cost incurred when VM m is turning-on or active in

one time step
Xlink(e) Cost of data transmission through physical link e in one time

step
Xrev(s) Revenue from serving one traffic unit of service s
Λ(s, q1, q2) Traffic from VNF q1 to q2 for service s
P(s, q1, q2) Probability that traffic processed at VNF q1 is forwarded to

VNF q2 of service s
α(s, q) Ratio of outgoing traffic to incoming traffic for VNF q of

service s
λnew(s) New traffic for service s
ω(q) Computation capability required for one traffic unit at VNF

q
tarv(k) Arrival time of service request k
tdpr(k) Departure time of service request k

firewall collision	detector
11 1

(a)

0.3

0.7

load	balancer

cache

download transcoder
1 1

1

0.6

10.4

(b)

datacenterVMVNF switch

download

transcoder

transcoderfirewall

coll.	detection

load	balancer

cache

(c)

Fig. 1: VNFFG of (a) vehicle collision detection (VCD)
service and (b) video on-demand (VoD) service. The number
on edges represents transition probability of traffic packets.

(c) Physical graph including three datacenters connected
using a switch.

we formalize the system constraints and the objective using
the model presented in Sec. III-A, along with the decision
variables we define. In general, given the knowledge of the
future arrival and departure times of service requests, we
should make the following decisions:

• service request activation, i.e., when service requests get

served;
• VM activation/deactivation, i.e., when VMs are set up or

terminated;
• VNF instance placement, i.e., which VMs have to run

VNF instances;
• CPU assignment, i.e., how much computational capability

shall be assigned to a VM to run the deployed VNF;
• traffic routing, i.e., how traffic between VNFs is routed

through physical links.
Service request activation. Let binary variable V(k, t) ∈
{0, 1} denote whether service request k is being served at time
t. Once admitted, a service request has to be provided for all
its lifetime duration. Given service request arrival time tarv(k)
and departure time tdpr(k), this translates into:

V(k, t) = 0, ∀k ∈ K, t ∈ T : t < tarv(k) ∨ t ≥ tdpr(k). (1)

VNF instances. The following constraint limits the number
of deployed instances of VNF q of any service request k ∈ Ks

to be less than N(s, q) at any point in time:∑
m∈M

A(k,m, q, t) ≤ N(s, q),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q, (2)

where binary variable A(k,m, q, t) represents whether VNF q
of service request k is placed on VM m at time t. The network
slice isolation property of 5G networks prevents VNF sharing
among requests for different services. In addition, at most one
VNF instance can be deployed on any VM, i.e.,∑

k∈K

∑
q∈Q

A(k,m, q, t) ≤ 1, ∀m ∈ M, t ∈ T . (3)
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VM states. We define two binary variables U(m, t) and
O(m, t) to represent whether VM m is turning-on or active
at time t, respectively. We formulate a simple constraint to
prevent VMs from being concurrently turning-on and active
at any time, i.e.,

O(m, t) +U(m, t) ≤ 1, ∀m ∈ M, t ∈ T . (4)

The following constraint enforces that VM m can be active at
time t only if it has been turning-on or active in the previous
time step:

O(m, t) ≤ O(m, t − 1) +U(m, t − 1), ∀m ∈ M, t ∈ T . (5)

VMs are able to run VNFs only when they are active, i.e.,∑
k∈K

∑
q∈Q

A(k,m, q, t) ≤ O(m, t), ∀m ∈ M, t ∈ T . (6)

Computational capacity. Let real variable µ(k,m, q, t) rep-
resent the service rate assigned to VM m to run VNF q of
service request k at time t. Multiplying it by ω(q), we have
the amount of computation capability assigned to VM m to
run VNF q at time t. The limited computational capability
of datacenters and VMs denoted, respectively, by Cdc(d) and
Cvm(m), should not be exceeded at any point in time. We
describe such a limitation by imposing:∑

m∈Md

∑
k∈K

∑
q∈Q

µ(k,m, q, t) · ω(q) ≤ Cdc(d),

∀t ∈ T , d ∈ D, (7)

where the sum on the left-hand side of the inequality is over
all VMs within datacenter d. Similarly, for the VMs we have

µ(k,m, q, t) · ω(q) ≤ A(k,m, q, t) · Cvm(m),

∀t ∈ T , k ∈ K, q ∈ Q,m ∈ M, (8)

where A(k,m, q, t) on the right-hand side of the inequality
enforces zero service rate for VM m when no VNF is placed
therein.

KPI target fulfillment. Whenever a service request is being
served, i.e., V(k, t) = 1, all the traffic in the corresponding
VNFFG should be carried by the underlying physical links.
The following constraint ensures this condition for the traffic
between each pair of VNFs at any point in time:∑

l∈L

ρ(k, l, q1, q2, t) ≥ V(k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q1, q2 ∈ Q : P(s, q1, q2) > 0. (9)

Real variable ρ(k, l, q1, q2, t) shows the fraction of traffic from
VNF q1 to q2 of service request k that is routed through logical
link l at time t. As mentioned, the traffic flow from VNF q1 to
VNF q2 may be splitted into several logical links (see Eq. (2)).
Moreover, since we consider multi-path routing, there may be
multiple logical links between each pair of VNF instances.
Therefore, constraint (9) implies that for any service request
k requesting traffic from VNF q1 to q2 (i.e., P(s, q1, q2) > 0),
the sum of all fractional traffic going though any logical link,
should be equal to 1 at any time when the service request is
being served.

The above constraint does not include ingress and egress
traffic. To account for such contributions, we need to introduce
dummy nodes in the VNFFG and the physical graph. We
add an end-point dummy VNF, ◦ in every VNFFG, which
is directly connected to all ingress and egress VNFs and a
dummy VM in the physical graph which is directly connected
to all VMs. We define L◦ as the set of dummy logical links
which start from or end at the dummy VM. We assume that
dummy logical links are ideal, i.e., they have no capacity limit
and zero delay and cost. We can now formulate the associated
traffic constraints as:∑

l∈L◦

ρ(k, l, ◦, q, t) ≥ V(k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q : P(s, ◦, q) > 0, (10)

∑
l∈L◦

ρ(k, l, q, ◦, t) ≥ V(k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q : P(s, q, ◦) > 0, (11)

where ρ(k, l, ◦, q, t) and ρ(k, l, q, ◦, t) are the fraction of new
traffic entering ingress VNF q and the fraction of traffic
departing from egress VNF q, respectively, going through
logical link l at time t.

Placement. We can now correlate the routing decisions ρ
and the placement decisions A as

ρ(k, l, q1, q2, t) ≤ A(k,m, q2, t),

∀t ∈ T , k ∈ K, q1 ∈ Q ∪ {◦}, q2 ∈ Q,

m ∈ M, l ∈ L ∪ L◦ : dst(l) = m. (12)

The above constraint implies that whenever there is an incom-
ing traffic to VNF q2 through logical link l whose destination
is VM m, i.e., dst(l) = m, VNF q2 is deployed at VM m.
Similarly, whenever there is an outgoing traffic from VNF q1
through logical link l whose source is VM m, i.e., src(l) = m,
VNF q1 is deployed at VM m:

ρ(k, l, q1, q2, t) ≤ A(k,m, q1, t),

∀t ∈ T , k ∈ K, q1 ∈ Q, q2 ∈ Q ∪ {◦}

m ∈ M, l ∈ L ∪ L◦ : src(l) = m. (13)

System stability. Let λ(s, q) denote the total incoming
traffic of VNF q of service s. λ(s, q) equals the sum of ingress
traffic and the traffic coming from other VNFs to VNF q of
service s:

λ(s, q) = λnew(s) · P(s, ◦, q)+

+
∑

q1∈Q\{q }

λ(s, q′) · P(s, q′, q). (14)

Using λ(s, q), the amount of traffic from VNF q1 to VNF q2
of service s can be represented as:

Λ(s, q1, q2) = λ(s, q1) · P(s, q1, q2). (15)
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We can now define an auxiliary variable to represent the
incoming traffic of VNF q of service request k, which enters
VM m at time t:

I(k,m, q, t) =
∑

q′∈Q∪{◦}

∑
l∈L∪L◦:
dst(l)=m

ρ(k, l, q′, q, t) · Λ(s, q′, q),

t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈ M, (16)

where the summation is over all logical links ending at VM
m. Finally, we describe the system stability requirement, which
imposes the incoming traffic not to exceed the assigned service
rate for each VNF q of service request k on VM m, at any
point in time:

I(k,m, q, t) ≤ µ(k,m, q, t),

∀t ∈ T , k ∈ K, q ∈ Q,m ∈ M . (17)

Generalized flow conservation. Our model captures the
possibility of having VNFs for which, due to processing, the
amount of incoming and that of outgoing traffic are different.
We define the scaling factor α(s, q) as the ratio of outgoing
traffic to incoming traffic for VNF q of service s:

α(s, q) =

∑
q′∈Q∪{◦} Λ(s, q, q′)∑
q′∈Q∪{◦} Λ(s, q′, q)

, s ∈ S, q ∈ Q. (18)

We also define auxiliary variable D(k,m, q, t) to represent the
outgoing traffic of VNF q of service request k departing VM
m at time t:

D(k,m, q, t) =
∑

q′∈Q∪{◦}

∑
l∈L∪L◦:
src(l)=m

ρ(k, l, q, q′, t) · Λ(s, q, q′),

t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈ M, (19)

where the right-hand side enfolds all traffic flowing through
logical links starting from VM m. We can then formulate the
generalized flow conservation law for each VNF q of service
request k on VM m at time t:

D(k,m, q, t) = α(s, q) · I(k,m, q, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈ M, (20)

which implies that for each VNF q of service request k on VM
m, at any time, the outgoing traffic is equal to the incoming
traffic multiplied by the scaling factor α(s, q).

Latency. End-to-end network latency for a traffic packet of a
service request is the time it takes to the packet to be served by
all VNFs along the path from the ingress to the egress VNFs.
Such a latency includes two contributions, namely, the network
delay between pairs of VMs on which subsequent VNFs are
deployed and the processing time at the VNFs themselves. The
former can be defined based on the delay of the logical links
l, denoted by Dlog(l). Such a delay is the sum of the delay of
the underlying physical links:

Dlog(l) =
∑
e∈l

Dphy(e). (21)

We also introduce binary variable F(k, l, q1, q2, t) to represent
whether logical link l is used for routing the traffic from VNF
q1 to q2 of service request k at time t. F can be described as

ρ(k, l, q1, q2, t) ≤ F(k, l, q1, q2, t),

∀t ∈ T , k ∈ K, q1, q2 ∈ Q, l ∈ L. (22)

The traffic packets in the VNFFG follow a path p of logical
links in the underlying physical graph, which connect all VNFs
in the VNFFG. Let w ∈ Ws be the sequence of VNFs, from
an ingress VNF to an egress VNF in the VNFFG of service
s. The network delay of traffic packets of service request k,
which traverse the VNFs as specified by w and go through the
links belonging to p, is given by:∑

(q1,q2)∈w

∑
l∈p

F(k, l, q1, q2, t) · Dlog(l). (23)

The processing time of VM m, denoted by R(m, t), is the
time it takes for a traffic packet to be completely processed
in the VM. Modeling each VM as a queue with discipline PS
(or, equivalently, FIFO), the processing time of VM m at time
t is [2]:

R(m, t) =
1∑

k∈K

∑
q∈Q (µ(k,m, q, t) − I(k,m, q, t))

,

m ∈ M, t ∈ T . (24)

Then, the processing time incurred by the traffic packets
following the VNF sequence w, is given by:∑

q∈w

∑
m∈p

A(k,m, q, t) · R(m, t). (25)

Finally, the experience delay must be less than the target delay,
i.e., ∑
(q1,q2)∈w

∑
l∈p

F(k, l, q1, q2, t) · Dlog(l)+

+
∑
q∈w

∑
m∈p

A(k,m, q, t) · R(m, t) ≤ DQoS(s),

∀t ∈ T , s ∈ S, k ∈ Ks,w ∈ Ws, p ∈ P . (26)

Link capacity. The traffic on any physical link should not
exceed the maximum link capacity, B(e). To formalize this
constraint, we define the auxiliary variable L(e, t) to represent
the traffic on physical link e at time t. This variable is equal to
the total traffic between each pair of VNFs which goes through
the logical link l containing the physical link e:

L(e, t) =
∑
s∈S

∑
k∈Ks

∑
q1,q2∈Q

∑
e∈l

Λ(s, q1, q2) · ρ(k, l, q1, q2, t).

(27)

The link capacity constraint is expressed as

L(e, t) ≤ B(e), ∀e ∈ E, t ∈ T . (28)

Objective. The goal of the optimization problem is to
maximize the service revenue while minimizing the total cost.
The revenue obtained by serving one unit of traffic of service s
is indicated as Xrev(s); we assume such a quantity to be
inversely proportional to the target delay of service s, i.e.,
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1/DQoS(s). This implies that serving services with lower target
delay yields higher revenue for the MNO. The total revenue
is expressed as

R =
∑
t∈T

∑
s∈S

∑
k∈Ks

Xrev(s) · V(k, t) · λnew(s). (29)

The total cost is the sum of the transmission cost in phys-
ical links, computational and idle costs in VMs, which are
described, respectively, as:

Clink =
∑
t∈T

∑
e∈E

Xlink(e) · L(e, t), (30)

Ccpu =
∑
t∈T

∑
m∈M

∑
k∈K

∑
q∈Q

Xcpu(m) · µ(k,m, q, t) · ω(q), (31)

Cidle =
∑
t∈T

∑
m∈M

Xidle(m) · (U(m, t) +O(m, t)). (32)

The above costs are expressed per unit of time and depend,
respectively, on a proportional cost Xlink(e) paid for each
physical link e per unit of traffic, a proportional cost Xcpu(m)
for each VM m paid per unit of computation, and a fixed cost
Xidle(m) for each VM m paid if VM m is turning-on or active.
Finally, we write our objective as:

max
[
R − (Clink + Ccpu + Cidle)

]
. (33)

C. Problem Complexity

The problem of jointly making decisions about VM acti-
vation, VNF placement, CPU assignment, and traffic routing
formulated above contains both integer and real decision vari-
ables, hence it is non convex. In the following, we prove that
the problem is NP hard, through a reduction from the weight
constrained shortest path problem (WCSPP) to a simpler
version of our own.

Theorem 1: The problem mentioned in Sec. III-A is NP-hard
when the objective value is greater than zero.

Proof: We reduce an NP-hard problem, called weight con-
strained shortest path problem (WCSPP) [25], to our problem.
Given a graph G(V, E), and the cost and weight associated
with the edges, the WCSPP asks to find the minimum cost
route between two specified nodes while ensuring that the total
weight is less than a given value. We consider a special case
of our problem where only one service request with a chain of
two VNFs arrives at t = 1 and departs in the next time step.
We set the maximum number of instances for both VNFs to
one. There are only two VMs in the physical infrastructure,
with Cvm(m) = ∞ and Xcpu(m) = Xidle(m) = 0; the remaining
are network nodes. We set Cdc(d) = ∞, ∀d ∈ D. Then, it is
easy to see that WCSPP is equivalent to the special case of
our problem when the objective value is greater than zero.
Beside complexity, solving the problem formulated in
Sec. III-B assumes that the entire knowledge of arrival and
departure times of all service requests is available, which is
not realistic in many scenarios. As detailed below, to cope with
this issue, our strategy is to periodically solve our problem,
with each problem instance leveraging only the information
about the past and the current service requests.

IV. THE MAXSR SOLUTION

In light of the problem complexity discussed above, we pro-
pose a heuristic solution called MaxSR, which makes decisions
(i) only concerning a subsequent time interval encompassing
the present and the near future, which can be predicted with
high accuracy [26], (ii) based on the knowledge of the service
requests occurring within such time interval. More precisely,
starting from time step t, MaxSR makes decisions concerning
the current service requests and accounting for a time horizon
H, i.e., extending till t +H. After τ time steps, where τ ≤ H,
MaxSR is executed again accounting for the next time interval,
i.e., [t + τ, t + τ + H). Note that, although decisions are made
accounting for a time horizon equal to H, they will be enacted
just until the next execution of MaxSR, i.e., they hold, in
practice, only for τ. Even with such a limited time horizon,
directly solving the problem defined in Sec. III-B is still
NP hard. To walk around this limitation, at every execution,
MaxSR processes the service requests received in the last
τ time steps sequentially, i.e., one request at a time. In the
following, we provide an overview of MaxSR in Sec. IV-A,
and we detail the algorithms composing our heuristic in
Sec. IV-B.

A. Overview

At every execution, MaxSR first considers service requests
in decreasing order based on the corresponding service rev-
enue. It then activates the necessary VMs for serving the first
service request, trying to map the VNF sequence w onto a
path p connecting the VMs deemed to host the required VNFs.
While doing this, more than one instance can be created for
a VNF if necessary to meet the service target delay. To this
end, we associate with each VNF a delay budget, which is
proportional to the VNF computational complexity ω(q). Such
budget, however, is flexible, since the delay contribution of a
VNF exceeding its delay budget may be compensated for by
a subsequent VNF on w, which is deployed in a VM able to
process traffic faster than what indicated by the VNF budget.
Additionally, MaxSR exploits a backtrack approach: in case
of lack of sufficient resources at a certain point of current
path p, the algorithm can go back to the last successfully
deployed VNF and looks for an alternative deployment (hence
path), leaving more spare budget for subsequent VNFs. None
the less, it may prove impossible to find enough resources to
accommodate the traffic and delay constraint of a given VNF
instance; in this case, the service request is rejected.

The decisions that MaxSR makes are summarized below.
Placement. MaxSR aims to minimize the placement cost.

This implies that the number of deployed VNF instances
should be low, and the selected VMs should have a low cost.
The algorithm thus starts from one instance and chooses the
lowest-cost VM among the available ones. If this placement
is not feasible, it tries the highest capacity VM to avoid the
use of an extra instance. If the latter strategy is also infeasible,
it increases the number of instances and repeats the process
until a successful deployment is possible, or the limit on the
maximum number of instances is reached (Alg. 2 and Alg. 3).
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Routing. Recall that each VNF may have several instances
and that such instances may be deployed on VMs connected
through multiple logical links. MaxSR adopts a water-filling
approach to route the traffic between each pair of VNFs
through different logical links between a pair of VMs. To limit
the processing time at each VM, the traffic entering each VM
is properly set based on the VM available capacity (Alg. 3).

CPU assignment. MaxSR aims to keep the service rate of
the used VMs as low as possible, in order to reduce the
consumption of computing resources, hence the cost. This
means setting the lowest service rate compatible with the
per-VNF delay budget, except when we have to compensate
for a VNF exceeding its delay budget; in the latter case,
the algorithm opts for the maximum service rate on the VM
(Alg. 4).

Algorithm 1: Main body of MaxSR algorithm
Input: t,H, Kt,H ← {k ∈ K :

[t, t + H) ∩
[
tarv(k), tdpr(k)

)
, ∅}

Output: result sets Rp := {µ(k,m, q)},
Rr := {r(k, l, q1, q2)}, VM states

1 Rp ← ∅,Rr ← ∅
2 R(k) ← Xrev(s) · (min {t + H, tdpr(k)} −

max {t, tarv(k)}) · λnew(s), ∀s ∈ S, k ∈ Ks ∩ Kt,H

3 sort k ∈ Kt,H by R(k) in desc. order
4 forall k ∈ Kt,H do
5 call BSRD(k) and update Rp and Rr
6 VM-Activation(Rp)

B. Algorithms

Alg. 1. It is the main body of the MaxSR heuristic, taking
as input time horizon H, the current time step t, and the set
Kt,H of service requests which should be served in the time
horizon [t, t + H). Line 2 calculates service revenue R(k) for
each request k, based on the expected traffic to be served
in the time horizon and the expected revenue, i.e., Xrev(s)
for service s. The algorithm sorts the service requests in
Line 3 in descending order, according to R(k). It then calls
BSRD for each request, in order to determine whether and
how to serve it within the time horizon. If the request can
be served, the resulting VNF placement/CPU assignment and
routing decisions are stored in Rp and in Rr , respectively.
For each served request, Rp will then contain a tuple per
each VNF instance that specifies the allocated VM and its
assigned service rate, while Rr will contain a tuple for each
pair of VNF instances, determining the amount of traffic on
their connecting logical link(s). Finally, the VMs required for
running the service request are activated if not already active;
we recall that it takes one time step to activate them (turning-
on state), and they will remain up till the service departure
time.

Alg. 2. Given service request k for service s as an input,
the goal of Alg. 2 is to check whether all VNFs of s can
be deployed with the available resources. If it is possible, the
request is served and the result sets Rp and Rr are returned.

Algorithm 2: Backtracking-based service request de-
ployment (BSRD)
Input: service request k of service s
Output: Rp,Rr

1 i ← 1; status← normal; can-backtrack← false;
C ← ∅, Rp ← ∅; Rr ← ∅

2 ∆(s, q) ← ω(q)/
∑ |Qs |

j=1 ω(Qs( j)), ∀q ∈ VNF chain of s
3 while i ≤ number of VNFs do
4 if status is normal then
5 for n← 1 to N(s,Qs(i)) do
6 for strategy ∈ {cheapest,largest} do
7 call VPTR(k, i, n, strategy) and CA(k, i)
8 if deployment is successful then break

9 else if status is critical then
10 can-backtrack← false
11 call VPTR(k, i, N(s,Qs(i)),largest) and

CA(k, i)

12 if i-th VNF is successfully deployed then
13 if status is normal then can-backtrack ←

true
14 Update Rp,Rr, status← normal, i ← i + 1
15 else . i-th VNF is not deployed
16 status ← critical
17 if can-backtrack then
18 Discard Rp,Rr for (i − 1)-th VNF,

i ← i − 1
19 else if fail is due to delay budget then
20 Update Rp,Rr , i ← i + 1
21 else . fail is due to traffic
22 terminate and discard Rp and Rr

23 if result sets are not feasible then
24 terminate and discard Rp and Rr

The global boolean variables status and can-backtrack repre-
sent the deployment status and the possibility of backtracking,
respectively. status is critical if the last VNF deployment
has failed, and normal otherwise. The global cache C is
a set of results that facilitates the backtracking operation
(see Alg. 3). The algorithm starts in normal mode; clearly,
backtracking is not allowed for the first VNF in the VNFFG
and cache C is empty (Line 1). The algorithm starts by
assigning a delay budget to each VNF of the service, which is
proportional to the VNF computational complexity (Line 2),
where Qs( j) denotes the j-th VNF in the VNFFG. Then, it
goes across the sequence of VNFs starting from the ingress
VNF and deploys them one by one.

For each VNF, Lines 4-11 decide on the number of required
instances and the VM selection strategy, based on the deploy-
ment status. The strategy can be cheapest or largest: the
algorithm selects VMs with the lowest cost when the strategy
is cheapest, and with the highest capacity when the strategy
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is largest. The first part (Lines 5-8) deploys the VNF in the
normal mode. Since the algorithm aims to keep the number
of required VNF instances as low as possible, it starts with
one instance and the cheapest strategy and calls VPTR to
determine placement and routing, and CA to determine the
CPU assignment. The deployment is successful if neither of
these algorithms fails. If the cheapest strategy does not
yield a successful deployment for the VNF, the algorithm
keeps the number of instances fixed and tries the largest
strategy. If both strategies fail, the number of instances is
increased by one and the process is repeated. The algorithm
ends whenever a successful deployment is found (Line 8), or
the maximum number of instances is reached.

Lines 12-22 decide how to proceed in the VNF sequence ac-
cording to the result of deployment, status and can-bakctrack.
If the deployment is successful (Line 12), the algorithm
updates the result set, sets status to normal and proceeds to
the next VNF in the VNFFG (Line 14). can-backtrack is also
updated in Line 13, which means that backtracking is allowed
for the next VNFs only when we have a successful deployment
in the normal mode for the current VNF: this prevents the
algorithm to backtrack again to a VNF, which has already been
deployed in critical mode. Otherwise (Line 15), status is
set to critical and the algorithm proceeds as follows. As
the first attempt, it tries to refine the placement in the previous
step. Thus, if backtracking is allowed, it reverts the result sets
related to the previous VNF in the VNFFG and goes back
to deploy it again (Line 18). When the deployment fails but
backtracking is not possible, due to a violation of the delay
budget, the algorithm preserves the current deployment in the
result set and proceeds to the next VNF, hoping to compensate
for the exceeded delay budget (Line 20). If neither option is
viable, the algorithm decides not to serve the current service
request and reverts all result sets related to its deployment
(Line 22).

Lines 10-11 deploy the VNF when status is critical, i.e.,
when the previous VNF deployment has failed. This VNF is
either the next VNF in the VNFFG when the algorithm is in the
backtracking phase, or the previous VNF when the algorithm
is going to compensate for the exceeded delay budget by the
current deployment. In either case, the algorithm chooses the
fastest option to deploy the VNF, regardless of the cost, using
the maximum number of instances and largest strategy.
Finally, the algorithm checks the feasibility of the decisions
made with regard to the datacenter capacity and service target
delay after each VNF deployment in Line 23. For the former,
it is enough to check that the total computational capability
assigned to VMs within each datacenter does not exceed its
maximum capacity, i.e., for each datacenter d,∑

µ(k,m,q)∈Rp :m∈Md

µ(k,m, q) · ω(q) ≤ Cdc(d). (34)

Traffic packets belonging to a service may go through different
end-to-end paths in the physical network and experience dif-
ferent end-to-end delays. We define δ̄(k,m, q) as the maximum
end-to-end delay that traffic packets belonging to service re-
quest k experience from the ingress VNF until they depart VM
m which hosts an instance of VNF q. Thus, after deploying

VNF q of service request k ∈ Ks , it is enough to check that
this delay for any VM m, hosting an instance of q, does not
exceed the service target delay:

δ̄(k,m, q) ≤ DQoS(s). (35)

Algorithm 3: VNF placement and traffic routing
(VPTR)
Input: k ∈ Ks, i, n, strategy

1 (q1, q2) ← (Qs(i − 1),Qs(i)); Rr ← ∅;
Λ′← Λ(s, q1, q2);

2 B′log(l) ← remaining capacity of l, ∀l ∈ L
3 L ′← {l ∈ L ∪ L◦ :

q1 is on src(l) ∧ dst(l) is free ∧ B′log(l) > 0}
4 if C , ∅ then . cache is not empty
5 Fill l ∈ L ′ : dst(l) = m, consiedring limit D(k,m,q)

α(s,q) ,
∀D(k,m, q) ∈ C : q = q2

6 Update Rr,Λ′, n,L ′; C ← ∅
7 if strategy is cheapest then
8 sort l ∈ L ′ by ω(q2) · Xcpu(dst(l)) +

∑
e∈l Xlink(e) in

asc. order
9 else if strategy is largest then

10 sort l ∈ L ′ by min {B′log(l),
Cvm((dst(l))
ω(q2)

} in desc.
order

11 Ltop ← Pick top l ∈ L ′ as much as possible such that
|{dst(l) : l ∈ Ltop}| = n

12 Mtop ← {dst(l) : l ∈ Ltop}

13 Î(k,m, q2) ←
Cvm(m)∑

m′∈Mtop Cvm(m′)
· Λ′, ∀m ∈ Mtop

14 C ′vm(m) ← Cvm(m), ∀m ∈ Mtop
15 forall l ∈ Ltop do
16 c(l) ← min{B′log(l),

C′vm(dst(l))
ω(q2)

}

17 r(k, l, q1, q2) ← Fill l by remaining outgoing traffic
of q1 on src(l) considering c(l) and limit
Î(k, dst(l), q2)

18 Update Λ′, B′log(l), C ′vm(dst(l));
Rr ← Rr ∪ {r(k, l, q1, q2)}

19 if Λ′ > 0 then
20 Preserve D(k,m, q1) in cache C such that q1 is on

m
21 return fail, ∅

22 return success, Rr

Alg. 3. It determines the placement and traffic routing for
the i-th VNF of request k of service s, using n instances and
the given strategy. Line 1 initializes (q1, q2) to the i-th VNFs
pair in the VNFFG of service s, the routing result set Rr to
∅, and the remaining unserved traffic between q1 and q2, i.e.,
Λ′, to Λ(k, q1, q2). The first pair of VNFs is (◦, q1) with the
assumption that the dummy VNF ◦ is placed on the dummy
VM. In Lines 2-3, first the remaining capacity of each logical
link l is calculated and stored in B′log(l) and then the ones
that have a remaining capacity greater than zero, host VNF
q1 on their source VM, and host no VNF on their destination,
are picked and stored in the set Ltop. The links in Ltop and
their destination VMs are the only potential candidates for this
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algorithm to place instances of the i-th VNF and accommodate
its incoming traffic Λ′. In other words, in the rest of the
algorithm, we consider the joint logical link and its destination
VM as one entity and pick the best ones according to the
strategy and n. If the selected entities cannot fit the incoming
traffic, the placement fails; none the less, we still preserve
the amount of satisfied traffic in the cache and exploit this
information in the backtracking phase.

The implementation speed of the backtrack operation is
greatly improved by caching. Specifically, when Alg. 3 is
called in the backtracking phase to refine the placement of i-th
VNF, the cache contains results which determine the routing
of a portion of the outgoing traffic of the (i + 1)-th VNF
to the (i + 2)-th VNF, which was satisfied by the previous
deployment of the (i + 1)-th VNF in the VNFFG. Lines 4-
6 exploit the cached results and accommodate the unserved
portion of incoming traffic by using different instances, which
helps the next deployment of the (i+ 1)-th VNF to fully serve
its traffic. For instance, assuming α(s,Qs(i + 1)) = 1 and that
the placement of the (i+1)-th VNF has failed by Λ′ unserved
traffic, the backtracking step will have to accommodate only
Λ′ traffic on extra VMs, i.e., the routing and placement results
for the served traffic portion, D(k,m, q2) ∈ C, will not change.

The pairs of logical links and the connected VMs will be
selected for placement and routing based on the given strategy.
If the strategy is cheapest, they will be sorted according to
the cost of the logical link plus the VM CPU cost in ascending
order (Line 8). If the strategy is largest, we sort them in
descending order by the minimum of the remaining capacity
of the logical link and the VM (Line 10). Line 11 picks the
biggest set of top logical links such that the number of unique
destination VMs is equal to the number of instances, i.e., n,
and stores them in Ltop. Note that there may be multiple
logical links with the same destination VM in this set, and
therefore we should pick the largest set to increase the chance
of fitting the traffic. If the number of unique destination VMs
is less than n, Ltop will be empty and the placement fails.
Otherwise, we store destination VMs corresponding to logical
links l ∈ Ltop in set Mtop (Line 12).

To avoid an exceedingly high processing time, Line 13
introduces a limit for the amount of traffic entering a given VM
m ∈ Mtop, proportional to the VM maximum computational
capacity. Notice that all logical links ending at the same desti-
nation VM have the same limit. The remaining computational
capacity of each selected VM, C ′vm(m), is initialized to its
maximum Cvm(m) (Line 14). The algorithm adopts a water-
filling approach to fill the logical links in Lines 15-18. First, for
each logical link l and its connected VM dst(l), the remaining
capacity, i.e., the minimum of the remaining capacities of l
and dst(l), is stored in c(l) (Line 16). Then, logical link l is
filled by the remaining unserved outgoing traffic of VNF q1 on
VM src(l), so that neither c(l) limit on the capacity of logical
link l nor the Î(k,m, q2) limit on the incoming traffic of VM
dst(l) are violated. Line 18 updates the remaining unserved
traffic from q1 to q2 (Λ′), the remaining capacity of logical
link l (B′log(l)), the remaining capacity of destination VM
(C ′vm(dst(l))), and routing result set (Rr ). Finally, if there is
still some unserved traffic from VNF q1 to q2 (i.e., not all the

traffic can be served), the algorithm returns fail (Lines 19-
21). Line 20 preserves the satisfied outgoing traffic of VM m
hosting an instance of VNF q1, i.e., D(k,m, q1), in the cache,
so as to use it later on in case of backtracking. Otherwise, the
algorithm returns success with the placement result set Rp .

Algorithm 4: CPU assignment (CA)
Input: k ∈ Ks, i,Rr

1 (q1, q2) ← (Qs(i − 1),Qs(i)); Rp ← ∅;
2 Ldep ← {l ∈ L : ∃r(k ′, q′1, q

′
2, l) ∈ Rr : k ′ = k ∧ q′1 =

q1 ∧ q′2 = q2 ∧ r(k ′, q′1, q
′
2, l) > 0}

3 Mdep ← {m ∈ M : ∃l ∈ Ldep : dst(l) = m}
4 for m ∈ Mdep do
5 I(k,m, q2) ←

∑
r(k,l,q1,q2)∈Rr :dst(l)=m r(k, l, q1, q2)

6 δ̌(k,m, q2) ← max
l∈Ldep:dst(l)=m

(
δ̄(k, src(l), q1) + Dlog(l)

)
7 if status is critical then
8 µ(k,m, q2) ←

Cvm(m)
ω(q2)

9 else . status is normal
10 µ(k,m, q2) ← I(k,m, q2)+

1∑i
j=1 ∆(s,Qs (j))−δ̌(k,m,q2)

11 if µ(k,m, q2) < (I(k,m, q2),
Cvm(m)
ω(q2)

] then
12 µ(k,m, q2) ←

Cvm(m)
ω(q2)

13 Rp ← Rp ∪ {µ(k,m, q2)}

14 δ̄(k,m, q2) ← δ̌(k,m, q2) +
1

µ(k,m,q2)−I (k,m,q2)

15 if maxm∈Mdep δ̄(k,m, q2) >
∑i

j=1 ∆(s,Qs( j)) then
16 return fail, Rp

17 return success, Rp

Alg. 4. It is called in Line 7 and Line 11 of Alg. 2 when
the deployment of VNF q in Alg. 3 is successful. Given the
result set Rr , this algorithm is responsible for assigning the
service rates to VMs for running the deployed instances of
VNF q. After initialization, in Line 2, Ldep defines the set of
the logical links used for routing a part of traffic from any
instance of VNF q1 to any instance of VNF q2. We store the
VMs on which VNF q2 is already deployed in the set Mdep
(Line 3). Then, for each m ∈ Mdep, we calculate the incoming
traffic through the sum of traffic from all logical links ending
in VM m, and store it in I(k,m, q2) in Line 5.
δ̌(k,m, q2) represents the maximum end-to-end delay that

traffic packets experience from the ingress VM to VM m,
which hosts an instance of VNF q2, but before being processed
by m. For each logical link l ∈ Ldep where dst(l) = m, this
delay is equal to the sum of the maximum end-to-end delay
of traffic packets after being processed by VNF q1 on VM
src(l), i.e., δ̄(q1, src(l)), and the delay of logical link l, i.e.,
Dlog(l). Taking the maximum over all such logical links, we
have δ̌(k,m, q2) in Line 6.

Similar to the VNF deployment in Alg. 3, the algorithm
assigns service rates to VMs based on the deployment status.
In the critical mode, the algorithm aims to reduce the
delay contribution, which depends on logical links delay and
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processing time on VMs. The logical links are already selected
by the VPTR algorithm, thus here we assign the maximum
possible service rate for the VM to reduce the processing
time (Line 8). Instead, when the algorithm is in normal
mode, it chooses the minimum possible service rates for VM
m (Line 10), such that the VNFs delay budget do not violate,
i.e.

i∑
j=1
∆(s,Qs( j)) − δ̌(k,m, q2) =

1
µ(k,m, q2) − I(k,m, q2)

. (36)

In the above equation, the right- and left-hand sides represent
the processing time of VM m and the remaining delay budget
of VNFs, respectively. To compute the latter, first it is calcu-
lated the total delay budget of the VNFs up to the i-th one
(i.e., the current one). Then, it is subtracted by the maximum
end-to-end delay of traffic packets, before being processed by
VNF q2 on VM m, i.e., δ̌(k,m, q2).

The computed service rate for VM m may be invalid
because (i) no delay budget is left to process the current
VNF on VM m, i.e., the left-hand side of equality in (36)
becomes non-positive, or (ii) the assigned service rate exceeds
the maximum capability of the VM. In both cases, the CA
algorithm fails, however the VM is assigned to its maximum
computational capability to process the VNF (Line 12). Recall
that, although the CPU assignment failed for the current VNF,
the algorithm keeps the results to be used in Alg. 2 (Line 19)
when backtracking is not allowed. In this case, the algorithm
continues with the next VNF and tries to compensate for the
exceeded delay budget. Line 13 stores the results, and Line 14
updates δ̄(k,m, q2) for this VM that shows the maximum end-
to-end delay after the packets are processed by VM m. Finally,
when all service rates have been assigned, the algorithm
returns fail if the remaining delay budget is violated for
at least one VM (Line 15), and success otherwise.

C. Computational Complexity

The MaxSR heuristic takes the set of physical links E,
service requests K, and their VNFFG Qs , VMs M, and
logical links L as inputs. Note that L is considered as an
input since it is computed once for all executions of MaxSR
algorithm. Below, we prove that this algorithm has a worst-
case polynomial complexity in terms of input parameters.

Theorem 2: The MaxSR algorithm has a worst-case poly-
nomial computation complexity.

Proof: First, we determine the complexity of the VPTR
and CA algorithms. VPTR constructs and sorts the set L ′

in O(|L| log |L|) and adopts water filling to fill the logical
links in O(L), thus the total time complexity of this algorithm
is O(|L| log |L|). CA also has O(L) complexity, hence the
total computational complexity of VPTR and CA remains
equal to that of VPTR. Alg. 1 sorts the service requests
in O(|K | log |K |) and calls BSRD for each service request.
In the worst-case, BSRD tries every possible number of
instances and strategies for all VNFs in the VNFFG of the
given service request. Let N and Q be upper bounds on the
maximum number of instances, i.e. N(s, q), ∀s ∈ S, q ∈ Q,
and the number of VNFs in a VNFFG, i.e. |Qs |, ∀s ∈ S,

respectively. Thus, the total time complexity of BSRD is
O(NQ |L| log |L|) and total time complexity of Alg. 1 is
O

(
|K |NQ |L| log |L| + |K | log |K |

)
. Therefore, the worst-case

total time complexity is polynomial in terms of input param-
eters. In other words, the complexity of the heuristic depends
primarily on the number of service requests, the number of
VNFs in each VNFFG, the number of deployment attempts
for each VNF, and the number of logical links.

V. NUMERICAL RESULTS

We now present the results of the numerical experiments we
conducted, and show that our proposed scheme consistently
performs better than state-of-the-art approaches and close to
the optimum. We compare our heuristic algorithm against the
following benchmarks:
• Global optimum. The solution of the optimization prob-

lem defined in Sec. III-B obtained by brute-force search,
assuming exact knowledge of arrival and departure times
of all service requests.

• Best-fit. It is an online algorithm which decides about
each service request upon its arrival, without any infor-
mation about the future service requests. Best-Fit deploys
VNFs of a service request one by one, using a single
instance of each VNF and the cheapest strategy. If
the request can be served, the selected resources will be
dedicated to the service request until its departure.

In our performance evaluation, we use the following perfor-
mance metrics:
• Service revenue, defined as the sum of revenues achieved

by serving service requests. For a single request of
service s, this metric equals the amount of served traffic
multiplied by Xrev(s).

• Cost/traffic, which reflects the average cost incurred to
serve a unit of traffic.

In the following, we first consider a small-scale network
scenario, for which the optimum solution can be obtained in a
reasonable time. This scenario will give interesting and easy-
to-interpret insights regarding how each service type impacts
the revenue and cost/traffic ratio. Then, we run MaxSR and
Best-Fit in a large-scale real network scenario, where achiev-
ing the optimum solution is impractical. Table II summarizes
the services we consider for our performance evaluation,
inspired to real-world 5G applications. The revenue gained
from serving one unit of traffic of service s, i.e., Xrev(s),
is set inversely proportional to the service target delays. We
assume that the service requests arrive according to a Poisson
process, and the duration of requests follows an exponential
distribution.

In both scenarios, we study the impact of traffic and delay
on the performance metrics by multiplying traffic arrival rates
λnew and physical link delays Dphy(e) by different factors. We
run each experiment 50 times and report the average value for
each point in the figures. In general, MaxSR, taking advantage
of backtracking, achieves close to the optimum service revenue
better than Best-Fit. However, the value of cost/traffic ratio
depends on how tight the target delay is. When the target
delay is small, the chance of backtracking increases; therefore,
MaxSR incurs more cost to serve the requests.
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TABLE II: List of services

Service DQoS λnew Xrev Application
(ms) (Mb/s) (e/Gb)

s1 10 3 100 safety apps. (e.g., vehicle collision
detection)

s2 45 10 22.2 real-time apps (e.g., gaming)
s3 80 15 12.5 soft real-time apps
s4 2500 400 0.4 delay-tolerant apps (e.g., video

streaming)

TABLE III: Different VM types in datacenters

VM type Cvm Xcpu Xidle

(MIPS) (e/MIPS/hour) (e/hour)

Small 600 2 × 10−5 0.018
Medium 1200 4 × 10−5 0.036

Large 1800 6 × 10−5 0.054

A. Small-scale Scenario

We consider two pairs of VMs of different types, i.e., small
and medium as described in Table III. Pairs of VMs inside are
connected using a physical link: physical links between small
and medium types VMs have cost of 0.02 e/Gb and 0.04 e/Gb
per hour, respectively, while their latency varies from 1 ms to
7 ms with the default value set to 2 ms, and we disregard the
link capacity. The time needed to setup a VM is one minute.

We consider two simple services s1 and s2, each having a
chain of two VNFs with target delays 10 ms and 45 ms, and
with input traffic rates 3 Mb/s and 15 Mb/s, respectively (as
summarized in Table II). In this scenario, we set N(s, q) =
1 for all VNFs, an average duration of 3 minutes for each
service, and we assign them randomly to the arrival points
of a Poisson process with an average rate of 0.5 requests per
minute, while the total system lifespan is set to 10 minutes.

Impact of Physical Link latency and Arrival Traffic.
Fig. 2 shows the impact of the traffic arrival intensity on
the service revenue and cost/traffic ratio. MaxSR matches
the optimum, and Best-Fit performs close to the optimum
in both service revenue and cost/traffic ratio. As it has no
backtracking mechanism, Best-Fit does not serve a request
whenever any of its VNFs cannot be served within its delay
budget, i.e., it has no budget flexibility; therefore, it achieves
lower service revenue than the optimum. While the cost of
physical links increases proportionally to the traffic, the costs
of VMs in turning-on mode remains constant, and their cost
in active mode increases less than proportionally with the
traffic; the resulting effect is that cost/traffic ratio decreases
with the traffic – which conforms to the intuitive notion that
serving larger amounts of traffic is more cost-efficient. Best-Fit
incurs more cost compared to MaxSR and optimum because it
does not support VNF migration, causing a VNF to continue
running on a high-cost VM even if a low-cost VM becomes
available. The excess VMs CPU cost and transmission cost
scale with the traffic, whereas the excess VMs idle cost
remains constant; therefore, the difference between Best-Fit
and optimum becomes smaller as traffic increases.

Fig. 3 shows the impact of physical link latency on the
service revenue and cost/traffic ratio. For all latency values,
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Fig. 2: Small-scale scenario. Impact of service requests
arrival traffic on absolute value of service revenue and

cost/traffic ratio. Physical link delay = 2 ms.
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Fig. 3: Small-scale scenario. Impact of physical link latecy
on absolute value of service revenue and cost/traffic ratio.

Arrival traffic multiplier = 1.

MaxSR is still able to achieve optimum service revenue. As
shown in Fig. 4a, no strategy (not even optimum) can serve all
requests when the physical link delay is 3 ms especially, for
service s2. The reason is that when the number of concurrent
requests becomes more than two, both optimum and MaxSR
give the priority to the high-revenue service s1 and requests
for s2 will only be processed if resources are available. When
the physical link delay increases, service requests need more
computational capacity on VMs to meet their target delay,
in order to offset longer network delays. Specifically, when
the physical link delay is 7 ms, requests of type s1 can only
be served on high-capacity VMs, and therefore, concurrent
requests of this type can not be served. This is confirmed by
the degradation of the optimum in Fig. 3a, and in Fig. 4b,
where the fraction of served requests of type s1 becomes less
than 1 when the physical link delay is 7 ms.

Best-Fit gains substantially lower service revenue compared
to others, especially for higher values of physical link delay.
As shown in Fig. 4b, this is due to the fact that Best-Fit cannot
deploy requests of type s1 in those cases. This, in turn, is due to
the fact that it does not support backtracking: when the delay
budget for the second VNF in the chain of s1 is violated, no
corrective action is taken and the whole request fails.

Fig. 3b shows MaxSR has a higher cost/traffic ratio when
the physical link delay is over 4 ms. The reason is that the
need for backtracking increases with the physical link delay,
and VMs become more likely to be scaled to their maximum
capacity, which results in a higher cost. As one might expect,
the cost/traffic ratio for Best-Fit decreases when physical link
delay ≥ 4 ms because it does not serve requests of higher
cost service s1. Recall that the cost of a service depends on
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Fig. 4: Fraction of deployed service requests for each service
and algorithm. Arrival traffic multiplier = 1.

Fig. 5: Cogent Network Topology.

the amount of required CPU on VMs, and therefore services
with lower target delays incur more costs to serve one unit of
traffic.

Large-scale scenario. We consider the real-world inter-
datacenter network Cogent, a tier 1 Internet service provider
(Fig. 5). This network topology contains 197 access nodes
with 245 physical links and 32 datacenters. We set the cost
of links connecting the datacenters to 0.02 e/GB. The delay
of logical links connecting the datacenters is set to be pro-
portional to their geographical lengths, while the links inside
each datacenter are assumed to be ideal having no capacity
limit, latency, and cost. We assume each datacenter hosts 42
VMs, each of which is connected to some edge switches. We
categorize VMs within each datacenter in small, medium, and
large types according to their capacity and cost, as described
in Table III. We assume VMs need one minute to setup before
being active.

We consider the four different services described in Table II,
each of which is a representative of a category of real 5G
applications. In this scenario, we assume that the VNFFG of
each service is a chain of five VNFs. We further assume that
the computational complexity, i.e., ω and maximum number
of instances, i.e., N(s, q) for two VNFs of service s4 are three,
while other VNFs have ω = 1 and N(s, q) = 1. Similar to the
previous scenario, we consider an equal number of requests
for each service where requests arrive across time steps with
the average inter-arrival time of three minutes and end after an
average duration of two hours, and the total system lifespan
is assumed to be one day. In this experiment, we set H to 40
minutes and τ to 20 minutes.

Impact of Physical Link latency and Arrival Traffic. As
explained above, the optimum values cannot be obtained for
this scenario in a reasonable time and therefore we rely on
results for MaxSR and Best-Fit. Fig. 6a shows the effect of
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Fig. 6: Large-scale scenario. Impact of service requests
arrival traffic on absolute value of service revenue and

cost/traffic ratio. Physical link delay multiplier = 1.
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Fig. 7: Fraction of deployed service requests for each service
and algorithm. Physical link delay multiplier = 1.

arrival traffic on the service revenue, while Fig. 7 shows the
fraction of requests of each service that can be successfully
deployed. We observe that service revenue for MaxSR changes
almost proportionally with the traffic because increasing the
traffic almost does not impact the fraction of served requests
by this algorithm. Best-Fit serves a lower fraction of service
requests, and therefore achieves lower revenue. Besides, Best-
Fit shows a drop-off in service revenue when the arrival traffic
multiplier is 1.6: as confirmed by Fig. 7b, this is because Best-
Fit does not serve requests of high traffic service s4 when the
traffic multiplier is over 1.6, due to its lack of support for
multiple VNF instances.

Fig. 6b shows the impact of arrival traffic on the cost/traffic
ratio. Best-Fit has lower cost/traffic ratio when arrival traffic
multiplier is less than 1.4, since MaxSR must use resources
with higher cost and higher computational capabilities to serve
more service requests; in other words, Best-Fit serves less
traffic but that traffic is served cheaply. Similar to service
revenue the values of cost/traffic ratio for Best-Fit have a
significant rise when the arrival traffic multiplier is 1.6, as
confirmed by Fig. 8, when the traffic multiplier increases from
1.0 to 1.6, Best-Fit is no longer able to serve a significant
fraction of the total traffic. As shown by Fig. 7, the traffic
Best-Fit is unable to serve mainly belongs to the low cost
service s4, which results in a higher cost for served traffic.

Fig. 9a shows the impact of physical link latency on the
service revenue. Similar to the small-scale scenario, MaxSR
outperforms Best-Fit especially for higher values of physical
link delays, because the latter cannot serve the requests for
services with low target delay (hence, higher revenue). As
these service types have higher cost, they will also cause the
cost/traffic ratio for Best-Fit to be lower than MaxSR as shown
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Fig. 8: Fraction of offered traffic deployed on each resource
type for each algorithm. low, med, high and not dep. mean
the fraction of offered traffic served on low cost resources,

medium cost resources, high cost resources, and which is not
served, respectively. Physical link delay multiplier = 1.
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Fig. 9: Large-scale scenario. Impact of physical link delay
on absolute value of service revenue and cost/traffic ratio.

Arrival traffic multiplier = 1.

in Fig. 9b.
Running Time. We run our experiments using a server with

40-core Intel Xeon E5-2690 v2 3.00GHz CPU and 64 GB of
memory. To compare the running time of different algorithms,
we consider the case where the arrival traffic and physical link
delay multipliers are equal to one. For each scenario, we run
the algorithm 50 times and report the average running time
in Table IV. MaxSR and Best-Fit are substantially faster than
brute-force in the small-scale scenario. The prohibitively long
running time for brute-force highlights its poor scalability, and
makes it inapplicable for the large-scale scenario in practice.
The results for the large-scale scenario show that although
MaxSR has higher running time compared to Best-Fit due to
backtracking, both of them are scalable and adequately fast
for large-scale networks.

VI. CONCLUSION

We proposed a dynamic service deployment strategy in
5G networks, accounting for real-world aspects such as VM
setup times, and jointly making all the required decisions.
We first formulated the problem of joint requests admission,
VM activation, VNF placement, resource allocation, and traffic
routing as a MILP based on the complete knowledge of
requests arrival and departure times. We took the MNO profit
as the main objective to be optimized over the entire system
lifespan, leveraging a queueing model to ensure all requests
adhere to their latency targets. Our model also accounted for
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Fig. 10: Fraction of deployed service requests for each
service and algorithm. Arrival traffic multiplier = 1.

TABLE IV: Running time (in seconds)

Scenario Brute-force MaxSR Best-Fit

Small-scale 399 0.2 0.14
Large-scale - 21 2

the key features of 5G services such as complex VNF graphs
and arbitrary input traffic.

Due to the problem complexity, we further proposed a
heuristic, MaxSR, which has polynomial complexity and at-
tains near-optimal solutions, while only needing the knowl-
edge/prediction of the upcoming service requests in a short
time horizon. The algorithm works in a sliding-horizon fash-
ion, rearranging the current-served requests across existing
VMs to reduce the deployment costs, and admitting the new
ones as they arrive at the system. Furthermore, the parameters
of MaxSR allow for different tradeoffs between solution op-
timality and running time. We demonstrated the effectiveness
and efficiency of our approach through a numerical evaluation
including different network scenarios.
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