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Abstract: An exact response theory has recently been developed within the field of Nonequilibrium
Molecular Dynamics. Its main ingredient is known as the Dissipation Function, Ω. This quantity
determines nonequilbrium properties like thermodynamic potentials do with equilibrium states.
In particular, Ω can be used to determine the exact response of particle systems obeying classical
mechanical laws, subjected to perturbations of arbitrary size. Under certain conditions, it can also
be used to express the response of a single system, in contrast to the standard response theory,
which concerns ensembles of identical systems. The dimensions of Ω are those of a rate, hence Ω can
be associated with the entropy production rate, provided local thermodynamic equilibrium holds.
When this is not the case for a particle system, or generic dynamical systems are considered, Ω can
equally be defined, and it yields formal, thermodynamic-like, relations. While such relations may have
no physical content, they may still constitute interesting characterizations of the relevant dynamics.
Moreover, such a formal approach turns physically relevant, because it allows a deeper analysis of Ω
and of response theory than possible in case of fully fledged physical models. Here, we investigate
the relation between linear and exact response, pointing out conditions for the validity of the response
theory, as well as difficulties and opportunities for the physical interpretation of certain formal results.

Keywords: dissipative systems; entropy production; response theory; nonequilibrium steady states;
nonequilibrium molecular dynamics; formal thermodynamics

1. Introduction

Since the 1980s, a dynamical systems approach to nonequilibrium phenomena has been developed,
side by side with the increase of computing power and the ability to perform Molecular Dynamics
(MD) simulations. Classical MD consists of algorithms meant to solve Newton’s dynamical equations
for interacting particle systems, that may be subjected to external fields. Such investigations result
quite informative and practically useful, when quantum effects are irrelevant or negligible, which is
the case of fluids under standard conditions.

Provided no dissipative forces are present, one speaks of equilibrium MD, which is widely
used together with statistical mechanical relations, in order to compute: rheological properties,
polymers behaviours in porous media, defects in crystals, friction between surfaces, formation of
atomic clusters, features of biological macromolecules, formation of drugs, etc. The results are most
satisfactory, and, in practice, difficulties only arise if the interatomic forces are too complicated to
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properly implement, if the required number of simulated particles is too large, or the simulation times
too long. In fact, the statistical relations connecting microscopic dynamical quantities to macroscopic
properties provide quite an accurate and complete description of material objects. Therefore, MD is
used to properly interpret results of experiments, and even in place of expensive or impossible
experiments. For instance, MD may illustrate the formation of crystal defects, the propagation of
fracture fronts inside solids, and the thermal dilation of nuclear fuel pellets inside a nuclear reactor,
just to mention a few examples. The relevant literature is enormous, and dates back to early days of
electronic computers, the Fermi–Pasta–Ulam–Tsingou problem being a forerunner that opened the
way to an incredible number of mathematical, computational and physical advances [1,2]; see e.g., the
books [3–7].

When the system of interest is driven away from equilibrium by external forces that continually
feed energy in it and, at the same time, it is in contact with some environment that removes energy
from it, a nonequilibrium steady state may be reached. The question is how to effectively model the
typically very large environment [8]. Various methods have been developed for that. In particular,
researchers introduced “synthetic forces” meant to efficiently represent the effect of a bath or reservoir
on the property of interest for the system of interest, without simulating the atoms of the environment.
Nonequilibrium MD (NEMD) was thus born, focusing on specific quantities of specific systems [6,9].

The term “synthetic” means that such forces do not exist in nature; they merely constitute a
“mathematical device used to transform a difficult boundary condition problem, the flow of heat in a system
bounded by walls maintained at differing temperatures, into a much simpler mechanical problem”, cf. the
Introduction of Ref. [6]. In practice, the synthetic forces constrain in various ways the dynamics
of particle systems fixing, for instance, the average of the fluctuating kinetic temperature. Such an
approach is so successful that the corresponding algorithms are now provided as default routines of
MD packages [10,11].

If the constraints are holonomic and the other forces conservative, the resulting equations
of motion are Hamiltonian [12]; otherwise they are non-Hamiltonian and, in particular, they are
dissipative, in the sense that on average they contract phase space volumes, although they remain
time reversal invariant [6]. Consequently, from the angle of dynamical systems, their invariant
measures are singular with respect to the Lebesgue measure. This approach may sound odd, if one
expects all features of the dynamics to be derived from a Hamiltonian, but it simply replicates the
usual construction of effective models, that bridge the gap between different levels of descriptions of
natural phenomena, [13]. For instance, the Boltzmann equation and the Langevin equation alter the
Hamiltonian dynamics to the point that it becomes irreversible and not deterministic; at the same time
their success and foundational importance is not questionable. Justifications of the NEMD approach,
within its specific realm, have been provided, demonstrating, for instance, that it properly computes
transport coefficients [6]. Moreover, NEMD has been shown to provide a route to extend to dissipative
dynamics the theory of equivalence of ensembles, as well as Khinchin’s approach to ergodic theory in
physics [6,9,14–16].

The point is the following: no mathematical model spans all space and time scales of interest
for a given material object: a model is acceptable when it describes a certain set of properties that
are observable within given space and time scales. Of course, the wider the range of applicability
of the model, the better it is. In this respect, classical Hamiltonian dynamics is no exception.
It constitutes a tremendously effective microscopic model for a vast variety of non-dissipative
phenomena, but dissipation makes its use problematic, cf. recent investigations on kinetic theory [17,18].
Analogously, models derived within the framework of NEMD, such as Gaussian thermostatted
dynamics, or Nosé–Hoover thermostatted dynamics can be accepted as valid models of certain
phenomena. The question is how many aspects of a given phenomenon are properly described by
NEMD models. As generally true in physics, interesting results and relations can be derived in
uncharted territories, but only experience can eventually confirm or refute their validity.
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As a matter of fact, NEMD has become popular for its effectiveness in computing transport
coefficients, such as the viscosity of a fluid [6]. It was also realized that such coefficients can be
obtained from dynamical systems properties such as the sum of Lyapunov exponents or, under
special conditions, just from the sum of the largest and of the smallest exponent [6]. In turn, −Λ,
the opposite of the phase space volumes variation rate Λ, which turns out to be proportional to the
thermostatting (fictitious or synthetic) term may also be proportional to the entropy production σ

when thermodynamics applies, see e.g., Ref. [19]. (A similar idea had previously been independently
investigated by Andrej, who followed a different approach [20]). This idea became very popular
when Evans, Cohen and Morriss applied a representation of SRB measures to the fluctuations of Λ
in a Gaussian isoenergetic shearing system [21], as in that case such a quantity equals the entropy
production, when local thermodynamic equilibrium (LTE) holds. That paper derived and tested
the Fluctuation Relation (FR), one of the rare exact relations for nonequilibrium thermodynamics
based on microscopic deterministic dynamics. For a time reversal invariant model of shearing fluids,
the FR states that positive values of the energy dissipation, are exponentially more probable than their
opposite. This was interpreted as an explanation of the second law of thermodynamics, and motivated
a flurry of activity. Moreover, it led various authors to identify the entropy production with the phase
space contraction [22,23].

Although Λ is relatively easy to handle in dynamical systems theory, it was pointed out that its
identification with σ is only justified in a limited set of cases [24,25]. Furthermore, in time dependent
settings and in presence of fluctuations, the connection of Λ with physically measurable properties
results rather loose. It was then shown that the physically relevant quantity in the cases described by
NEMD is the so called Dissipation Function Ω, which preserves the meaning of energy dissipation
rate even when LTE is violated, and thermodynamic quantities such as σ do not exist. Only in a few
cases Ω equals −Λ, although steady state averages of Ω and −Λ may be simply related to each other.

Later Ω became the basis for a general response theory, in which it plays a role as fundamental
for nonequilibrium states as thermodynamic potentials do for equilibrium states. It can be used to
solve in terms of physically relevant quantities the Liouville equation and, consequently, to investigate
the exact average response of the observables of ensembles of systems. Furthermore, Ω can be used to
provide conditions for the evolution of single systems, [26,27]. (This should be contrasted with the fact
that almost invariably response of systems to perturbations is given in terms of ensembles, and that
a comparatively limited amount of works have tackled response beyond its linear approximations).
Most importantly, these results are expressed in terms of a physically measurable quantity, rather than
in terms of an abstract phase space quantity.

Unfortunately, it is rather complicated to thoroughly investigate the properties of the dissipation
function in realistic particle models. Therefore, we consider mathematically amenable dynamical
systems, even if their physical relevance may be limited, as often and successfully done in statistical
physics, with the purpose of illustrating aspects of the relation between dynamics and thermodynamics;
think for example of Helmoltz’s celebrated theorem [28]. Recently, Qian, Wang and Yi have also
followed this route, scrutinizing a number of interesting examples and investigating them in terms of
the phase space contraction rate −Λ [29]. The result is a set of intriguing relations between different
dynamical quantities and formal thermodynamic quantities. In consideration of the fact that small
systems, hence non-thermodynamic fluctuating quantities, as well as time dependent situations are
ever more relevant in science and technology, we are going to perform a similar analysis within the
dissipation function formalism.

This paper is organized as follows. Section 2 summarizes the theory of the Dissipation Function,
also analyzing exactly solvable examples and numerical simulations. Section 3 compares linear
Green–Kubo and exact response. Section 4 follows in part Ref. [29], using Ω rather than Λ. The two
approaches appear as largely equivalent, since they both arise from the solution of the Liouville
equation. Section 5 explicitly solves the cases of simple attractors, and of small dissipation, in the
sense of small Λ. Section 6 discusses with examples the conditions under which the exact response
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theory based on Ω holds, showing that Ω has to be continuous at least, and that the initial phase
space probability density f0 has to be positive in all the space that can be explored by the dynamics.
This condition, called ergodic consistency [30] is reminiscent, but weaker than the requirement
that initial and asymptotic measure be absolutely continuous with respect to each other, also called
equivalence [31]. If that is not the case, modifications to the response formulae are required [32].

Finally, Section 7 summarises our work, highlighting two points in particular: investigating
simple systems allows us to understand properties of Ω that are not immediately evident in realistic
particle systems; on the other hand we propose a kind of thermodynamic formalism for the analysis
of dynamical systems, cf. Ref. [33], that is based on the language of nonequilibrium, rather than of
equilibrium, statistical mechanics. Section 7 also stresses the role of Ω as the energy dissipation, in the
case of interacting particle systems.

Remark: one of the anonymous referees pointed out that the scope of our investigation can be
substantially extended, because: “most quantum transport effects could be recast into a classical simulation
picture of nonlocal collisions”, cf. [34,35].

2. The Dissipation Function

Consider a system whose “microscopic” state is described by a dynamical system

ẋ = V(x) ; x ∈ M ⊂ Rn ; M = phase space (1)

Let (1) generate a flow onM, i.e., a map St :M→M, such that St(x), t ∈ R is the solution of
(1) at time t with initial condition x. Further properties ofM and V(x) will be specified when needed.
Let µ0 be a probability measure absolutely continuous w.r.t. the Lebesgue measure dx, and denote by
f0(x) its density function, i.e., dµ0(x) = f0(x)dx. A measure µ is called invariant if µ(S−tE) = µ(E)
for any measurable set E ⊂M and for all t ∈ R. If µ0 is not invariant, it evolves under the dynamics,
so that at time t it is expressed by µt(E) = µ0(S−tE). Provided the flow is sufficiently smooth, µt is
absolutely continuous, and has density ft(x) that satisfies [27]:

∂ ft

∂t
(x) = ft(x)Ω ft(x), (2)

where Ω ft(x) is the dissipation function, defined by:

Ω ft(x) := − [Λ(x) + V(x) · ∇ ln ft(x)] . (3)

and
Λ(x) := divV(x), (4)

denotes the phase space variation rate. Its negative, −Λ(x), is called phase space contraction rate. In
the case the dynamical systems represents an equilibrium system, with equilibrium distribution µ0,
so that ft(x) ≡ f0(x), the dissipation function identically vanishes, Ω f0(x) ≡ 0. It is obviously true
also the converse: if Ω f0(x) ≡ 0 then f0(x) is an invariant density. In the general case, the solution of
(2), is given by [27]:

ft(x) = exp
{

Ω f0
−t,0(x)

}
f0(x), (5)

where, for every phase function O we use the notation

Or,s(x) =
∫ s

r
O (Sτx) dτ hence Ω f0

−t,0(x) =
∫ 0

−t
Ω f0(Sτx)dτ. (6)

Given any observable O : M → R, we define its ensemble average according to the measure
dµt(x) = ft(x)dx as

〈O〉t =
∫
M
O(x) ft(x)dx . (7)
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Under suitable conditions, discussed in Section 6, this average can be computed using the
dissipation function as follows [27]:

〈O〉t = 〈O〉0 +
∫ t

0

〈
(O ◦ Sτ) ·Ω f0

〉
0

dτ . (8)

Equation (8) gives the response of an equilibrium system, characterized by the distribution µ0,
invariant for the dynamics ẋ = V0(x), which at time 0 is perturbed so that its dynamics becomes
Equation (1). The measure µ0 is not invariant under the new dynamics, hence it evolves together with
the averages representing the observables. At time t the initial measure has turned into µt, and the
initial average 〈O〉0 into 〈O〉t.

In the long time limit, the response may be given by a non equilibrium invariant distribution.
As (8) is exact, the existence of such an asymptotic average is equivalent, as a necessary and sufficient
condition called ΩT-mixing, to the convergence of the following limit:

lim
t→∞

∫ t

0

〈
(O ◦ Sτ) ·Ω f0

〉
0

dτ = LO ∈ R . (9)

for any observable O. A sufficient condition for the existence of LO is [26]:〈
(O ◦ St) Ω f0

〉
0
= o(t−1), (10)

A further useful asymptotic property is obtained by considering two observablesO andQ. In this
case, we say that the system is T-mixing [26] if

lim
t→∞

[
〈
(O ◦ St)Q

〉
0 −

〈
(O ◦ St)

〉
0 〈Q〉0] = 0. (11)

We observe that setting Q = Ω f0 in (11) we obtain a weak form of ΩT-mixing, namely

lim
t→∞

〈(
O ◦ St) Ω f0

〉
0
= 0, (12)

given that one has, cf. Section 6 and [27]: 〈
Ω f0

〉
0
= 0 . (13)

Obviously, T-mixing implies weak ΩT-mixing. We observe that these properties may hold on a
specific set of observables for a given f0 but not for other initial distributions.

A fundamental difference between T-mixing and the mixing property of standard ergodic theory
is that T-mixing concerns a the decay of correlations w.r.t. the initial state µ0, hence it may properly
describe the irreversible relaxation of a given system to a stationary state. Mixing, instead, corresponds
to a decay of correlations within a given steady state, since it refers to an invariant measure [5]. We refer
to Refs. [5,27] for a broader discussion of these issues.

2.1. Examples

The physical meaning of the Dissipation Function can be appreciated by considering some special
choices of vector field V, and of initial probability density f0. First, consider the NEMD systems
for which Ω has been introduced, to see that in such cases it is directly related to the instantaneous
dissipative flux. The simplest of these systems have the following equations of motion:

q̇i = pi/m + Ci(Γ) · Fe , i = 1, ..., N

ṗi = Fi + Di(Γ) · Fe − αpi (14)
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where Γ = (q, p) collectively represents all coordinates q and momenta p of the N particles, and Fe is
the external driving field, coupled to the particles via the “charges” Ci(Γ) and Di(Γ). The term α is a
Lagrange multiplier meant to implement some constraint, so that the system reaches a steady state
despite the driving field. In the NEMD literature α is said to implement a deterministic, time reversible
thermostat [6]. If this thermostat is set to 0, one obtains the adiabatic equations of motion:

q̇i = pi/m + Ci(Γ) · Fe , i = 1, ..., N

ṗi = Fi + Di(Γ) · Fe (15)

which imply a continuous growth of energy. Then, one must assume that the support of f0 is densely
explored by a single equilibrium trajectory [30].

Denoting by Φ the internal interaction potential energy of the N particles, the dissipative flux, J,
is obtained from the time derivative of the internal energy

H0 =
N

∑
i=1

pi · pi
2m

+ Φ(q)

under the dynamics (15), which represents how much energy has to be dissipated in order to keep the
steady state. The result is:

Ḣad
0 =

N

∑
i=1

(pi
m
·Di − Fi · Ci

)
· Fe ≡ −JV · Fe (16)

where V is the volume of the system.
Consider a few common examples.

2.1.1. Microcanonical Ensemble

For the isoenergetic dynamics, in which the internal energy is conserved, i.e., H0 is fixed and
Ḣ0 = 0, the equilibrium ensemble f0 is microcanonical. Therefore, for an equilibrium Hamiltonian N
particle system in d dimensions, one has [30]:

α(Γ) = − J(Γ)V · Fe

2K(Γ)
(17)

where K is the kinetic energy of the N particles, while

Λ(Γ) =
N

∑
i=1

(
∂Ci(Γ)

∂qi
+

∂Di(Γ)
∂pi

)
· Fe − dNα(Γ) + O

(
1
N

)
= −dNα(Γ) + O

(
1
N

)
(18)

as in the original paper [36]. Then, one may write:

Ω(0)
t,t+τ(Γ) = ln

f0(StΓ)
f0(St+τΓ)

−Λt,t+τ(Γ) = −Λt,t+τ(Γ)

As even the O(1/N) correction in Equation (18) is proportional to α, one observes that in this case
both Ω and Λ are proportional to the rate of energy dissipation (17).

2.1.2. Gaussian Isokinetic System

In this case the kinetic energy K is fixed, and one may formally write K = (dN − d− 1)kBT =

(dN − d− 1)/β, if also the center of mass is fixed, to prevent contributions from drift, so that:

α(Γ) = − (Ḣ0(Γ) + J(Γ)V · Fe)β

dN − d− 1
(19)
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In turn, Λ is still expressed by (18), with a different O(1/N) term. In this case, f0 writes:

f0(Γ) =
1
Q

e−βH0 δ(K(Γ)− K0)

where Q is the normalization constant. The result for the dissipation function is:

Ω0,τ(Γ) =
β

τ

∫ τ

0
Ḣ0(SsΓ)ds−Λ0,τ(Γ) = −(J · Fe)0,τVβ + O

(
1
N

)
(20)

where the bar over the observables denotes time average. Combining this with Equations (18) and (19),
one obtains

σ(Γ) = −J(Γ) · FeVβ + O
(

1
N

)
. (21)

where σ is the entropy production, if local thermodynamic equilibrium is verified. We observe that
−Λ and Ω differ by a term proportional to the fluctuating Ḣ. If these fluctuations average to zero,
the averages of −Λ and Ω coincide, however, depending on how the respective fluctuations are
distributed, various relations may apply to one and not to the other. For instance, the steady state
fluctuation relation may hold for Ω but not for Λ, [37,38].

2.1.3. Nosé-Hoover Thermostat

In this case, there is one extra equation to be added to the equations of motion (14):

ζ̇ =
1
τ
(2K(Γ)− dNkBT) (22)

where τ sets the relaxation time scale of the thermostat, and T is the imposed average temperature.
Then, we may write:

ζ(Γ) = −
(

Ḣ0(Γ) +
J(Γ)V · Fe

2K(Γ)

)
(23)

and for unperturbed Hamiltonian dynamics, one may write:

Λ(Γ) = ∇ · Γ̇ +
∂ζ̇

∂ζ
=− dNζ . (24)

In this case, f0 is given by

f0(Γ) =
1
M

e−β(H0+
1
2 Qζ2)

where M is the normalization. It follows that:

f0(Γ)
f0(SτΓ)

= eβ
∫ τ

0 (Ḣ0(SsΓ)+Qζ(SsΓ)ζ̇(SsΓ))ds

which implies:
Ω(Γ) = −J(Γ) · FeVβ . (25)

We conclude that for equilibrium Hamiltonian dynamics, the driven nonequilibrium evolution
is characterized by the dissipation function, which equals the entropy production, in case local
thermodynamic equilibrium holds. Additionally, in this case −Λ and Ω differ by a term proportional
to Ḣ0, and the same remarks concluding the previous subsection equally apply.

2.1.4. Canonical Ensemble for Generic Dynamics

The canonical ensemble describes the equilibrium state of a Hamiltonian particle systems in
contact with a heat bath at temperature kBT = β−1, with which it can exchange energy but not
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matter. Here, we consider a general case in which the vector field V(x) is not necessarily Hamiltonian,
but there still is an energy function H. In addition, we assume that the initial distribution has the same
form of the canonical Gibbs density:

f0(x) =
e−βH(x)

Zβ
, (26)

Zβ being the normalization constant. Then, the Dissipation Function reads:

Ω f0(x) = βḢ(x)−Λ(x), (27)

where we use the notation Ḣ(x) = V(x) · ∇H(x). The Dissipation Function Ω f0 is not necessarily zero,
in this case, and the density evolves as follows, cf. (5):

ft(x) = f0(x) exp
{

β(H(x)− H(S−tx))−Λ−t,0(x)
}
=

exp
{
−βH(S−tx)

}
Zt(x)

.

where: Z−1
t (x) = exp{−Λ−t,0(x)}Z−1

β . In the case of Hamiltonian dynamics, x = (q, p) ∈ R2n,
V(x) = J∇H(x) where J is a symplectic matrix, we have Ḣ(x) = V(x) · ∇H(x) ≡ 0 and Λ(x) ≡ 0.
Thus, in the equilibrium canonical ensemble, where (26) is invariant and the phase space volume is
conserved, the dissipation function is identically zero Ω f0(x) ≡ 0.

The extended canonical equilibrium distribution of the Nosé–Hoover thermostatted system can
be framed in this way: its dynamics includes a degree of freedom ζ that represents the heat bath,
and system plus bath constitute a canonical equilibrium state. For instance, consider a system made
of N identical noninteracting one-dimensional oscillators in contact with a bath at temperature T,
implemented by a single Nosé–Hoover thermostat. This thermostat introduces an indirect coupling
among the oscillators, which however does not represent a proper interaction leading to LTE. We
illustrate these facts considering both linear and nonlinear oscillators, i.e., potential energies U(q) =
−ω2

0qα+1/(α + 1), with α = 1 and α = 3. The equations of motion are
q̇i =

pi
m

,

ṗi = −m ω2
0 qα

i − ζ pi, i = 1, . . . , N,

ζ̇ = 1
τ

(
2K(p)

T − 1
)

,

(28)

where T is the target kinetic energy per particle,

K(p) =
1

2mN

N

∑
i=1

p2
i

is the kinetic energy per particle, and τ the relaxation time. In order to elucidate the
non-thermodynamic nature of the model (28), we simulated a system of N = 30 oscillators in the
linear case, α = 1, with m = 1, ω2

0 = 2, τ = 2 and T = 100. As expected because of the improper
particles coupling expressed by ζ, we observe no equipartition; cf. Figure 1, which shows that the time
average Ki of the kinetic energies of single particles substantially change with their label i, while the
time average K of the total is equal to T within numerical errors. The same happens also with α = 3.

To promote LTE in this system, we introduce nearest neighbour interactions as:

ṗi = −m ω2
0 qα

i + k(qi−1 − 2qi + qi+1)− ζ pi, i = 1, . . . , N, (29)

in place of the second of (28), taking k > 0 as the coupling strength, and q0 = qn, qn+1 = q0 as
boundary conditions. Unlike the previous non-interacting model, the linear (α = 1) and nonlinear
(α = 3) cases behave in a different way. While still absent in the linear case, equipartition is established
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with the cubic local field. Figure 2 shows the time averages 1
J ∑J

j=1 p2
i (tj) of the kinetic energies of

some particles sampled form a long trajectory of the coupled system with N = 10. We consider the
cases with k = 1, 2, 5 in order to make evident the role of the coupling. These simulations show
that increasing the particles coupling k speeds up the equipartition process. Changing the oscillators
frequency, instead, has no effect on equipartition, cf. Figure 1.

Now, focusing on the energy H0 = 1
2m ∑N

i=1 p2
i +

m
2 ω2

0 ∑N
i=1 q2

i of the system of oscillators alone,
i.e., without the bath, and taking f0 as

f0(Γ) =
1

Z0
e−βH0(Γ) (30)

in order to define a kind of reduced dissipation function for the dynamics with the bath, one obtains:

Ω̂ f0
0 = ζ

(
N − β

m

N

∑
i=1

p2
i

)
= Nζ

(
1− 2T−1K(p)

)
= −Θ2Nζζ̇ = −NΘ2 d

dt

(
ζ2

2

)
,

which is not identically zero even in the equilibrium state. There is no immediate physical interpretation
of the quantity Ω̂ f0

0 , but it clearly shows that, in this framework, the thermostat has to be included to
properly speak of equilibrium.

, , , , , , ,

, , , , , , , ,

，

Figure 1. System of linear oscillators, α = 1, subjected to a Nosé–Hoover thermostat, (28), with N = 30,
m = 1, ω2

0 = 2, τ = 2 and T = 100. Time average of kinetic energy of oscillators i = 4, 5, 9, 10
versus time. The dependence of the asymptotic values on i demonstrate the violation of equipartition.
The dashed vertical line marks the instant of time at which the constant ω2

0 is changed to ω2
0 + δω2

0 to
check whether the oscillator “temperature” also changes. It appears that it does not.
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Figure 2. System with N = 10 coupled oscillators, with α = 3, m = 1, ω2
0 = 1. The temperature forced

by the Nosé–Hoover thermostat is T = 20, and the response time τ = 1. The plots represent the time
averages 1

J ∑J
j=1 p2

i (tj), of the kinetic energies of three particles (i = 1, 4, 8) sampled at tj = 103 · j,
for increasing J. In the left panel, where J = 500, the outer continuous (red online) lines correspond to
the coupling parameter k = 1, while the inner dotted lines (blue online) correspond to k = 2. In the right
panel the focus is on a shorter interval, J = 150, where the relaxation phase can be better appreciated.
In this case the outer lines (red online) correspond to k = 1, the middle lines (blue online) correspond
to k = 2, the inner line (black) correspond to k = 5. Larger coupling enhances the convergence rate
towards equipartition, as expected.

2.1.5. Hamiltonian and Gradient Vector Field with Canonical and Gaussian f0

In the case of Hamiltonian dynamics perturbed by a gradient term [39]:

V(x) = J∇H(x)−∇L(x), (31)

where the unperturbed equilibrium density should be chosen consistently with the constraints that
remain in place when the perturbation is switched on, in order to implement the above-mentioned
ergodic consistency condition. For instance, if the system temperature remains fixed, one may take the
canonical distribution, f0(x) = e−βH(x)/Z, that implies:

Ω f0(x) = ∆L(x)− β∇L(x) · ∇H(x) ,

∆L = −Λ being the Laplacian of L. One observes that Ω f0 only depends on L if ∇L is orthogonal to
∇H. If ∇L is in addition a Hamiltonian perturbation, the perturbed steady state remains equal to the
unperturbed equilibrium. Now, taking an initial uncorrelated Gaussian distribution:

f0(x) =
n

∏
i=1

1√
2πσi

e
− (xi−µi)

2

2σ2
i (32)

one obtains:

Ω f0 = −Λ(x) +
n

∑
i=1

Vi(x)
xi − µi

σ2
i

= ∆L(x) +
n

∑
i=1

(
N

∑
j=i

Jij
∂H(x)

∂xj
− ∂L(x)

∂xi

)
xi − µi

σ2
i

, (33)

Jij being the entries of J. Again, a Hamiltonian perturbation such that

N

∑
j=i

Jij
∂H(x)

∂xj
− ∂L(x)

∂xi
= 0 , ∀i = 1, ..., N (34)
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implies that the Gaussian (32) is invariant under the dynamics. These two examples constitute
elementary warnings against too quick thermodynamic interpretations of generic particle systems,
much as it may be interesting in certain circumstances [40].

2.2. The Dissipation Function and the Phase Space Contraction Rate

The Dissipation Function satisfies the Non Equilibrium Partition identity [27]:〈
exp

(
−Ω f0

−t,0

)〉
0
= 1 (35)

Using Jensen inequality, we can also write:

exp
[
−
〈

Ω f0
−t,0

〉
0

]
≤ 1 (36)

obtaining: 〈
Ω f0
−t,0

〉
0
≥ 0

in accordance with both our physical intuition on the dissipation of energy in macroscopic systems
and with the interpretation of this quantity as a Kullback–Leibler divergence between the initial and
the evolved probability distribution in phase space [27].

One motivation to derive relations like these, see e.g., Refs. [27,30] where various others are
derived, resides in the fact that they are only based on the dynamics and on the initial probability
distribution, whatever phenomenon they represent, hence they hold very generally. At the same time,
this also means that blind thermodynamic interpretations are to be avoided, although no difficulty
arises from a purely dynamical systems standpoint.

The distinction between the dissipation function and the phase space contraction rate−Λ becomes
particularly evident when considering particle systems. In fact, the steady state phase space average of
−Λ equals the steady state entropy production of certain NEMD models [6,19], and it can be expressed
as:

ep = −
∫
M

Λ(x)dµ(x), (37)

µ being the corresponding invariant measure, and ep the steady state entropy production or the energy
dissipation. On these grounds, Gallavotti and Cohen proposed −Λ as the steady state definition
of entropy production tout court, [41], followed by Ruelle [23]. Earlier, a similar idea had been
contemplated by Andrey [20], who referred to the variation in time of the Gibbs entropy. The Gibbs
entropy, however, is not directly related, in general, to the entropy of a nonequilbrium system [42–44].
(Note: this statement does not concern the formally analogous definition of entropy common in the
theory of stochastic processes, since they are not defined in phase space but in the space of observables.)
Therefore, −Λ cannot be directly related, in general, to the entropy production, when considering time
dependent states or steady state fluctuations, cf. Section 2.1 and Refs. [27,30,38].

On the other hand, it is interesting to investigate both −Λ and Ω as properties of
dynamical systems, in a kind of extension of the thermodynamic formalism [33], that refers the
non-equilibrium language.

Given an initial absolutely continuous probability measure dµ0(x) = f0(x)dx on the phase space
M, and letting µt be the evolution of µ0 at time t, the corresponding average of the dissipation
function is:

〈Ω f0〉t =
∫
M

Ω f0dµt = −〈Λ〉t − 〈V · ∇ ln f0〉t (38)

which in the case of a uniform density f0 yields:

〈Ω f0〉t = −〈Λ〉t (39)
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In this case, even Ω f0 does not need to represent any entropy production rate: the equilibrium
dynamics would have at least to be phase space volumes preserving, for Ω f0 to be related to the
dissipation of energy [30]. Using Equation (8) and the fact that 〈Ω f0〉0 = 0, we may also write:

− 〈Λ〉t = −
∫ t

0

〈
Ω f0 (Λ ◦ Sτ)

〉
0

dτ (40)

In the case of a generic probability density f0, the exact response formula (8) and (40) yield:〈(
−Λ−Ω f0

)
◦ St

〉
0
= −〈Λ〉t −

〈
Ω f0

〉
t
= 〈V · ∇ ln f0〉0 +

∫ t

0

〈
Ω f0 [(V · ∇ ln f0) ◦ Sτ ]

〉
0

dτ (41)

which quantifies the difference between the mean phase space contraction rate and the energy
dissipation in time. In the case ΩT-mixing, Equation (9), holds, t can be replaced by ∞ in (41),
obtaining the asymptotic difference between the two quantities:

lim
t→∞

[
〈−Λ〉t −

〈
Ω f0

〉
t

]
= 〈V · ∇ ln f0〉0 +

∫ ∞

0

〈
Ω f0 [(V · ∇ ln f0) ◦ Sτ ]

〉
0

dτ . (42)

From the definition of dissipation function Ω f0 , i.e., Equation (3) with t = 0, one also observes that(
−Λ−Ω f0

)
◦ Ss =

d
dt

ln f0 ◦ St
∣∣∣∣
t=s

(43)

Therefore, the time integrated difference of −Λ and Ω f0 merely amounts to a boundary term:

∫ t

0

(
−Λ−Ω f0

)
(Ssx)ds = ln f0(x)− ln f0(Stx) (44)

which, however, may bear noticeably affect the statistic of fluctuations: the distribution of such
boundary terms may, for instance, imply the validity of the FR for Ω f0 and not for −Λ, cf. [37,38,45].

3. Exact Response and GK Formalism

In this section, we compare the classical linear response theory, or Green–Kubo formalism, with the
exact response represented by Equation (8). Consider a perturbed vector field

Gε(x) = G0(x) + ε Gp(x), (45)

where ε may or may not be small. Then, the Dissipation Function can be written as:

Ω f0
Gε

(x) = Ω f0
G0

(x) + ε Ω f0
Gp

(x). (46)

and the evolution of a probability density f0(x) is given by

ft(x; ε) = f0(x) exp
[∫ 0

−t
dτ Ω f0

G0
(Sτ

ε x)
]

exp
[

ε
∫ 0

−t
dτ Ω f0

Gp
(Sτ

ε x)
]

. (47)

where St
ε denotes the flow of the vector field Gε(x). Thus, the exact response equation (8) reads

〈O〉t;ε :=
∫
O(x) ft(x; ε)dx

= 〈O〉0 +
∫ t

0

〈
(O ◦ Sτ

ε x) ·Ω f0
G0

(x)
〉

0
dτ + ε

∫ t

0

〈
(O ◦ Sτ

ε x) ·Ω f0
Gp

(x)
〉

0
dτ.

(48)
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In case G0 derives from a Hamiltonian H0, the unperturbed dynamics preserves phase space
volumes, and one can write:

Ω f0
G0

= −G0 · ∇ ln f0 = − 1
f0
[ f0, H0] =

1
f0
L0 f0 (49)

where L0 = [H0, ·] is the Liouvillean corresponding to H0 and [·, ·] denotes the associated Poisson
brackets. Then, we may define the perturbation operator Lp as:

Ω f0
Gp

= −Gp · ∇ ln f0 = − 1
f0
[ f0, Hp] =

1
f0
Lp f0 (50)

so that the (total) dissipation function can be written as:

Ω f0
Gε

=
1
f0
(L0 + εLp) f0 , (51)

Substituting (51) in (48) yields:

〈O〉t;ε = 〈O〉0 +
∫ t

0

〈
(O(Sτ

ε x)
1

f0(x)
L0 f0(x)

〉
0

dτ + ε
∫ t

0

〈
(O(Sτ

ε x)
1

f0(x)
Lp f0(x)

〉
0

dτ

= 〈O〉0 +
∫ t

0
dτ

∫
M

dxO(Sτ
ε x)L0 f0(x) + ε

∫ t

0
dτ

∫
M

dxO(Sτ
ε x)Lp f0(x)

(52)

and in case the initial distribution f0(x) is the equilibrium state of the unperturbed system, so that
L0 f0 ≡ 0, one obtains:

〈O〉t;ε = 〈O〉0 + ε
∫ t

0
dτ
∫
M

dxO(Sτ
ε x)Lp f0(x) . (53)

Provided the response Equation (8) applies, the formulae (52) and (53) for the evolution of phase
space averages are both exact: there is no assumption on the size of ε and no approximation has
been made. An approximate formula can be obtained in the small-ε limit, starting from Equation (47),
by truncating to first order the exponential expansion, and recalling that Ω f0

G0
(x) ≡ 0. This yields:

f̃t(x; ε) := f0(x) + ε f0(x)
∫ 0

−t
dτ Ω f0

Gp
(Sτ

ε x) = f0(x) + ε f0(x)
∫ t

0
dτ Ω f0

Gp
(S−τ

ε x) . (54)

where the tilde symbol stresses that this is but an approximation of the probability density at time t,
which is not guaranteed to be a probability density itself. Nevertheless, multiplying (54) by O and
integrating over the phase space, one gets:

〈O〉∼t;ε :=
∫
M
O(x) f̃t(x; ε)dx = 〈O〉0 + ε

∫ t

0
dτ
〈
O(x)Ω f0

Gp
(S−τ

ε x)
〉

0
(55)

In order to keep the truncation error bounded in time, one may assume that the time integral
exists. For instance,

〈
O(x)Ω f0

Gp
(S−t

ε x)
〉

0
maybe of order o(t−1), which is reminiscent of the ΩT-mixing

condition. The difference between the exact response formula, (48), and the approximate one, (55),
amounts to:

〈O〉t;ε − 〈O〉
∼
t;ε = ε

∫ t

0
dτ
{〈
O(Sτ

ε x) ·Ω f0
Gp

(x)
〉

0
−
〈
O(x)Ω f0

Gp
(S−τ

ε x)
〉

0

}
, (56)

that, in general, does not vanish, and may grow large in time.
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May the difference of responses Equation (56) become negligible, in some limit? Applying the
transformation S−τ

ε x = y to the second integrand of (56), one obtains:〈
O(x)Ω f0

Gp
(S−τ

ε x)
〉

0
=
∫
M
O(x)Ω f0

Gp
(S−τ

ε x) f0(x)dx =
∫
M
O(Sτ

ε y)Ω f0
Gp

(y) f0(Sτ
ε y)

∣∣JSτ
ε
(y)
∣∣ dy , (57)

where
∣∣JSτ

ε
(y)
∣∣ = 1 since we are dealing with Hamiltonian dynamics–being

∣∣JSτ
ε
(y)
∣∣ the Jacobian

determinant. Thus, Equation (56) can be rewritten as:

〈O〉t;ε − 〈O〉
∼
t;ε = ε

∫ t

0
dτ
∫
M
O(Sτ

ε x)Ω f0
Gp

(x) [ f0(x)− f0(Sτ
ε x)] dx (58)

For every finite t, this quantity vanishes in the ε→ 0 limit but, unlike the case of the Green–Kubo
theory of linear response, the flow used in (58) is the perturbed one, Sτ

ε , not the unperturbed Sτ
0 .

As a matter of fact, the success of the Green–Kubo theory is based on its ability to compute the
response by averaging with respect to the equilibrium ensemble for the unperturbed dynamics, and
by simulating such an unperturbed dynamics [46]. The procedure, illustrated in many textbooks,
including [46,47], uses the canonical ensemble for the unperturbed Hamiltonian H0, Z−1

0 exp{−βH0},
and assumes that the parameter ε is the magnitude of and external force Fe. Within the framework
of NEMD and Equation (14), one starts from the unthermostatted, α = 0 situation. Without loss
of generality, the external driving Fe can be written as a scalar quantity, since its direction can be
embedded in the coefficients Ci and Di. Then, the unthermostatted perturbed equations are derived
from a Hamiltonian, H = H0 + Hp. Writing x = (q, p) to distinguish configuration from momenta,
Gp is obtained deriving Hp:

CiFe =
∂Hp

∂pi
; DiFe = −

∂Hp

∂qi
(59)

and the following holds:

0 = Λ =
∂q̇
∂q

+
∂ṗ
∂p

=
N

∑
i=1

{
∂Ci
∂qi

+
∂Di
∂pi

}
Fe , hence

N

∑
i=1

{
∂Ci
∂qi

+
∂Di
∂pi

}
= 0 . (60)

In this case, one has:

Ω f0
Gp

= −Gp · ∇ ln f0 =
1
f0

∂ f0

∂H0
Gp · ∇H0 = −β

N

∑
i=1

[
Ci

˙∂H0

∂qi
+ Di

˙∂H0

∂pi

]
Fe = −βV JFe (61)

which equals Equation (16), and shows again that Ω f0
Gε

, not −Λ, represents that energy dissipation
rate. Now, following the Green–Kubo approach [46,47], which rests on the fact that[

H0, Hp
]
=
[
H, Hp

]
, (62)

one may use the unperturbed dynamics, and eventually write:

〈O〉∼t;Fe
= 〈O〉0 − βFe

∫ t
0 dτ

〈(
O ◦ St−τ

0
)

∑N
i=1

[
Ci

˙∂H0
∂qi

+ Di
˙∂H0

∂pi

]〉
0

(63)

= 〈O〉0 − βVFe
∫ t

0 dτ
〈

J
(
O ◦ St−τ

0
)〉

0 (64)

to first order in ε = Fe, for a generic observable O. The function R(t) =
〈

J
(
O ◦ St

0
)〉

0 is called the
response function. In particular, the difference in (56) between exact and linear response can be
expressed as:

〈O〉t;ε − 〈O〉
∼
t;ε = ε

∫ t

0
dτ
〈

Ω f0
Gp

[
O ◦ Sτ

ε −O ◦ St−τ
0
]〉

0
(65)
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That the full dynamics Sτ
ε can be replaced by the equilibrium dynamics Sτ

0 is a far from trivial fact.
In fact, van Kampen raised one of the best known objections to this theory, based on the observation
that particles dynamics are typically chaotic [48]. He maintained that while there is no doubt that
linear response works in practice, the derivations a la Green and Kubo do not explain why. He stated
that: “Linear response theory does provide expressions for the phenomenological coefficients, but I assert that it
arrives at these expressions by a mathematical exercise, rather than by describing the actual mechanism which
is responsible for the response” [48]. It fact, to justify the Green–Kubo calculation, one must invoke
non trivial ingredients, such as the large value of N, which makes the perturbation per degree of
freedom negligible, and the mingling of contrasting contributions operated by chaos, see e.g., [45,49,50].
As such conditions actually hold in macroscopic particles systems under quite variegated conditions,
the Green–Kubo reasoning explains the success of linear response.

3.1. Exact Response and GK Formalism: Example 1

Consider a particle in a two-dimensional space, whose unperturbed Hamiltonian is H0 =

(p2
x + p2

y)/2. Take the canonical ensemble f0 = Z−1
0 exp(−βH0) as the initial distribution. Introduce

an external field with Hamiltonian Hp = −Eqx, as a perturbation to obtain H = H0 + Hp.
The corresponding equations of motion are:

q̇x = px,

q̇y = py,

ṗx = E,

ṗy = 0,

(66)

with the dissipation function
Ω f0

E = Ω f0
0 + Ω f0

p = βEpx,

in which the momentum in x-direction plays the role of internal dissipative flux with E the
corresponding thermodynamic force, i.e., J = −px and Fe = E. Note that the present example
is an instance of the adiabatic system (15), in which C1 = C2 = 0 and D1 = 1, D2 = 0, see (59). Sticking
to the notation of Section 2.1 in the following we denote by Γ = (qx, qy, px, py) the phase space points
and observe that the solution of (66) with initial condition Γ gives px(Γ, t) = px + Et and py(Γ, t) = py.

Then, thanks to Equation (5), we compute the time evolution of the probability distribution
function ft(Γ) starting from the integrated dissipation function:

Ω f0
−t,0(Γ) = βE

∫ 0

−t
px(Γ, s)ds = βEpxt− βE2 t2

2
,

obtaining

ft(Γ) = f0(Γ)e
Ω

f0
−t,0(Γ) = f0(Γ) exp

[
βEpxt− βE2 t2

2

]
.

Following the discussion in Section 3, we expand the exponential in the limit of small external
field E, and we neglect the terms of order higher than linear in E, to obtain the linear response for the
evolving density:

f̃t(Γ) = f0(Γ)(1 + βEpxt).

The difference between exact and linear response can be further clarified by looking at the
Liouville equation for ft(Γ) and proceeding à la Green–Kubo. Let us start introducing the Liouville
operator of the perturbed system:

L = L0 + ∆L,
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where L0 = px∂qx + py∂qy corresponds to the unperturbed system and ∆L ≡ Lp = E∂px corresponds
to the perturbation. Splitting the evolving ensemble distribution function as:

ft(Γ) = f0(Γ) + ∆ ft(Γ)

the Liouville equation takes the form:

∂t( f0(Γ) + ∆ ft(Γ)) + (L0 + ∆L)( f0(Γ) + ∆ ft(Γ)) = 0

Recalling that the equilibrium distribution f0(Γ) is invariant under the unperturbed dynamics—so
that (∂t + L0) f0(Γ) = 0—we obtain the evolution equation for the deviation ∆ ft(Γ):

(∂t + L0)∆ ft(Γ) = −∆L f0(Γ)− ∆L∆ ft(Γ).

Then, assuming that ∆L∆ ft(Γ) is negligible w.r.t. the other terms, we arrive at:

(∂t + L0)∆ ft(Γ) = −∆L f0(Γ). (67)

Since ∆L f0(Γ) = E∂px

[
Z0
−1 exp(−βH0)

]
= −βEpx f0(Γ), the Equation (67) can be rewritten as

(∂t + px∂qx + py∂qy)∆ ft(Γ) = βEpx f0(Γ)

where β f0 = −∂ f0/∂H0, E = Fe and px = −J, according to standard notation. The solution to the
evolution equation for the variation of the ensemble distribution function, is given by:

∆ ft(Γ) = −
∫ t

0
dτ exp[−(t− τ)L0]∆L(τ) f0(Γ) = −βE

∫ t

0
dτ exp[−(t− τ)L0](−px) f0(Γ)

= −βFe

∫ t

0
dτ exp[−(t− τ)L0]J(Γ) f0(Γ),

(68)

where we have used the fact that the external perturbation is not time dependent.
Let us now compute the phase space average of an observable O, using ft(Γ) = f0(Γ) + ∆ ft(Γ).

We can write:

〈O〉∼t = 〈O〉0 − βFe

∫ t

0
dτ
∫
M

dΓ f0(Γ)J(Γ) exp[−(t− τ)L0]O(Γ)

= 〈O〉0 + βE
∫ t

0
dτ
∫
M

dΓ f0(Γ)px(O ◦ St−τ
0 (Γ)) = 〈O〉0 +

∫ t

0
dτ
〈
(O ◦ St−τ

0 ) ·Ω f0
E

〉
0

(69)

noting that St
0 is the flow of the unperturbed dynamics. As an example, take O = px, and compute its

time evolving linear response. Since 〈px〉0 = 0 and
〈

p2
x
〉

0 = β−1, we have:

〈px〉∼t =
βE
Z0

∫ t

0
ds
∫

dpye−
β
2 p2

y

∫
dpxe−

β
2 p2

x p2
x = βE

〈
p2

x

〉
0

t = βE
1
β

t = Et (70)

Now, denoting by St
E the flow of the perturbed system, and recalling that px ◦ St

E = px + Et and

Ω f0
E = βEpx, the exact response formula (8) yields:

〈px〉t =
∫ t

0
dτ

∫
M

dΓ f0(Γ)(px ◦ Sτ
E(Γ))Ω

f0
E (Γ) = βE

∫ t

0
dτ

∫
M

dΓ f0(Γ)(p2
x + Epxτ) = βE

〈
p2

x

〉
0

t = Et (71)
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For such an observable, linear and exact response coincide. In general, we have:

〈O〉t − 〈O〉
∼
t =

∫ t

0
ds
〈

Ω f0
E [(O ◦ Sτ

E)− (O ◦ St−τ
0 )]

〉
0

. (72)

For an analytic observable that do not depend on qx and qy, we have:

O(St
EΓ) = O(px + Et, py) = O(px, py) +

+∞

∑
k=1

O(k)(px, py)

k!
(Et)k, (73)

assuming that O = O(px, py) is an analytic function, and denoting by O(k) the k−th partial derivative
of O with respect to px, at fixed py. The difference between the exact and the linear response
would read:

〈O〉t − 〈O〉
∼
t =

∫ t

0
dτ

〈
Ω f0

E (Γ)
+∞

∑
k=1

O(k)(px, py)

k!
(Eτ)k

〉
0

(74)

Depending on the particular functional form of O this quantity may grow rapidly or less rapidly
with t and, as long as O(St

EΓ) exists at all t, this difference at fixed t goes to 0 as E→ 0.

3.2. Exact Response and GK Formalism: Example 2

Let the unperturbed Hamiltonian correspond to a harmonic oscillator H0 = (p2 +ω2q2)/2, and let
the perturbation take the form Hp = −Eq. The equations of motion of H = H0 + Hp are:{

q̇ = p,
ṗ = E−ω2q,

(75)

with flow

St
E

(
q
p

)
=

 (
q− E

ω2

)
cos ω t + p

ω sin ω t + E
ω2

−ω
(

q− E
ω2

)
sin ω t + p cos ω t

 . (76)

The dissipation function with initial distribution f0 = e−βH0 /Z0 is given by:

Ω f0
E = −G · ∇ ln f0 = (p, E−ω2q) · β

(
ω2q
p

)
= βEp (77)

since the vector field is Hamiltonian and Λ vanishes. Moreover, we see that Ω f0
E coincides with the

dissipation function Ω f0
p of the vector filed of Hp, because f0 is the equilibrium distribution of H0.

Thus the exact and the linear response formulas are respectively given by:

〈O〉t = 〈O〉0 +
∫ t

0
ds 〈βEp (O ◦ Ss

E)〉0 (78)

and

〈O〉∼t = 〈O〉0 +
∫ t

0
ds 〈βEp

(
O ◦ St−s

0
)
〉0 . (79)

Consider now O = q. In this case O ◦ Ss
E and O ◦ Ss

0 are given by (76). For E 6= 0 we have:

〈βEp (O ◦ Ss
E)〉0 =

∫ ∫
dq dp

e−β(
p2
2 + ω2

2 q2)

Z0
βEp

[(
q− E

ω2

)
cos ω t +

p
ω

sin ω t +
E

ω2

]

=
βE
ω

sin ω t
∫ +∞

−∞
dq
∫ +∞

−∞
dp

e−β(
p2
2 + ω2

2 q2)

Z0
p2 =

E
ω

sin ω t,

(80)
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since 〈p〉0 =
∫ ∫

dq dp f0(q, p)p = 0, 〈q〉0 =
∫ ∫

dq dp f0(q, p)q = 0 and 〈p2〉0 =
∫ ∫

dq dp f0(q, p)p2 =

β−1. The response formula (78) gives

〈p〉t = 〈p〉0 +
∫ t

0
ds

E
ω

sin ω s =
E

ω2 (1− cos ωt). (81)

Analogously, the unperturbed dynamics, given by E = 0 in (76), yields:

〈βEp
(
O ◦ St−s

0
)
〉0 =

∫ ∫
dq dp

e−β( p2

2 + ω2
2 q2)

Z0
βEp

[
q cos ω (t− s) +

p
ω

sin ω (t− s)
]
=

E
ω

sin ω (t− s), (82)

and from (79)

〈p〉∼t = 〈p〉0 +
∫ t

0
ds

E
ω

sin ω (t− s) =
E

ω2 (1− cos ωt). (83)

This shows that the perturbed and unperturbed responses of the observable O = p coincide.
If we consider the observable O = q p, the situation is different. In the first place,

O ◦ St
E = −ω

(
q− E

ω2

)2 1
2

sin 2ωt + p
(

q− E
ω2

)
cos2 ωt− p

(
q− E

ω2

)
sin2 ωt + p2 1

2ω
sin 2ωt

− E
ω

(
q− E

ω2

)
sin ωt + p

E
ω2 cos ωt ,

(84)

that must be multiplied by p before taking the ensemble averages in (78) and (79). This gives a linear
combination of monomials p, pq, pq2, p2q, p3, whose average with respect to 〈·〉0 vanishes, and a non
vanishing term

p2 E
ω2

[
− cos2 ωt + sin2 ωt + cos ωt

]
Thus, recalling that 〈p2〉0 = β−1, we have:

〈qp〉t = βE
∫ t

0
ds

E
ω2 〈p

2〉0
[
− cos2 ωs + sin2 ωs + cos ωs

]
=

E2

ω3

[
sin ωt +

1
2

sin 2ωt
]

. (85)

On the other hand, from (84) with E = 0, we obtain that p(O ◦ St
0) is a linear combination of

q2 p, qp2, p3. This implies that 〈βEp
(
O ◦ St−s

0
)
〉0 = 0 and, from (79), that 〈qp〉∼t = 0, showing that

the perturbed and unperturbed responses substantially differ in the case of O = q p, unless E is
particularly small.

4. Formal Thermodynamics

Following Qian and collaborators [29], we now obtain various new relations for the dissipation
function. To this end, suppose that the system admits an energy function H :M→ R, H ∈ C1(RN ,R).
Let us introduce the set Γh in phase space, defined as follows:

Γh = {x ∈ RN : H(x) ≤ h}

and its boundary:
∂Γh = {x ∈ RN : H(x) = h}

The set Γh includes all points in phase space whose energy is equal to or lower than the threshold
h, and ∂Γh is its boundary, constituted by the phase points whose energy equals the threshold value.
Introduce the measure of such sets w.r.t. the time evolving probability measure:

µt(h) =
∫

Γh

ft(x) dx
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where ft(x) is a sufficiently well behaved probability density. Then, the function

ft(x)
µt(h)

χh(x) ; χh =

{
1 if x ∈ Γh
0 if x /∈ Γh

(86)

where χh is the characteristic function of Γh, plays the role of a probability density in Γh. Using
Reynolds Transport Theorem plus the regularity of the surface ∂Γh, one finds:

d
dh

µt(h) = µ′t(h) =
∫

∂Γh

ft(x)
dσ

‖∇H‖ , (87)

where dσ is the surface element area. This quantity can be interpreted as the measure w.r.t. the density
ft(x) of the constant energy surface ∂Γh. The time derivative along a trajectory of the energy function
H(x) is given by:

Ḣ(x) = V(x) · ∇H(x)

hence we may define a formal heat flux through the boundary ∂Γh as:

Q̇t(h) = −
1

µ′t(h)

∫
∂Γh

V(x) · ∇H(x) ft(x)
dσ

‖∇H‖

If in addition, we introduce the formal temperature as the inverse of the logarithmic derivative of
the constant energy volume w.r.t. the energy parameter h:

Tt(h) =
(

d
dh

ln µt(h)
)−1

=
µt(h)
µ′t(h)

we can relate the ensuing formal entropy production rate to the average of the dissipation function
concerning the set Γh:

ep(h; t) =
Q̇t(h)
Tt(h)

=
1

µt(h)

∫
Γh

Ω ft(x) ft(x) dx =
1

µt(h)

〈
Ω ft · χh

〉
t

(88)

This result is readily obtained as follows:

Q̇t(h) = −
1

µ′t(h)

∫
∂Γh

V(x) · ∇H(x) ft(x)
dσ

‖∇H‖ = − 1
µ′t(h)

∫
Γh

∇ · ( ft(x)V(x)) dx

where the equality is guaranteed by Divergence Theorem, ∇H/‖∇H‖ being the unit vector
everywhere normal to the surface ∂Γh, and by the identity ∇ · ( ft(x)V(x)) = −Ω ft(x) ft(x).
Then Equations (3) and (5), yield:

Ω ft(x) = − (Λ(x) + V(x) · ∇ ln ft(x)) = −
[
Λ(x) + V(x) · ∇ ln( f0(x) exp{Ω f0

−t,0(x)}
]
=

= −
[
Λ(x) + V(x) · ∇(ln f0(x) + Ω f0

−t,0(x))
] (89)

that leads to:
Ω ft(x) = Ω f0(x)−V(x) · ∇Ω f0

−t,0(x). (90)

Therefore, we can now write:

ep(h; t) =
1

µt(h)

∫
M

Ω ft (x)χh(x) ft(x) dx =
1

µt(h)

∫
M

(
Ω f0 (x)−V(x) · ∇Ω f0

−t,0(x)
)

χh(x) ft(x) dx

=
1

µt(h)

(∫
M

Ω f0 (x)χh(x) ft(x) dx−
∫
M

V(x) · ∇Ω f0
−t,0(x)χh(x) ft(x) dx

) (91)
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The first addend within the brackets can be reworked using the response formula (8), where Ω f0

restricted to Γh is considered like any other phase function:∫
MΩ f0(x)χh(x) ft(x) dx =

∫
MΩ f0(x)χh(x) f0(x) dx +

∫ t
0

∫
MΩ f0(Sτx)χh(Sτx)Ω f0(x) f0(x) dx dτ (92)

while for the second contribution, we have:∫
M

V(x) · ∇Ω f0
−t,0(x)χh(x) ft(x) dx =

∫
M

V(x) · ∇Ω f0
−t,0(x)χh(x) f0(x)e

Ω
f0
−t,0(x) dx

=
∫
M

V(x) · ∇eΩ
f0
−t,0(x)χh(x) f0(x) dx

(93)

Rearranging the two contributions, the first integral in Equation (91) becomes:〈
Ω ft χh

〉
t
=
〈

Ω f0 χh

〉
0
+
∫ t

0
dτ
∫
M

dx Ω f0(Sτx)χh(Sτx)Ω f0(x) f0(x)−
〈

V · ∇eΩ
f0
−t,0 χh

〉
0

(94)

and finally:

ep(h; t) =
1

µt(h)

{〈(
Ω f0 −V · ∇eΩ

f0
−t,0

)
χh

〉
0
+
∫ t

0

〈
Ω f0

(
Ω f0 χh

)
◦ Sτ

〉
0

dτ

}
. (95)

Letting h grow in Equation (88), these conditional averages converge to the average on
M, yielding:

lim
h→∞

ep(h; t) = 〈Ω ft〉t = 0

where (13) has been used. This is consistent with the fact that in this model no “energy” can flow out
ofM, or inM from outside.

Note that such a reasoning actually does not refer to a physical flow: in the first place, it occurs
in phase space, rather than in real space; furthermore the dynamics does not need to describe any
physical phenomenon. Therefore, the thermodynamic interpretation of the above relations should
be taken with a grain of salt [43,44], while it may be suggestive in the analysis of dynamical systems,
analogously to the thermodynamic formalism [33].

The Case with Constant or Slowly-Varying Volume Contraction

Assume that the probability density f0 is continuous with compact supportM, and take V(x) =
V0(x) + εV1(x), with V0, V1 sufficiently regular, Λ0(x) ≡ divV0(x) = −λ0 < 0. Assume also that the
system is Ω T-mixing. To compute

〈
Ω f0

V

〉
t

up to O(ε), observe that:

〈
Ω f0

V

〉
t
=
∫ t

0

〈
Ω f0

V

(
Ω f0

V ◦ Sτ
ε

)〉
0

dτ =
∫ t

0

〈
Ω f0

V

(
Ω f0

V0
◦ Sτ

ε

)〉
0

dτ + ε
∫ t

0

〈
Ω f0

V

(
Ω f0

V1
◦ Sτ

ε

)〉
0

dτ (96)

where
Ω f0

V (x) = Ω f0
V0
(x) + ε Ω f0

V1
(x) = −λ0 −V0(x) · ∇ ln f0(x) + ε Ω f0

V1
(x)

Substituting in (96), we have:〈
Ω f0

V

〉
t
= λ2

0 t

+ λ0

∫ t

0
dτ
∫
M

dx f0(x)V0(Sτ
ε x) · ∇ ln f0(Sτ

ε x) + λ0

∫ t

0
dτ
∫
M

dx f0(x)V0(x) · ∇ ln f0(x)

+
∫ t

0
dτ
∫

dx f0(x)(V0(Sτ
ε x) · ∇ ln f0(Sτ

ε x)) (V0(x) · ∇ ln f0(x)) + O(ε)

(97)
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The second integral can be computed explicitly taking f0(x) = 0 on ∂M:

〈V0 · ∇ ln f0〉0 =
∫
M

V0(x) · ∇ f0(x)dx =
∫
M

div(V0(x) f0(x))dx−
∫
M

divV0(x) f0(x)dx . (98)

As the divergence of V0 equals the constant −λ0, and
∫
M f0(x)dx = 1, we have:

〈V0 · ∇ ln f0〉0 = λ0 +
∫
M

div(V0(x) f0(x))dx. (99)

The integral in the previous equation is, by the Divergence Theorem, equal to∫
∂M

f0(x)V0(x) · n(x)dσ = 0,

Then
〈V0 · ∇ ln f0〉0 = λ0, (100)

and 〈
Ω f0

V

〉
t
= 2λ2

0 t + λ0

∫ t

0
〈V0(Sτ

ε (x)) · ∇ ln f0(Sτ
ε (x))〉0 dτ+

+
∫ t

0
〈(V0(Sτ

ε (x)) · ∇ ln f0(Sτ
ε (x))) (V0(x) · ∇ ln f0(x))〉0 dτ + O(ε).

(101)

Averaging Λ one has instead:

〈Λ〉t =
∫
M

Λ(x) ft(x)dx =
∫
M

(λ0 − ε divV1(x)) ft(x)dx = λ0 + O(ε),

since to first order, our vector field has a constant phase space volumes contraction rate.

Example 1. The simplest case is obtained when the initial distribution is uniform, i.e., f0(x) =constant, as if
the “equilibrium” vector field vanishes. In that case the integrals in (101) vanish, and〈

Ω f0
V

〉
t
= 2λ2

0 t + O(ε) .

Example 2. Suppose the coordinates in the initial ensemble are independent, i.e.,

f0(x) =
n

∏
i=1

gi(xi),

with gi being one dimensional density functions. Then,

∂

∂xk
ln f0(x) =

g′k(xk)

gk(xk)
(102)

and Equation (101) can be rewritten as follows:

〈
Ω f0

V

〉
t
= 2λ2

0 t + λ0

n

∑
i=1

∫ t

0

〈
V0i(S

τ
ε x)

g′i((S
τ
ε x)i)

gi((Sτ
ε x)i)

〉
0

dτ+

+
n

∑
i,j=1

∫ t

0

〈
V0i(S

τ
ε x)V0 j(x)

g′i((S
τ
ε x)i)

gi((Sτ
ε x)i)

g′j(xj)

gj(xj)

〉
0

dτ + O(ε).
(103)
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In the special case of Gaussian marginals

gk(xk) =
1√

2πσk
e
− (xk−µk)

2

2σ2
k ;

g′i(xi)

gi(xi)
= − (xk − µk)

σ2
k

(104)

we have: 〈
Ω f0

V

〉
t
= 2λ2

0 t− λ0

n

∑
i=1

σ−2
i

∫ t

0
〈V0i(S

τ
ε x)((Sτ

ε x)i − µi)〉0 dτ+

+
n

∑
i,j=1

(σiσj)
−2
∫ t

0

〈
V0i(S

τ
ε x)V0 j(x)((S

τ
ε x)i − µi)(xj − µj)

〉
0

dτ + O(ε).
(105)

The simplest example can be obtained with ε = 0 and V0i(x) = −λixi, λi > 0, and assuming µk = 0.
Then, observing that the i-th component of Sτ

0 x, can be written as (Sτ
0 x)i = e−λitxi, Equation (105) becomes:

〈
Ω f0

V

〉
t
= 2λ2

0 t + λ0

n

∑
i=1

σ−2
i λi

∫ t

0
e−2λiτ

〈
x2

i

〉
0

dτ+

+
n

∑
i,j=1

(σiσj)
−2λiλj

∫ t

0
e−2(λi+λj)τ

〈
x2

i x2
j

〉
0

dτ,
(106)

where λ0 = ∑n
i=1 λi. In addition, recalling that

〈
x2

i
〉

0 = σ2
i and

〈
x2

i x2
j

〉
0
= σ2

i σ2
j , we have:

〈
Ω f0

V

〉
t
= 2λ2

0 t +
1
2

λ0n− 1
2

λ0

n

∑
i=1

e−2λit +
n

∑
i,j=1

λiλj

λi + λj
−

n

∑
i,j=1

λiλj

λi + λj
e−2(λi+λj)t. (107)

The previous result could have been obtained directly from Equation (96), noting that:

Ω f0
V0
(x) = −λ0 −

n

∑
i=1

λi

σ2
i

x2
i .

Equation (107) shows that the average dissipation function
〈

Ω f0
V

〉
t

diverges as t → ∞, because the

dynamics has the global attractor x = 0. Thus, Ω f0
V tends to the non vanishing phase space contraction rate

−λ0. That is not the case for ε > 0.

5. Simple Attractors and Small Dissipation

Consider the dynamical system (1) on a compact phase spaceM containing a set of attracting
fixed points A = {x1, . . . , xk} with (open) basins of attraction Bj = {x ∈ M : Stx → xj, t →
+∞}, j = 1, . . . , k, such that ∪k

i=1Bj =M, modulo a set of zero Lebesgue measure. Let f0 be the initial
probability density and ft its evolution at time t. Recalling that the basins of attraction are pairwise
disjoint, for any continuous phase function C we can write:

〈C〉t =
∫
M

C(x) ft(x) dx =
∫
M

C(Stx) f0(x) dx =
k

∑
i=1

∫
Bi

C(Stx) f0(x) dx. (108)

Taking the limit, by bounded convergence we have:

lim
t→∞
〈C〉t =

k

∑
i=1

wiC(xi) ; where
k

∑
i=1

wi = 1 , wi ≡
∫
Bi

f0(x) dx > 0 (109)

This shows that the asymptotic mean of C is the weighted mean of the values of C on the attracting
fixed points, with weights given by the µ0-probability measure of the corresponding basins of attraction.
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In other words, the probability measure dµt(x) = ft(x) dx converges weakly in time to ν = ∑k
i=1 wiδxi ,

with δxi the atomic measure on xi. In this case it is easy to compute the correlation function of A and C
w.r.t. µ0: 〈

(A ◦ St)C
〉

0 −
〈
(A ◦ St)

〉
0 〈C〉0 (110)

that is used to define T-mixing and, taking C = Ω f0 , to define ΩT-mixing, cf. Equations (10) and (11).
The t→ ∞ limit of (110) then yields:

lim
t→∞

[〈
(A ◦ St)C

〉
0 −

〈
(A ◦ St)

〉
0 〈C〉0

]
=

k

∑
i=1

A(xi)

[∫
Bi

C(x) f0(x) dx− wi

∫
M

C(x) f0(x) dx
]

(111)

and, assuming that also Ω f0 is continuous,

lim
t→∞

[〈
(C ◦ St)Ω f0

〉
0
−
〈
(C ◦ St)

〉
0

〈
Ω f0

〉
0

]
= lim

t→∞

〈
(C ◦ St)Ω f0

〉
0
=

k

∑
i=1

C(xi)
∫
Bi

Ω f0 (x) f0(x) dx (112)

since 〈Ω f0〉0 = 0.

Remark 1. For k > 1, the response from a single initial condition is not unique and depends on the initial
distribution f0. Hence, T-mixing does not hold, since it requires the long time averages to be independent of
the initial condition [26]. On the other hand, ΩT-mixing holds, since it is necessary and sufficient for the
convergence of the full phase space averages to their asymptotic limit, i.e., (109).

Now, consider a case with small dissipation:

ẋ = V(x; ε) = V0(x) + εV1(x), (113)

where ε is small, and
divV0(x) = 0 ; V0(x) · ∇ f0(x) = 0 (114)

Then, the unperturbed dynamics ẋ = V0(x) preserves the volume and the initial density,
since Ω f0

V0
(x) ≡ 0, while the dissipation function only depends on the perturbation εV1:

Ω f0
V (x) = ε Ω f0

V1
(x) = −ε [divV1(x) + V1(x) · ∇ ln f0(x)] (115)

Let the initial probability density f0 be positive for every x in the phase spaceM, a condition at
times called ergodic consistency [30]. In this case, the probability density at time t is given by:

ft(x) = f0(x) exp
[

ε
∫ 0

−t
Ω f0

V1
(Sτ

ε x) dτ

]
,

where Sτ
ε is the flow of (113). Taking α ∈ (0, 1) and tε = 1/εα, it can be shown that the difference

between the evolved density and the initial one is O(ε1−α), in the ε-dependent time interval bound by
−tε, provided Ω f0

V is continuous inM. In particular, one has:∣∣∣∣∫ 0

−tε

Ω f0
V1
(Sτ

ε x) dt1

∣∣∣∣ ≤ max
x∈M

∣∣∣Ω f0
V1
(x)
∣∣∣ tε = Ω̃ f0

V1
tε (116)

which defines the maximum magnitude of Ω f0
V1

inM. Consequently, for 0 < t ≤ tε:

| ft(x)− f0(x)| = f0(x)
∣∣∣∣exp

(
ε
∫ 0

−t
Ω f0

V1
(Sτ

ε x) dτ

)
− 1
∣∣∣∣ ≤ f0(x)

[
exp

(
Ω̃ f0

V1
ε1−α

)
− 1
]
= f0(x)O(ε1−α) (117)
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We can use this inequality to bound from above the variation of an observable of the system at
hand. For a continuous function B, one obtains:

|〈B〉t − 〈B〉0| ≤
∫
M
|B(x)|

(
exp

[
Ω̃ f0

V1
ε1−α

]
− 1
)

f0(x) dx ≤ O(ε1−α)max
x∈M

|B(x)| (118)

6. Conditions on Dynamics and Probability Density

As observed in [27], the dissipation function can be obtained starting from the Liouville equation:

∂ ft

∂t
(x) = − ft(x)Λ(x)−V(x) · ∇x ft(x) (119)

and factorizing ft(x) in the right hand side. The result is Equation (2) with Ω ft(x) defined as in (3).
The standard conditions of physical interest, under which this operation can be performed are the
following:

• the vector field should be everywhere differentiable in the phase spaceM for Λ to exist;
• the initial density f0 should be everywhere positive inM for its logarithm to exist;
• the initial density f0 should be everywhere differentiable inM for its gradient to exist.

This also guarantees that the dissipation function be continuous, which is what is used to derive
Equation (8) from Equation (7), via Equation (5). In the physical literature, these requirements are
satisfied if (a) the condition sometimes called ergodic consistency holds [30]— f0 should be the
equilibrium ensemble for the dynamics subjected to the same constraints of the nonequilbrium
dynamics—and if (b) the particles interactions are sufficiently regular. The effects of discontinuities
can be controlled if the dynamics are piecewise regular (as in billiards), or the probability decays
sufficiently fast when approaching singularities. A full mathematical treatment of these aspects is far
from trivial for physically relevant particle systems, and the success of the theory can only be judged
a posteriori, on a case by case basis.

At the same time, various mathematical aspects can be understood considering simple examples,
that can be explicitly solved. Let us focus on simple cases in which the above conditions are violated.
This is important both to delineate the range of applicability of the theory based on the dissipation
function and, at the same time, to find corrections where needed.

When ft(x) is not differentiable, one may replace (119) by its weak form, i.e.,

∫
M

h(x) ft(x)dx =
∫
M

h(x) f0(x)dx +
∫ t

0

∫
M
V(x) · ∇h(x) fτ(x)dxdτ , for all h(x) ∈ C∞

0 (M), (120)

C∞
0 (M) being the set of smooth functions with compact support inM. The non-differentiability, of ft,

however, is not the only issue. In what follows we take f0 and ft with compact support K0 and Kt in
M, whileM is not necessarily compact.

Examples

Example 3. Consider the dynamical system

ẋ = −x ; x ∈ R (121)

and the following initial density:

f0(x) =

{
1/2 , x ∈ [−1, 1]
0 , else

(122)
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that is compactly supported and non differentiable at 1 and−1. As the initial condition x evolves like Stx = e−tx,
ft is given by

ft(x) =
1
2

et χ[−e−t ,e−t ](x) , with χ[−e−t ,e−t ](x) =

{
1 if x ∈ [−e−t, e−t]

0 if x /∈ [−e−t, e−t]
(123)

Then, Equation (119) does not apply, while Equation (120) does. Indeed, the left hand side and
the first term in the right hand side of (120) are

A :=
∫
M

h(x) ft(x)dx =
et

2

∫ e−t

−e−t
h(x)dx , and B :=

∫
M

h(x) f0(x)dx =
1
2

∫ 1

−1
h(x)dx . (124)

The phase integral in the right hand side of (120) yields:

∫
M
V(x) · ∇h(x) fs(x)dx = −es

2

∫ e−s

−e−s
xh′(x)dx = −1

2
[
h(e−s) + h(−e−s)

]
+

es

2

∫ e−s

−e−s
h(x)dx, (125)

and the corresponding time integral becomes:

C :=
∫ t

0
ds
∫
M

dxV(x) · ∇h(x) fs(x) = −
1
2

∫ t

0

[
h(e−s) + h(−e−s)

]
ds +

∫ t

0
ds

[
es

2

∫ e−s

−e−s
h(x)dx

]
, (126)

Then, integrating by parts and using Leibniz’s formula in the last integral, we get:

∫ t

0
ds

[
es

2

∫ e−s

−e−s
h(x)dx

]
=

et

2

∫ e−t

−e−t
h(x)dx− 1

2

∫ 1

−1
h(x)dx +

1
2

∫ t

0

[
h(e−s) + h(−e−s)

]
ds, (127)

and

C =
et

2

∫ e−t

−e−t
h(x)dx− 1

2

∫ 1

−1
h(x)dx. (128)

Form (124) we get A = B + C, that proves (120).
The probability with density ft(x) converges weakly to the delta function at x = 0, since for any

continuous O, the mean value theorem yields:

〈O〉t =
∫
O(x) ft(x)dx =

et

2

∫ e−t

−e−t
O(x)dx = O(xt)→ O(0) as t→ +∞ ,

for one xt ∈ (−e−t, e−t). Can this result be obtained via the response formula (8)? Because Λ(x) = −1,
and d f0/dx = 0, the dissipation function takes the form:

Ω f0(x) = −Λ(x)−V(x)
f ′0(x)
f0(x)

= 1 (129)

on the interval [−1, 1]. Hence, unlike the cases addressed so far,
〈

Ω f0
〉

0
does not vanish, it equals 1!

More generally, given the 1-D system ẋ = V(x) with x ∈ R and f0 supported on any interval
[a, b], integration by parts yields:

〈
Ω f0

〉
0
=
∫ b

a

(
−V′(x)−V(x)

f ′0(x)
f0(x)

)
f0(x)dx = V(a) f0(a)−V(b) f0(b), (130)

showing that
〈

Ω f0
〉

0
vanishes only if some conditions, such as V(a) = V(b) = 0 or f0(a) = f0(b) = 0,

are verified.
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In Ref. [27], the equality
〈

Ω ft
〉

ft
= 0 was obtained from the conservation of probability and from

the interchange of the time derivative with the integration in phase space:〈
Ω ft
〉

ft
=
∫
M

Ω ft ftdΓ =
∫
M

∂ ft

∂t
dΓ =

d
dt

∫
M

ftdΓ =
d
dt

1 = 0 (131)

This exchange is legitimate under the joint continuity w.r.t. x and t of ft and of ∂ ft/∂t, which is
not the case of our example. Consequently, Equation (8) leads to the nonsensical expression:

〈O〉t = 〈O〉0 +
∫ t

0
dτ
∫ 1

−1
O(e−tx)dx , (132)

which diverges linearly with t, rather than converging to O(0), because O(e−tx) → O(0). This is
related to the fact that

〈
Ω f0

〉
0
6= 0, due to the non differentiability of f0. If, on the other hand, one has

f0(x) = 3(1− x2)/4 with x ∈ [−1, 1], one obtains:

Ω f0(x) =
1− 3x2

1− x2 , which leads to
〈

Ω f0
〉

0
= 0 (133)

Then, taking for instance O(x) = xn, which can be used for analytic functions, one has:

〈O〉t = 〈O〉0 +
3
4

∫ t

0
ds e−ns

∫ 1

−1
dx xn(1− 3x2) =

3
(n + 1)(n + 3)

+
3

(n + 1)(n + 3)
[
e−nt − 1

]
(134)

for even n, which correctly converges to O(0) = 0, and 0 for odd n, which equals O(0) at all times.
The role of Equation (13) is further clarified noticing that for a finite t one can write:

1
t

∫ t

0

〈
(O ◦ Sτ) ·Ω f0

〉
0

dτ =
1
t

∫ t

0
dτ
∫
M
(O ◦ Sτ(x)) ·Ω f0(x) f0(x)dx

=
∫
M

[
1
t

∫ t

0
(O ◦ Sτ(x))dτ

]
Ω f0(x) f0(x)dx

(135)

Then, assuming the t→ ∞ limit and the phase integration can be exchanged in Equation (135),
the previous equation yields:

lim
t→∞

1
t

∫ t

0

〈
(O ◦ Sτ) ·Ω f0

〉
0

dτ = O ·
〈

Ω f0
〉

0

where O is the time average of O. This shows that Equation (9) requires
〈

Ω f0
〉

0
= 0, i.e., that either

Ω f0 vanishes or changes sign inM.
On the other hand, one realizes that this is not sufficient in general. For instance, despite the

correct result (134), the blind application of Equation (5) for the case of Equation (121) with density
3(1− x2)/4 in [−1, 1], yields an incorrect evolved density ft. In this case, we have:

Ω f0(Ssx) = Ω f0(e−sx) =
e2s − 3x2

e2s − x2 (136)

and

Ω f0
−t,0(x) =

∫ 0

−t
Ω f0(Ssx)ds = 3t + ln

∣∣e−2t − x2
∣∣

1− x2 (137)

which implies:

ft(x) =
3
4

∣∣∣e−2t − x2
∣∣∣ e3t (138)
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that is not normalized on [−1, 1]. This difficulty is not related to the violation of Equation (13),
but to the fact that the support of ft changes with time or, equivalently, that Equation (5) attributes a
positive probability to points outside [−1, 1]. An analogous, even more macroscopic, situation arises if
M = [1, 2] and f0(x) = 2(3− x)/3, which yields V(1) f0(1) = V(2) f0(2), hence yields (13) with non
vanishing V(1), V(2) and f0(1), f0(2). This stresses that dynamical equations and phase space must be
properly chosen.

The point is that the preimages S−sx of part of the points inM, for some s > 0, lie outsideM.
In these cases, Equation (5) requires that only the contributions of the points x with S−sx ∈ M be
included in the calculations, as discussed in Ref. [32].

Example 4. Consider the dynamical system

ẋ = x− x3, (139)

that has two asymptotically stable fixed points x− = −1 and x+ = 1, and an unstable fixed point, x0 = 0.
Take the invariant setM = [−1, 1] as the phase space of the system. The flow is given by:

Stx =
xe−t√

1 + x2(e−2t − 1)
, x ∈ M. (140)

Assuming f0(x) = 1/2, uniform on M, the dissipation function is expressed by: Ω f0(x) =

−Λ(x) = 3x2 − 1, hence it changes sign inM. The evolved distribution is given by:

ft(x) =
1
2

χ[−1,1](x) e−t (1− x2 + x2e−2t)−
3
2 . (141)

If, on the other hand, f0(x) = 3
4 (1− x2), we have

Ω f0(x) = 5x2 − 1 (142)

that also changes sign, and the density at time t becomes:

ft(x) =
3
4

e−t (1− x2) (1− x2 + x2e−2t)−
5
2 . (143)

From (141) and (143) one can see that in both cases dµt = ft(x)dx converges weakly to 1
2 (δ−1 + δ1).

This is correctly so because the flow vanishes at the boundaries of the phase space: M is invariant;
hence the points insideM have no preimage outsideM. In this case, the non-differentiability of the
uniform density in R has no bearing on the theory.

Example 5. Let us consider the one-dimensional dynamical system:

ẋ = −x + εx3, 0 < ε ≤ 1, (144)

and denote V0(x) = −x and Vp(x) = x3. This system has three fixed points: x0 = 0, which is asymptotically
stable, and the unstable points x− = −1/

√
ε and x+ = 1/

√
ε. We denote byMε the set [−1/

√
ε, 1/
√

ε] ⊃
[−1, 1], which is invariant, being invariant the intervals [−1/

√
ε, 0] and [0, 1/

√
ε]. Integrating the differential

equation, we obtain

St
εx =

xe−t√
1 + εx2(e−2t − 1)

, for x ∈ Mε. (145)
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Then, expanding with respect to ε,

St
εx = St

0x− ε

2
x3e−t(e−2t − 1) + O

(
ε2x5e−t(e−2t − 1)2)

)
, x ∈ Mε, t ≥ 0, 0 ≤ ε ≤ 1, (146)

where St
0x = xe−t. The uniform probability on [−1, 1] f0(x) = 1/2, has compact support inMε ⊃

[−1, 1]. Substituting Ω f0
V0
(x) = 1 and Ω f0

Vp
(x) = −3x2 in Equation (47) yields:

ft(x; ε) =
1
2

χ[−1,1](x) exp
[∫ 0

−t
dτ

]
exp

[
−3ε

∫ 0

−t

x2e−2τ

1 + εx2(e−2τ − 1)
dτ

]
=

1
2

χ[−1,1](x) et (1− εx2 + εx2e2t)−
3
2 .

(147)

This allows us to check that the probability measure dµε
t (x) = ft(x; ε) dx converges weakly to the

delta function at x = 0 as t→ ∞ The linear approximation for small ε can be obtained, in analogy with
the Hamiltonian case, cf. (54), by truncating the exponential in (47):

f̃t(x; ε) = f0(x) exp
[∫ t

0
dτ Ω f0

V0
(S−τ

ε x)
] [

1 + ε
∫ t

0
dτ Ω f0

Vp
(S−τ

ε x)
]

(148)

which gives:

f̃t(x; ε) =
1
2

χ[−1,1](x)et
[

1− 3
2

ln
(

1− εx2 + εx2e2t
)]

. (149)

It can also be observed that the linear approximation at ε = 0 of the exact evolved density (147),

f̂t(x; ε) =
1
2

χ[−1,1](x) et
[

1− 3
2

(
1− εx2 + εx2e2t

)]
, (150)

does not coincide with Equation (149), but it can be obtained from Equation (149) approximating ln x
to first order in x.

Given that Ω f0
V0+εVp

= −(1− 3εx2), the exact response of ensemble averages is given by:

〈O〉t = 〈O〉0 −
1
2

∫ t

0
dτ
∫ 1

−1
O(Sτ

ε x)(1− 3εx2)dx, (151)

that, on the basis of the previous remarks, converges to O(0), as t→ ∞. As observed in Section 3, the
linear approximation analogous to the GK response is obtained by replacing the exact flow St

εx with
the linearized one, St

0x = x e−t, in Equation (151).
Now, let A and B be smooth functions, and f0 a probability density with compact support K in

Mε, containing x = 0 in its interior, for instance K = [−1, 1]. In order to check T-mixing, see (11),
let us write:

limt→∞

[∫ 1
−1 A(St

εx)B(x) f0(x)dx−
∫ 1
−1 A(St

εx) f0(x)dx
∫ 1
−1 B(x) f0(x)dx

]
(152)

= A(0)
∫ 1
−1 B(x) f0(x)dx− A(0)

∫ 1
−1 B(x) f0(x)dx = 0 (153)

which follows from the uniform convergence of St
εx to 0, from the boundedness of A and B in any

compact set and from the continuity of A. This proves the T-mixing property (11) for the present
example. The same reasoning shows that the system is also ΩT-mixing.

Example 6. Consider the one-dimensional dynamical system:

ẋ = x− εx3, 0 ≤ ε ≤ 1, (154)
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that is the time reversed version of (144). The point x0 = 0 is now unstable, while x− = −1/
√

ε and
x+ = 1/

√
ε are stable, andMε = [−1/

√
ε, 1/
√

ε] ⊃ [−1, 1] is invariant. The flow is expressed by:

St
εx =

xet√
1 + εx2(e2t − 1)

= St
0x− ε

2
x3et(e2t − 1) + O

(
ε2x5et(e2t − 1)2)

)
, for x ∈ Mε. (155)

where St
0x = xet. The ε expansion at ε = 0

St
εx = St

0x− ε

2
x3et(e2t − 1) + ... (156)

has an error that grows without limit as t increases, which shows the unsuitability of the linear response. In this
case, always assuming f0(x) = 1/2 in [−1, 1], Equation (47) yields

ft(x; ε) =
1
2

χ[−1,1](x) exp
[
−
∫ 0

−t
dτ

]
exp

[
3ε
∫ 0

−t

x2e2τ

1 + εx2(e2τ − 1)
dτ

]
=

1
2

χ[−1,1](x) e−t (1− εx2 + εx2e−2t)−
3
2 ,

(157)

being Ω f0
V0
(x) = −1 and Ω f0

Vp
(x) = 3x2, since V0(x) = x and Vp(x) = −x3. Observe that ft(±1/

√
ε; ε)→

∞ while ft(x; ε)→ 0 for −1/
√

ε < x < 1/
√

ε as t→ ∞. Thus the measure dµε
t (x) = ft(x; ε) dx converges

weakly to 1
2 δ−1/

√
ε +

1
2 δ1/

√
ε.

Example 7. Let us consider
ẋ = ε(x− x3), −1 ≤ ε ≤ 1, (158)

and assume the invariant intervalM = [−1, 1] as the phase space. For ε 6= 0 the fixed points are x0 = 0,
x− = −1 and x+ = 1. For ε > 0, the point 0 is unstable, while −1 and 1 are stable. The opposite holds for
ε < 0. For ε = 0, all the points are fixed. The flow is given by:

St
εx =

xeε t√
1 + εx2(e2ε t − 1)

. (159)

Taking the initial uniform distribution on [−1, 1], being Ω f0
V = −ε(1− 3x2), the evolved density is:

ft(x; ε) =
1
2

χ[−1,1](x) e−ε t (1− εx2 + εx2e−2εt)−
3
2 . (160)

For ε > 0 the distribution dµε
t (x) = ft(x; ε) dx converges to 1

2 δ−1 +
1
2 δ1, while for ε < 0 the limit is δ0.

The response is

〈O〉t = 〈O〉0 −
ε

2

∫ t

0
dτ
∫ 1

−1
O(Sτ

ε x)(1− 3εx2)dx (161)

Once again, the linear response approach is scarcely interesting.

7. Concluding Remarks

In this paper we have reviewed the developments that led from nonequilbrium molecular
dynamics (NEMD) to the fluctuation relations (FR) and to the exact response theory, which develops
the previous formalism based on the so-called Transient Time Correlation Function [6]. Within this
framework, some authors have adopted the phase space contraction rate −Λ as a definition of the
steady state entropy production rate σ [23,41], after −Λ and σ had been observed to be proportional
to each other, in the original paper on fluctuations relations [36]. That paper dealt with the Gaussian
thermostatted iso-energetic model of a shearing fluid known as SLLOD. In that case, the steady
phase space contraction and entropy production rates could indeed be directly related to each other,
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something that in NEMD models had already been pointed earlier [19,51,52]. Mostly the interest had
been on steady state state averages of such quantities. It was then realized that such an identification
is justified only for steady state averages of certain NEMD models and that, in general, fluctuations
require −Λ to be distinguished from the energy dissipation rate [24,25,53]. At the same time, the
function that represents energy dissipation in molecular dynamics has been identified as the dissipation
function Ω, the function that obeys the FR. For the transient FR this happens quite generally; for the
steady state FR it is required that correlations w.r.t. the initial distribution do not grow too fast,
something implied by the T-mixing condition [26].

Through a number of examples, including NEMD models as well as simple exactly solvable
models, we have illustrated these facts and how the exact response formula, based on Ω, applies. In
particular we have analyzed the relation between Ω and −Λ, noting that in the analysis of generic
dynamical systems the two quantities are by and large equivalent, while in the case of particle systems
the first corresponds to a real observable. We have then compared the exact response formula with the
one of the Green-Kubo linear theory, quantifying their difference, that typically grows with the size of
the perturbation and of time, but also showing that in some simple case they yield the same result.

We have then investigated “formal thermodynamics” along the lines of Ref. [29], introducing
a formal temperature and a formal energy flow, and using Ω instead of −Λ as a notion of formal
entropy production rate. Analogously to earlier works, e.g., Refs. [54–56], this means that the phase
space is treated as real space, and its different regions as different locations in real space. Clearly,
the 2dN-dimensional phase space of an N particle system in d dimensions and the phase points that
flow in it are totally different from the 2d-dimensional real space and the particles that flow through
it [43,44]. (A point in phase space has no extension nor “inertia”, it does not interact with other points,
and it equally represents the microstate of a large or small system. Any other point represents another
system that can be arbitrarily close or far from it. A particle in real space has a finite extension, interacts
with nearby particles, and follows Newton’s laws with its inertia. Just this has numerous consequences.
For instance, while the Gibbs entropy represents thermodynamic entropy only at equilibrium, the
Boltzmann entropy works also in time dependent situations, Refs. [44,57]). Therefore, in general, a
direct identification of flows and related quantities in phase space with their physical counterparts
is not possible. Nevertheless, this analysis is reminiscent of the thermodynamic formalism, which is
important for dynamical systems in general [33]. Furthermore, it may find direct physical application
in systems of non-interacting particles, for which the factorization of the phase space distributions
makes phase space and real space almost the same. Such systems may not behave thermodynamically,
but they are of greater and greater interest in e.g., bio- and nano-technology (cf. transport in highly
confining media), for photons in optical wave-guides or random media, for cold atoms etc.

Finally, we have observed that the exact response formula (8), mainly rests on the regularity
of the vector fields, and on the ergodic consistency of the initial distribution, which ensure the
regularity of the dissipation function as well. These mathematical conditions need further scrutiny, in
more realistic cases, but are relatively minimal, hence hint at a wide applicability of the theory. The
investigation of physical applications of this theory is just at the beginning; many are indeed the cases
in which perturbations cannot be taken as small compared to the reference signals; they range from
nano-technology to geophysical and even astrophysical phenomena [58].
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