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Abstract: This paper presents a preliminary version of an Active Learning (AL) scheme for the
sample selection aimed at the development of a surrogate model for the uncertainty quantification
based on the Gaussian Process regression. The proposed AL strategy iteratively searches for new
candidate points to be included within the training set by trying to minimize the relative posterior
standard deviation provided by the Gaussian Process regression surrogate. The above scheme has
been applied for the construction of a surrogate model for the statistical analysis of the efficiency of a
switching buck converter as a function of 7 uncertain parameters. The performance of the surrogate
model constructed via the proposed active learning method are compared with the ones provided by
an equivalent model built via a latin hypercube sampling. The results of a Monte Carlo simulation
with the computational model are used as reference.

Keywords: uncertainty quantification; active learning; surrogate model; Gaussian Process regression;
switching converter.

1. Introduction

Uncertainty quantification represents a key resource for the design of complex electronic devices,
since it allows quantifying statistically the effect of possible uncertain design parameters (e.g., the
components tolerances) on the system performance [1].

Monte Carlo (MC) simulation can be seen as the most straightforward way to carry out the above
statistical analysis. The underlying idea is to estimate the probability density function (pdf) of the
outputs of interest by collecting the results of a “large” number of deterministic simulations calculated
on a random set of configurations of the unknown parameters, drawn according to their probability
distribution. Within the plain implementation of the MC method, the deterministic simulations are
run with the so-called computational model. Such deterministic model can be considered as the
most accurate synthetic approximation of the system under modeling able of providing, for any
configurations of the system parameters, a prediction of the system outputs. Despite its accuracy, such
plain implementation of the MC method turns out to be computationally heavy, since, in order to
guarantee the convergence of the statistical quantities of interest (e.g., means and standard deviation),
it requires to run a large number of simulations (usually in the order of thousands) with the expensive
computational model.

Surrogate models, also known as metamodels, can be considered as an effective solution to reduce
the computational cost of MC simulations [2–6]. They provide a closed-form and fast-to-evaluate
approximation of the non-linear input-output behavior of the computational model, thus providing an
efficient alternative, which can be directly embedded within the MC simulation flow. Surrogate models
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are constructed via either regression or fitting techniques from a limited set of simulation results,
called training samples, computed with the computational model. Several regressions techniques,
with different features, have been successfully adopted in many fields and applications for the
construction of surrogate models ranging from least-squares approaches [2] to the more recent kernel
and machine learning regressions (e.g., support vector machine [3], least-square support vector
machine [4], Gaussian Process regression (GPR) [5,6]). However, the use of the most appropriate
regression technique does not guarantee a good model accuracy, since the latter is also influenced by
the training samples used to train it. A common approach is to select the training samples based on
a Latin Hypercube Sampling (LHS) scheme [7], in which the configurations of the input parameters
used to train the model are selected in order to cover the experimental space as much as possible.

This work investigates the possible advantages and the performance of an alternative approach for
the sampling selection given by the combination of an active learning (AL) scheme and the GPR [8–12].
The effectiveness of the proposed AL technique has been investigated by considering the uncertainty
quantification of the DC efficiency of a switching converter as a function of 7 uncertain parameters.
The performance of the model built with the help of the proposed AL scheme are compared with the
one of an equivalent model in which the training samples are computed via plain LHS, by using as
reference the results of a MC simulation with the computational model.

2. Methods

2.1. Gaussian Process Regression (GPR)

The discussion starts introducing the GPR. Under the assumption that a generic non-linear
computational model M, which provides a non-linear input-output map y = M(x) between the
parameters x ∈ X ⊂ Rd and output of interest y ∈ R, follows a Gaussian Process (GP) prior, a noise-free
GPR reads [13]:

y =M(x) ∼ GP(m(x), k(x, x′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MGPR(x)

(1)

where MGPR(x) ∼ GP(m(x), k(x, x′)) is a GP defined by the trend function m(x) and covariance
function k(x, x′). A GP extends the concept of a Gaussian distribution from numbers to functions.
The trend m(x) provides the average function, among the ones drawn from the GP prior, while the
covariance provides the correlation between the values of such functions at different point (i.e., x and
x′) in the parameters space.

The above GP is called prior distribution, since it fixes the properties of the unknown non-linear
model, before looking at the training data [13]. In fact, different from deterministic regressions (e.g.,
the support vector machine regression, least-square regression), in which the candidate functions of
the model are restricted to a specific class of functions (e.g., polynomial, linear, etc..), the GPR model
considers as candidate functions for our modelMGPR all the possible non-linear functions drawn
from the GP prior by letting data “speak” and assigns a probability to each of them [14].

The prior, combined with the information provided by the computational model, allows to
estimate the posterior distribution. Given a set of training samples D1∶n = {(xi, yi)}n

i=1, computed
for a given set of configurations of the input parameters xi ∈ X ⊂ Rd, with the computational model
yi =M(xi), the posterior distribution approximates the output value y∗ =M(x∗) for any input x∗ in
terms of a Gaussian distribution, which reads:

p(y∗∣x∗,D1∶n) ∼ N(µx∗ , σ2
x∗), (2)
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where the posterior mean µx∗ and variance σ2
x∗ write:

µx∗ = m(x∗)+ k∗K−1y (3a)

σ2
x∗ = k∗∗ − k∗K−1kT

∗
. (3b)

where y = [y1, . . . , yL]T , K ∈ RL×L is the correlation matrix in which the entries Kij = k(xi, xj), k∗ =
[k(x∗, x1), . . . , k(x∗, xL)] ∈ R1×L and k∗∗ = k(x∗, x∗).

The above equations require to specify both the trend and the covariance functions. In this paper,
we will consider a GPR built from a GP prior with a constant mean function (i.e., m(x) = β0) and a
Matern 5/2 covariance function with automatic relevance determination (ARD) hyper-parameters [13],
which writes:

k(x, x′) = σ2
f (1+

√
5r + 5

3
r2) exp(−

√
5r), (4)

with

r =

¿
ÁÁÁÀ

d
∑
m=1

(xm − x′m)2

σ2
m

, (5)

where σf and σm for m = 1, . . . , d are the hyper-parameters of the covariance. Both the covariance
hyper-parameters and the GP mean (i.e., σf , σm for m = 1, . . . , d and β0) are estimated during the
training of the model from the training samples [13].

The probabilistic interpretation in (2) allows computing for any configuration of the input
parameters x∗ the confidence interval (CI), such that

y∗ ∈ [µx∗ − z1- α
2
σx∗ , µx∗ + z1- α

2
σx∗] (6)

with a probability of 100(1− α)%, where z denotes the inverse of the Gaussian cumulative distribution
function evaluated at 1− α

2 .

2.2. Active Learning (AL) Strategy

The statistical information provided by the probabilistic model constructed via the GPR can
be suitably adopted to efficiently explore the parameter space X , in order to get the optimal set of
training samples [8–11]. The proposed AL approach is iterative. Given a set of training samples
D1∶n = {(xi, yi)}n

i=1, a probabilistic model MGPR,n is constructed via the GPR. Then, the algorithm
searches for a new candidate point xn+1 to be included in the training set at the next iteration, such
that the posterior standard deviation σx∗/µx∗ with x∗ ∈ X provided by the GPR model MGPR,n
is minimized [9,11,12]. To this aim, at each iteration, a new candidate configuration of the input
parameters is selected by solving the following optimization problem:

xn+1 = argmax
x∗∈X

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σx∗ , for µx∗ = 0

σx∗/µx∗ , otherwise
(7)

Unfortunately, the above optimization problem cannot be solved exactly, since it would require
to evaluate the relative posterior mean µx∗ and standard deviation σx∗ of the GPR modelMGPR,n for
any configuration of the input parameters belonging to parameter space (i.e., for any x∗ ∈ X ). Our
implementation of the above optimization scheme searches on a finite set of points x∗ ∈ X∗, drawn
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according to the parameter distributions via a LHS, where the set X∗ = {x∗,i}n∗
i=1 with n∗ ⋙ n. It is

important to remark that a large value of n∗ can be used, since the prediction of the posterior mean
and standard deviation with the considered GPR modelMGPR,n is extremely fast.

At the next iteration, only the new configuration of the input parameters xn+1 selected during
the above optimization process will be used as input for the computational model to compute the
corresponding output yn+1 =M(xn+1) and a new modelMGPR,n+1 is trained with the new training
set D1∶n+1 = D1∶n ∪ (xn+1, yn+1). The iteration process starts at the first iteration with an initial set D1∶n0

with n0 training samples selected by a generic sampling scheme (e.g., the LHS) and it stops when
either the model budget in terms of maximum number of training samples nmax or a given tolerance is
reached.

3. Results and Discussion

The AL technique presented in the previous section has been applied for the uncertainty
quantification of the DC efficiency η, of the switching buck converter shown in Figure 1, as a function
of 7 parameters (i.e., d = 7). Specifically, the value of the 12 V DC voltage source, the 50µH inductor and
its 10 mΩ equivalent series resistance (ESR), the 44.1µF capacitance and its 20 mΩ ESR, the 1.25 Ω load
resistance and the 0.3 Ω switch resistance have been modeled as 7 uncorrelated Gaussian variables
centered at their nominal value and with a standard deviation of 20% of their mean. The above scenario
has been implemented as a parametric netlist in LTSpice (additional details are provided in [6]). The
resulting model will be used as the computational model in the following analysis.

Sawtooth
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0.3 Ω

0.7 V

10 mΩ 50 +,

44.1 +.

20 mΩ

1.25 Ω
1 kΩ

1 kΩ
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2.5 V
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i678(t)

i<=(t)

−
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Figure 1. Schematic of the considered buck converter. It is a 12V : 5V switching converter operating at
the switching frequency of 100 kHz. For each component, the nominal values are indicated.

The AL sampling technique presented in Section 2 is applied to build a surrogate model for the
prediction of the converter efficiency. The algorithm starts with n0 training samples provided by the
computational model and selected via a standard LHS. Then, the AL method is used to select the new
candidate points in the parameter space and to compute, along with the computational model, the
corresponding training responses. The iterative algorithm stops when a the maximum number of
training samples nmax is reached. For the sake of simplicity, in the following results n0 = ⌊2nmax/3⌋.

The performance of the surrogate mode GPR + AL, in which the GPR is combined with the AL,
have been investigated for an increasing number of training samples nmax = 25, 50, 75 and 100, by
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considering the root-mean-square error (RMSE) computed between the model predictions and the
corresponding results provided by a MC simulation with 10000 samples. The obtained results are then
compared with the ones predicted by an equivalent GPR-based model, called GPR + LHS, in which the
training samples are selected via a plain LHS scheme. Since the accuracy of the resulting surrogates
necessaryly depends on the specific training samples used to build them, 5 different realizations of the
training set are considered for each size nmax.

Figure 2 shows the results of the above comparison in terms of mean values (red and green
dots) and standard deviations (red and green bars) of the RMSE computed by considering 5 different
realizations of the training set for each size nmax. The results clearly highlight the improved accuracy
of the proposed GPR + AL model with respect to the plain GPR surrogate. In fact, the mean values
of the RMSE computed for the GPR + LHS surrogate are always lower than the correspond ones
obtained with the the equivalent GPR + LHS surrogate, thus highlighting the benefits of the proposed
AL strategy.

For the sake of illustration, Figure 3 and Figure 4 show the scatter plots and the pdfs calculated
from the predictions of proposed AL+GPR surrogate and the ones of the GPR + LHS surrogate for a
single set of nmax = 100 training samples, again by using as reference the results of a 10,000 samples MC
simulation with the computational mode. The plots confirm the capability of the two surrogate models
of providing an accurate prediction of the actual behaviors of the converter efficiency. Also, Figure 5
shows an additional comparison between the 99% CI predicted by the two models for 15 validation
samples randomly selected among the samples used for the MC simulation. According to the results,
the two surrogate models allow to accurately account for the uncertainty of the model predictions
since most of the validation samples fall within the CIs predicted by the probabilistic models.

25 50 100 150

n
max

0.006

0.008

0.01

0.012

0.014

0.016

0.018

R
M

S
E

GPR+LHS

GPR+AL

Figure 2. Comparison among the RMSE computed by comparing the results of a 10000 samples MC
simulation with the corresponding predictions of the proposed GPR + AL and GPR + LHS surrogates
for an increasing size nmax of the training set. The means (dots) and standard deviations (bars) of the
RMSE values are computed by considering 5 realizations of the training samples.
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Figure 3. Scatter plots of the converter efficiency η computed by considering the correlation between
the results of a MC simulation with 10000 samples and the corresponding mean values predicted by
the proposed GPR + AL (red dots) and GPR + LHS (green dots) surrogates trained with nmax = 150
samples.

Figure 4. Pdfs of the converter efficiency estimated by the proposed GPR+AL (solid green curve) and
GPR+LHS surrogates (solid red curve) and by a MC simulation with 10000 samples (blue histogram).
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Figure 5. Comparison between the results of 15 simulations with the computational model and the
corresponding mean values and 99% CIs predicted by the proposed GPR + AL (green dots and bars)
and GPR + LHS (red dots and bars)

4. Conclusions

This paper presented a preliminary version of an AL scheme. The proposed AL algorithm,
developed for the GPR, has been adopted for the optimal selection of the training samples in order
to construct an accurate surrogate model of the scalar output of interest. The proposed methodology
has been applied for the construction of a surrogate model for the uncertainty quantification of the
efficiency of a buck converter as a function of 7 uncertain parameters. The performance of the resulting
surrogate have been compared with the ones of an equivalent GPR-based surrogate model in which
the training samples are selected via a standard LHS scheme. According to the results presented in
this work, the proposed AL methodology can be considered as a promising candidate approach for the
training selection. Additional investigations are needed in order to better understand the performance
of such methodology in different test-cases and for different dimensionality of the parameter space;
possible different kinds of non-linear input-output behaviors could also be considered.
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