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Abstract

Derivations of the Jarzynski equality (JE) appear to be quite general, and appli-

cable to any particle system, whether deterministic or stochastic, under equally

general perturbations of an initial equilibrium state at given temperature T . At

the same time, the definitions of the quantities appearing in the JE, in particular

the work, have been questioned. Answers have been given, but a deeper under-

standing of the range of phenomena to which the JE applies is necessary, both

conceptually and in order to interpret the experiments in which it is used. In

fact, domains in which the JE is not applicable have been identified. To clarify
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the issue, we scrutinize the applicability of the JE to a Hamiltonian particle sys-

tem in a variable volume. We find that, in this case, the standard interpretation

of the terms appearing in the JE is not adequate.

1 Introduction

At the end of the twentieth century, relations were developed to describe the

fluctuations of the energy dissipation of particle systems in a nonequilibrium

steady state, now generically known as Fluctuation Relations [1]. They have

been considered both as the apex of almost a century of investigations into the

consequences of the fluctuations of the microscopic constituents of macroscopic

objects [2] and, at the same time, they have opened a new line of research on

the properties of small (mesoscopic) systems. The literature on the subject is

vast. References [3, 4, 5] summarize those developments, which continued with

the derivation of different kinds of Fluctuation Relation, concerning transient

rather than steady states.

Among the last ones, the relation known as the Jarzynski Equality (JE) [6]

has become popular in different fields, biophysics in particular. Indeed, it is

meant to relate the free energy variations of a system to the work done on it

when it is driven away, in an arbitrary fashion, from a canonical equilibrium

state. This is particularly interesting in situations in which quasi-static thermo-

dynamic transformations are not possible, either because the time scale of the

experiment is too short, or because signals are heavily affected by fluctuations.

The JE can be suitably illustrated following Ref.[7]. To do that, let us con-

sider an N -particle system S, N ≥ 1, interacting with an environment E, and

denote by S+E the combined system. Let Γ = (x, y) represent the microscopic

state of S+E in the phase space M, with x =
(
q(S), p(S)

)
the canonical coordi-

nates and momenta of S, and y =
(
q(E), p(E)

)
those of E. Let the dynamics be
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determined by a time dependent Hamiltonian:

H(Γ;λ) = HS(x;λ) +HE(y) +Hint(x, y) (1)

where the parameter λ varies according to a given protocol λ = λ(t), during

the time interval [0, τ ]. The variation of λ is due to unspecified external agents

that, changing λ, perform a given work W on S. The number of particles N

can indifferently be large or small, and the time dependence of λ can be chosen

without limitations.

Let S+E be initially in thermodynamic equilibrium with a bath B at tem-

perature T , and take λ(0) = α and λ(τ) = ω. At time 0, an initial condition,

Γ0 = (x0, y0) ∈ M is picked at random from the corresponding canonical dis-

tribution,

fα(Γ) =
1

Qα
e−βH(Γ;α) (2)

where β = 1/k
B
T , k

B
is the Boltzmann constant, the Hamiltonian is evaluated

at λ(0) = α, and

Qλ =

∫
e−βH(Γ;λ)dΓ (3)

defines the partition function for an equilibrium system at temperature T , and

Hamiltonian H(Γ;λ) for any λ. At time t = 0, S+E is isolated from B, and the

external action is switched on, making λ change from its initial value λ(0) = α to

its final value λ(τ) = ω, while S+E evolves as determined by the time dependent

Hamiltonian H(Γ;λ(t)). Denoting by St :M→M the corresponding evolution

operator, the final microscopic state is SτΓ0 = (xτ (Γ0), yτ (Γ0)), while the final

value of the energy of S+E is H(SτΓ0;ω).

The same procedure is repeated a large number of times, and each time S+E

is found in a different unknown initial condition Γ0 ∈ M. As the Hamiltonian

is given and the protocol λ is deterministically fixed, one may say that the work

3
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for each trajectory only depends on Γ0. It is still useful to make explicit its

functional dependence on the trajectory and on the protocol as follows:

W = W
[
StΓ0; 0 ≤ t ≤ τ

]
(4)

Jarzynski now introduces the following definitions:

H∗S(x;λ) = HS(x;λ)− 1

β
ln

∫
dye−β[HE(y)+Hint(x,y)]∫

dye−βHE(y)
, (5)

FS(λ) = −β lnZλ ; Zλ =

∫
dx e−βH

∗(x;λ) (6)

and the quantity

WJ

[
StΓ0; 0 ≤ t ≤ τ

]
≡
∫ τ

0

dt λ̇
∂HS

∂λ
(xt(Γ0);λ(t)) (7)

= H(SτΓ0;ω)−H(Γ0;α) (8)

which is interpreted as work. Here, the second line follows from the fact that H

depends explicitly on time only through λ, which in turn only appears in HS :

∂HS

∂t
= λ̇

∂HS

∂λ
= λ̇

∂H
∂λ

=
∂H
∂t

=
dH
dt

(9)

Given the above definitions, the JE states that

〈
e−βWJ

〉
α

= e−β[FS(ω)−FS(α)] (10)

where the angular brackets represent a canonical average with respect to the

initial ensemble fα, and FS(λ) is interpreted as the free energy of S when S+E

is in canonical equilibrium at temperature T and parameter λ.

Although at time τ the system is typically not in equilibrium at temperature

4
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T with λ = ω, Eq.(10) is expected to compute the free energy variation of S. If

possible, this would be extremely useful in those cases in which thermalization

is not feasible, which are frequent in mesoscopic scale experiments.

The generality in which the JE is claimed to hold is striking: its validity

is stated to bridge all imaginable space and time scales, as long as a classical

Hamiltonian description and the canonical ensemble are valid. As this is rarely

the case for any law of physics, various critical investigations of its validity

have ensued. For instance, Ref.[8] questions the validity of the experimental

tests, while Refs.[9, 10], question the definition of work. Replies were provided

[7, 17] and various answers exist, but the debate appears to have left some issues

unresolved, see e.g. Refs.[11, 12, 13]. For instance, it is acknowledged that

the definitions of the various physical quantities given by Jarzynski may not

correspond in general to the usual notions of mechanical and thermodynamical

quantities. At the same time, this is not considered a problem, since the JE is

mainly intended to describe small systems; see e.g. Chapter 6 of Ref.[14], which

argues that the macroscopic and the mesoscopic notions of heat may as well be

different, hence all other thermodynamic quantities may. Other authors argue

that the relevant notion of work is WJ since, once averaged, it could represent

the thermodynamic work done by S on the steering bodies [17].

In this respect, one difficulty might be that such bodies are macroscopic

objects, that abide by the usual mechanical and thermodynamical laws. In

addition, measuring the thermodynamic work through external bodies leads to

the difficulty that the external work is measurable through S only when the

transformations are (thermodynamically) reversible. Only in that case, in fact,

do the values of the internal and the external work differ merely by a sign,

and knowledge of the external work amounts to knowledge of the internal work,

which is the one contributing to the variations of the state of S.

5

This article is protected by copyright. All rights reserved.



In certain cases, such as those described by Langevin equations for a single

or very few degrees of freedom, that are of interest in many experiments at

the mesoscopic scale [23], the coincidence of different quantities may overcome

these and other difficulties. However, for the full generality attributed to the

JE, further investigation is desired. As a matter of fact, some limitations on

its applicability have already been reported in special situations, such as those

in which the system does not return to its initial state, although λ evolves in a

closed loop with λ(0) = λ(τ), cf. Ref.[15] and references therein.1

Improving our understanding of these facts may help better define the range

of applicability of the JE, and to interpret experiments [21, 23, 22]. There-

fore, in this paper, we discuss some of the issues raised by the JE formalism,

investigating the simple, but also paradigmatic example of an object with a

variable volume. The following section discusses the derivation of the JE. Then

we analyse in detail our specific example, and the last section summarizes our

conclusions.

2 Derivation of the JE

In his paper [7], replying to Cohen and Mauzerall [8], who had criticized the

interpretation of protein stretching experiments in terms of the JE, Jarzynski

developed a derivation of his equality that can be considered totally general,

for Hamiltonian particle systems driven by external (steering) fields. We begin

recalling this derivation.

The universe treated in [7] consists of the system of interest S, its environ-

ment E, and a super-environment, which is a bath B at temperature T . The

external driving mechanisms are supposed to act directly on the energy of S,

1Plastic deformation seems to belong to a similar class of phenomena. Here, the system is
permanently deformed by external objects that move from an initial configuration, λ(0), and
return to it at the end of the cycle, λ(τ) = λ(0), cf. e.g. Refs.[18, 19].

6

This article is protected by copyright. All rights reserved.



varying the parameter λ, and to have no effect on E and B. Thinking of protein

stretching experiments, S is the protein, E is the solution in which S is im-

mersed, B is the laboratory, and the external device is the optical tweezers that

pull a lattice bead to which one end of the protein is attached. Furthermore,

the whole system S+E is initially assumed to be in equilibrium with B, so that

the statistics of its initial micro-states is canonical.

The Hamiltonian H is then decomposed in three parts, as in Eq(1): 1.

HS(x;λ), whose average is thought to represent the internal energy of S, which

can be modified by external agents modifying the parameter λ; 2. HE(y), the

internal energy of E, supposed to be insensitive to external actions; 3. Hint(x, y),

the interaction energy of S and E.

Note that identifying (the average of) HS with the thermodynamic internal

energy is not correct in general, since that requires the average of the interaction

energy Hint to be negligible with respect to HS . All thermodynamic fields are

defined within cells that are small compared to the macroscopic scales, but so

large with respect to the molecular scales that bulk quantities dominate over

surface contributions. Therefore, whenever Hint is not sufficiently small, neither

HS nor its average can be taken as genuine properties of the system S. This

may have an impact on the applicability of Jarzynski’s definitions, possibly

even admitting that consistency with macroscopic quantities is not necessary

in dealing with small systems [14]. Consistently with Sekimoto’s argument,

Ref.[17] argues that the natural extension of the elementary thermodynamic

work dW to fluctuating instantaneous work, is the work performed by S on the

external steering bodies, and is given by Eq.(7), i.e. that W ≡ WJ . Therefore,

7
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one can eventually write:

〈
e−βW

〉
α

=
〈
e−βWJ

〉
α

=

∫
dΓe−βW (Γ) e

−βH(Γ;α)

Qα

=
Qω
Qα

= e−β(FS+E(ω)−FS+E(α)) (11)

where [FS+E(ω)− FS+E(α)] is supposed to be the free energy variation of S+E.

This is not yet the desired quantity. One wishes to compute the free energy

variation of S alone, supposedly [FS(ω)− FS(α)]. Thanks to the definition (6),

this is obtained observing that the denominator of:

Zλ =
Qλ∫

dy exp(−βHE(y))
(12)

does not depend on λ, so that

Qω
Qα

=
Zω
Zα

(13)

which is the JE (10).

Given the Jarzynski framework outlined above, it is worth stressing that

Eq.(10) and its applicability rest on the following assumptions:

1) the quantity FS defined by Eq.(6) does represent the free energy of S,

2) WJ represents the microscopic observable generating the macroscopic work.

In Ref.[6], point 1) is considered justified in equilibrium situations, such as those

represented by the canonical distribution with λ = ω. As argued by Peliti,

[16, 17], referring to Gibbs’ book, [30], e.g. page 42, point 2) is justified when

WJ is the thermodynamic work in quasi-static transformations. However, as

noted also by Peliti, Gibbs only considers analogies between thermodynamic and

mechanical quantities, and the thermodynamic ones need averaging with respect

8
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to the proper ensemble, cf. e.g. page 45 of [30]. Moreover, Gibbs’ approach

requires quasi-static transformations, which exclude the irreversible ones.

Finally, if the quantity WJ provides the thermodynamic work only after

averaging, it cannot be exponentiated and then averaged as if averaging some

function of work. This does not forbid averaging the exponential of the non-

averaged WJ , but this is not the exponential of the work that contributes to the

variations of the properties of S. The right work is the one performed by the

external agents on S.

Even granting that WJ is the proper quantity to consider, at least for the

state variation of a small system S, it remains that the correspondingly small

free energy difference concerning this variation is referred to the variation of free

energy of S+E, which is huge compared to that of S alone. The most obvious

reason is that obtaining a small number from the difference of two very large

numbers is problematic in general.

As numerous experiments have nevertheless verified the JE [20, 21, 22], fur-

ther analysis seems to be necessary. Below we consider a simple, but paradig-

matic example, in which the JE as developed above does not seem to hold.

3 A critical case: S in a variable volume

To exemplify some of the difficulties associated with the derivation illustrated

above, let us consider some critical questions related to a specific model. We

begin observing that the quantity WJ defined by Eq.(8) does not always repre-

sent a real work. In fact, while the JE is of particular interest when quasi-static

transformations are impossible, WJ expresses a real work contributing to the

variations of the properties of S only in quasi-static transformations, that is to

say only when it equals, apart from a sign, the work done on S.

Take for instance a system S with a variable volume λ = VS(t) which defines

9
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the protocol. Let Vtot denote the total volume available to S+E. The volume Vtot

can be finite, variously subdivided between S and E, or infinitely large depending

on the case at hand. For example, suppose that S alone is within the volume VS ,

so that E occupies the rest of Vtot, VE = Vtot − VS . Then, taking the Vtot →∞

limit, HE becomes volume independent, while Hint continues to depend on

VS . Would the JE apply in this case, it would allow the calculation of the free

energy of a dense gas, in quite a simple fashion, unlike the complicated currently

known perturbative methods, that start from the analytically computable ideal

gas contribution. The general result can be summarized as follows.

1) The variations of VS affect not only S, but also E, either directly via a

VS-dependence in the energy of E, expressed by HE = HE(y;Vtot − VS),

or indirectly, through the term Hint = Hint(x, y;VS , Vtot − VS). Here,

indeed, even if the VS dependence of HE can be eliminated by taking the

Vtot →∞ limit, Hint remains VS dependent.

2) The quantity

WJ =

∫ τ

0

V̇S
∂HS

∂VS
dt (14)

cannot be taken by itself as mechanical work. Moreover, the virial the-

orem implies that in equilibrium it represents only a contribution to the

thermodynamic work done by S on the external bodies, that are responsi-

ble for the variations of VS . The reason is the neglect of the contribution

of Hint to the virial.

In principle, the Hamiltonian does not contain the volume, since that is neither

part of the kinetic energy, nor of the potential energy. The procedure to intro-

duce the volume in H follows from the rescaling of the configuration coordinates

of the system of interest, a procedure attributed to H.S. Green, cf. [27, 28].

In this procedure, we consider first the Hamiltonian of the N -particle system

10
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in a cube VS of side L, contained in the total very large (virtually infinite) volume

Vtot hosting also E. One can write:

H(q, p) = H(Lρ(S), q(E), π(S)/L, p(E)) = KS

(
π(S)/L

)
+KE

(
p(E)

)
+US

(
Lρ(S)

)
+ UE

(
q(E)

)
+ Uint

(
Lρ(S), q(E)

)
(15)

where ρ(S) = q(S)/L is the set of dimensionless configuration coordinates of S,

π(S) = p(S)L the set of the associated momenta, KS and KE are the kinetic en-

ergies of S and E, respectively, US and UE are corresponding potential energies,

and Uint = Hint. In our case

HS(ρ(S), π(S);L = V
1/3
S ) =

NS∑
i=1

π
(S)
i

2

2mL2
+ US

(
Lρ(S)

)
(16)

so that

∂HS

∂VS
=
∂HS

∂L
· ∂L
∂VS

=
1

3L2

− NS∑
i=1

p
(S)
i

2

mL
+

NS∑
i=1

ρ
(S)
i

∂US

∂q
(S)
i

 (17)

=
1

3VS

NS∑
i=1

−p(S)
i

2

m
+ q

(S)
i

∂US

∂q
(S)
i

 = − 1

3VS

NS∑
i=1

p(S)
i

2

m
+ q

(S)
i · Fi

(18)

hence

∂HS

∂VS
· V̇S = −1

3

V̇S
VS

NS∑
i=1

p(S)
i

2

m
+ q

(S)
i · Fi

 (19)

For an infinitesimal quasi-static transformation one can write

〈
1

3VS

NS∑
i=1

p(S)
i

2

m
+ q

(S)
i · F int

i

〉
eq

= P (20)

where F int
i is the total internal force acting on the i-th particle of S, and the

subscript “eq” denotes averaging with respect to the actual equilibrium ensemble

11

This article is protected by copyright. All rights reserved.



describing the stationary state. As shown below, averaging over the equilibrium

distribution one can indeed write:

〈
∂HS

∂VS
· V̇S dt

〉
eq

=

〈
∂HS

∂VS

〉
eq

dVS = PdVS (21)

which is the thermodynamic work done by the internal forces, if averaging is

performed with respect to the initial equilibrim ensemble.2 Therefore, the aver-

age of dWJ represents at most the contribution of the internal interactions3 to

the thermodynamic work PdVS done by S on the external bodies that change

VS . However, taking only dWJ , instead of the total energy of S, the averaging

yields at most a part of the thermodynamic work done by S on the external

bodies, since WJ misses the contribution from Hint.

Let us show this last point by computing the pressure of our isolated system.

The canonical partition function takes the form:

Q(S) =

∫
[0,L]3NS

dq(S)

∫
R3NS

dp(S) e−βHS(q,p) = (22)

L3NS

∫
[0,1]3NS

dρ(S)

∫
R3NS

dp(S) e−βHS(Lρ(S),p(S))

For the pressure in the volume V = L3, we then obtain:

P = k
B
T
∂

∂V
lnQ = k

B
T

dL

dV

∂

∂L
lnQ =

k
B
T

3L2

∂

∂L
lnQ

=
k

B
TN

V
− 1

3VQ
× (23)∫

dq(S)dp(S) e−βHS(q(S),p(S))q(S) ∂US(q(S))

∂q(S)

=
k

B
TN

V
− 1

3V

〈
q(S) ∂US

∂q(S)

〉
eq

(24)

2For slow infinitesimal transformations the use of the initial ensemble is allowed. For
evolving states, one would have to modify the ensemble as the process unfolds. However that
would be possible only for quasi-static transformation that justify the use of varying ensembles
to compute the shfting time averages.

3The interaction energy Hint has been neglected.
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Note that, here, no time dependence is involved. Multiplying Eq.(24) by dV

yields indeed thermodynamic work. However, it is only in equilibrium that one

can speak of macroscopic work here. The quantity in the exponent which is av-

eraged in Eq.(10) cannot be claimed to represent macroscopic work already at

t = 0, and moreover it is altered by the time evolution. Therefore, the average

in Eq.(10) does not lead to any clearly measurable quantity. In fact, in general,

the initial equilibrium of S+E at temperature T is driven for a time τ and turns

into a non-equilibrium state, hence the expression to be averaged after exponen-

tiation in Eq.(10), represents neither a virial in terms of the initial conditions

nor macroscopic work, or any other quantity simply related to a thermodynamic

property. In any case, it clearly does not represent the macroscopic work done

by S on the external devices, i.e. the work that is measured by the operator.

The difficulties are even more substantial if the volume of E also changes. In all

cases, extracting the free energy variation of S alone seems to be problematic.

4 Concluding remarks

In this paper, we have provided evidence of where the definitions adopted in

the derivation of the JE may fail, at least for protocols concerning macroscopic

systems. Although consistency between macroscopic mechanics and thermody-

namics is not strictly required in some of the specialized literature concerning

small systems, our findings may still have partial relevance for them. Indeed,

even accepting for small systems the validity of the definitions of Eqs.(7,8), it

is not clear at which scale the standard definition of work should replace WJ .

Moreover, the experimental measurements are performed on macroscopic ob-

jects. Note that protocol realisations may well end in a nonequilibrium state.

Indeed, the appeal of the JE lies precisely in the possibility of obtaining the free

energy difference between initial and final equilibrium states, with no need to

13
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reach the final equilibrium. We summarised a standard derivation of the JE to

show how this can be the case.

The differences between mechanical and thermodynamical work, besides the

fact that certain quantities only represent partial works, may also play a role in

the results. In particular, we have noted that in our case WJ is thermodynamic

measurable work only in equilibrium. This does not prevent to compute by

simulation the average of the exponential of WJ . However, an experimentalist

cannot measure such a quantity. Furthermore, in the likely event that work

cannot be exclusively done on the system of interest, but also on its environment,

one should check that this fraction of work remains negligible with respect to

the quantity of interest. As a matter of fact, the protocol may in general affect

the interaction energy Hint as well.

From a practical point of view, it remains that the free energy variation of S

is obtained from the free energy difference of S+E between the initial and final

equilibrium states. That can be highly problematic, since the JE procedure aims

to extract a generally small quantity from the difference of two large numbers.

While all the above does not seem to have caused difficulties in experimental

mesoscopic checks, other experiments, on the same mesoscopic scale, could be

affected. It thus seems that the use of the JE should be validated on a case by

case basis. Other counterexamples, such as those of “absolute irreversibility”

[15] or of indentation [18, 19] also suggest that this is the case. That viola-

tions of the JE are generically possible in systems that drastically violate the

assumptions of the theory has already been pointed out. For instance, Ref.[23]

mentions systems with no Hamiltonian description. We provide here instead

a case in which the JE does not apply, even though Jarzynski’s framework is

preserved.

For instance, ideal or non-ideal gases constitute variable volume systems

14
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commonly considered suitable for the application of the JE [29, 31, 32, 33].

In Refs.[29, 32] there is no environment, therefore the varying paramenter λ

correctly appears in HS only, and HE and Hint can be neglected. In such cases,

the only question is the experimental measurement of WJ , and the efficiency of

the JE as a statistical estimator of the variations of the free energy. In fact,

Lua and Grosberg show that while the formula has theoretical meaning for an

isolated gas, it has two major drawbacks. First of all, an estimator of the work

exponentiated does not represent anymore an exponentiated work, therefore this

quantity has not a clear experimental meaning. Secondly, as demonstrated in

Ref.[29], the number of repetitions of the protocol needed to verify the JE grows

exponentially with the system size. Our contribution concerns cases in which

HE is present and Hint 6= 0. Moreover our conclusions go beyond the efficiency

and statistical issues.

Consider a case in which the protocol consists in switching on interactions

among the particles of an initially ideal gas. In principle, for an expanding

such non-ideal gas, the JE yields the absolute energy of the interacting system

(the ideal gas contribution is analytically computable), without any difficulty,

from a mere canonical average, that does not require complicated perturbative

calculations or experiments. We have shown that this is not the case, since the

quantity to be averaged after exponentiation is the virial and not WJ .
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