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Abstract: Venus and the Ocean Worlds are emerging ar-
eas of interest for space exploration, as they can poten-
tially host, or have hosted, conditions compatible with
life. Landers and probes for in-situ exploration, however,
must deal with very high external pressure, due to the
environmental conditions, often resulting in thick and
heavy structures. Robust, reinforced shell structures can
provide a lightweight solution for the primary structure.
In this frame, the isogrid layout is already a standard in
aerospace, especially for flat panels or cylindrical shells.
In this paper, isogrid-stiffened hemispherical shells, or
"geodesic domes", are described, focusing on the case of a
concept of a Venus lander. Early design methods for both
plain and geodesic domes subjected to external pressure
are presented, providing design equations. Additive Man-
ufacturing is identified as the key technology for fabricat-
ing metallic geodesic domes, due to the complexity of the
internal features. Moreover, it allows to fabricate ports and
integrated thermostructural systems in the same process,
potentially resulting in improved performance or cost and
schedule savings.

Keywords: isogrid structures, additive manufacturing,
buckling, knockdown factor

1 Introduction
In the last decades, new discoveries in planetary science
have turn the spotlight on a series of planets and moons,
characterized by internal oceans and potentially hosting
life, such as Europa or Enceladus. Mission concepts are
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currently under study, aimed to land on the surface and
penetrate into the crust, attempting in situ life detection
[1]. Searching forwater, another interesting target is Venus.
Very similar to Earth in structure and size, it is thought to
host oceans in the past; however, a severe greenhouse ef-
fect has made its atmosphere inhabitable today. Several
concepts for atmospheric and surface missions have been
proposed or are currently under study [2].

Both the Ocean Worlds and Venus are characterized
by harsh environmental conditions, such as very high ex-
ternal pressure, extreme temperature and corrosive envi-
ronment. In the case of Venus, 93 bar and 462°C are ex-
pected at the surface, posing challenging conditions for
the structural and the thermal control system of surface
probes. Spherical shells are one of the preferred options
for the primary structure, because of the high internal vol-
ume to surface ratio. Past robotic missions to Venus, for
example, used plain spherical shells, composed by 2 or 3
parts assembled together.

Internal ribbing, although difficult and expensive
to fabricate with traditional manufacturing techniques,
could help in increasing the bending stiffness of the shell,
resulting in significant mass savings. In this frame, plates
and shells stiffened with ribs forming a triangular pattern
are commonly referred as "isogrids". Metallic or compos-
ite isogrid panels are largely used for aerospace applica-
tions, where stiff and light structures are needed. Spher-
ical isogrid shells are quite rare in aerospace, but are
very common in architecture, as geodesic domes. They are
usually composed by a metal or wooden framework cov-
ered by polymeric, glass or plywood panels. Due to the re-
source efficiency and the ease of fabrication and deploy-
ment, geodesic domes have been used for a number of ap-
plications, ranging from military shelters, to radar equip-
ments, biospheres or large auditoriums [3]. Concepts for
lighter-than-air structures with an isogrid or icosahedral
layout have been recently proposed in [4, 5]. In the case of
geodesic domes for robotic space probes, the fabrication
issues related to the complex internal ribbing can be eas-
ily addressed by using Additive Manufacturing (AM) tech-
nologies. AM geodesic domes could potentially be applied
not only to space probes for planetary exploration, but
also to manned or unmanned underwater vehicles [6, 7],
pressure hulls [8], components for vacuum systems [9] or
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underwater structures [10], where plain spheres are cur-
rently used.

Aim of this work is proposing a design approach for
Additively Manufactured metallic geodesic domes under-
going external pressure. First, plain spherical shells will
be analyzed, describing oneof themost useddesign formu-
las for buckling sensitive shells. Then, geodesic domes and
isogrid layouts will be introduced, summarizing the main
analytical formulation and describing a methodology to
design external pressure vessels. Finally, some results of
a preliminary experimental campaign performed on Ad-
ditive Manufactured geodesic domes will be presented as
well.

2 Traditional design: plain shells

2.1 State of stress

Consider a spherical vessel of radius R subjected to a uni-
form external pressure pext, as shown in Figure 1. A spher-
ical coordinate system {⃗r, θ⃗, ϕ⃗} can be defined so that
the external pressure is applied along the radial direction.
σr , σθ , σϕ and ϵr , ϵθ , ϵϕ are respectively stress and strain
along the three directions. Due to the symmetry in geom-
etry and loading conditions, {⃗r, θ⃗, ϕ⃗} are principal direc-
tions and the behavior in azimuthal (θ⃗) and polar direction
(ϕ⃗) are equivalent.

External pressure
pext

R

Figure 1: Scheme of the problem

If the wall thickness t is less then 1/10 of the radius,
the radial stress due to the external pressure is negligible if
compared to the tangential stress. Being the sphere made

of a material with Young’s modulus E and Poisson’s ratio
ν, the state of stress can be described as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

σr ≈ 0

σθ = −p · πR
2

2πRt = −pR2t
σϕ = σθ

(1)

Given isotropicmaterial properties, it is possible to ob-
tain the strains, as:⎧⎪⎨⎪⎩

ϵr = −2νE σθ

ϵθ = ϵϕ = 1 − ν
E σθ

(2)

and finally the radial displacement ur:

ϵθ =
2π(r + ur) − 2πr

2πr = urr ⇒ ur = ϵθ · r (3)

2.2 Structural stability

In addition to yielding, the system is prone to fail because
of structural instability as well. In fact, thin spherical
shells are characterized by high membrane stiffness, but
low bending stiffness; so, they can withstand high pres-
sure loads in static conditions, but catastrophic failures
are possible if a load or geometry perturbation occurs, in-
ducing bending phenomena [11]. The buckling behavior of
a complete and ideal spherical shell subjected to uniform
external pressure was firstly studied by Zoelly in 1915 [12],
who obtained the "classical" formulation reported below:

pcl =
2E√︀

3 · (1 − ν2)
t2
R2 (4)

Since this early study, a large difference between
the theoretical critical pressure and the experimental ev-
idences was observed. The cause of this discrepancy was
identified in the high sensitivity of thin spherical shells to
geometrical, material and loading imperfections. For this
reason, the actual critical pressure (pcr) is calculated by
modifying the ideal critical pressure pcl (Eq. 4) applying
a knockdown factor KF, in order to take into account the
detrimental effect of imperfections.

pcr = KF · pcl (5)

The KF value is derived from experimental tests and de-
pends on shape and size of the component. One of the
main issues in spherical shell buckling is the high scatter-
ing of the knockdown factor [12, 13]. Figure 2 summarizes
the experimental results of some researches. In general, a
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decrease in KF value is observed when the ratio R/t gets
bigger; indeed, larger and thinner shells are more likely
subjected to deviations from the perfect geometry because
of the fabrication process, and non uniform loading and
boundary conditions are more probable.

Lee et al. [12], producing and testing almost-perfect
elastomeric spherical shells, obtained higher and less scat-
tered values of KF, ranging from 0.61 to 0.92. At the same
time, they studied the effect of geometric imperfections,
precisely fabricating dimp-like defects on the shells.
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Figure 2: Knockdown factor versus radius to thickness ratio: experi-
mental results from the literature (adapted from [12]).

The high variability of the experimental results is re-
flected on the KF values to use in the design stage, rang-
ing from 14% [14], to 30% [15] and above. NASA SP8032
[14] reports recommended KF values for both spheres and
spherical caps. As it is possible to see from Figure 3, the
KF is a function of the geometry parameter λgeom, which
depends on the R/t ratio and on the included angle of the
cap Φ (sphere: sinΦ = 0). When the ratio R/t increases,
the buckling resistance decreases asymptotically to 0.14. A
less conservative value was used in the Pioneer mission
(KF = 40%). This approach was possible because an exten-
sive experimental campaign proved the high buckling re-
sistance of that particular geometry.

In the design stage, different assumptions on the re-
quired KF value can lead to very different designs, as
shown in Figure 4, where the critical buckling pressure pcr
is plotted against the shell thickness using different KFs,
considering a R=100 mm spherical shell made of Ti6Al4V.
For instance, considering a design pressure of 300 bar (dot-
ted line), the required shell thickness is 2.7 or 4mm, if a KF
of 14% or 30% is applied. It is clear that a deep investiga-
tion on the correct value of KF is crucial, to optimize a struc-
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Figure 3: NASA SP-8032 - recommended KF for spherical caps [14]

ture, given the geometry, the size and the manufacturing
technique.

More complex analytical formulations have been pro-
posed [12, 16–18], but the Zoelly’s equation is still largely
used in the early design stage for its ease of use.

1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

Figure 4: Bucking critical pressure against shell thickness, consider-
ing a range of KF, from 14% to 40%

2.3 Finite Element Analysis

Buckling problems can be addressed with a numerical ap-
proach as well. Several different methods are available,
starting from the Linear Bifurcation Analysis (LBA). In the
case of thin spherical shell, the results of LBA are in agree-
mentwith Zoelly’s equation (i.e.when KF= 1).More sophis-
ticated tools have been developed as well, in order to take
into account the effects of material and geometric non lin-
earities and to simulate imperfections. An outline of de-
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sign procedures using non linear analysis is reported by
Rotter [19], based on the European Standard code EN-1993-
1-6 [20]. Sensitivity of spherical shells to imperfections has
been investigated using material non linear analysis in
[8] and in [21]; the first one analyzed large pressure hulls
(R=1000 mm) using both linear and non linear methods,
simulating a range of defects and proposing an empirical
formula for estimating the actual critical pressure. Com-
bined loading cases, like external pressure together with
circumferential shear, have been investigated by Tall et al.
[22].

2.4 Manufacturing techniques

Depending on the material, the size of the component and
on the required level of precision, different manufacturing
techniques are available [23]. Large, metallic hemispheres
can be obtained by spin forming and eventually post-
machining if higher accuracy is required. Spin forming,
however, is not possible in case of brittle materials, like
beryllium, so they need to bemachined frombillets, result-
ing inhighmanufacturing costs and time. Composite cylin-
drical tank are usually obtained by wrapping, but hemi-
spherical shapes may be more difficult to fabricate. Sand-
wich pressure vessels can be fabricated by bulge-forming
the different parts and then assembling them. High preci-
sion plastic domes can be obtained by vacuum drawing
[12].

3 Geodesic domes for harsh
environments

3.1 The isogrid layout

Isogrid structures consist of panels or shells stiffened with
a system of ribs arranged in a triangular pattern, as shown
in Figure 5. The ribs are oriented and spaced so that they
form equilateral triangle; this, macroscopically, lead to an
isotropic behavior. Isogrid structures show high mechani-
cal strength and bending stiffness, but low mass. For this
reason, they are widely used in aerospace applications,
such as cylinders for launch vehicles. Different rib geome-
tries and materials have been investigated, ranging from
metal to plastic, to composites [24]. Bellifante and Meyer
[25] and the "Isogrid Design Handbook" [26] are the main
references for analytical models for isogrid structures.

3.2 Stress state of an Isogrid panel

Figure 5: Isogrid geometry

This section reports the main formulas for stress state
calculation from [26]. Figure 5 shows the top view and the
section of a typical isogrid structure. A global {x, y} and
a local {P1, P2, P3} reference frame are defined and used
for describing stress resultant and rib stresses respectively,
despite the usual symbols applied in the literature, which
resorts to 1, 2, 3 to indicate the principal system of refer-
ence. The isogrid geometry (skin thickness t, rib thickness
b, rib height d, triangle height h) is highlighted in Figure 5.

Non dimensional parameters related to the geometry
are defined as follows:

α = bdth (6a)

δ = dt (6b)

β =
√︀
3α(1 + δ)2 + (1 + α)(1 + αδ2) (6c)

and used to calculate the equivalent area A and moment
of inertia I per unit of triangle height:

A = t · (1 + α) (7a)

I = t3
12 · β2

1 + α (7b)

and the extensional (K) and bending (D) stiffnesses:

K = Et
1 − ν2 · (1 + α) (8a)

D = Et3
12(1 − ν2) ·

β2
1 + α (8b)

where the first factors represent the formulas for the skin
alone,while the second ones are the corrections for the iso-
grid.
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Using eq.8, it is possible to define an equivalentmono-
coque thickness (te) and Young’s modulus (Ee) as follows:⎧⎪⎪⎨⎪⎪⎩

K = Ee te
1 − ν2

D = Ee t3e
12(1 − ν2)

⇒

⎧⎪⎪⎨⎪⎪⎩
te = t

β
1 + α

Ee = E
(1 + α)2

β

(9)

These expressions are used to evaluate stress resul-
tants and buckling critical pressures.
When the bending stresses are negligible, stress state of
skin and ribs can be expressed by eq.10 and eq.11 respec-
tively, where N is the load per unit of length:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx =
1

t(1 + α)Nx

σy =
1

t(1 + α)Ny

τxy =
1

t(1 + α)Nxy

(10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 =
1

3t(1 + α) (3Nx − Ny)

σ2 =
2

3t(1 + α) (Ny +
√
3Nxy)

σ3 =
2

3t(1 + α) (Ny +
√
3Nxy)

(11)

3.3 Geodesic domes

The layout of isogrid spherical shells (or icospheres) is ob-
tained starting from the regular icosahedron. As shown in
Figure 6, this polyhedron is composed by 20 equal equilat-
eral triangular faces, whose vertices lay according to Table
1.

Figure 6: Icoshaderon and geodesic domes with two different iso-
grid frequencies

The icosphere is obtained by projecting the edges of
the icosahedron on the spherical surface and then creat-
ing the ribs. Isogrid frequency (i.e. triangle height h) can

Table 1: Icoshahedron vertices, according to a rectangular reference
frame. ϕ = (1 +

√
5)/2 ≈ 1.618

A = (0, 1, ϕ) E = (ϕ, 0, 1) I = (1, ϕ, 0)
B = (0, −1, ϕ) F = (ϕ, 0, −1) J = (−1, ϕ, 0)
C = (0, −1, −ϕ) G = (−ϕ, 0, −1) K = (−1, −ϕ, 0)
D = (0, 1, −ϕ) H = (−ϕ, 0, 1) L = (1, −ϕ, 0)

be varied by subdividing the triangular faces in smaller tri-
angles. Defining the number of subdivisions as ndiv, the
triangle height is calculated as:

hT =
√
3
2 · 2πR

10 · 2ndiv−1 (12)

It must be noted that the triangular cells obtained by
the projection on the sphere are not regular and different
each other, although the original icosahedronhas 20 equal
equilateral triangles. In the following, the value of h is re-
lated to the to the height of the triangle in correspondence
to the center of each of the 20 faces of the original icosa-
hedron. Figure 6 reports isogrid layout for 2 and 3 subdivi-
sions.

3.4 Analytical modeling

The stress state of a geodesic dome under uniform exter-
nal pressure can be calculated starting from Eq. 10 and 11,
considering that: {︃

Nx = Ny = pR/2
Nxy = 0

(13)

Therefore, the stress in the skin and in the ribs can be
written as follows:

σskinθ,ϕ = pR
2t(1 + α) (14a)

σrib1,2,3 =
pR

3t(1 + α) (14b)

Similarly to the plain shell case, the structural insta-
bility needs to be investigated as well. An analytical for-
mulation based on [26] is reported in this section. Because
of the complexity of the structure, three different buck-
lingmodes canoccur, involving theGeneral Instability (GI)
of the whole system, the Skin Buckling (SB) of the shell
within the triangular pockets, or the Rib Crippling (RC).

Starting from the Zoelly’s formula for plain spheres
(Eq. 4), the General Instability equation can be obtained
by replacing the Young’s modulus and the thickness with
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the equivalent parameters calculated using Eq. 9, in order
to take into account the contribution of the ribs.

pcl =
2Ee√︀

3(1 − ν2)
t2e
R2 = 2E√︀

3(1 − ν2)
t2
R2 β (15)

A KF is finally applied and the formula is written ac-
cording to the nomenclature used in [26]:

pGI =
KF√︀

3(1 − ν2)
· 2E t

2

R2 β = c0 · 2E
t2
R2 β (16)

The parameter c0 needs to be found empirically. Ac-
cording to the experimental campaign on plastic and alu-
minumdomesperformed in [25], c0 is set to 0.26. Itmust be
noted that the reference dates back to the 1960s and only a
few number of specimens were tested; further experimen-
tal campaigns should be performed, considering current
technologies.

The second type of instability concerns the skin only.
At this stage, the curvature of the triangular elements is
neglected. The buckling behavior of flat and curved shells
can differ, but this assumption is reasonable in case of
large spheres and small triangular cells and it allows to use
a simplified analytical model. A planar triangle, hinged on
the three edges and loaded is considered, as shown in Fig-
ure 7a. The skin buckling critical pressure can be calcu-
latedby equating thebuckling critical stress for equilateral
triangular plates (with k1 = 5) to the skin stress (Eq. 14a):

k1π2E
12(1 − ν2)

(︂
t√
3/2h

)︂2
= pSBR
2t(1 + α) (17)

The ribs can be modeled as rectangular plates (ne-
glecting the curvature), hinged on 3 edges an loaded on
the two opposite short edges (see Figure 7, b); the corre-
sponding buckling critical stress is evaluated as follows
(k2 = 0.456):

σ

( b )

( a )

simply supported edges

simply supported
edges σ 

σ 

Figure 7: Scheme of skin buckling (a) and rib crippling (b) - adapted
from [25]

k2π2E
12(1 − ν2)

(︂
b
d

)︂2
= pRCR
3t(1 + α) (18)

The following equations summarize the formulas for
structural instability:

pGI = c0 · 2E ·
t2
R2 β ; c0 = 0.26 (19a)

pSB = c1 · 2E ·
t(1 + α)
R

t2
h2 ; c1 = 3.47 (19b)

pRC = c2 · 2E ·
t(1 + α)
R

b2
d2 ; c2 = 0.634 (19c)

3.5 Structural optimization

A Matlab® code for designing geodesic spheres under-
going external pressure loading was developed, starting
from the analytical formulation given in [26]. Given the
sphere radius, the material properties and the external
pressure, the isogrid layout (i.e. skin thickness, rib height
and thickness) needs to be optimized, in order tominimize
themass, given the required safety factors for yielding and
buckling. The non dimensional parameter λ is defined as
follows:

λ = pcr
pext

(20)

Being three the buckling modes and the relative criti-
cal pressures (GI, SB, RC), three different values of λ can
be calculated. According to [26], the optimum structure is
obtained by equating the three buckling equations:

λGI = λSB = λRC ⇒ optimum (21)

In this way, the three buckling phenomena should oc-
cur at the same time, when the critical pressure is reached.
The stress state must be always checked as well, in order
to avoid a yielding failure. The validity of Eq. 21 will be dis-
cussed in the following.

The isogrid layout is described by 4 parameters: h, t,
b and d. It must be noted that the triangle height h can
be easily controlled, as it can vary discretely only, depend-
ing on the number of subdivisions of the original icosa-
hedron. For this reason, it was decided to exclude it from
the optimization problem. In other terms, given an isogrid
frequency (i.e. given h), an optimization problem will be
solved. Multiple configurations, having bigger or smaller
triangles, can be finally compared.

Excluding h allows to reduce the design variables to
three parameters only (t, b and d). Equating SB and RC
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equations (19), i.e. imposing that the two failure modes oc-
cur simultaneously, the rib height d can bewritten as func-
tion of skin and rib thickness:

d = bth

√︂
c2
c1

⇒ λSB = λRC (22)

Now, given the sphere radius, the number of subdivi-
sions, the material properties and the external pressure, it
is possible to map the λ values as a function of skin thick-
ness t and rib thickness b only (seeFigure8). Skinbuckling
and Rib crippling plots are exactly the same, as imposed
by Eq. 22. The curves intersect in series of optimum points,
in yellow. The top view of the plot can be finally used to
easily find the optimum geometry, as shown in Figure 9,
which shows not only the optimum curve (in yellow), but
also the level curves relative to the rib height d (in purple)
and to the minimum buckling pressure (in red), and the
mass color plot (background). The design point can be ob-
tained by the intersection between the required minimum
critical pressure and the optimum curve. The isogrid geo-
metric parameters (t, b, and d) are read from the plot, as
well as the correspondingmass. Finally, the solutionneeds
to be verified for yielding.
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Figure 8: Intersection between the buckling modes for different
values of skin and rib thickness

Eq. 21 is checked, in order to verify that this condition
results in a configuration of minimummass. A R=560 mm,
Ti6Al4V geodesic sphere is designed with a design pres-
sure of 150 bar. The optimum point is found by using the
procedure previously described, resulting in a mass of 184
kg. Then, the isogrid configuration is modified, keeping
the same mass. Three plots are obtained 10 , by varying
two of the three isogrid design parameters (t, d and b) and
keeping constant the third one. As it is possible to see, the
point found assuming Eq. 21 is actually an optimum point,
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Figure 9: Optimum geometry plot

at least locally. For instance, when d = const (first plot),
moving from left to right means having thicker ribs and
thinner ribs, i.e. going from a rib crippling sensitive struc-
ture, to a skin buckling sensitive structure, going through
an optimum point. Similar considerations are applicable
to the other two plots.
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3.6 Finite Element Analysis

Finite Element Method can be used to numerically esti-
mate the stress state and the buckling critical load of
geodesic domes subject to external pressure. Due to the
particular geometry, the mesh creation process can be
complex. A procedure for creating the mesh is briefly re-
ported, using Altair HyperWorks® as the preprocessor and
Altair Optistruct® as the solver.

First, the icosahedron is created, by manually in-
putting the coordinates given in Table 1. One face of the
icosahedron out of the 20 is then projected the circum-
scribing spherical surface and divided in smaller triangles.
Then, surfaces for the ribs are created and the geometry is
meshed. In this case, ≈ 7800 quadrangular elements have
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been used. Then, a Matlab® script is used to create all the
20 faces of the icosahedron, by replicating the elements
previously created. Finally, duplicated nodes are merged
and a cylindrical global system of reference is assigned to
all the nodes. Symmetry conditions are finally applied to
the nodes on the symmetry plane (xy plane), allowing only
radial translation and z rotation. A uniform external pres-
sure is applied normally to the outer surface (Figure 11).

Ribs

Skin Uniform external pressure

Symmetric boundary
conditions

Triangular cell

Figure 11:Model for FEA

Linear static analysis and linear buckling analysis can
finally be run. In the latter case, it is possible not only
to estimate the buckling pressure, but also to identify the
type of buckling (general instability, skin buckling or rib
crippling), as shown in Figure 12. Linear FEA and analyti-
cal methods are compared, by computing stress state and
buckling pressure in a number of different geometries, as
shown in Table 2. Three sets of experiments are run; for
each set, h and d are constant and a 7x7 design is gener-
ated, considering changes of t and b equal to ±50%, ±25%,
and ±12.5% in respect to the nominal value.

Figure 12: FEA Post-precessing: examples of different buckling
modes. From left to right: GI, SB and RC

Table 2: Set of trail cases for FEM/analytical method comparison

set 1 set 2 set 3
h (mm) 157 157 79
d (mm) 30 60 30
tnom (mm) 8.40 14.70 5.00
bnom (mm) 3.80 3.10 4.50

Figure 13 shows the values of non dimensional critical
loads computed analytically and numerically; as it is pos-
sible to see, a discrepancy in buckling critical pressures is
observed. The slope of the regression line is equal to 0.57,
0.60 and 0.55 in the three sets of simulations. Itmust be no-
ticed that analytical and FEM results are in agreement for
plain spheres, when Zoelly’s classical equation 4 is used
(KF = 1). The difference can be related to the adoption of
the suggested KF in the GI equation (Eq. 19).
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Figure 13: FEM/analytical method comparison

As mentioned above for the plain sphere, the non
linear analyses are useful to evaluate the performance
of shells subjected to high external pressure, in particu-
lar when the collapse is considered. However, because of
the high computational cost, this type of analysis can be
hardly used in the design or optimization phase.

3.7 Manufacturing techniques

In the case of metallic geodesic domes, the complexity of
the ribbing limits the manufacturing techniques to few so-
lutions. In [25], aluminum domes were obtained by hand
routing machining from thick domes pre-formed by hot
spinning and bakelite geodesic domes were fabricated
from plastic sheets pressure formed into spherical shells,
on which ribs were bonded. Machining geodesic domes re-
quires 5-axis machines and small tools, resulting in high
costs and long fabrication time, especially in case of hard
materials, such as titanium alloys.
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These manufacturing issues can be more easily ad-
dressed by switching to AdditiveManufacturing (AM) tech-
niques. In fact, AMallows to fabricate complex geometries,
resulting in improved performance and mass savings, es-
pecially when coupled with optimization tools [31], or in
integrated systems,where assemblies are fabricated in one
single process.Moreover, AMprocesses are in general char-
acterized by reduced lead time and costs, especially for
small lots, making AM particularly suited for prototyping
or customizedproducts [32].Manyprocesses andmaterials
are available today, or under development, ranging from
polymers, to metals, to composites; in the case of metal
additive manufacturing, the most common processes use
powder bed fusion technologies, such as Electron Beam
Melting or Selective Laser Melting [33]. Examples of iso-
grid stiffened panels or cylindrical shells fabricated by AM
can be found in literature, especially for polymeric mate-
rials, such as PVC [34] or carbon fiber reinforced polymers
[27, 28]. Anhybrid fabrication techniquewasused in [29] to
build an isogrid-stiffenedpatchantenna.Amodel of an iso-
grid reinforcedmirror is presented in [30]; AM and a gradi-
ent alloy were used, having the surface of the mirror made
of Invar and the ribs made of steel.

Considering geodesic domes and metal powder bed
processes, twodifferent fabricationdirections are possible,
as shown in Figure 14. However, support structures in the
internal surface can be difficult to remove and could re-
sults in high surface roughness and irregularities. For this
reason, layout B is recommended. Supports are needed at
the base and in correspondence to the flange of the com-
ponent. Post-machining of the external surface can be per-
formed, to reduce the surface roughness. Some overhangs
are still present in the upper part of the component; in or-
der to avoid extra supports, chamfers can be added. Fillets
can be used as well, to reduce stress concentration and
crack initiations.

It must be noted that the analytical formulations pre-
viously described use isotropic material models, while the
mechanical properties of Additively Manufactured materi-
als can be not isotropic, due to the directionality of the pro-
cess, especiallywhen components are in the as-built condi-
tion. However, in the case analyzed here, components are
usually subjected to heat treatments at high temperatures,
which have beneficial effects, also reducing the anisotropy
[35, 36]. For this reason, isotropic material properties can
be considered, at least in the concept design phase; more
detailed material models can be used for the verification
of the final configuration of structure.

Supports

Build plateA B

Figure 14: Printing directions and supports

4 Spherical planetary probes
Venus, Europa and Enceladus are potential targets for fu-
ture robotic space missions. They are all characterized
by harsh environmental conditions and, in particular, by
high external pressure; hence, probes for in-situ explo-
ration need robust vessels. If concepts of potential probes
for Ocean World exploration are mainly cylindrical shells
[1], spherical layouts are the most common solution for
Venus landers [23, 37, 38], as they minimize the surface
area exposed to the very high temperature of the environ-
ment (462∘C).

In the early design stage, the external pressure due to
Venus’ environment is considered as the most severe load-
ing condition. At first, the effects of the high temperature
on the structural behavior can be neglected as well, as it
is mitigated by the thermal control system. So, thermal ex-
pansion is not considered andmaterial properties at room
temperature are used. Past landing missions to Venus (Pi-
oneer Venus, Venera probes) used plain, thick spherical
shells, as shown in Figure 15. Several solutions of primary
structures have been proposed over the years, assessing
different materials and fabrication techniques [23], as well
as different layouts, including internally pressurized tanks
[38].

Figure 15: Venera 5 (left) and Pioneer Venus - Large probe (right)
cutaway, adapted from [23, 40]

Geodesic domes and Additive Manufacturing have
been investigated in [39]. A full-scale isogrid shell was de-
signed, considering the design method described in the
previous sections. Then, an experimental campaign was
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performed on sub-scale components, to investigate the be-
havior of Additively Manufactured plain and isogrid shells
and to assess the validity of the models (Figure 16). �
200 mm Ti6Al4V geodesic domes were designed accord-
ing to the analytical method and considering the technol-
ogy limitations related to the dimension of the powder bed
of the AM machine and the accuracy of the process. The
geometry was refined, adding fillets and chamfers to im-
prove the manufacturability. Then, Finite Element Anal-
ysis was performed, using linear and non linear analy-
ses, to predict the structural behavior and the failure pres-
sure. Once the domes had been fabricated by Direct Metal
Laser Sintering and the supports had been removed byma-
chining, three geodesic domes and one plain dome were
tested under hydrostatic pressure loading. In the case of
the goedesic domes, repeatable failure modes were ob-
served and the non-linear simulations were found consis-
tent with the experimental results, with an error of 9%.
Moreover, comparing the experimental failure pressure to
the prediction made by the finite element linear analysis,
the resulting knockdown factor was 44%,while the recom-
mended factor for plain shells is about 30%. This suggests

A Ø200 mm sphere is designed 

according to the analytical method

The structural behavior is 

investigated using linear and non-

linear simulations

DESIGN

REFINEMENT

FEA

MANUFACTURING

TESTING

Chamfers and fillets are added, to 

improve manufacturability

Domes are built in Ti6Al4V using DMLS. 

After Heat Treatments, supports are 

removed by machining.

Domes are tested increasing the 

external pressure until failure

Figure 16: Experimental testing of sub-scale components [39]

that geodesic domes are more robust and less sensitive to
imperfections.

5 Conclusions
The technical problem addressed here is the early design
of primary structures of probes for the exploration of harsh
environments. This kind of structures must be resistant to
extreme pressures, but also lightweight, to meet the mis-
sion requirements. The tentative solution proposed here
is to combine an isogrid-stiffening layout to Additive Man-
ufacturing technologies. However, the complexity of the
geometry, together with the non-linearities and the uncer-
tainties typical of shell buckling, requires a modeling that
starts from analytical approaches, uses numerical simula-
tions and requires an optimization phase. The paper re-
ports an analytical method for modeling the behavior of
geodesic domes under external pressure loading, showing
the feasibility of an optimization method based mainly on
the balanced buckling modes. The feasibility of the inte-
gration of the isogrid and AM has been discussed as well,
describing issues andpotential benefits. A design path has
been proposed, composed by different steps: the optimiza-
tion of the isogrid layout, using the analytical method, the
refinement of the geometry to improve themanufacturabil-
ity, and the numerical simulations, to predict the failure
pressure. An experimental campaign on Ti6Al4V domes
was performed and showed promising results. Further ex-
periments should be performed, to better assess the knock-
down factor for geodesic domes and to investigate the sen-
sitivity of the buckling modes to the isogrid parameters.
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