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A THREE-FIELD BASED OPTIMIZATION FORMULATION FOR
FLOW SIMULATIONS IN NETWORKS OF FRACTURES ON

NONCONFORMING MESHES\ast 

STEFANO BERRONE\dagger , DENISE GRAPPEIN\dagger , SANDRA PIERACCINI\ddagger , AND

STEFANO SCIAL\'O\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A new numerical scheme is proposed for flow computation in complex discrete
fracture networks. The method is based on a three-field domain decomposition framework in which
independent variables are introduced at the interfaces generated in the process of decoupling the
original problem on the whole network into a set of fracture-local problems. A PDE-constrained
formulation is then used to enforce compatibility conditions at the interfaces. The combination of
the three-field domain decomposition and of the optimization-based coupling strategy results in a
novel method which can handle nonconforming meshes, independently built on each geometrical
object of the computational domain, and ensures a local mass conservation property at fracture
intersections, which is of paramount importance for hydrogeological applications. An iterative solver
is devised for the method, suitable for parallel implementation on parallel computing architectures.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . discrete fracture networks, Darcy law, PDE-constrained optimization, extended
finite elements, nonconforming mesh

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N30, 65N15, 65N50, 65J15

\bfD \bfO \bfI . 10.1137/20M1319188

1. Introduction. The present work proposes a new numerical approach for flow
simulations in fracture networks, described by means of the discrete fracture network
(DFN) model. The method combines a three-field--based domain decomposition strat-
egy [14] to a PDE-constrained approach [8] for the imposition of interface conditions.
The resulting approach inherits the robustness with respect to geometrical complexity
and the predisposition to parallel implementation given by the optimization frame-
work and exhibits an improved flexibility and new approximation properties resulting
from the used domain decomposition method.

DFNs are sets of intersecting planar polygons arbitrarily oriented in the three-
dimensional space, representing fractures in underground rock formations, and are
typically generated sampling hydraulic and geological soil properties from probability
distribution functions [15, 20, 19]. DFN models provide an explicit representation
of fractures and thus are a viable alternative to homogenization-based approaches
[5], when the presence of a network of fractures sensibly affects relevant flow char-
acteristics. In fact, flow directionality and preferential paths might not be correctly
accounted for by using homogenized properties for rocks and fractures [21, 33]. When
fracture hydraulic transmissivity is much higher than rock transmissivity, the influ-
ence of the porous rock matrix can be neglected, with minor impact on the prediction
of the flow.
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B382 BERRONE, GRAPPEIN, PIERACCINI, AND SCIAL\'O

A major drawback for DFN flow simulations is related to the geometrical com-
plexity and size of the resulting computational domains, which might count a large
number of fractures, with dimensions ranging from centimeters to kilometers and
forming an intricate network of intersections, where suitable conditions need to be
enforced to couple the solution on the intersecting fractures. This complex multiscale
geometrical nature of DFN domains significantly limits the applicability of conven-
tional numerical simulation tools which rely on mesh conformity to enforce interface
conditions, as it is often a very difficult task to generate good-quality conforming
meshes of realistic DFNs, even introducing a large number of unknowns [17, 1, 24].

Recently, many different approaches have been suggested to overcome such a
difficulty. A possible strategy consists in a dimensional reduction of the problem: In
[18, 13] the DFN is replaced by a set of one-dimensional channels or pipes resembling
the connections among fractures in the network; in [29] the problems on the fractures
are rewritten in terms of the one-dimensional interface unknowns only, whereas in
[28, 25, 34] DFNs are analyzed using graph theory tools. Some authors propose new
efficient meshing strategies for complex networks, aiming at obtaining a conforming
mesh with minor modifications of network geometry [22] or replacing hard-to-mesh
configurations with stochastically equivalent analog, which are easier to mesh [26, 27].
Discretization methods capable of handling polygonal meshes are also suggested as
effective strategies to obtain conforming meshes of complex networks: The use of
virtual elements proposed in [2, 3, 23, 6], mimetic finite differences in [1], and hybrid
high-order methods in [16] are some relevant examples. Other authors suggest the use
of mortaring techniques to partially alleviate the conformity requirement at fracture
intersections, [36, 31, 32].

A different approach is proposed in [8, 10, 11], which relies on numerical opti-
mization to enforce interface conditions, without requiring any mesh conformity at
fracture intersections and thus completely overcoming any problem related to mesh
generation. The method is based on a domain decomposition framework applied to
the fracture network, where one variable is introduced at each fracture intersection
for each intersecting fracture, accounting for the unknown flux exchange, and then a
cost functional, expressing the error in continuity and flux balance at the interfaces,
is minimized constrained by a set of PDEs defined on each fracture to recover the
solution on the whole network. The method is robust to complex geometries and
highly efficient thanks to its predisposition to parallel implementation [7, 12].

Here, while keeping a similar optimization framework, a new formulation is pro-
posed for the constraint equations, based on the three-field formulation suggested in
[14]. Two unknowns are introduced at each interface, representing the unknown flux
exchanged by the two intersecting fractures and the unknown trace of the hydraulic
head, which, together with the primal variable, form three independent fields. The
resulting approach retains the capability of dealing with nonconforming meshes and
the predisposition to parallel implementation given by the optimization formulation,
providing, at the same time, new approximation capabilities to the method. A key
aspect is the new structure of the cost functional: While in the original optimization
formulation the functional is given by the sum of two terms, one expressing the error
in solution continuity at the interfaces and another for flux mismatch at the interfaces,
the new proposed functional only measures the error in continuity at the interfaces,
thus avoiding possible unbalance between the different terms, with a positive impact
on the minimization process. Flux balance at each trace is, indeed, intrinsically en-
forced in the proposed three-field formulation, and this is another relevant aspect of
the method, which has local mass conservation properties.
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THREE-FIELD FORMULATION FOR FLOW IN DFN B383

The manuscript is organized as follows. In section 2 a three-field formulation of
the Darcy problem in fracture networks is written and recast into a PDE-constrained
formulation suitable for discretization on nonconforming meshes. The resulting dis-
crete approach is shown in section 3. Section 4 reports well-posedness results for
the discrete problem, section 5 proposes the algorithm to compute the numerical so-
lution, and section 6 describes some numerical examples. Concluding remarks are
finally proposed in section 7.

2. Continuous model. The present section is devoted to the presentation of
a three-field formulation for the Darcy problem. In the first subsection, a classical
formulation is proposed, introducing the equations and the coupling conditions at
the interfaces, whereas in the second subsection a novel optimization formulation is
described. In the following, L2(\omega ) is the Hilbert space on \omega of square integrable
functions, and Hr(\omega ) refers to the classical Sobolev space of order r on \omega ; inner
products in a function space V are denoted by (\cdot , \cdot )V , whereas \langle \cdot , \cdot \rangle V,V \prime is a duality
pairing between spaces V and V \prime . The notation v| \gamma denotes the trace on \gamma \subseteq \partial \omega of a
function v \in H1(\omega ).

2.1. Variational and three-field formulation. Let us consider a connected
three-dimensional fracture network \Omega given by the union of open planar fractures
\{ Fi\} i\in \scrJ , \scrJ = (1, ..., I), and surrounded by an impervious rock matrix. This means
that the flow, modeled by the Darcy law, only occurs along fractures and through
fracture intersections. Given two fractures, their closure intersection is called a trace,
denoted by Sm, m \in \scrM = \{ 1, ...,M\} . The set of all traces in \Omega is \scrS , whereas
for i \in \scrJ , the subset \scrS i \subset \scrS contains the traces belonging to the ith fracture; the
indexes of traces Sm \in \scrS i are collected in the index-set \scrM i. For each m \in \scrM , the
set ISm = \{ 

\=
i,\=i\} denotes the indexes of the two fractures intersecting along Sm, with

\=
i < \=i. The boundary of each fracture Fi is denoted by \partial Fi, whereas we denote by \partial \Omega 
the union of fracture boundaries in the DFN, i.e., \partial \Omega =

\bigcup I
i=1 \partial Fi, and it is split into

a Dirichlet part \Gamma D and a Neumann part \Gamma N such that \partial \Omega = \Gamma D \cup \Gamma N , \Gamma D \cap \Gamma N = \emptyset 
and | \Gamma D| > 0. Similarly, fracture boundaries have a Dirichlet part \Gamma iD = \Gamma D \cap \partial Fi
and a Neumann part \Gamma iN = \Gamma N \cap \partial Fi. Dirichlet and Neumann boundary conditions
on \partial \Omega are expressed by functions GD and GN , respectively, and their restrictions to
\partial Fi are denoted by GiD and GiN .

We are interested in the computation of the hydraulic head Hi on each fracture
Fi \subset \Omega , given by the sum of pressure and elevation and described by the Darcy law,

 - \nabla \cdot (\bfitK i\nabla Hi) = Qi in Fi \setminus \scrS i,(2.1)

Hi = GiD on \Gamma iD,(2.2)

\partial Hi

\partial \^\nu iN
= GiN on \Gamma iN ,(2.3)

where \bfitK i is a uniformly positive definite tensor representing fracture transmissivity,
Qi is a known source term and \partial Hi

\partial \^\nu iN
= \^niN \cdot \bfitK i\nabla Hi is the hydraulic head conormal

derivative along direction \^niN normal to \Gamma iN . Let us set on each fracture the function
spaces

Vi = H1
0(Fi) =

\bigl\{ 
v \in H1(Fi) : v| \Gamma iD

= 0
\bigr\} 

\forall i \in \scrJ ,
V Di = H1

D(Fi) =
\bigl\{ 
v \in H1(Fi) : v| \Gamma iD

= GiD
\bigr\} 

\forall i \in \scrJ 

and, for each trace Sm \in \scrS , the space \scrU m := H - 1
2 (Sm) and its dual \scrU m\prime . Assuming for

the moment that \Gamma iD \not = \emptyset \forall i \in \scrJ , the variational problem describing the distribution
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B384 BERRONE, GRAPPEIN, PIERACCINI, AND SCIAL\'O

of H in \Omega takes the following form: For all i \in \scrJ , find Hi = H0
i + \scrR iGiD with

\scrR iGiD \in V Di a lifting of the Dirichlet boundary condition and H0
i \in Vi such that

(\bfitK i\nabla H0
i ,\nabla vi)Vi

= (Qi, vi)Vi
+

\sum 
m\in \scrM i

\biggl\langle \biggl[ \biggl[ 
\partial H0

i

\partial \^\nu mi

\biggr] \biggr] 
, v| Sm

\biggr\rangle 
\scrU m,\scrU m\prime 

(2.4)

+
\Bigl\langle 
GiN , v| \Gamma iN

\Bigr\rangle 
H - 1

2 (\Gamma iN ),H
1
2 (\Gamma iN )

 - (\bfitK i\nabla \scrR iGiD,\nabla vi)Vi
vi \in Vi,

where
\partial H0

i

\partial \^\nu m
i

= \^nmi \cdot \bfitK i\nabla H0
i is the hydraulic head conormal derivative along direction

\^nmi normal to Sm \in \scrS i and
\bigl[ \bigl[ \partial H0

i

\partial \^\nu m
i

\bigr] \bigr] 
denotes the jump of

\partial H0
i

\partial \^\nu m
i

across Sm.

Coupling conditions at the traces for problems on intersecting fractures are the
continuity of the hydraulic head and flux conservation, expressed by

H\=i| Sm
 - H

\=
i| Sm

= 0 for \=i,
\=
i \in ISm

\forall m,\in \scrM (2.5) \biggl[ \biggl[ 
\partial H\=i

\partial \^\nu m\=i

\biggr] \biggr] 
+

\Biggl[ \Biggl[ 
\partial H

\=
i

\partial \^\nu m
\=
i

\Biggr] \Biggr] 
= 0 for \=i,

\=
i \in ISm \forall m \in \scrM .(2.6)

Let us introduce on each trace Sm \in \scrS the space \scrH m = H
1
2 (Sm) and its dual \scrH m\prime 

and the quantities \Psi m \in \scrH m and \Lambda m \in \scrU m, representing the unknown value of the
hydraulic head on Sm and of the flux jump across Sm, respectively. Then coupling
condition (2.5) can be rewritten in a weak form as, \forall m \in \scrM , \{ 

\=
i,\=i\} = ISm ,

(2.7)

\Bigl\langle 
H

\=
i| Sm

 - \Psi m, \mu m

\Bigr\rangle 
\scrH m,\scrH m\prime 

= 0 \forall \mu m \in \scrH m\prime ,\Bigl\langle 
H\=i| Sm

 - \Psi m, \mu m

\Bigr\rangle 
\scrH m,\scrH m\prime 

= 0 \forall \mu m \in \scrH m\prime 

and condition (2.6) as, \forall m \in \scrM , \{ 
\=
i,\=i\} = ISm

,

(2.8)

\Biggl\langle \Biggl[ \Biggl[ 
\partial H

\=
i

\partial \^\nu m
\=
i

\Biggr] \Biggr] 
 - \Lambda m, \rho m

\Biggr\rangle 
\scrU m,\scrU m\prime 

= 0 \forall \rho m \in \scrU m\prime ,

\biggl\langle \biggl[ \biggl[ 
\partial H\=i

\partial \^\nu m\=i

\biggr] \biggr] 
+\Lambda m, \rho m

\biggr\rangle 
\scrU m,\scrU m\prime 

= 0 \forall \rho m \in \scrU m\prime .

Assuming, for the sake of simplicity, that homogenous Dirichlet and Neumann bound-
ary conditions are imposed on \partial Fi, \forall i \in \scrJ , the three-field formulation [14] of problem
(2.4) takes the following form: Find (Hi,\Lambda 

m,\Psi m) \in Vi\times \scrH m\times \scrU m, for all i \in \scrJ and
for all m \in \scrM i such that

(\bfitK i\nabla Hi,\nabla vi)Vi  - 
\sum 

m\in \scrM i

\Bigl\langle 
( - 1)\chi 

m
i \Lambda m, vi| Sm

\Bigr\rangle 
\scrU m,\scrU m\prime 

= (Qi, vi)Vi \forall vi \in Vi,(2.9)

\sum 
j\in ISm

\Bigl\langle 
Hj | Sm

 - \Psi m, \mu m

\Bigr\rangle 
\scrH m,\scrH m\prime 

= 0 \forall \mu m \in \scrH m\prime ,(2.10)

with, for i \in \scrJ , m \in \scrM i, \chi 
m
i = 1 if i = max(ISm) and zero otherwise. In (2.9) we

have used the property \scrU m\prime = \scrH m = H
1
2 (Sm). For a given fracture Fi, the second

term in (2.9), ( - 1)\chi 
m
i \Lambda m, represents the flux entering the fracture through its traces.

On each trace Sm, m \in \scrM , the flux \Lambda m is considered positive for fracture F
\=
i and
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THREE-FIELD FORMULATION FOR FLOW IN DFN B385

negative for fracture F\=i, ensuring the conservation condition. In order to remove the
assumption of having a nonempty portion of the Dirichlet boundary on each fracture,
(2.9) can be modified as follows: On each fracture Fi, i \in \scrJ , and on each trace Sm,
m \in \scrM i, find (Hi,\Lambda 

m,\Psi m) \in Vi \times \scrH m \times \scrU m such that

(\bfitK i\nabla Hi,\nabla vi)Vi +
\sum 

m\in \scrM i

\biggl( 
\alpha 
\bigl( 
Hi| Sm

, vi| Sm

\bigr) 
\scrH m

 - 
\Bigl\langle 
( - 1)\chi 

m
i \Lambda m, vi| Sm

\Bigr\rangle 
\scrU m,\scrU m\prime 

\biggr) (2.11)

= \alpha 
\sum 

m\in \scrM i

\bigl( 
\Psi m, vi| Sm

\bigr) 
\scrH m

+ (Qi, vi)Vi
\forall vi \in Vi,\sum 

j\in ISm

\Bigl\langle 
Hj | Sm

 - \Psi m, \mu m

\Bigr\rangle 
\scrH m,\scrH m\prime 

= 0 \forall \mu m \in \scrH m\prime ,(2.12)

which, for \alpha > 0, ensures well-posedness of (2.11) even if \Gamma iD = \emptyset for all but one
fracture.

2.2. PDE-constrained optimization formulation. The discretization of the
continuity condition (2.12) would require some sort of mesh conformity at the traces
and a discrete inf-sup condition to have well-posedness of (2.11)--(2.12). We rewrite
instead problem (2.11)--(2.12) in a new formulation allowing a discretization on arbi-
trary meshes, from which a viable and robust numerical scheme can be derived, inde-
pendently of DFN geometrical complexity. At this aim we transform (2.11)--(2.12) in
a PDE-constrained optimization problem, in which a cost functional is introduced in
order to enforce the continuity condition on traces. For each fracture Fi and each trace
Sm \in \scrS i, let us introduce the trace operator \Gamma mi : Vi \rightarrow \scrH m, \Gamma mi (vi) = vi| Sm

\forall v \in Vi,
and the cost functional

(2.13) Jmi (Hi,\Lambda 
m,\Psi m) = | | \Gamma mi Hi(\Lambda 

m,\Psi m) - \Psi m| | 2\scrH m ,

which expresses the error in the fulfillment of continuity at trace Sm. Let us then
introduce, for each fracture Fi, i \in \scrJ , the spaces

\scrH \scrM i =
\prod 

m\in \scrM i

\scrH m, \scrU \scrM i =
\prod 

m\in \scrM i

\scrU m

and the variables

\Psi i =
\prod 

m\in \scrM i

\Psi m \in \scrH \scrM i , \Lambda i =
\prod 

m\in \scrM i

\Lambda m \in \scrU \scrM i .

Setting \Gamma i =
\prod 
m\in \scrM i

\Gamma mi , \Gamma i : Vi \rightarrow \scrH \scrM i , we define the linear bounded operators

Ai : Vi \rightarrow V \prime 
i , \scrB i : \scrU \scrM i \rightarrow V \prime 

i , \scrC i : \scrH \scrM i \rightarrow V \prime 
i such that

\langle AiHi, vi\rangle V \prime 
i ,Vi

= (\bfitK i\nabla Hi,\nabla vi)Vi + \alpha (\Gamma iHi,\Gamma ivi)\scrH \scrM i , vi \in Vi,(2.14)

\langle \scrB i\Lambda i, vi\rangle V \prime 
i ,Vi

=
\Bigl\langle 
( - 1)\chi 

m
i \Lambda i,\Gamma ivi

\Bigr\rangle 
\scrU \scrM i ,\scrU \scrM i

\prime 
, vi \in Vi,(2.15)

\langle \scrC i\Psi i, vi\rangle V \prime 
i ,Vi

= \alpha (\Psi i,\Gamma ivi)\scrH \scrM i , vi \in Vi,(2.16)

and their adjoints A\ast 
i : Vi \rightarrow V \prime 

i , \scrB \ast 
i : Vi \rightarrow \scrU \scrM i

\prime 
and \scrC \ast 

i : Vi \rightarrow \scrH \scrM i
\prime 
. Defining, then,

the spaces

\scrH =
\prod 
m\in \scrM 

\scrH m \scrU =
\prod 
m\in \scrM 

\scrU m
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B386 BERRONE, GRAPPEIN, PIERACCINI, AND SCIAL\'O

and the global control variables

\Psi =
\prod 
m\in \scrM 

\Psi m \in \scrH \Lambda =
\prod 
m\in \scrM 

\Lambda m \in \scrU ,

a global functional can be introduced as

(2.17) J(H,\Lambda ,\Psi ) =
\sum 
i\in \scrJ 

Ji(Hi,\Lambda i,\Psi i) =
\sum 
i\in \scrJ 

\sum 
m\in \scrM i

Jmi (Hi,\Lambda 
m,\Psi m),

and problem (2.11)--(2.12) can be written in the form

min
(\Lambda ,\Psi )

1

2
J(H,\Lambda ,\Psi ) subject to(2.18)

AiHi - \scrB i\Lambda i  - \scrC i\Psi i = Qi \forall i \in \scrJ ,

where the scaling factor 1
2 is introduced for the sake of convenience. The following

result characterizes the solution to (2.18).

Proposition 2.1. The optimal control (\Lambda ,\Psi ) providing the solution to ( 2.18)
satisfies, \forall i \in \scrJ ,

\Theta  - 1
\scrU \scrM i

\scrB i\ast Pi = 0,(2.19)

\Theta  - 1
\scrH \scrM i

\scrC i\ast Pi  - \Gamma iHi(\Lambda i,\Psi i) + \Psi i = 0,(2.20)

where Pi \in Vi is the solution of

(2.21) Ai
\ast Pi = \Gamma i

\ast \Theta \scrH \scrM i (\Gamma iHi(\Lambda i,\Psi i) - \Psi i),

\Theta \scrH \scrM i : \scrH \scrM i \rightarrow \scrH \scrM i
\prime 
, \Theta \scrU \scrM i : \scrU \scrM i \rightarrow \scrU \scrM i

\prime 
are Riesz isomorphisms, and \Gamma \ast 

i :

\scrH \scrM i
\prime \rightarrow V \prime 

i is the adjoint of operator \Gamma i.

Proof. Let us consider the increments \delta \Lambda i and \delta \Psi i, concerning the control vari-
ables \Lambda i and \Psi i, respectively, and let us differentiate the cost functional J(H,\Lambda ,\Psi )
with respect to the control variables:

\partial Ji

\partial \Lambda i
(Hi,\Lambda i + \delta \Lambda i,\Psi i) = 2(\Gamma iHi(\Lambda i,\Psi i) - \Psi i,\Gamma iHi(\delta \Lambda i, 0)\scrH \scrM i )

= 2
\bigl\langle 
Ai

\ast Pi, A
 - 1
i \scrB i\delta \Lambda i

\bigr\rangle 
V \prime 
i ,Vi

= 2(\Theta  - 1
\scrU \scrM i

\scrB i\ast Pi, \delta \Lambda i)\scrU \scrM i ,

\partial Ji

\partial \Psi i
(Hi,\Lambda i,\Psi i+\delta \Psi i) = 2 (\Gamma iHi(\Lambda i,\Psi i) - \Psi i,\Gamma iHi(0, \delta \Psi i) - \delta \Psi i)\scrH \scrM i

= 2
\bigl\langle 
Ai

\ast Pi, A
 - 1
i \scrC i\delta \Psi i

\bigr\rangle 
V \prime 
i ,Vi

 - 2 (\Gamma iHi(\Lambda i,\Psi i) - \Psi i, \delta \Psi i)\scrH \scrM i

= 2
\bigl( 
\Theta  - 1

\scrH \scrM i
\scrC i\ast Pi  - \Gamma iHi(\Lambda i,\Psi i) + \Psi i, \delta \Psi i

\bigr) 
\scrH \scrM i

.

This yields the thesis.

The derivatives computed in the proof of Proposition 2.1 represent the Frechet
derivative of the Lagrangian function associated to problem (2.18), for which the
variable Pi \in Vi is the Lagrangian multiplier on fracture Fi. The solution to problem
(2.18) can then be found by imposing stationarity conditions for the Lagrangian. Nev-
ertheless, as we will show later, when dealing with huge and complex DFNs it might
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THREE-FIELD FORMULATION FOR FLOW IN DFN B387

be computationally more convenient to minimize J(\Lambda ,\Psi ) using an iterative method,
such as the conjugate gradient method. Starting from the derivatives computed in
Proposition 2.1, let us consider the following quantities for each i \in \scrJ :

\delta \Lambda i = \Theta  - 1
\scrU \scrM i

\scrB i\ast Pi, \delta \Lambda =
\sum 
i\in \scrJ 

\delta \Lambda i,(2.22)

\delta \Psi i = \Theta  - 1
\scrH \scrM i

\scrC i\ast Pi  - \Gamma iHi(\Lambda i,\Psi i) + \Psi i, \delta \Psi =
\sum 
i\in \scrJ 

\delta \Psi i.(2.23)

Let then \delta Hi = Hi(\delta \Lambda i, \delta \Psi i) and \delta Pi be the solutions of

Ai\delta Hi = \scrB i\delta \Lambda i + \scrC i\delta \Psi i \forall i \in \scrJ ,(2.24)

Ai
\ast \delta Pi = \Gamma i

\ast \Theta \scrH \scrM i (\Gamma i\delta Hi  - \delta \Psi i) \forall i \in \scrJ .(2.25)

Proposition 2.2. Given the control variable W := (\Lambda ,\Psi ), let us increment it by
a step \zeta \delta W , with \delta W := (\delta \Lambda , \delta \Psi ). The steepest descent method corresponds to the
step size

(2.26) \zeta =  - 

\sum 
i\in \scrJ 

[(\delta \Lambda i, \delta \Lambda i)\scrU \scrM i + (\delta \Psi i, \delta \Psi i)\scrH \scrM i ]\sum 
i\in \scrJ 

\Bigl[ 
\langle \scrB i\delta \Lambda i + \scrC i\delta \Psi i, \delta Pi\rangle V \prime 

i ,Vi
 - (\Gamma i\delta Hi, \delta \Psi i)\scrH \scrM i + (\delta \Psi i, \delta \Psi i)\scrH \scrM i

\Bigr] .
Proof. It is sufficient to set to zero the derivative \partial J(W+\zeta \delta W )

\partial \zeta ,

J(W + \zeta \delta W ) = J(W ) + 2\zeta 
\sum 
i\in \scrJ 

(\Gamma iHi(\Lambda i,\Psi i) - \Psi i,\Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i)\scrH \scrM i

+ \zeta 2
\sum 
i\in \scrJ 

| | \Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i| | 2\scrH \scrM i ,

\partial J(W + \zeta \delta W )

\partial \zeta 
= 2

\sum 
i\in \scrJ 

(\Gamma iHi(\Lambda i,\Psi i) - \Psi i,\Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i)\scrH \scrM i

+ 2\zeta 
\sum 
i\in \scrJ 

| | \Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i| | 2\scrH \scrM i = 0,

\zeta =  - 

\sum 
i\in \scrJ 

(\Gamma iHi(\Lambda i,\Psi i) - \Psi i,\Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i)\scrH \scrM i\sum 
i\in \scrJ 

| | \Gamma iHi(\delta \Lambda i, \delta \Psi i) - \delta \Psi i| | 2\scrH \scrM i

,

from which the thesis follows.

3. Discretization. In this section we introduce suitable space dicretizations on
fractures and traces, and we derive the corresponding discrete formulation of the
problem. In the following, we will denote by lowercase letters the finite dimensional
approximation of the continuous variables. The same notation will be used for the
discrete functions and for the corresponding vectors of degrees of freedom (DOFs)
with respect to suitable bases, the difference being clear from the context.

Let us build a triangular mesh on each fracture Fi, i \in \scrJ , nonconforming to the
traces on the fracture, and let us define, on this mesh, suitable finite elements basis
functions for the hydraulic head \{ \varphi i,k\} k=1,...,Ni

H
, with N i

H denoting the number of
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B388 BERRONE, GRAPPEIN, PIERACCINI, AND SCIAL\'O

DOFs on the ith fracture. The approximation of Hi with respect to this basis is

(3.1) hi =

Ni
H\sum 

k=1

hi,k\varphi i,k,

where hi,k are the values of the DOFs. For each trace Sm \in \scrS , let us build two
different meshes for defining the approximation of the two control variables \Lambda m and
\Psi m, and let us consider two bases \{ \eta mk \} k=1,...,Nm

\Lambda 
and \{ \theta mk \} k=1,...,Nm

\Psi 
, with Nm

\Lambda and

Nm
\Psi denoting the number of DOFs on the mth trace, respectively, for \Lambda m and \Psi m.

It is worth highlighting that neither a unique discretization nor the same basis is
required for the two control variables. The discrete control variables are

(3.2) \lambda m =

Nm
\Lambda \sum 

k=1

\lambda mk \eta 
m
k , \psi m =

Nm
\Psi \sum 

k=1

\psi mk \theta 
m
k ,

with \lambda mk and \psi mk denoting the values assigned to the DOFs.
Let us then define, for each fracture Fi, the vector of the hydraulic head DOFs

hi \in \BbbR Ni
H obtained collecting columnwise the relative DOFs and matrix \bfitA i defined

as

(3.3) \bfitA \bfiti \in \BbbR N
i
H\times Ni

H , (Ai)kl =

\int 
Fi

\bfitK i\nabla \varphi i,k\nabla \varphi i,l dFi + \alpha 

\int 
\scrS i

\varphi i,k| \scrS i
\varphi i,l| \scrS i

dS.

For each trace Sm \in \scrS , let us consider the vectors of control variable DOFs \lambda m \in \BbbR Nm
\Lambda 

and \psi m \in \BbbR Nm
\Psi , obtained once again collecting columnwise the corresponding DOFs.

Furthermore, let us introduce the following matrices, defined on each trace Sm of each
fracture Fi \forall i \in \scrJ \forall m \in \scrM i:

\bfscrB \bfitm \bfiti \in \BbbR N
i
H\times Nm

\Lambda , (\scrB mi )kl = ( - 1)\chi 
m
i

\int 
Sm

\varphi i,k| Sm
\eta ml dS,(3.4)

\bfscrC \bfitm \bfiti \in \BbbR N
i
H\times Nm

\Psi , (\scrC mi )kl = \alpha 

\int 
Sm

\varphi i,k| Sm
\theta ml dS.(3.5)

Let us also introduce the matrices \bfscrB \bfiti and \bfscrC \bfiti on Fi, obtained collecting, respectively,
the matrices \bfscrB \bfitm \bfiti and \bfscrC \bfitm \bfiti for increasing values of indices m \in \scrM i = (m1, ...mMi

):

(3.6) \bfscrB \bfiti =
\Bigl[ 
\bfscrB \bfitm \bfone 

\bfiti ,\bfscrB \bfitm \bftwo 

\bfiti , . . . ,\bfscrB \bfitm \bfitM \bfiti 

\bfiti 

\Bigr] 
, \bfscrC \bfiti =

\Bigl[ 
\bfscrC \bfitm \bfone 

\bfiti ,\bfscrC \bfitm \bftwo 

\bfiti , . . . ,\bfscrC \bfitm \bfitM \bfiti 

\bfiti 

\Bigr] 
.

Finally, let us define the vectors

(3.7) \lambda i =

\left[     
\lambda m1

\lambda m2

...
\lambda mMi

\right]     \in \BbbR N
\scrM i
\Lambda , \psi i =

\left[     
\psi m1

\psi m2

...
\psi mMi

\right]     \in \BbbR N
\scrM i
\Psi ,

with N\scrM i

\Lambda =
\sum 
m\in \scrM i

N\Lambda 
m and N\scrM i

\Psi =
\sum 
m\in \scrM i

Nm
\Psi . We are then able to write the

discrete matrix formulation of the constraints equation in problem (2.18) as

(3.8) \bfitA \bfiti hi  - \bfscrB \bfiti \lambda i  - \bfscrC \bfiti \psi i = qi,

where qi \in \BbbR Ni
H corresponds to the discrete source term on Fi.
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In view of a global formulation over the whole DFN, a global vector containing
the head's DOFs is built as

(3.9) h =

\left[     
h1
h2
...
hI

\right]     \in \BbbR N
F
H ,

where NH =
\sum 
i\in \scrJ N

i
H . Global vectors for the control variables are obtained con-

catenating columnwise vectors \{ \lambda m\} m\in \scrM and \{ \psi m\} m\in \scrM , namely,

(3.10) \lambda =

\left[     
\lambda 1

\lambda 2

...
\lambda M

\right]     \in \BbbR N\Lambda , \psi =

\left[     
\psi 1

\psi 2

...
\psi M

\right]     \in \BbbR N\Psi ,

where N\Lambda =
\sum 
m\in \scrM Nm

\Lambda and N\Psi =
\sum 
m\in \scrM Nm

\Psi . Let us define, \forall i \in \scrJ , matrices

\bfscrB \bfitm \bfiti = 0 \in \BbbR N
i
H\times Nm

\Lambda \forall m /\in \scrM i,(3.11)

\bfscrC \bfitm \bfiti = 0 \in \BbbR N
i
H\times Nm

\Psi \forall m /\in \scrM i,(3.12)

and, recalling definitions (3.4) and (3.5), we build

\bfscrB \bfscrM 
\bfiti =

\Bigl[ 
\bfscrB \bfone 
\bfiti ,\bfscrB 

\bftwo 
\bfiti , . . . ,\bfscrB 

\bfitM 
\bfiti 

\Bigr] 
\in \BbbR N

i
H\times N\Lambda ,(3.13)

\bfscrC \bfscrM 
\bfiti =

\Bigl[ 
\bfscrC \bfone 
\bfiti ,\bfscrC 

\bftwo 
\bfiti , . . . ,\bfscrC 

\bfitM 
\bfiti 

\Bigr] 
\in \BbbR N

i
H\times N\Lambda ,(3.14)

and

(3.15) \bfscrB =

\left[     
\bfscrB \bfscrM 

\bfone 

\bfscrB \bfscrM 
\bftwo 
...

\bfscrB \bfscrM 
\bfitI 

\right]     \in \BbbR NH\times N\Lambda , \bfscrC =

\left[     
\bfscrC \bfscrM 
\bfone 

\bfscrC \bfscrM 
\bftwo 
...

\bfscrC \bfscrM 
\bfitI 

\right]     \in \BbbR NH\times N\Psi ,

such that the global discrete form of the constraints equation becomes

(3.16) \bfitA h - \bfscrB \lambda  - \bfscrC \psi = q,

where \bfitA = diag(\bfitA \bfone \bfitA \bftwo ... \bfitA \bfitI ) \in \BbbR NH\times NH and q = (qT1 qT2 ... qTI )
T \in \BbbR NH .

The discrete functional is obtained from (2.13) by use of the discrete functions
and of L2 norms in place of \scrH m norms, this yielding, for i \in \scrJ , m \in \scrM i,

(3.17) \~Jmi (\lambda m, \psi m) = | | hi| Sm
(\lambda m, \psi m) - \psi m| | 2L2 .

Defining the matrices

\bfitG \bfith ,\bfitm 
\bfiti \in \BbbR N

i
H\times Ni

H ,
\Bigl( 
Gh,mi

\Bigr) 
kl

=

\int 
Sm

\varphi i,k| Sm
\varphi i,l| Sm

dS,(3.18)

\bfitG \bfitpsi ,\bfitm \in \BbbR N
m
\Psi \times Nm

\Psi ,
\bigl( 
G\psi ,m

\bigr) 
kl

=

\int 
Sm

\theta mk \theta 
m
l dS,(3.19)
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and

\bfitG \bfith 
\bfiti =

\sum 
m\in \scrM i

\bfitG \bfith ,\bfitm 
\bfiti \in \BbbR N

i
H\times Ni

H ,(3.20)

\bfitG \bfitpsi 
\bfiti = diag(\bfitG \bfitpsi ,\bfitm \bfone \bfitG \bfitpsi ,\bfitm \bftwo ... \bfitG \bfitpsi ,\bfitm \bfitM \bfiti ) \in \BbbR N

\scrM i
\Psi \times N\scrM i

\Psi ,(3.21)

the discrete cost functional relative to the ith fracture takes the form

(3.22) \~Ji(\lambda i, \psi i) = hTi \bfitG 
\bfith 
\bfiti hi + \psi Ti \bfitG 

\bfitpsi 
\bfiti \psi i  - hTi \bfscrC \bfiti \psi i  - \psi Ti \bfscrC 

T
\bfiti hi \forall i \in \scrJ ,

where hi = hi(\lambda i, \psi i). Finally, introducing the matrices

\bfitG \bfith = diag(\bfitG \bfith 
\bfone \bfitG \bfith 

\bftwo ... \bfitG \bfith 
\bfitI ) \in \BbbR NH\times NH ,(3.23)

\bfitG \bfitpsi = 2
\Bigl( 
diag(\bfitG \bfitpsi 

\bfone \bfitG \bfitpsi 
\bftwo ... \bfitG \bfitpsi 

\bfitM )
\Bigr) 
\in \BbbR N\Psi \times N\Psi ,(3.24)

the global discrete matrix formulation of the cost functional is obtained as

(3.25) \~J(\lambda , \psi ) = hT\bfitG \bfith h+ \psi T\bfitG \bfitpsi \psi  - hT\bfscrC \psi  - \psi T\bfscrC Th,

with h = h(\lambda , \psi ), thanks to which we obtain the following global discrete matrix
formulation of the problem describing the subsurface flow through a DFN:

(3.26) min
(\lambda ,\psi )

1

2
\~J(\lambda , \psi ) subject to (3.16).

Exploiting the linearity of the constraints, we derive an unconstrained minimization
problem equivalent to (3.26): Replacing h = h(\lambda , \psi ) = \bfitA  - 1\bfscrB \lambda +\bfitA  - 1\bfscrC \psi +\bfitA  - 1q in
(3.25), we rewrite (3.26) as

(3.27) min
(\lambda ,\psi )

1

2
\~J\ast (\lambda , \psi ),

where

(3.28) \~J\ast (\lambda , \psi ) =
\bigl[ 
\lambda T \psi T

\bigr] 
\^\bfitG 

\biggl[ 
\lambda 
\psi 

\biggr] 
+ 2dT

\biggl[ 
\lambda 
\psi 

\biggr] 
+ qT

\bigl[ 
\bfitA  - T\bfitG \bfith \bfitA  - 1

\bigr] 
q,

with

(3.29) \^\bfitG =

\left[  \bfscrB T\bfitA  - T\bfitG \bfith \bfitA  - 1\bfscrB \bfscrB T\bfitA  - T (\bfitG \bfith \bfitA  - 1  - \bfitI )\bfscrC 

\bfscrC T (\bfitA  - T\bfitG \bfith  - \bfitI )\bfitA  - 1\bfscrB \bfitG \bfitpsi + \bfscrC T (\bfitA  - T\bfitG \bfith \bfitA  - 1  - \bfitA  - T  - \bfitA  - 1)\bfscrC 

\right]  
and

(3.30) dT = qT [\bfitA  - T\bfitG \bfith \bfitA  - 1\bfscrB \bfitA  - T (\bfitG \bfith \bfitA  - 1  - \bfitI )\bfscrC ].

4. Existence and uniqueness of the discrete solution. The system of op-
timality conditions (cKKT conditions) for problem (3.26) can be written as

(4.1)

\left[    
\bfitG \bfith 0  - \bfscrC \bfitA T

0 0 0  - \bfscrB T

 - \bfscrC T 0 \bfitG \bfitpsi  - \bfscrC T
\bfitA  - \bfscrB  - \bfscrC 0

\right]    
\left[    
h
\lambda 
\psi 
 - p

\right]    =

\left[    
0
0
0
q

\right]    ,D
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where p is the array of Lagrange multipliers. Grouping matrices and vectors as

(4.2) \bfscrG =

\left[  \bfitG \bfith 0  - \bfscrC 
0 0 0

 - \bfscrC T 0 \bfitG \bfitpsi 

\right]  , \bfscrA =
\bigl[ 
\bfitA  - \bfscrB  - \bfscrC 

\bigr] 
, x =

\left[    
h
\lambda 
\psi 
 - p

\right]    , qKKT =

\left[    
0
0
0
q

\right]    ,
the KKT system can be compactly rewritten as

(4.3) \bfitM KKT =

\biggl[ 
\bfscrG \bfscrA T

\bfscrA \bfitO 

\biggr] 
, \bfitM KKTx = qKKT.

Proposition 4.1. Matrix \bfitM KKT in (4.3) is nonsingular, and the unique solution
of problem (4.3) is equivalent to the solution of (3.26).

The proof of Proposition 4.1 is based on the following lemma.

Lemma 4.2. Let matrices \bfscrA and \bfscrG be defined as in (4.2). Then matrix \bfscrA is full
rank, and matrix \bfscrG is symmetric positive definite on ker(\bfscrA ).

Proof. Matrix \bfscrA is full rank by construction, as matrix \bfitA in (4.2) is nonsingular.
The dimension of ker (\bfscrA ) is thus N\Lambda +N\Psi . Note that matrix \bfscrG is symmetric positive
semidefinite by construction. As such, for any vector y \in \BbbR NH+N\Lambda +N\Psi , one has
yT\bfscrG y \geq 0 and yT\bfscrG y = 0 if and only if y \in ker(\bfscrG ). In order to show that \bfscrG is positive
definite on ker (\bfscrA ), it suffices to show that ker (\bfscrG ) \cap ker (\bfscrA ) = \{ 0\} .

Let us consider the canonical basis for \BbbR N\Lambda +N\Psi and let ek denote the kth element
of such basis, k = 1, . . . , N\Lambda +N\Psi . Let zk \in ker (\bfscrA ) be defined as

zk =

\biggl[ 
\bfitA  - 1

\bigl[ 
\bfscrB \bfscrC 

\bigr] 
ek

ek

\biggr] 
.

Let us first choose 1 \leq k \leq N\Lambda , thus giving

zk =

\biggl[ 
\bfitA  - 1\bfscrB ek

ek

\biggr] 
:=

\biggl[ 
\=hk
ek

\biggr] 
.

Vector \=hk is different from zero on at least one trace of the network, in virtue of
equation (3.8), given the nonsingularity of \bfitA and being \scrB ek \not = 0. Thus, it can be
easily concluded that zTk \bfscrG zk = \=hTk\bfitG 

\bfith \=hk > 0 for all 1 \leq k \leq N\Lambda .
If N\Lambda + 1 \leq k \leq N\Psi , we have

zk =

\biggl[ 
\bfitA  - 1\bfscrC ek
ek

\biggr] 
:=

\biggl[ \=\=hk
ek

\biggr] 
,

and, correspondingly to ek, there is a unique index m\ast \in \scrM such that \psi m
\ast \not = 0, being

instead \lambda \equiv 0. Let us select the two fractures Fi and Fj such that \{ i, j\} = ISm \star . If the
network contains more than two fractures, at least one of these fractures, say, Fi, has
more than one trace, and on Fi the discrete constraint equation reads, \forall j = 1, . . . , N i

H ,\int 
Fi

\bfitK i\nabla \=\=hk\nabla \varphi j dFi + \alpha 
\sum 

m\in \scrM i,
m\not =m\ast 

\int 
Sm

\=\=hk| Sm
\varphi j| Sm

dS = \alpha 

\int 
Sm\ast 

\Bigl( 
\=\=hk| Sm\ast  - \psi m

\ast 
\Bigr) 
\varphi j| Sm

dS.

If we assume \=\=hk| Sm\ast = \psi m \not = 0, we obtain from the constraint equation \=\=hk = 0, which
is absurd. If there are only two fractures in the network, a similar conclusion can be
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derived since at least one of the two fractures has a nonempty portion of the Dirichlet
boundary. Then we have zTk \bfscrG zk \geq \| \=\=hk| Sm\ast  - \psi m\| 2 > 0 for all N\Lambda + 1 \leq k \leq N\Psi .

Thus, we have proved that, for any k = 1, . . . , N\Lambda + N\Psi , zk \not \in ker (\bfscrG ), and the
vector space ker (\bfscrA ) = span\{ z1, . . . , zN\Lambda +N\Psi \} is a subspace of Im(\bfscrG ). Thus, we have
ker (\bfscrG ) \cap ker (\bfscrA ) = \{ 0\} , which completes the proof.

The proof of Proposition 4.1 follows from Lemma 4.2 using classical arguments
(see, e.g., [4, Theorem 3.2]). Note that by the uniqueness of the solution to (3.26) and

the problem's equivalence with (3.27), it follows that matrix \^\bfitG , defined in (3.29), is
symmetric positive definite.

5. Problem resolution. Solving the KKT system (4.1) with a direct method in
order to compute an approximation of the hydraulic head in \Omega might not be a viable
option for large networks, for which matrix \bfitM KKT would be extremely large and is
likely to be ill-conditioned. Let us then rewrite the cost functional (3.28) in compact
form as

(5.1) \~J\ast = wT \^\bfitG w + 2dTw + qT
\bigl[ 
\bfitA  - T\bfitG \bfith \bfitA  - 1

\bigr] 
q,

where w = [\lambda T , \psi T ]T . Note that \~J\ast is a convex functional, whose unique global

minimum corresponds to the solution of the linear system \nabla \~J\ast = \^\bfitG w+ d = 0. As an
alternative approach, we then solve the unconstrained minimization problem (3.27)
via a gradient method, which also results in an algorithm well suited for parallel
implementation on parallel computing machines.

Algorithm 5.1 Preconditioned conjugate gradient method applied to \^\bfitG w + d = 0.

1: Guess w0 = [\lambda T0 , \psi 
T
0 ]
T

2: r0 = \^\bfitG w0 + d
3: solve \bfitP z0 = r0
4: set \delta w0 =  - z0 and k = 0;
5: while \| rk\| > 0 do

6: \zeta k =
rTk zk

\delta wTk
\^\bfitG \delta wk

;

7: wk+1 = wk + \zeta k\delta wk;
8: rk+1 = rk + \zeta k \^\bfitG \delta wk;
9: solve \bfitP zk+1 = rk+1;

10: \beta k+1 =
rTk+1zk+1

rTk zk
;

11: \delta wk+1 =  - zk+1 + \beta k+1\delta wk;
12: k = k + 1;
13: end while

Algorithm 5.1 reports the steps of the application of the preconditioned conjugate
gradient scheme to the resolution of \^\bfitG w + d = 0, with a preconditioner \bfitP . It is to

remark that, for any vector w =
\bigl[ 
\lambda T , \psi T

\bigr] T
, \lambda \in \BbbR N\Lambda , \psi \in \BbbR N\Psi , the computation of

\^\bfitG w, as at steps 6, 8 of Algorithm 5.1, does not require the inversion of matrix \bfitA . In
particular, it only involves the resolution of linear systems defined independently on
each fracture in \Omega , which, therefore, can be performed in parallel. Indeed, setting

h = \bfitA  - 1(\bfscrB \lambda + \bfscrC \psi ), p = \bfitA  - T (\bfitG \bfith h - \bfscrC \psi ),
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Table 1
Geometrical details of the considered networks.

Traces per fracture
Fractures Traces Average Min Max

\bfD \bfF \bfN \bfthree 3 3 2 2 2
\bfD \bfF \bfN \bfone \bfzero 10 14 2.8 1 5
\bfD \bfF \bfN \bfthree \bfnine \bffive 395 629 3.18 1 19

which can be computed locally on the fractures thanks to the structure of the involved
matrices, we have

\^\bfitG w =

\biggl[ 
\bfscrB Th

\bfitG \bfitpsi \psi + \bfscrC \bfitT p - \bfscrC Th

\biggr] 
.

The choice of preconditioner \bfitP is of great importance for the performance of the
method. Given the structure of matrix \^\bfitG in (3.29), neglecting off-diagonal terms and
simplifying the structure of the bottom-right term, a possible choice is

(5.2) \bfitP \bfitf =

\biggl[ 
\bfscrB T\bfitA  - T\bfitG \bfith \bfitA  - 1\bfscrB \bfitO 

\bfitO \bfitG \bfitpsi 

\biggr] 
,

which provides very good results, as shown in the following section. Unfortunately, the
efficient, parallel application of such preconditioner, such as at step 9 of Algorithm 5.1,
would require inner loops of a gradient-based scheme, analogously to what was done
to solve the main problem. For this reason a new preconditioner is introduced by
further simplifying the structure of \^\bfitG , while preconditioner \bfitP \bfitf is used only as a term
of comparison. The new preconditioner is defined only extracting M block-diagonal
terms of size Nm

\Lambda , m = 1, . . . ,M , from matrix \bfscrD := \bfscrB T\bfitA  - T\bfitG \bfith \bfitA  - 1\bfscrB : Denoting by

N
[m]
\Lambda =

\sum m
\ell =1N

\ell 
\Lambda , matrix \bfscrD \bfitm is obtained taking the elements at rows and columns

N
[m - 1]
\Lambda , . . . , N

[m]
\Lambda of \bfscrD , and we then define

(5.3) \bfitP \bfitd =

\biggl[ 
diag(\bfscrD \bfone , . . . ,\bfscrD \bfitM ) \bfitO 

\bfitO \bfitG \bfitpsi 

\biggr] 
.

6. Numerical results. Here some numerical results are reported to describe the
behavior of the proposed numerical method. Three different networks of increasing
complexity are considered. First, the hydraulic head is computed on a small network of
three fractures, comparing the obtained solution to the available known exact solution.
Second, a slightly bigger network of 10 fractures is analyzed in order to highlight and
discuss the characteristics of the method in a more realistic yet synthetic, framework.
Finally, some results are presented on a complex network counting slightly less than
400 fractures, obtained starting from realistic input data. More details on the networks
used in the simulations are reported in Table 1.

First-order Lagrangian finite elements are used to describe the hydraulic head on
the fractures, on meshes of triangular elements nonconforming to the traces and in-
dependently built on each fracture. Additional enrichment functions are used on the
elements intersected by the traces, according to the extended finite element method
(XFEM) (see [9]), in order to reproduce jumps of the conormal derivative at fracture
intersections on the nonconforming mesh. On each trace Sm, m \in \scrM , a mesh is de-
fined, and piecewise constant basis functions are used for the discretization of control
variables \Lambda m, and, independently, another mesh is introduced, and piecewise linear
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Fi Sm

Sm

Fig. 1. Description of parameters \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Red dots mark induced mesh nodes, violet dots
mark equally spaced mesh nodes for \Lambda or \Psi . The figure refers to \bfitdelta \bfitlambda = 0.5. Only one fracture is
shown for clarity.

continuous basis functions are used for functions \Psi m. Clearly, different choices for
the basis functions of the various variables are possible, the proposed ones being the
more natural given the expected regularity of the solution. We should remark that
the flexibility and robustness in handling nonconforming and independently built dis-
cretizations on each fracture and on each trace of the network, for each of the variables
involved, is a key aspect of the method, which allows one to easily deal with arbitrarily
complex geometries without any need of geometrical modification of the DFN.

The size of the triangular mesh on each fracture is expressed by means of a grid
parameter \bfitdelta \bfith , expressing the maximum element area of mesh elements requested on
each fracture. Clearly, a different grid parameter could be used on each fracture,
even if here, for simplicity, a single value is adopted. The mesh size on the traces is
controlled by two parameters \bfitdelta \bfitlambda and \bfitdelta \bfitpsi representing the ratio between the number
of mesh elements on the traces, for \Lambda and \Psi , respectively, and the average number of
elements of the mesh induced by the intersection of the trace with the edges of the
triangular meshes on each intersecting fracture. A sketch is represented in Figure 1,
where the induced mesh nodes on one of the intersecting fractures are depicted with
red dots and the equally spaced mesh nodes, e.g., for \Lambda , with violet dots, corresponding
to a value of \bfitdelta \bfitlambda = 0.5. Unique values are used for \bfitdelta \bfitlambda and \bfitdelta \bfitpsi for all the traces in the
network, but different choices are possible.

6.1. DFN3 problem. Let us consider the connected domain \Omega shown in Fig-
ure 2, given by the union of three planar fractures defined by

F1 =
\bigl\{ 
(x, y, z) \in \BbbR 3 :  - 1 \leq x \leq 1/2,  - 1 \leq y \leq 1, z = 0

\bigr\} 
,

F2 =
\bigl\{ 
(x, y, z) \in \BbbR 3 :  - 1 \leq x \leq 0, y = 0,  - 1 \leq z \leq 1

\bigr\} 
,

F3 =
\bigl\{ 
(x, y, z) \in \BbbR 3 : x =  - 1/2,  - 1 \leq y \leq 1,  - 1 \leq z \leq 1

\bigr\} 
,

which intersect forming three traces: S1 = F1 \cap F2, S2 = F1 \cap F3, and S3 = F2 \cap F3.
This problem is labeled DFN3. The known hydraulic head distribution Hex in \Omega is
given by

Hex
1 (x, y) =

1

10

\biggl( 
 - x - 1

2

\biggr) \bigl( 
8xy(x2 + y2)atan2(y, x) + x3

\bigr) 
,(6.1)

Hex
2 (x, z) =

1

10

\biggl( 
 - x - 1

2

\biggr) 
x3  - 4

5
\pi 

\biggl( 
 - x - 1

2

\biggr) 
x3| z| ,(6.2)

Hex
3 (y, z) = (y  - 1)y(y + 1)(z  - 1)z,(6.3)
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Fig. 2. DFN3: DFN configuration.
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Fig. 3. DFN3: hydraulic head computed on the fractures. Parameters: \bfitdelta \bfith = 0.020, \bfitdelta \bfitlambda = 0.5,
\bfitdelta \bfitpsi = 0.3.

where atan2(y, x) is the four-quadrant inverse tangent function and is the solution of
the problem

 - \nabla \cdot (\nabla H) =  - \nabla \cdot (\nabla Hex) in \Omega \setminus \scrS ,
H| \partial \Omega = Hex

| \partial \Omega on \partial \Omega ,

with additional conditions of continuity and flux conservation at the traces.
Given the small size of the network, the discrete solution is obtained solving the

KKT system (4.1). Five different meshes with an increasing number of elements
are considered for the hydraulic head on the fractures, with the mesh parameter \bfitdelta \bfith 
ranging between 0.02 and 8 \times 10 - 5, and nine values of \bfitdelta \bfitlambda and \bfitdelta \bfitpsi are used, both
ranging between 0.1 and 0.9. The coarsest computational mesh on the fractures is
reported in Figure 2, highlighting the nonconformity at fracture intersections. An
example solution on the three fractures is reported in Figure 3 for mesh parameters
\bfitdelta \bfith = 0.020, \bfitdelta \bfitlambda = 0.5, and \bfitdelta \bfitpsi = 0.3 showing the irregular behavior of the solution
across the trace. The use of the XFEM allows one to correctly reproduce the jumps
of the gradient in the direction normal to the traces even if traces arbitrarily cross
mesh elements.

We computed errors \scrE hL2 and \scrE hH1 measuring the L2(\Omega ) and H1(\Omega ) norms, re-
spectively, of the relative difference between the numerical and analytical solution
for the hydraulic head on the fractures. Error \scrE \lambda L2 is also computed, expressing the
L2(\scrS ) norm of the relative difference between the analytical jump of the fluxes at the
traces and the computed value of \lambda . The other mesh parameters are fixed with values
\bfitdelta \bfitlambda = 0.5 and \bfitdelta \bfitpsi = 0.3. Let us recall that these parameters represent the ratio be-
tween the number of mesh elements on the traces and the number of elements induced
by the intersection between the trace and the triangular mesh, so fixing a value does
not avoid mesh refinement on traces as a consequence of a refinement on the fractures.
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Fig. 4. DFN3. Left: \scrE h
L2 and \scrE h

H1 versus number of fracture DOFs. Right: \scrE \lambda 
L2 versus number

of trace DOFs. Other parameters: \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3.

1105

1

1010

0.50.5

1015

00
δλ δψ

Fig. 5. DFN3: condition number of the matrix \bfitM KKT versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . \bfitdelta \bfith = 0.020.

The behavior of the errors is reported in Figure 4: \scrE hL2 and \scrE hH1 are shown on the
left, and \scrE \lambda L2 is shown on the right, in both cases versus the corresponding number
of DOFs. The expected convergence trend is obtained for \scrE hL2 and \scrE hH1 , despite the
nonconforming mesh, thanks to the use of the XFEM, and the expected convergence
trend is obtained also for \scrE \lambda L2 .

The effect of the choice of parameters \bfitdelta \bfitlambda and \bfitdelta \bfitpsi is also investigated in terms
of their influence on the conditioning of the KKT system and on the accuracy of
the solution. Figure 5 shows the norm-1 condition number of the KKT matrix for
different values of \bfitdelta \bfitlambda and \bfitdelta \bfitpsi , both ranging between 0.1 and 0.9. System conditioning
appears to be more affected by parameter \bfitdelta \bfitlambda , whereas its dependence on \bfitdelta \bfitpsi is almost
negligible, especially for the smaller values \bfitdelta \bfitlambda . Figures 6--8 show how parameters \bfitdelta \bfitlambda 
and \bfitdelta \bfitpsi impact the quality of the obtained solution for two different values of \bfitdelta \bfith :
\bfitdelta \bfith = 0.020 on the left and \bfitdelta \bfith = 0.005 on the right for all the figures. Figure 6
reports the behavior of error \scrE hH1 , which appears to be weakly affected by variations
of both parameters; a slightly more marked impact of \bfitdelta \bfitlambda is observed on the coarsest
mesh with a minimum of \scrE hH1 for \bfitdelta \bfitlambda around 0.5. This is motivated by the fact that
low values of \bfitdelta \bfitlambda provide a poor approximation of the flux on the traces, which has
a detrimental impact on the solution, whereas when \bfitdelta \bfitlambda approaches 0.9, the solution
is affected by the higher conditioning of the system. In Figure 7 the trend of error
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Fig. 6. DFN3: error \scrE h
H1 versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Left: \bfitdelta \bfith = 0.020; right: \bfitdelta \bfith = 0.005.
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Fig. 7. DFN3: error \scrE \lambda 
L2 versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Left: \bfitdelta \bfith = 0.020; right: \bfitdelta \bfith = 0.005.

\scrE \lambda L2 is described, highlighting, as expected, a stronger dependence of this error on \bfitdelta \bfitlambda 
and also an almost independence from \bfitdelta \bfitpsi . Again, a minimum of \scrE \lambda L2 is observed for
values of \bfitdelta \bfitlambda around 0.5, probably again for the effects of system conditioning at the
higher values of this parameter. The quantity \Delta h

\scrS is now introduced to measure the
quality of the hydraulic head solution on the traces, defined as

(6.4) \Delta h
\scrS =

\sqrt{} \sum 
m\in \scrM 

| | hi  - hj | | 2L2(Sm)

hmax

\surd 
ltot

, i, j \in ISm
,

where hmax is the maximum value of the hydraulic head in \Omega and ltot is the total trace
length. Recalling that the continuity of the solution at the traces is enforced through
the minimization of functional (3.22) by means of the control variable \psi , the quantity
\Delta h

\scrS is an error indicator on the actual continuity achieved by the method across the
traces. Local flux conservation at the traces is instead intrinsically enforced by the
method through the definition of a unique variable for flux jump on the two fractures
meeting at each trace. In Figure 8 the behavior of \Delta h

\scrS is reported. A strong influence
of \bfitdelta \bfitlambda is again noticed, whereas \bfitdelta \bfitpsi has a minor effect, more evident at high values
of \bfitdelta \bfitlambda . In this case higher values of the parameters provide, in general, lower values
of \Delta h

\scrS . Finally, comparing the left and the right pictures of Figures 6--8, we can see
that a reduction of the errors and of the error indicator is obtained through mesh
refinement.
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Fig. 8. DFN3: error indicator \Delta h\scrS versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Left: \bfitdelta \bfith = 0.020; right: \bfitdelta \bfith = 0.005.

Inflow

Outflow

Fig. 9. DFN10: DFN configuration.

The effects of ill-conditioning of the KKT system matrix are actually mitigated
by solving the problem via the PCG solver in Algorithm 5.1, which is actually an
application of the null-space method proposed in [30] to the saddle-point problem
(4.1).

6.2. DFN10 problem. A slightly more complex network made of 10 fractures
and 14 traces is now considered, as shown in Figure 9 and labeled DFN10. The DFN
problem is solved on this network using a uniform unitary value of transmissivity for
all fractures and with a prescribed unitary head drop between two selected fracture
edges, as marked in Figure 9, and homogeneous Neumann boundary conditions on
all other edges. These boundary conditions allow one to identify an inflow and an
outflow portion of the boundary, as it usually happens in realistic configurations.

An example solution, obtained with the PCG solver, is reported in Figure 9, along
with the nonconforming computational mesh, obtained with \bfitdelta \bfith = 0.003, \bfitdelta \bfitlambda = 0.5,
\bfitdelta \bfitpsi = 0.3. Figure 10 shows the behavior of the error indicator \Delta h

\scrS when varying \bfitdelta \bfitlambda 
and \bfitdelta \bfitpsi , on two different meshes: a coarse mesh on the left, with \bfitdelta \bfith = 0.003, and
a fine mesh on the right, with \bfitdelta \bfith = 7.3 \times 10 - 4. As previously noted, the quantity
\Delta h

\scrS is primarily sensible to variations of parameter \bfitdelta \bfitlambda , with a decreasing trend for
increasing values of \bfitdelta \bfitlambda . Parameter \bfitdelta \bfitpsi has a minor effect, with a decreasing trend for
increasing values of \bfitdelta \bfitpsi , more relevant at the higher values of \bfitdelta \bfitlambda .
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Fig. 10. DFN10: error indicator \Delta h\scrS versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Left: \bfitdelta \bfith = 0.003; right: \bfitdelta \bfith = 7.3\times 10 - 4.
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Fig. 11. DFN10: error indicator \Delta \phi in-out versus \bfitdelta \bfitlambda and \bfitdelta \bfitpsi . Left: \bfitdelta \bfith = 0.003; right: \bfitdelta \bfith =
7.3\times 10 - 4.

Another error indicator can be introduced, for this configuration, measuring the
global flux mismatch between the inflow and the outflow boundary, defined as

(6.5) \Delta \phi 
in-out =

| \phi in  - \phi out| 
\phi in

,

where \phi in/\phi out is the absolute value of the net flux entering/leaving the network
through the inflow/outflow boundary. Given the local flux conservation properties of
the method at each trace, this quantity is an error indicator of the global conservation
properties. The behavior of \Delta \phi 

in-out, varying \bfitdelta \bfitlambda and \bfitdelta \bfitpsi in the range [0.1, 0.9]2, is shown
in Figure 11, for two values of \bfitdelta \bfith , with \bfitdelta \bfith = 0.003 on the left and \bfitdelta \bfith = 7.3 \times 10 - 4

on the right. It can be seen that the global flux mismatch appears to be affected
by variations of \bfitdelta \bfitlambda , with a generally decreasing trend for increasing values of this
parameter, but also a relevant influence from \bfitdelta \bfitpsi appears in this case, mainly at the

higher values of \bfitdelta \bfitlambda , with a decreasing trend for \Delta \phi 
in-out for increasing values of \bfitdelta \bfitpsi .

The quantity \Delta \phi 
in-out can be reduced also refining the fracture mesh.

A study on the performances of preconditioners is proposed on this network.
Table 2 reports the number of iterations required by the preconditioned conjugate
gradient scheme (Algorithm 5.1) to reduce the relative residual up to 10 - 6, for the
nonpreconditioned case and for the preconditioners \bfitP \bfitf and \bfitP \bfitd described at the end
of section 5, for four values of \bfitdelta \bfith and \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3. We can see that using
preconditioner \bfitP \bfitf , the number of iterations needed to reach the required residual
is almost unaffected by the value of \bfitdelta \bfith and is only about 3.5\% of the number of
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Table 2
DFN10: number of iterations of PCG algorithm with different preconditioners and mesh re-

finement; \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3.

\bfitN \bfith \bfitN \bfitlambda +\bfitN \bfitpsi \bfN \bfo \bfn \bfp \bfr \bfe \bfc . \bfitP \bfitf \bfitP \bfitd 
797 69 147 21 49
3120 125 234 22 55
12428 252 457 23 58
49784 502 717 25 62

nonzero elements = 6395

total elements = 15625

nonzero elements = 2325

total elements = 15625

nonzero elements = 669

total elements = 15625

Fig. 12. DFN10: sparsity pattern of \^\bfitG and of the preconditioners \bfitP \bfitf and \bfitP \bfitd . Parameters:
\bfitdelta \bfith = 0.003, \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3.

Inflow

Outflow

Fig. 13. DFN395: mesh configuration.

iterations of the nonpreconditioned case on the finest mesh. The performances of the
block-diagonal preconditioner \bfitP \bfitd , suitable for efficient parallel implementation, are
slightly worse than the ones relative to preconditioner \bfitP \bfitf but still only marginally
affected by mesh refinement and capable of reducing the number of iterations required
to convergence to about 8.6\% of the number of iterations in the nonpreconditioned
case on the finest mesh. The sparsity patterns of the full matrix \^\bfitG in (3.29) and of \bfitP \bfitf 
and \bfitP \bfitd for mesh parameters \bfitdelta \bfith = 0.003, \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3 are shown in Figure 12.

6.3. Realistic DFN problem. As a last example, a DFN consisting of 395
fractures and 629 traces is considered, labeled DFN395. The DFN is obtained as
a realization of probability distribution functions on fracture size, orientation, dis-
tribution, and hydraulic transmissivity adapted from the data in [35]. The network
is shown in Figure 13, along with the inflow and outflow boundary, where Dirichlet
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Fig. 14. DFN395: residual norms \| r\lambda 0 \| and \| r\psi 0 \| (left) and number of iterations with different
preconditioners (right) versus problem scaling. \bfitdelta \bfith = 400 \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3.

boundary conditions of 1 and 0, respectively, are set, all other fracture edges being
instead insulated. Two simulations are performed with this geometry and boundary
conditions: In a first case a uniform transmissivity equal to \bfitK = 10 - 7 is chosen on all
fractures, whereas in a second case different, constant transmissivity values are used
on each fracture, extracted from a lognormal distribution having mean value of the
logarithms equal to \zeta =  - 5 and variance 1

3 .
Let us consider first the case of uniform transmissivity throughout the network:

The small value of the transmissivity, compared to the order of magnitude of the
hydraulic head, introduces an unbalance among the method's variables, and conse-
quently a rescaling of the problem is beneficial. This is achieved by introducing a
scaling factor \scrK and redefining the constraint equations of the optimization problem
replacing transmissivity \bfitK by a rescaled transmissivity \bfitK  \star given by K \star = \scrK \bfitK , thus
obtaining a new problem equivalent to the original one in terms of the hydraulic head
but having rescaled fluxes. We refer the reader to [10] for more details on the rescaling,
where this methodology has been proposed in a slightly different context.

Let us solve the rescaled problem on a mesh with \bfitdelta \bfith = 400, \bfitdelta \bfitlambda = 0.5, and \bfitdelta \bfitpsi = 0.3
for various values of the scaling factor in the range 107 < \scrK < 1012. Figure 14 shows,
on the left, the effect of the scaling on the norm of the initial residual r0 of the PCG
method, split into the part relative to \lambda , labeled r\lambda 0 = (r0,k)k=1,...,N\Lambda , and the part

relative to \psi , r\psi 0 = (r0,k)k=N\Lambda +1,...,N\Psi . Figure 14 displays, on the right, the number of
iterations required to solve the problem into a nonpreconditioned relative residual of
10 - 6, for the nonpreconditioned case and using preconditioners \bfitP \bfitf and \bfitP \bfitd , varying
\scrK . In Figure 14, left, we can see that the initial residual norms become similar, i.e.,
\| r\lambda 0 \| \approx \| r\psi 0 \| , for a value of \scrK \approx 109. For the same value of \scrK the number of iterations
reaches a minimum, as can be seen in Figure 14, right. At the minimum, the number
of iterations required to solve the problem using the preconditioners is reduced by a
factor of about 3 with respect to the nonpreconditioned case, and the performances
of preconditioners \bfitP \bfitf and \bfitP \bfitd are quite similar. Using preconditioner \bfitP \bfitf , the number
of iterations for \scrK > 109 remains almost fixed, whereas it increases with \bfitP \bfitd , even if
to a small extent if compared to the nonpreconditioned case. Values of \scrK much larger
than the optimal should, however, be avoided, as they are expected to increase the
conditioning of the problem.

A rough estimate of the optimal value of \scrK can be obtained guessing the order of
magnitude of the main flux \phi throughout the network. For the present case, given the
chosen boundary conditions, flux essentially occurs along the x-direction, say, \phi = \phi x,
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Table 3
DFN395, random transmissivity: number of iterations of PCG algorithm and error indicators

under mesh refinement and different preconditioning techniques. \bfitdelta \bfitlambda = 0.5 and \bfitdelta \bfitpsi = 0.3.

No. of iterations Constraints

\bfitdelta \bfith N\Lambda +N\psi \bfN \bfo \bfn \bfp \bfr \bfe \bfc . \bfitP \bfitf \bfitP \bfitd \Delta h\scrS \Delta \phi in-out
1600 2267 2322 443 713 0.0029 0.1128
400 3606 1902 486 757 0.0013 0.0474
100 6946 1727 502 847 0.0006 0.0061

whose order of magnitude can be guessed as \phi x = \bfitK \Delta xh
Lx

, with \Delta xh equal to the hy-
draulic head difference along the x-direction and Lx the length of the DFN along x,
Lx \approx 1000, giving \phi x \approx 10 - 10. As the hydraulic head varies between 1 and 0, it is to
be expected that a value of \scrK around 1010 or slightly less should be used to balance
the two terms.

Similar results are obtained in the case of different lognormally distributed trans-
missivities \bfitK i among fractures Fi, i \in \scrJ : In this case the order of magnitude of the
flux through the network can be guessed as previously, setting \bfitK = 10\zeta , where \zeta is
the mean value of the logarithms of \bfitK i, i \in \scrJ , obtaining \phi x \approx 10 - 8. The scaling
factor is thus chosen equal to \scrK \approx 107 and used for the simulations. Table 3 reports
the number of iterations required by the PCG solver to reduce the relative residual
norm to 10 - 6 without preconditioning and with the two preconditioners \bfitP \bfitf and \bfitP \bfitd ,
for different values of \bfitdelta \bfith , ranging between 1600 and 100, \bfitdelta \bfitlambda = 0.5, \bfitdelta \bfitpsi = 0.3. The
values of the two error indicators measuring continuity of the solution and global
flux conservation are also reported in the last two columns. We can see that good
performances are achieved by the two preconditioners, which allow one to reduce the
number of iterations by a factor up to 5 for preconditioner \bfitP \bfitf and up to 3 with
preconditioner \bfitP \bfitd . Both error indicators can be reduced by refining the mesh.

7. Conclusions. A new approach for flow simulations in geometrically com-
plex fracture networks on nonconforming meshes has been formulated and analyzed.
The method is based on the minimization of a cost functional expressing the error
in continuity of the solution at fracture intersection, constrained by PDEs on the
fractures written in a three-field formulation. The resulting discrete problem is well-
posed independently of any mesh-related aspect, thus ensuring great flexibility to the
method in handling arbitrarily complex networks. A solver based on the precondi-
tioned conjugate gradient is designed for the method, ready for implementation on
parallel computing architectures. The effects of mesh parameters on the performances
of the method have been thoroughly investigated in the numerical examples, which
highlighted, in particular, the key role of parameter \bfitdelta \bfitlambda in controlling the conditioning
of the discrete problem. The performances of a preconditioner suitable for parallel im-
plementation have been discussed, also in relation to a reference preconditioner, with
a nondiagonal structure. Local and global flux conservation properties and continu-
ity of the solution at fracture intersections have also been analysed. The method has
shown to be effective in solving the flow problem in stochastically generated networks.
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