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Integral Transformations to Handle Corner
Function Singularities

Roberto D. Graglia , Fellow, IEEE, Paolo Petrini , Member, IEEE, and Andrew F. Peterson , Fellow, IEEE

Abstract— Recent approaches to model corner singularities
in electromagnetic analysis require a treatment substantially
different from that of edge singularities. In this article, new
algorithms are proposed for handling the combination of corner
singularities and Green’s function singularities on quadrilateral
cells in method-of-moments procedures.

Index Terms— Basis functions, hierarchical basis functions,
method of moments (MoM), singular basis functions, tips,
wedges.

I. INTRODUCTION

THE Method of Moments (MoM) and the finite element
method (FEM) often use vector basis functions defined

on subdomains of simple shape [1]. It is common practice
for these functions to be defined in a parent ξ -space and
then mapped by coordinate transformations onto the 3-D x-y-z
child-space of the observer [1]. The mapping formulas from
parent to child coordinates are usually of the polynomial type
so that it is simple to turn a parent into child coordinates. When
the structures to be modeled contain edges or corners, it is pos-
sible to augment the set of bounded basis functions (normally
vector polynomials) with an appropriate set of unbounded or
singular basis functions that incorporate the singular behavior
of the fields in the neighborhood of the edges [1], [2] and
corners [3]. In these cases, a second nonlinear mapping from
the parent to a grandparent ζ -space becomes necessary to
perform the required numerical integrals [2]. In addition to
these two mappings, integral equation MoM applications, such
as those discussed in [3]– [6], require further transformations
of variables to cancel Green’s function singularity from the self
and near-self integrals [7]– [25]. In the following, we propose
new algorithms for transforming integrals of the most common
types of corner singularities, such as those that occur on the
tip of infinitely thin, not necessarily flat, plates of the type
considered in [3]. The electromagnetic analysis of structures
with plates typically requires the MoM solution of the electric

Manuscript received March 6, 2020; revised July 23, 2020; accepted
August 17, 2020. Date of publication October 1, 2020; date of current
version December 17, 2020. This work was supported in part by the Italian
Ministry of Education, University and Research (MIUR) through Progetti di
Ricerca di Rilevante Interesse Nazionale (PRIN) under Grant 2017NT5W7Z.
(Corresponding author: Roberto D. Graglia.)

Roberto D. Graglia and Paolo Petrini are with the Dipartimento di
Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Turin, Italy
(e-mail: roberto.graglia@polito.it; paolo.petrini@polito.it).

Andrew F. Peterson is with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: peterson@ece.gatech.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2020.3026914.

Digital Object Identifier 10.1109/TAP.2020.3026914

field integral equation (EFIE), and we limit our considera-
tion to Green’s function singularities for that equation and
conducting plates.

The following discussion considers a single quadrilateral
cell with edges locally numbered counterclockwise from one
to four. The edge order number is used as a subscript to
distinguish the four parent variables ξ j , ξ j+1, ξ j+2, and ξ j+3
that describe the parent square cell [1]�

0 ≤ ξ j+1 ≤ 1, ξ j+3 = 1 − ξ j+1
0 ≤ ξ j+2 ≤ 1, ξ j = 1 − ξ j+2

�
. (1)

These are dummy subscripts counted modulo 4 defined such
that, in the parent space, the coordinates of the singular corner
are always ξ j+1 = ξ j+2 = 0. The parent-cell is mapped onto
a (curved) quadrilateral cell of the child-space. An observer
fixed at some location r in the child space corresponds to a
local observer parent coordinate

(u, v) = (ξ j+1, ξ j+2) (2)

and to a local observer grandparent coordinate

(ug, vg) = (ζ1, ζ2). (3)

In general, the u and v coordinates of the observer are obtained
by solving a nonlinear system, which is not a straightforward
problem apart from the very simple case of bilinear mapping
from parent to child space.

Basis functions able to model field singularities at the cell
corner ξ j+1 = ξ j+2 = 0 are the product of a bounded function
and a singular factor of the form [3]

S(ξ, ν) = 1�
ξ2

j+1 + ξ2
j+2

�ν �
ξ j+1 ξ j+2

(4)

with singularity coefficient ν restricted to the range 0 ≤ ν <
1/2 to ensure the integrability of (4) on regions that span to
the corner. Various vector plots of singular basis functions
of this kind are shown in [3] together with 3-D plots of
their divergence. S(ξ, ν) �= 1 leads us immediately to the
grandparent space

ζ1 =
�

ξ j+1�
ξ2

j+1 + ξ2
j+2

�ν/2

ζ2 =
�

ξ j+2�
ξ2

j+1 + ξ2
j+2

�ν/2 (5)

mapped onto the parent space by the transformation

ξ j+1 = ζ 2
1

�
ζ 4

1 + ζ 4
2

� ν
1−2ν

ξ j+2 = ζ 2
2

�
ζ 4

1 + ζ 4
2

� ν
1−2ν . (6)
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Equation (5) maps the parent square cell onto a convex
grandparent cell; the greater the value of ν, the more the
cell is distorted. Whenever the integral does not involve other
singular factors besides (4), it is convenient to recast the
integral in the grandparent domain and use the Jacobian of (6)

dξ j+1 dξ j+2 = 4

1 − 2ν
ζ1ζ2

�
ζ 4

1 + ζ 4
2

� 2ν
1−2ν dζ1 dζ2

= 4

1 − 2ν

�
ξ j+1ξ j+2

�
ξ2

j+1+ξ2
j+2

�ν
dζ1 dζ2 (7)

to cancel the corner function singularity using

S(ξ, ν) dξ j+1 dξ j+2 = 4

1 − 2ν
dζ1 dζ2. (8)

In integral equation applications, we must also deal with
Green’s function singularity that depends on the observer
position. Because of (5), the local observer grandparent coor-
dinates (ug, vg) are complex when the observer parent coor-
dinates (u, v) are outside the first quadrant, i.e., for u or v
negative. Therefore, we use (5) only to deal with the case of an
observer in the first quadrant (i.e., for u ≥ 0 and v ≥ 0), while,
as previously discussed in [2], we use transformations other
than (5) to deal with observer cases in one of the remaining
three quadrants, thus working in grandparent spaces other
than (5).

To introduce the reader to the subject, Section II considers
the case of an observer not in the source cell and not very close
to the source cell. In these cases, the MoM integral evaluation
is performed without a mapping inversion.

Situations that require mapping reversal are dealt with in
Sections III–VI. Sections III and IV consider the important
case of an observer in the first quadrant, inside or in the
neighborhood of the cell. In that situation, the singularity
of the basis function is canceled by means of (5), and
Green’s function singularity is canceled through a pseudopolar
transformation. The following sections then deal in decreasing
order of importance with the less frequent cases of the observer
in the other quadrants. In particular, Section V considers the
cases of the observer in the fourth or second quadrant, while
Section VI considers the case of the observer in the third
quadrant, that is, for u < 0 and v < 0, which is a case
that is expected to occur rarely in applications. Validation and
numerical results are presented and discussed in Section VII.

II. OBSERVER NOT IN THE SOURCE CELL AND

NOT VERY CLOSE TO THE SOURCE CELL

After mapping to the parent domain, MoM source integrals
over the child-patch have the form

I =
� 1

0

� 1

0

f (ξ) J ξ (ξ) G(ξ, r)�
ξ j+1 ξ j+2

�
ξ2

j+1 + ξ2
j+2

�2ν
dξ j+1 dξ j+2 (9)

where f (ξ) contains the rest of the corner basis function

f (ξ) S(ξ, ν) = f (ξ)�
ξ j+1 ξ j+2

�
ξ2

j+1 + ξ2
j+2

�2ν
. (10)

Jξ (ξ) is the Jacobian of the transformation from parent to
child domain, and

G(ξ, r) = G(|r − r �|) (11)

TABLE I

S(ξ, ν) FACTORS EXTRACTED TO INTEGRATE THE BASIS FUNCTIONS
OF [3, TABLE II] AND THEIR DIVERGENCE

is Green’s function that depends on the child-space distance
from the integration point r � and the observation point r,
which, at most, contains a singularity of the 1/|r − r �| order.
(Recall that the Jacobian Jξ (ξ) is a factor in the denominator
of the divergence-conforming functions and also of their
divergence [1].)

As for the singularity factors S(ξ, ν), Table I reports, for
example, the singularity factors extracted from the basis func-
tions defined in [3, Tab. II] and the corresponding ν from (4) to
use the integration schemes of this article. The basis functions
in [3] are for salient, perfect electric conducting (PEC) sectors,
and Table I considers only the functions with leading order
singularity in the range 0 < νo < 1.

Now, by using (5)–(7), the integral (9) can be expressed in
the form

I = 4

1 − 2ν

��
f (ζ ) Jξ (ζ ) G(ζ , r) dζ1 dζ2. (12)

In the event that the observer is sufficiently far from the
source cell so that Green’s function singularity is not an
issue, the integration in (12) can be performed by quadrature
over the grandparent cell without further transformation.
If ν = 0, the integration domain of (12) is a square, and the
problem is simplified to the point of not having to discuss it.
Otherwise, (12) is reduced to the sum of three subintegrals by
noticing that the eastern edge {ξ j+1 = 1; ξ j+2 ∈ [0, 1]} of the
parent cell is mapped by the curved (grandparent) segment

ζ2 = ζ1
	
ζ

−2/ν
1 − 1


1/4

ζ1 ∈ [√2−ν, 1]. (13)

The north edge has a similar mapping; just replace subscript 2
by subscript 1 in (13), and vice versa. However, integrating
on three differently sized domains, two of which have curved
edges, may be time-consuming. As an alternative, with
reference to Fig. 1, we prefer to introduce (pseudo)polar
coordinates (λ, σ ), centered at ξ j+1 = ξ j+2 = 0 for λ = 0,
and divide the parent square into two isometric subtriangles
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Fig. 1. In the event that Green’s function singularity is not an issue,
we integrate in polar (λ, σ ) coordinates on two subtriangles that span the
parent cell. The figure shows the λ = const. and σ = const. coordinate lines
(for σ = 0.2 to 0.8, step = 0.2, and λ = 0.4 to 0.9, step = 0.1) in the case
of ν = 1/3.

(TA, TB) mapped by the same square domain {0 ≤ λ ≤ 1;
0 ≤ σ ≤ 1} of the polar space by the transformation formulas

TA ⇒ ξ j+1 = λα(1 − σ)2, ξ j+2 = λα (14)

TB ⇒ ξ j+1 = λα, ξ j+2 = λασ 2 (15)

with

α = 1

1 − 2ν
(16)

so to rewrite (9) as the sum of only two subintegrals

I = 2

1 − 2ν
[IA + IB ] (17)

IA =
� 1

0

� 1

0

f (λ, σ ) Jξ (λ, σ ) G(λ, σ )

[(1 − σ)4 + 1]ν dλ dσ (18)

IB =
� 1

0

� 1

0

f (λ, σ ) Jξ (λ, σ ) G(λ, σ )

[σ 4 + 1]ν dλ dσ. (19)

It is clear that the σ -integrals in the polar frame are delicate
and for those there is the need to adequately increase the
order of the quadrature formula. As a final remark, we note
that MoM testing integrals have a form similar to (12), simply
obtained by replacing Green’s function G with the expression
of the field radiated from the same or any other basis function,
based on the same or on a different cell. Hence, MoM testing
integrals may be evaluated by using the same technique
summarized by (17)–(19). We note that it is not necessary to
use the Galerkin approach for testing; it may sometimes be
more convenient to use a fully polynomial set of independent
testing functions instead of the singular functions.

III. SELF AND NEAR SELF SOURCE INTEGRALS FOR

OBSERVER IN THE FIRST QUADRANT

When the observation point, that is Green’s function sin-
gular point, lies in the first quadrant of the parent space,
the nonlinear transformation (5) used to cancel the singularity
of (4) brings the singularity of Green’s function closer to
the edge of the grandparent cell. This is not a problem if
the observer is located inside the cell, but, if, instead, it is
outside, it becomes more difficult to calculate the source
integral because the near-self zone of the grandparent domain
is mapped by a much larger region of the parent space.

Green’s singularity may be canceled as in [2] by subdividing
the grandparent cell into four triangles sharing a common

Fig. 2. Observer in the first quadrant. Triangular integration subdomains for
ν = 0.2 and observer at (u, v) = (ξ j+1, ξ j+2) = (0.2, 0.3). The parent cell
is shown at left and the grandparent cell at right. For ν = 0.2, the observer
in the grandparent space is at (ug, vg) = (0.5484, 0.6717). The λ = const.
coordinate lines are shown in gray.

vertex at (ug , vg). With reference to Fig. 2, the triangles are
numbered with the number that labels the edge on which they
are based although, in the following, to simplify the notation,
the triangle Tj+1 based on the western edge ξ j+1 = 0 is
indicated by the symbol TW ; similarly, Tj+2 is the south
triangle TS based on the southern edge ξ j+2 = 0; and Tj is
the north triangle TN , and TE indicates the east triangle Tj−1.

On each grandparent triangle, we then introduce a local
polar reference system (λ, σ ) centered at the observation point
for λ = 1 and with σ increasing from 0 to 1 in the counter-
clockwise sense around the vertex (ug , vg). The coordinate
line λ = 0 corresponds to one edge of the grandparent cell,
that is, the segment {λ = 0; 0 ≤ σ ≤ 1} of Tj maps the j th
edge of the child cell, and λ = 1 is the point that maps onto r,
eventually. On each subtriangle, the grandparent coordinates
are

ζ1 = λug + (1 − λ)Z1(σ ) (20)

ζ2 = λvg + (1 − λ)Z2(σ ) (21)

and the Jacobian of the polar transformation vanishes at the
observer for λ = 1 and cancels Green’s function singularity.
The mapping formulas introduced so far are reported
in Table II together with the expression of Z1(σ ) and Z2(σ )
in each subtriangle.

Classical applications of this cancellation technique evaluate
the integral over the entire domain of each subtriangle as points
outside the quadrilateral cell always belong to two subtriangles
that have opposite-sign Jacobians on these external points.
That is, the integral contribution from the region outside the
integration cell is automatically canceled by subtraction when
using this cancellation technique. However, when dealing with
corner basis functions, it is not convenient to follow the classic
recipe because, if we did this, the numerical precision of the
whole integral might be seriously compromised. To consider
the integral contributions associated only with the subregion
of a triangle belonging to the quadrilateral cell, one must
overcome the last difficulty, as illustrated in Fig. 3. This
figure shows, just for the north triangle, how different cases are
possible depending on how much the north triangle is distorted
(or warped) by the proximity of the observation point to the
north side of the cell. The simplest case occurs when the north
triangle is completely outside the integration domain; in this
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TABLE II

MAPPINGS USED TO NUMERICALLY EVALUATE THE SOURCE INTEGRALS FOR u ≥ 0, v ≥ 0

case, the integral on the north triangle is set to zero by default,
and it is not computed. The most complicated cases occur
when one or both rectilinear sides of the north triangle in the
grandparent domain intersect the north edge of the grandparent
cell, as shown at the right-hand side in Fig. 3. A technique for
evaluating the limits of the λ-σ integration intervals on-the-fly
for each subtriangle is described in the following section.

IV. ON-THE-FLY CALCULATION OF THE EXTREMES

OF THE λ-σ INTEGRATION INTERVAL

The source integral on a grandparent triangular domain is
made up of two nested integrals: an external one over σ plus an
inner integral over λ, which is evaluated with constant σ . If the
observer is in the first quadrant of the grandparent space and
outside the integration cell, the constant σ -line that constitutes
the domain of the inner-integral intercepts either the north or
the east curved edge of the grandparent domain at a single

point and for a λ-value equal to λmax less than unity. Before
proceeding to calculate λmax, it is obviously necessary to know
which of the two curved edges the constant σ -line intercepts,
also keeping in mind that it is possible that the constant σ -line
lies completely outside the integration domain for all λ values
in the [0, 1] range. Thus, to integrate only on the subregion
that belongs to the grandparent domain, we reduce the upper
limit of the λ-integral to λmax. In turn, λmax depends on σ
and is obtained by solving a system of two coupled equations
that impose the equality of the Z1 and Z2 coordinates of the
curved edge of the grandparent domain (given in Table II) and
the Z1 and Z2 coordinates of the parametric equation of the
constant σ -line. The two equations are solved in sequence by
first finding the sigma coordinate (σN for the north edge or
σE for the east edge) of the intersection point associated with
the parametric equation of the curved edge. λmax is obtained
directly from the parametric equation of the straight line once
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Fig. 3. Observer outside the quadrilateral cell and in the first quadrant. Left:
subtriangles in the parent and grandparent (ν = 0.3) space for three different
observation points. The northern region of the grandparent cell is enlarged
in the figures on the right. Recall that, in the grandparent space, the north
triangle has only one curved side that coincides with the north edge of the
grandparent cell. One or two subregions of the north triangle may be inside
the cell, as is the case for the top and center figures, respectively. The north
triangle is instead entirely outside the cell in the case of the figure at the
bottom right.

the sigma coordinate of the intersection point on the curved
edge (σN or σE , depending on the case in question) has been
obtained.

A. Algorithm to Calculate λmax for the Inner Integral

At the intersection with the north side, it turns out that the
value of the azimuthal variable on the north edge

σN = 1 − x (22)

satisfies the nonlinear equation

g(x, σ ) = A(x4 + 1)ν/2 + B x + C = 0 (23)

with

h(x, σ ) = d

dx
g(x, σ ) = 2 ν A x3(x4 + 1)

ν
2 −1 + B (24)

whereas, at the intersection with the east side

σE = x (25)

satisfies the nonlinear equation

g(x, σ ) = A(x4 + 1)ν/2 + C x + B = 0 (26)

with

d

dx
g(x, σ ) = 2 ν A x3(x4 + 1)

ν
2 −1 + C. (27)

The coefficients A, B , and C of the above equations are
the functions of σ given in Table III. (Recall, however, that
we solve the nonlinear equation by keeping σ constant.) The
x value that satisfies g(x, σ ) = 0 in the interval 0 ≤ x ≤ 1
is obtained by application of the Newton–Raphson method

because the derivatives of g(x, σ ) are analytically available.
Notice how the sign of the second derivative

d2

dx2 g(x, σ ) = 2 ν A[(2ν − 1) x4 + 3]x2(x4 + 1)
ν
2 −2 (28)

is identical to that of the coefficient A; in fact, the second
derivative vanishes only at x = 0 and for x4 = 3/(1 − 2ν).
Equations (23) and (26) share the x = 0 solution for a constant
sigma line intercepting the northeast corner.

The columns on the right-hand side of Table III report the
value of λmax. In the particular case of ν = 0, λmax is obtained
immediately with no need to solve any nonlinear equation [2].

In the numerical implementation, it is necessary to take care
not to lose precision in computing the “small x” solutions (say,
the x < 10−2 ones). For example, in the region where (A+C)
is small and for small x , (23) is more subject to round-off
errors than its approximation

g(x, σ ) ≈ (A + C) + B x + νx4 A

2

�
1 − (2 − ν)

4
x4

�
= 0.

(29)

This and similar problems may be solved by doubling the pre-
cision of the routines that calculate the roots of (23) and (26).
However, in our tests, we did not double the precision of the
routines nor did we use the series representations, such as (29),
to calculate the results discussed in the last section.

The solutions of (23) and (26) are obtained by using the
Newton–Raphson method [26], which also needs the deriva-
tives (24) and (27) of the said functions. This method works
only if there is at most one solution in the search interval.
If there are two solutions, there is a local maximum or
minimum, which is found with the same algorithm searching
the zeroes of (24) and (27) with the help of the second
derivative (28). The zero of the first derivative is used to divide
the search interval of the x solution into two parts.

B. Algorithm to Calculate the σ -Domain of the Outer
Integral

For an observer in the first quadrant of the grandparent space
and for each integration subtriangle, the domain of the outer
integral is usually the entire interval {0 ≤ σ ≤ 1}. There
are, however, notable exceptions to this rule when evaluating
the subintegrals on the north and east subtriangles, as noted
earlier discussing Fig. 3. In particular, for an observer outside
the grandparent cell, it happens that the constant σ lines of the
north triangle intercept the north side of the cell only in one
or two subintervals of {0 ≤ σ ≤ 1}, while they lie completely
outside the integration cell in the complementary interval (see
Fig. 4). The same holds for the intersections with the eastern
border of the cell for the constant σ lines of the east triangle.
It is, therefore, necessary to derive the range of admissible
values of σ before evaluating the inner integral on λ.

A constant σ line of the north triangle intersects the northern
cell edge at λ = 0 and for σN = σ (that is for x∗ = 1 − σ ).
This is the trivial solution of Table III, of no interest. Instead,
to integrate over λ, we need to find the second intersections
(assuming they exist) and the values of sigma where they
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TABLE III

INTERSECTION λMAX FOR A CONSTANT σ -LINE BELONGING TO A GIVEN SUBTRIANGLE T�

occur. The trivial (x∗) and nontrivial solutions of (23) coincide
at the extreme σt of the sigma subinterval where there are two
points of intersection, and x∗ becomes a double root of (23)
for σ = σt . That is, both the g function and its first derivative
vanish at σ = σt . It is clear that, at the extreme, one also gets
λmax(σt ) = 0. The extreme σt of the subinterval is found from
the slopes of the lines tangent to the north edge and the slope
of the constant sigma line.

For σ in the interval 0 < σ < 1, the slope

s = vg − Z2

ug − Z1
(30)

of the constant σ -line depends on σ (as Z1 and Z2 depend
on σ ) and can be positive or negative, whereas the slope

stan = − 2ν(1 − σ)3

(1 − 2ν)(1 − σ)4 + 1
(31)

of any line tangent to a point (Z1, Z2) on the north edge is
always negative. (stan is obtained directly from the explicit
expression Z1 = Z2(Z−2/ν

2 − 1)1/4 of the north edge and
the parametric representation of Z2(σ ) in terms of σ .) The
slope of these two straight-lines is the same at σt , that is,
at the point where the trivial and nontrivial solutions of (23)
coincide. Therefore, by equating (30) and (31), the extreme
points of the sigma subintervals are the roots of the nonlinear
equation

f (σ ) = 2ν(1 − σ)3(ug − Z1)

+(vg − Z2)[(1 − 2ν)(1 − σ)4 + 1] = 0 (32)

obtained by application of the Newton–Raphson method with

d

dσ
f (σ ) = 2(1 − σ)2 �(σ ) (33)

�(σ ) = (2 − ν)Z1 − 3ν ug − 2(1 − 2ν)(1 − σ)vg . (34)

We have already mentioned that there may be two subintervals
{0 ≤ σ ≤ σ1} and {σ2 ≤ σ ≤ 1} where the constant σ

line intercepts the north side, while the constant σ line is
outside the cell on the complementary interval {σ1 < σ < σ2}.
To settle these cases, it may be helpful to find the maximum
or minimum point of f by finding the σ value for which (34)
vanishes; this is quite simple because the first derivative
of �(σ ) is

d

dσ
�(σ) = 2(1 − 2ν)vg − (2 − ν)

�
1 − 2ν(1 − σ)4

(1 − σ)4 + 1

�
Z2.

(35)

The sigma subsubintervals for which the constant σ -lines of
the east triangle intersect the east edge of the cell are found
in a manner similar to the one discussed earlier. We leave
the interested reader to carry out all the details for effective
implementation of the complete algorithm.

C. Algorithm Complexity and Execution Cost

As shown in Fig. 4, to deal with the subintegral on the
north (or the east) triangle, the region of the first quadrant
located outside the cell is divided into five zones. Depending
on the position of the observer, the σ -domain of the outer
integral can be the entire interval [0, 1], a subinterval (e.g.,
[0, σ1] or [σ2, 1]), or two subintervals [0, σ1] and [σ2, 1].
If the observer is in the region of Fig. 4 marked by the
star, the integral on the north (or east) subtriangle is zero by
default because the remaining three subtriangles completely
cover the area of the north (or east) subtriangle belonging to
the grandparent cell. The boundaries of these five zones are
identified in the grandparent space by the following:

1) the two curved sides of the grandparent cell;
2) the two secants passing through the corner point

(
√

2−ν,
√

2−ν) and the point of coordinates (ζ1, ζ2) =
(0, 1) and (ζ1, ζ2) = (1, 0);
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Fig. 4. σ regions for integrals on the north (top) and the east triangle (bottom) for an external observer. The figure considers the ν = 0.4 case to get a
larger grandparent-space red zone, marked with a square, where the domain of the integral in σ consists of two disjointed domains. The subintegral on TN
(or TE ) is not calculated in the white region, marked with a star, as this region is completely covered by the triangles TW , TS , and TE (or TN ). In the light
blue and green zones, respectively, marked by a circle and a diamond, the σ domain of the subintegral is a smaller subinterval of the {0 ≤ σ ≤ 1} interval.
In the yellow region, marked by a triangle, the σ integration domain is the entire interval [0, 1].

3) the tangents to the curved sides of the cell at the
northeast corner point and at the points (ζ1, ζ2) = (0, 1)
and (ζ1, ζ2) = (1, 0).

To make a long story short, the observer region is determined
by executing a short sequence of if statements. Then, one or
two nonlinear equations must be solved if the observer is in
a region where it is necessary to determine the sigma-domain
subintervals. Finally, in the course of the numerical integration
on σ , a nonlinear equation must be solved to determine λmax

associated with each σ -integration point.
The nonlinear equations may be solved using the

Newton–Raphson method; in our tests, the convergence was
rapid and without optimizing the root search algorithm for
different but near σ values (which one can certainly do to get
improved performance).

At this point, it is necessary to recall that the constant
sigma lines of the west and south triangles also intercept
one of the two curved edges of the grandparent domain.
Which of the two edges is intercepted is again determined by
performing a short sequence of if statements. The σ -domain
of the integrals associated with TW and TS is the whole
interval [0, 1].

As far as the cost of the algorithm is concerned, the execu-
tion time of the if statements mentioned earlier is negligible
compared with the time needed to solve the nonlinear equa-
tions described in Sections IV-A and IV-B. The results of the
extensive tests that we made have shown that to calculate an
integral over the entire parent square-domain (for an observer
located outside the cell), less than 5% of the time is spent
in solving all the nonlinear equations that must be solved to
define the λ–σ integration domains. The remaining 95% of
the time is spent calculating the integral.

V. OBSERVER IN THE FOURTH AND

SECOND QUADRANT

If the observer lies in the first quadrant, the singularities
of (9) are completely canceled by the transformation of
variables that correctly takes into account the value of ν.
Unfortunately, this is no longer possible when the observer lies
outside the first quadrant. At the end of the chain of (bounded)
transformations that we will introduce, our integrands will
have some unbounded derivatives, and clearly, this limits the
precision achievable by standard numerical quadratures.
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In the fourth quadrant, we immediately cancel the singular-
ity along the ξ j+1 = 0 line by using the transformation

ξ j+1 = ζ 2
1

ξ j+2 = ζ2 (36)

which defines a (new) grandparent space we use for observer
in the fourth quadrant. Subsequently, we subdivide the
square (grandparent) integration domain into rectilinear tri-
angles with a common vertex at the point of observation.
Integration on each subtriangle is performed by working with
the usual polar reference system (λ, σ ), and this leads us to
define the auxiliary function

L = f (ξ) Jξ (ξ) [(1 − λ)G]�
ξ2

j+1 + ξ2
j+2

�ν (37)

where (1 − λ) is a Jacobian factor of the polar transforma-
tion that cancels the singularity of Green’s function G. The
southern triangle does not contribute to the integral because
it is outside the integration domain. Similarly, the integral
contribution IE of the eastern triangle TE is zero for u ≥ 1.
This yields

I = IN + IW + IE . (38)

A. Integral IW on the Western Triangle TW

As lambda varies, and for

σ = 1 − v

1 − √
u

(39)

the grandparent coordinates of the west triangle

ζ1 = λ
√

u

ζ2 = (1 − σ) − λ[(1 − σ) − v] (40)

describe the straight line joining the lower right corner of the
integration square with the observation point. It is easy to
see that the constant sigma lines intersect the east side of the
square domain at λE for σ ∈ [0, σW ] and the south side for
σ ∈ [σW , 1] at λS . The expressions of σW , λE , and λS are
given in Table IV. Thus, the integral on the west triangle is in
general given by the sum

IW

2
√

u
=

� 1

σW

� λS

0

L√
ζ2

dλ dσ +
� σW

0

� λE

0

L√
ζ2

dλ dσ. (41)

Table IV reports a ready-to-use expression for IW ; this is
readily proved by using the variable transformation given in
the table.

B. Integral IN on the Northern Triangle TN

The grandparent coordinates of the north triangle are

ζ1 = λ[√u − (1 − σ)] + (1 − σ)

ζ2 = 1 − λ(1 − v) (42)

and its constant sigma lines intercept the southern side of the
square integration domain for σN ≤ σ ≤ 1 while intercepting
the eastern side for 0 ≤ σ ≤ σN (see Table IV). The singularity
of the integral on the north triangle

IN

2(1 − v)
=

� 1

σN

� λS

0

L dλ dσ√
ζ2

+
� σN

0

� λE

0

L dλ dσ√
ζ2

(43)

is easily eliminated by using the variable transformations of
Table IV.

C. Integral IE on the Eastern Triangle TE

The grandparent coordinates of the east triangle are

ζ1 = 1 − λ(1 − √
u)

ζ2 = σ − λ(σ − v). (44)

As noted, IE is zero for u ≥ 1; otherwise, the integral is
evaluated by performing the transformations of Table IV to
get

IE

(1−√
u)

= 2
� 1

0

� λmax

0

L√
ζ2

dλ dσ = 4
� 1

0

� √
σ

0

L dα dσ

(σ −v)
.

(45)

D. Observer in the Second Quadrant

For an observer in the second quadrant, the singularity along
the ξ j+2 = 0 line is canceled by using a transformation
“specular” to that used to treat the case of observer in the
fourth quadrant

ξ j+1 = ζ1

ξ j+2 = ζ 2
2 . (46)

We then proceed, as for the fourth quadrant, to cancel the
singularity of Green’s function and the remaining others with
appropriate transformations of variables. It is clear that the
integration formulas in the second quadrant must be specularly
symmetrical with respect to the bisector (of the first and third
quadrants) to those obtained in the case of the observer in
the fourth quadrant. For the sake of brevity, we omit all the
intermediate results that the interested reader can easily derive
using the transformations indicated in Table IV (bottom).

VI. OBSERVER IN THE THIRD QUADRANT

If the observer is in the third quadrant, we subdivide the
parent domain into rectilinear triangles having a common
vertex on the observation point (ξ j+1, ξ j+1) = (u, v) and
recast the integral I given by (9) in polar coordinates. Only
the TN and TE triangles contribute to I ; the contribution of
TW and TS is set to zero, so one gets

I = IN + IE . (47)

A second transformation involving the auxiliary functions

F1 = f (ξ) Jξ (ξ)[(1 − λ)G]�
ξ j+2

�
ξ2

j+1 + ξ2
j+2

�2ν
(48)

F2 = f (ξ) Jξ (ξ)[(1 − λ)G]�
ξ j+1

�
ξ2

j+1 + ξ2
j+2

�2ν
(49)

is used to cancel the singularity along one of the two singular
borders ξ j+1 = 0 or ξ j+2 = 0. (Once again, the (1 −λ) factor
in F1 and F2 cancels the singularity of Green’s function G
and is part of the Jacobian of the polar transformation.) The
singularity along the other singular border is canceled by
a final transformation that produces the integral expressions
reported in the following and in Table V.
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TABLE IV

INTEGRAL FOR OBSERVER IN THE FOURTH OR SECOND QUADRANT

A. Integral IN on the Northern Triangle TN

The point (λ, σ ) of the north triangle maps the point
�
ξ j+1 = 1 − σ − λ(1 − σ − u)
ξ j+2 = 1 − λ(1 − v)

(50)

of the parent domain. At constant sigma, for

σ = 1 − u

v
(51)

(50) describes the straight line

ξ j+2

ξ j+1
= v

u
(52)

joining the observation point (u, v) to the lower left corner of
the parent domain. However, in the north triangle, we use (51)
only for |u| < |v|, that is, for σ between zero and one. In the
interval σ ∈ [σN , 1], with σN given by (51) for |u| < |v| or
σN = 0 for |u| ≥ |v|, the constant σ lines of the north triangle
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TABLE V

INTEGRAL FOR OBSERVER IN THE THIRD QUADRANT (u, v < 0)

intercept the west side (ξ j+1 = 0) of the parent cell at

λ = λmax = λW = 1 − σ

1 − σ − u
. (53)

In the complementary sigma range [0, σN ], the constant σ
lines intercept the south side (ξ j+2 = 0) at

λ = λmax = λS = 1

1 − v
. (54)

Thus, in general, the integral on the north triangle is the sum
of two contributions

IN1 = (1 − v)

� 1

σN

� λW

0

F1�
ξ j+1

dλ dσ (55)

IN2 = (1 − v)

� σN

0

� λS

0

F2�
ξ j+2

dλ dσ. (56)

The singularities of IN1, IN2 are canceled by using, from the
bottom up, the variable transformations reported in Table V

under each integral expression, which yield

IN1

(1 − v)
=

� 1

σN

� λW

0

F1�
ξ j+1

dλ dσ

= 2
� 1

σN

� √
1−σ

0

F1

(1 − σ − u)
dα dσ

= 2
� √

1−σN

0

� 1

0

(1 − σN + φ2)

(1 − σ − u)
(1 − ρ) F1 dρ dφ

(57)

IN2 = (1 − v)

� σN

0

� λS

0

F2 dλ dσ�
ξ j+2

= 4 σN

� 1

0

� 1

0
β F2 dα dβ

= 4 σN

� 1

0

� 1

0

	
ρ2

a φa F2 dρa dφa + ρ2
b F2 dρb dφb



.

(58)

Finally, the integrals are numerically performed in polar
(ρ, φ) domains using, from top to bottom, the transformations
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of Table V to compute F1 and F2. The transformations that
eventually lead us to work in the polar (ρ, φ) domains are
necessary because the singular corner ξ j+1 = ξ j+2 = 0
belongs to the integration domain so that both F1 and F2 are
singular at α = 0, σ = σN . The innermost integrals of the
final expressions (57) and (58) are over ρ.

B. Integral IE on the Eastern Triangle TE

In terms of polar variables, the TE parent coordinates are�
ξ j+1 = 1 − λ(1 − u)
ξ j+2 = σ − λ(σ − v).

(59)

The constant σ lines of TE intercept the southern side
(ξ j+2 = 0) of the parent cell at

λmax = λS = σ

σ − v
(60)

in the interval σ ∈ [0, σE ], with σE given in Table IV. In the
complementary [σE , 1] range, the constant σ lines intercept
the western side (ξ j+1 = 0) at

λmax = λW = 1

1 − u
. (61)

The singularities of

IE = IE1 + IE2 (62)

are canceled by using, from the bottom up, the variable
transformations reported in Table V, which yield

IE1

(1 − u)
=

� σE

0

� λS

0

F2 dλ dσ�
ξ j+2

= 2
� σE

0

� √
σ

0

F2 dα dσ

(σ − v)

= 2
� √

σE

0

� 1

0

(1 − ρ)(σE + φ2)F2

(σ − v)
dρ dφ (63)

IE2 = (1 − u)

� 1

σE

� λW

0

F1�
ξ j+1

dλ dσ

= 2
� 1

σE

� 1

0
F1 dα dσ

= 4 (1 − σE )

� 1

0

� 1

0
β F1 dα dβ

= 4 (1 − σE )

� 1

0

� 1

0

	
ρ2

a φa F1 dρa dφa

+ ρ2
b φb F1 dρb dφb



. (64)

The IE1 integral for small |v| is numerically delicate
because (63) contains a singularity for σ = v. (A more
accurate analysis shows that the singularity of (63) is weaker
than that of the first-order pole in σ = v.) The same applies
to small |u| with the integral IN1 because the singularity at
σ = 1 − u has not been canceled in (57). This means that
the formulas for an observer in the third quadrant given in
this section are useful only for sufficiently large values of
|u| and |v|. As we will see in the next section, if the observer
is in the third quadrant, it is more convenient to use the
simplified formulas (17)–(19), which we validate precisely
with the formulas reported in this section.

Finally, observe that IE2 is zero and IN2 is nonzero
for |u| < |v|. Similarly, IN2 is zero and IE2 is nonzero

for |u| > |v|. Thus, in the end, I is at most the sum of four
double integrals. Two double integrals must be computed only
in the case of u = v.

VII. VALIDATION OF THE INTEGRATION ALGORITHM

In the following, our quadrature algorithms are validated
by results obtained for a square child cell of the unitary side;
for this situation, Jξ (ξ) = 1. Even if we performed several
tests, we report below only the results for ν = 1/5 obtained
by considering two scalar functions

A(ξ) = f (ξ) Jξ (ξ) = 1 (65)

B(ξ) = f (ξ) Jξ (ξ) =
�

ξ j+1 ξ j+2
�
ξ2

j+1 + ξ2
j+2

�2ν (66)

that, in the integral (9), multiply one of the following two
Green’s functions G(ξ, r) chosen for convenience:

Gfake = 1 (67)

Ggenuine = exp (− j2 π |r − r �|)
4 π |r − r �| . (68)

The value of the singularity coefficient used to perform these
tests is intermediate to the values of ν needed to model PEC
plates with corner angle approximately equal to 90◦.

The results obtained with our algorithm using Gfake and the
function A(ξ) of (65) can be compared with those obtained by
running a very simple Mathematica code [27] able to calculate,
for m = n = 0, the fundamental integral
� 1

0

� 1

0

ξm
j+1 ξn

j+2 dξ j+1 dξ j+2�
ξ j+1ξ j+2

�
ξ2

j+1 + ξ2
j+2

�ν

= 2

m + n + 1 − 2ν

×
⎡
⎣2 F1

�
2m+1

4 , ν; 2m+5
4 ; −1

�
1 + 2m

+ 2 F1

�
2n+1

4 , ν; 2n+5
4 ; −1

�
1 + 2n

⎤
⎦

(69)

where 2 F1 (a, b; c; z) is the Gaussian or ordinary hypergeo-
metric function. The integral (69) converges for ν < (1+m +
n)/2, m ≥ 0, and n ≥ 0.

Substantially, in this validation, we assume a unitary Green’s
function, and we change the position of the observer. In this
way, depending on where the observation point is located,
the size and shape of the four triangles used to break down
the integral vary greatly even if the exact result (69) does
not depend on the position of the observation point. Then,
we calculate the relative error as a function of the position of
the observer and construct relative error maps, such as the one
shown in Fig. 5, obtained with ν = 0.2, m = n = 0.

Typically, the highest relative error occurs only when the
observer is in the immediate vicinity of the edges of the
unit-side integration cell. However, observation points very
close to the boundary of the parent cell, or even on the cell
boundary, are practically never involved in the calculation of
MoM testing integrals. The blue whiskers in the first quadrant
of the parent space that appear in the figures on the left and in
the center of Fig. 5 are due to lack of precision in calculating
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Fig. 5. Relative error obtained using our algorithm in calculating the integral (69) for m = n = 0 and ν = 1/5 by varying the observer’s position within the
parent-space square {−5 ≤ ξ j+1, ξ j+2 ≤ 5}. Along the horizontal axis, ξ j+1 varies from −5 to +5, while ξ j+2 varies along the vertical axis from −5 to +5.
The three color maps are in the same logarithmic scale, with values of the color bar on the right that vary from 10−12 to 10−6. Relative error smaller than
10−12 is achieved when the observer is in the white areas. The figure on the left shows the results obtained using a 32×32 Gaussian quadrature, while, at the
center, we use 64 × 64 Gaussian quadrature and, at right, a 128 × 128 Gaussian quadrature. CPU time increases by at least a factor of 4 from one graph to
the next on the right.

Fig. 6. Relative error (in logarithmic scale) for the integral (70) obtained by
varying the observer’s position along the bisecting line u = v of the parent-
space. The results obtained using 16 × 16 and 32 × 32 Gaussian quadrature
are obtained using the simplified formulas of Section II (17), which cannot be
used for observer within the parent cell, i.e., the results for u = v in the range
[0,1] are not reported in these cases. The results obtained using 128 × 128
Gaussian quadrature are instead obtained with the self/near-self formulas of
Sections III–V. The reference result to compute the errors reported is obtained
with Mathematica by integrating (71) in polar coordinates on subtriangles,
so to cancel Green’s function singularity.

the extremes of the σ -domains that contribute to the outer σ -
integrals. These errors can be reduced by increasing the order
of the quadrature.

Fig. 6 shows, as the observer’s position (u = v) changes
along the bisecting line of the parent space, the trend of the
relative error (in logarithmic scale) of

I =
� 1

0

� 1

0

B(ξ) Ggenuine�
ξ j+1 ξ j+2

�
ξ2

j+1 + ξ2
j+2

�2ν
dξ j+1 dξ j+2s . (70)

The corner singularity in (70) is canceled by the particular
expression of the scalar function B(ξ) so that we calculate
the (supposed exact) reference result

Iref =
� 1

0

� 1

0
Ggenuine dξ j+1 dξ j+2 (71)

by running a simple Mathematica code where Green’s function
singularity is again canceled by integrating in polar coordi-
nates on subtriangles. It is evident in Fig. 6 that, in the less
expensive integration technique of Section II, (17)–(19) can

Fig. 7. Relative error (in logarithmic scale) for the integral (72) by varying the
observer’s position in the parent space. On the left, along the line v = u/5
(in this case the line enters in the unit cell). On the right, along the line
v = −u/5 (the line does not enter the unit cell). The results obtained using
16 × 16 and 32 × 32 Gaussian quadrature are obtained using the simplified
formulas of Section II (17), which cannot be used for observer within the
parent cell, i.e., the results for both u and v in the range [0,1] are not
reported in these cases. The results obtained using the 64 × 64 and 128 × 128
Gaussian quadrature are instead obtained with the self/near-self formulas of
Sections III–V. The errors are with respect to the results obtained using a
256×256 Gaussian quadrature of the self/near-self formulas of Sections III–V.

be used if the observation point is at a distance from the edge
of the cell equal to at least 30% of the maximum size of
the cell itself, that is, in the case of the figure, for u or v
greater than 1.3 or less than −0.3. The expected relative error
obtained by using the integration technique of Section II is
10−8 when using 16 Gaussian integration points in λ and σ ,
and it becomes of the order of 10−12 when using 32 integration
points both in λ and σ . For observation points inside the
cell domain, 128-point Gauss formulas should ensure relative
errors better than 10−9 if the observer is close to the edge of
the cell.

Fig. 7 shows the error computing

I =
� 1

0

� 1

0

A(ξ) Ggenuine�
ξ j+1 ξ j+2

�
ξ2

j+1 + ξ2
j+2

�2ν
dξ j+1 dξ j+2 (72)

with respect to the reference result obtained by using
256 × 256 Gaussian quadrature of the self/near-self formulas
of Sections III–VI. For an observer in the third quadrant,
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Fig. 8. Quadrature formulas to be used depend on the position of the observer
in the parent space. The black box indicates the boundary of the square
integration cell of the unitary side. Gauss quadrature with 128×128 integration
points should be used if the observer is in the dark gray area. Gauss quadrature
with 64 × 64 integration points is used in the light gray areas. The simpler
integration formulas (17)–(19) are used if the observer is sufficiently distant
from the integration cell and, therefore, is in the white area. In this case,
we use a Gauss quadrature that uses 32 × 32 integration points for each
subtriangle of Fig. 1.

the relative error of the results obtained using the simplified
formulas of Section II with 256×256 quadrature is of the order
of 10−9. Basically, the reference chosen for the integral (72)
has no more than nine or ten exact digits if the observer is
in the third quadrant. At any rate, for an observer in the third
quadrant (u, v < 0), the results of Fig. 7 (left) together with
those of Fig. 6 show that the simplified formulas of Section II,
integrated using 32 × 32 Gauss quadrature, guarantee relative
errors on the order of 10−8.

Fig. 7 (left) shows how wise it is to use a 128 × 128 Gauss
quadrature in the vicinity of an edge, that is, for u and v within
the [−0.1, 0.1] and [0.9, 1.1] ranges. In fact, Fig. 7 (left) does
not report the results obtained for u < 1/2 using 64×64 Gauss
quadrature because, for these values of u, the observer is too
close to the edge of the parent cell or in the third quadrant
(with v between −1/5 and 1/10).

When the observation point is within the [−0.3,−0.1],
[0.1, 0.9] and [1.1, 1.3] ranges, a 64×64 Gaussian quadrature
suffices. To summarize, the quadrature formulas to be used
depend on the position of the observer in the parent space.
With reference to Fig. 8, in the dark gray area in the close
vicinity of the cell border, one should use the Gauss quadrature
with 128 × 128 integration points. The Gaussian quadrature
with 64 × 64 integration points is used in the light gray areas
inside the square cell and in the buffer zone outside the dark
gray area. The simpler integration formulas (17)–(19) are used
when the observer is located in the white area (i.e., outside
the gray areas) with Gauss quadrature formulas using 32 × 32
integration points. In this way, the integration error is always
of the order of 10−8, or better.

As a conclusion of the previous analysis, to apply the
quadrature technique illustrated in Sections III–VI, the parent-
to-child cell mapping must be inverted if the observer is in the
vicinity of the source cell. In this regard, we must clarify that
the observer’s parent coordinates (u, v) obtained by mapping

Fig. 9. The aperture angle of the bottom-left corner of the child cells
drawn in the figures with solid-line borders is given in the insets. These
cells are obtained by four different mappings of the same parent-cell {0 ≤
ξ j+1, ξ j+2 ≤ 1}. The figures show, in yellow (light gray), the area obtained
by mapping a larger parent square {−0.2 ≤ ξ j+1, ξ j+2 ≤ 1.2}, which, in the
child-domain, surrounds the (dashed) contourline PI=1.1. For the cells with
tip angle equal to 45◦ and 30◦, the dark gray zone at top right is mapped
by complex parent-coordinates. Quadrature formulas that require mapping
reversal cannot be used if the observer lies in the dark gray zone.

reversal can assume complex (not real) values if the child cell
is not a parallelogram.

Furthermore, the mapping reversal associates one child
point to multiple points of the parent domain. For example,
the reversal of a bilinear mapping (the simplest of the various
possible mappings) always offers two possible solutions for
the observer parent coordinates; that is to say, one finds two
different pairs of coordinates (u, v) that map the same child
point.

In practical applications, this is not a problem because our
integration technique requires mapping reversal only if the
observer is inside or in the immediate vicinity of the cell,
that is, for “parent” coordinates u and v within the interval
[−, 1 + ] with, for example,  = 0.3 or lower. In these
cases, unless the child cell is excessively distorted, the unique
solution for the (u, v) pair with u and v both real is searched
for ξ j+1 and ξ j+2 in the aforementioned [−, 1 + ] range.

To recognize if the observer is inside or in the neighborhood
of the child cell, one evaluates the proximity index (PI).
By joining, with straight lines, the observer to the four vertices
of the child cell of area S, we get a pyramid whose side faces
have area S1, S2, S3, and S4. The PI is simply given by

PI = S1 + S2 + S3 + S4

S
(73)

and, evidently, one gets PI = 1 whenever the observer is
internal or on the border of the child cell. The closer the PI
is to the unit, the closer is the observer to the cell.
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Fig. 9 shows the contourline PI = 1.1 for four different child
cells, with increasing aspect ratio (AR) and skewness (SK) as
the corner aperture angle decreases. AR is the ratio of the
longest to the shortest cell’s side (it should be close to unity
and less than 4). The skewness is

SK = max

�
α − 90

90
,

90 − β

90

�
(74)

where α and β are the maximum and minimum inner angles
(in degree) of the cell, respectively (SK should be less
than 0.9). For the examples in Fig. 9, mapping reversal
is performed only if PI is less than or equal to 1.1, and
the values of u and v are found by spanning the region
{− ≤ ξ j+1, ξ j+2 ≤ 1 + }, for  = 1.2.

While discussing Fig. 8, we observed that  should be equal
to 0.3; therefore, we now have to point out that the (modified)
basis functions obtained in [3, Sec. V] with the multiplicative
correction technique, and their divergences, vanish along the
two sides opposite the singular corner. This dampens Green’s
function singularity if the observer is outside the cell but near
the sides opposite the singular corner, which consequently
allows a reduction of the  value to be used in the MoM
applications discussed in [3].

VIII. CONCLUSION

This article proposes new algorithms for handling the
combination of corner and Green’s function singularities on
quadrilateral cells. These algorithms are validated numerically
by considering scalar 2-D singular functions and then used
in a companion article that uses new singular basis functions
to enhance the convergence of method of moments (MoM)
solutions for structures containing edges and corners. The
algorithms presented here can be considered a starting point
since, in the authors’ belief, these singular integrals are not
considered elsewhere in the open literature. They are certainly
susceptible to further improvements to reduce the computation
time in MoM applications.
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