
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving the formal verification of reachability policies in virtualized networks / Bringhenti, Daniele; Marchetto, Guido;
Sisto, Riccardo; Spinoso, Serena; Valenza, Fulvio; Yusupov, Jalolliddin. - In: IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 18:1(2021), pp. 713-728.
[10.1109/TNSM.2020.3045781]

Original

Improving the formal verification of reachability policies in virtualized networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2020.3045781

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2859052 since: 2021-03-12T08:35:14Z

IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Citation information: DOI 10.1109/TNSM.2020.3045781, IEEE Transactions on Network and Service Management 1

Improving the formal verification of

reachability policies in virtualized networks
Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Serena Spinoso, Fulvio Valenza, Jalolliddin Yusupov

Abstract—Network Function Virtualization (NFV) and Soft-
ware Defined Networking (SDN) are new emerging paradigms
that changed the rules of networking, shifting the focus on
dynamicity and programmability. In this new scenario, a very
important and challenging task is to detect anomalies in the
data plane, especially with the aid of suitable automated software
tools. In particular, this operation must be performed within
quite strict times, due to the high dynamism introduced by
virtualization. In this paper, we propose a new network modeling
approach that enhances the performance of formal verification of
reachability policies, checked by solving a Satisfiability Modulo
Theories (SMT) problem. This performance improvement is
motivated by the definition of function models that do not
work on single packets, but on packet classes. Nonetheless,
the modeling approach is comprehensive not only of stateless
functions, but also stateful functions such as NATs and firewalls.
The implementation of the proposed approach achieves high
scalability in complex networked systems consisting of several
heterogeneous functions.

Index Terms—network reachability, data plane verification,
service function chains, network security policies

I. INTRODUCTION

Nowadays, Network Functions Virtualization (NFV) [1] and

Software-Defined Networking (SDN) [2] are heavily changing

computer networks. These paradigms raised flexibility and

agility in service function deployment, since each function

is a software program running on a general-purpose server.

Besides, high programmability is provided for traffic steering,

since traffic can be dynamically redirected in different ways

(e.g., on a per-user and per-flow basis).

Modern virtualized networks are not based only on switches

and routers, but they also include a growing number of

complex service functions [3] (e.g., firewalls, DPIs, NATs) that

must be properly configured to perform their own processing

and forwarding operations on incoming packets. However, the

NFV/SDN paradigm also introduces new issues and challenges

in the management of this configuration process. In particular,

network function configurations may be updated very fre-

quently in such a highly flexible environment. Consequently,

preventing erroneous forwarding behaviors of the network,

such as unreachable destinations or non-perfect isolation of

sub-networks [4], becomes a complex task.

D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, and F. Valenza are
with the Dipartimento di Automatica e Informatica, Politecnico di Torino,
Turin, Italy (e-mail: daniele.bringhenti@polito.it, guido.marchetto@polito.it,
riccardo.sisto@polito.it, serena.spinoso@polito.it, fulvio.valenza@polito.it).

J. Yusupov is with the Department of Automatic Control and Computer
Engineering, Turin Polytechnic University in Tashkent, Tashkent, Uzbekistan
(e-mail: jaloliddin.yusupov@polito.uz).

Currently, the low-level configuration of many Virtual Net-

work Functions (VNFs) relies on specific parameters, whose

values have to be selected and set manually by the network

administrator. In practice, this implies a typical configuration

approach by trials and errors. Frequently, in the context of

telco operators, when a misconfiguration is detected, ad-

ministrators try to correct errors by manually changing the

configurations of some functions and repeat this process until

no more anomalies are observed. This technique, besides being

cumbersome and time-consuming, lacks a comprehensive view

of the network behavior and, as such, is error-prone and can

make the network significantly hard to maintain.

Because of this, suitable automated software tools are

required, enabling operators to check networks before service

deployment, thus preventing the violation of security prop-

erties and service downtimes. Many solutions are available

in this field (e.g., [5], [6], [7], [8]), all based on ad-hoc

formal descriptions and sound theoretical foundations, i.e., on

a formal verification approach. Although formal verification

is very powerful to satisfy the above requirements, there

are other challenges that are often difficult to meet. NFV

and SDN have introduced higher flexibility and dynamicity

for network management [1]. This native characteristic of

virtual networks is coupled with the improvement of intrusion

detection and reaction techniques, such that, every time an

intruder is detected, the structure and configuration of the

network is quickly modified [9]. In this context, the network

topology might undergo many changes in succession. As a

consequence, network verification solutions must work within

quite strict times, to support the ever-changing nature of

virtualized networks. Moreover, they must be able to deal

with the full variety of middleboxes typically used in such

networks. Virtualization has, in fact, eased the creation of

more complex network functions [10], and modeling their

behavior for the application of formal verification techniques

has become a hard task.

In this paper, we propose a formal verification approach

relying on network models that enables the formal verification

of reachability properties (named policies) against a network

composed of both stateless and stateful network functions.

This modeling approach, in addition to having wide coverage

of network function types, is highly performant with respect

to other strategies ([6], [7], [8], [11], [12]) that have been

proposed in literature. A first reason is that the policies

are verified for packet classes, which can represent multiple

packets at the same time. A second motivation is that, under

specific conditions, the verification of each policy is performed

chain-by-chain, analyzing only the chains that are relevant for

2

the specified policy, instead of the full network graph. In these

circumstances, this optimized verification process can check

in parallel many policies in different service function chains,

hence reducing the overall verification time. Thanks to this

reduced verification time, another advantage of our solution

resides in the possibility to use more detailed models of the

network functions behavior, thus improving the significance

of the verification results.

This formal verification approach has been implemented

within a framework, called VeriGraph2.0, extensively vali-

dated with a comprehensive performance analysis. The frame-

work represents an evolution of a previous version, VeriGraph,

presented in [13] and integrated in both ESCAPE1 (Extensible

Service Chain Prototyping Environment) and OPNFV (Open

Platform for NFV), two open-source NFV architectures. In

both versions, policy verification is performed by solving

Satisfiability Modulo Theories (SMT) problems. However, the

modeling approach in VeriGraph2.0 is quite different and more

performant.

The rest of the paper is organized as follows. Section II dis-

cusses the most relevant related work. Section III illustrates the

proposed approach, while the following sections introduce the

formal models at the basis of our solution. In particular, Sec-

tion IV describes the formal model adopted for the network,

Section V deals with the formal model of network functions,

and Section VI refers to the reachability policy modeling and

verification. Section VII contains a performance analysis of the

proposed solution. Finally, Section VIII concludes the paper,

also discussing some possible future work.

II. RELATED WORK

Static network analysis is a well-established topic, with

many available tools. Static analysis tools take as input a

description of the network to be verified, specifying the

endpoints and network boxes, their configurations, and their

interconnections, and are able to answer queries about the

network without resorting to dynamic testing. Papers related

to static network analysis can be grouped into two main

categories. The first category is represented by approaches

focused on the analysis of SDN networks based on the

OpenFlow protocol and exclusively composed by routers and

SDN switches. Instead, the second category is represented by

approaches that extend the application of static analysis to a

heterogeneous network, i.e., a network composed by multiple

kinds of network functions (e.g., firewalls, VPN gateways,

intrusion detection systems, etc.).

The most relevant papers in the first category are: [15], [16],

[17], [18]. These verification tools assume that the forwarding

behavior is set by the control plane, and not altered by

the traffic, so verification is needed only when the control

plane changes routing entries of some components in the

network (i.e., network switches). This approach, not taking

into account the behavior of the many data plane middleboxes

that characterize modern networks, is not enough to provide

good confidence that such networks behave as expected.

1in the context of the EU project UNIFY [14]

The second category of papers ([11], [12], [5], [6], [7],

[19], [8]) instead represents the literature that is mostly

relevant for our work. These approaches basically determine

whether a static snapshot of the data plane state violates

network invariants, i.e. policies describing how the network

should behave. In doing so, they can analyze heterogeneous

networks, thus overcoming the limitations of the papers in

the first category. In greater detail, the first paper in this

second category, HSA [11], presents a model according to

which each data packet can be represented as a point in

the header space. However, the static nature of HSA does

not allow it to track dynamic state modifications caused by

continuous events. Similarly, Anteater [12] converts the data

plane information of stateless network functions into boolean

expressions and translates network invariants into instances

of boolean satisfiability (SAT) problems. In contrast, in our

approach, dynamic state changes of any network function can

be modeled, thus allowing the verification of networks with

stateful network functions.

Network Optimized Datalog (NoD) [5] implements efficient

header space verification in an expressive Datalog framework,

which allows to express higher-level properties called “be-

liefs”. NoD allows to verify reachability on more complex

path predicates (e.g., traffic between two hosts flows through

a service function) in stateful networks. However, modeling

packets as “variables” enlarges the size of the solution space,

thus requiring more time for the verification of reachability

invariants. Instead, in our approach, we model the concept of

traffic flow, representing a packet class with different types of

packet fields, which allows us to support a big range of net-

work functions in a more efficient way. SymNET [6] is proba-

bly the most complete tool to date and uses symbolic execution

and packet generation for testing and verifying the behavior of

networks including stateful networks. However, the symbolic

execution has scalability limitations and the verification time

rises exponentially with the network size. SFC-Checker [7]

is another network diagnosis framework developed to verify

stateful service chains. However, its authors do not provide a

formal model underlying the presented functionality. Gravel

[20] claims to automatically verify middlebox source code

written in C++ by converting them into SMT encodings, but

it works only with Click-based implementations. Moreover,

the reachability invariants used by SymNET, SFC-Checker

and Gravel are not expressive enough to represent complex

variations of this property. In this paper, we allow the user to

verify complex reachability policies for a specific traffic flow,

involving groups of network functions. Similarly, NetSMC

[21] proposes a new policy language to support a wide range

of network properties. However, it fails to express generic

policies involving stateful network functions.

Another similar approach to check the correctness of config-

urations in the presence of different VNFs, has been proposed

by Panda et al. [8], which defines a methodology to model

the forwarding behavior in a service chain and provides a

scalable solution based on an off-the-shelf SMT solver. The

forwarding behavior is modeled in Linear Temporal Logic

(LTL), which is then translated to First Order Logic (FOL)

expressions. Compared to this approach, our methodology on

3

one side allows a larger pool of network functions models, and

on the other side it is characterized by richer formal models for

the VNFs, so that these models are closer to the effective be-

havior of the corresponding network service functions. Finally,

even though these models are richer and more accurate, the

scalability which is achieved by our methodology is better, in

terms of performance, thanks to the modeling of traffic flows

rather than single packets and the avoidance of recurring to

LTL, which is used in [8] but not in our approach.

III. APPROACH

Verifying in a formal and provably correct way that the

packets originated by the source of an end-to-to-end commu-

nication can reach their destination is a complex task. Network

virtualization worsened this issue, all the more. On one side,

the variety and heterogeneity of the network functions are

heightened, given that creating different software programs is

easier with respect to older hardware implementations. On the

other side, the configuration of each function is more complex,

due to the growing size of modern virtualized networks, and

can be dynamically changed, as enabled by their intrinsic

reactivity.

In view of this problem, we propose an optimized ap-

proach to formally and rapidly verify the reachability between

network nodes or subnetworks through stateless and stateful

configured virtual functions. This approach lays its foundations

on the definition of a decision problem called Satisfiability

Modulo Theories (SMT). Additionally, the verification is based

on policy-based management: the communications subject to

verification are identified by reachability policies2. Each policy

requires that the packets whose characteristics are denoted by

the policy itself can (or cannot) reach their final destination.

Each policy can altogether identify multiple packet classes at

the same time (e.g., the reachability for all the packets coming

from the subnetwork 150.23.1.0/24 to the server 20.22.2.2 can

be expressed with a single policy).

High performance is reached mainly thanks to two features

characterizing our approach. The first is that the reachability

verification can be applied for packet classes, rather than single

packets. The second is that we exploit the fact that, under

specific conditions that will be detailed later, the verification

can be performed chain-by-chain rather than considering the

whole graph. This entails that, after identifying all the possible

chains (i.e., the paths in-between the source-destination pair)

which a communication may cross in the network, reachability

is checked on such relevant chains only, and in parallel

with one job per chain, rather than on the whole subgraph

containing them. As it results from the formal proof given in

[8], in most of the real-world circumstances the verification

chain-by-chain provides the same results as the verification

on the whole network.

In the remainder of this section, we describe how the

verification workflow is organized in Section III-A, and how

verification is formally achieved for each policy by solving a

decision problem in Section III-B. Then, we use Section IV,

Section V, and Section VI to exhaustively illustrate the formal

2In the rest of the paper, the term policies stands for reachability policies.

models, the definitions and the formulas on which the SMT

problem is based.

A. Verification workflow

The verification process proposed in this paper requires a

set of reachability policies, a virtual network graph (i.e, the

logical representation of the virtual functions and their inter-

connection), and a description of the configuration for each

VNF as inputs. Then, the process establishes which policies

are satisfied (or not), alongside with the related reasons. Note

that verification is applied on the virtual network graph, before

the deployment of the VNFs. As widely recognized now, an

earlier verification is much better for network administrators

to speed up error detection.

For each policy, the verification process is structured into

two sub-tasks: chain extraction and verification. The first

task, chain extraction, simply consists in identifying all the

possible paths for the source-destination pair identified by the

policy. Note that each element of this pair can be a single

network node or, alternatively, a subnetwork. Chain extraction

must be performed any time the network topology changes,

because that event may have an impact on the interconnection

between source and destination. Even if this task introduces

an overhead in the verification process, its presence simplifies

and optimizes the performance of the whole process. This is

because changes in a network graph are less frequent than

changes in service function configurations; then, chain extrac-

tions are less frequent than chain verifications. Moreover, using

this approach, each extracted service function chain is loop-

free by construction.

The second task, i.e. reachability verification, is then per-

formed for each identified chain in parallel, or on groups of

chains in the rare cases when chain-by-chain verification is

not possible. For each chain, the traffic flows characterized

by the packet classes identified by the policy are determined,

and then, it is checked if they can reach the destination of the

chain by solving an SMT problem. This parallelism enables an

increase of performance, which sums up to the improvement

that is achieved by checking the reachability of packet classes

instead of each specific packet.

Nevertheless, there are conditions to be satisfied so that a

verification performed chain-by-chain, such as the approach

proposed in this paper, provides a result that applies to the

whole network graph. More specifically, the optimization that

consists of verifying chains separately and in parallel can be

applied only when all the middleboxes in the chains take

decisions on the received packets only depending on the state

related to the flow to which the packets belong. In other words,

each middlebox could be replaced by multiple middleboxes

of the same type, each one dealing with a different flow in

parallel, without impacts on the outcome of the forwarding

decisions. In case the middleboxes that are present in the

chains where a policy must be verified do not satisfy these

conditions, instead of being verified chain-by-chain, the reach-

ability property should be verified on the whole subgraph (i.e.,

a directed acyclic graph) that includes all the chains that pass

through those middleboxes.

4

These conditions for performing a chain-by-chain verifica-

tion are the same as those analyzed in [8], where a more formal

specification of the conditions is provided and their validity

is formally proved. As it results from their proof, when the

conditions are met, if a reachability policy is valid for each

chain, it is valid also for the whole graph. The same paper also

shows that the conditions are satisfied by most real networks,

thus making this simplification possible in most real cases.

B. Verification through SMT problem

The Boolean Satisfiability (SAT) problem is a traditional

problem in mathematical logic and computer science. The aim

of a SAT problem is to identify if, given a set of Boolean

formulas, there exists an interpretation (i.e., an assignment of

the variables appearing in the formulas), that determines the

truth of all the formulas. The formulas of a SAT problem are

expressed in propositional logic; therefore, they are composed

by Boolean variables and the three classic logic operators (∧,

∨, ¬). Instead, SMT is a decision problem that applies to

First Order Logic (FOL) theories, i.e. logic systems where

formulas contain, in addition to the boolean operators, also

certain constants, variables, functions and predicates defined

over domains such as integers, strings or other data structures,

and quantifier operators (∃, ∀).

The main advantage of formulating the verification problem

as SMT instead of SAT is thus a greater expressive power,

which is fundamental to define models that support the com-

plexity and heterogeneity of the network functions. Regarding

possible performance issues, even though the SMT problem

belongs to the NP-complete computational class, its worst-case

complexity is not indicative of its average complexity, so that

state-of-the-art SMT solvers usually show good performance

and scalability in solving problems [22], thus making them a

valid alternative to other approaches such as model checking

based on state exploration. In fact, the latter requires time

and memory that usually increase exponentially with system

complexity, while the SMT-based approach is less prone to

this problem.

Given a set of FOL formulas, the SMT problem consists

of finding if there exists an interpretation of free constants,

functions and predicates that makes all the formulas true.

In this case, the SMT solver returns SAT, and provides an

interpretation that makes all formulas true, otherwise it returns

UNSAT.

For the SMT problem defined to verify reachability on a

chain or group of chains, the following elements are modeled

as sets of FOL formulas: the policy, the packet classes the

policy refers to, the chain itself, with its forwarding principles,

and the forwarding behavior and configuration of each network

function in the chain. In these formulas, some predicates and

constraints over the predicates are defined. Then, an off-the-

shelf SMT solver is used to search for an interpretation that

satisfies all the constraints. The definitions and formulas of

this SMT problem are presented in the reminder of the paper.

For the sake of clearness, they are divided into three groups,

each one corresponding to a specific set of model elements.

In greater detail, the definitions and formulas related to the

basic network elements (i.e., network topology and traffic

flows) are described in Section IV, those regarding the specific

behavior of each network function type in Section V, and those

concerning the reachability properties that must be verified in

Section VI.

IV. NETWORK MODELING

In this section, we present the models of the network

topology, the network chains, and the traffic flows.

A. Network model

Formally, a directed graph � is a pair of sets (V,E), where

V is the set of vertices and E is the set of edges, formed by

pairs of vertices. In this paper, the network is modeled as a

graph �, where the vertices represent network nodes that can

send and receive packets, whereas the directed edges represent

connections between network nodes, i.e. an edge connecting

node =1 to node =2 means packets can flow from =1 to =2. Note

that in this model we do not represent explicitly the interfaces

of a network node, but we simply represent its ingress and

egress connections.

Each node of the graph is characterized by a single IP

address, by an IP address range or, more generically, by a

set of IP addresses. Besides, the nodes are classified into two

main types: end-hosts and service functions (i.e., V = H∪M).

In brief, an end-host ℎ ∈ H is a network node, a gateway or

a subnetwork where communications originate or terminate.

Instead, a service function < ∈ M is any intermediary middle-

box placed in between end-hosts, which performs functions

other than the normal, standard functions of an IP router on

the datagram path between a source and destination host.

A network chain 2 ∈ C is a path in �, where the first and last

elements are end-hosts, while the others are service functions.

In each network chain, no element appears more than once.

Formally, C denotes a set of chains, and 28 a single chain,

which is modeled as a tuple made of the source end-host, the

destination end-host and the ordered sequence of intermediate

functions that make the chain. In formulas:

C = {21, 22,} 28 = (B8 , 38 , "8) "8 = [<81, <82, ...]

28 ∈ C, B8 ∈ H, 38 ∈ H, <8 9 ∈ M

In the remainder of this paper, the “." notation, when applied

to a tuple, is used to retrieve a specific element. For example,

28 .B8 represents the source end-host of the chain 28 .

B. Traffic flow model

We define an atomic traffic flow 5 ∈ F an end-to-end flow

of packets directed from a source EB ∈ H to a destination

E3 ∈ H, which is steered along the same chain 2 ∈ C. The

formal model of an atomic flow 5 ∈ F is a list

5 = [EB , CB0 , E0 , C01 , E1 , ..., E: , C:3 , E3]

where each E8 ∈ V is a node on the chain crossed by the flow,

while each C8 9 represents a class of packets (called traffic in

this paper) transmitted from E8 to E 9 . In particular, each C8 9 is

the result of an action that node E8 applies to the traffic C:8
that precedes it in the list. The traffic received by each node

5

of a flow can thus be different from the other ones because of

active service functions that can modify some packet fields.

Besides, the packets of the ingress traffic of each node of an

atomic flow are all managed in the same way by the node,

i.e. the decision taken by the node on each one of them is the

same. For conciseness, in the reminder of the paper the atomic

traffic flows will be simply referred to as flows.

Let then T be the set of all the packet classes in the

network. In order to model packet classes, a pre-defined set of

packet fields or packet attributes, denoted as A, is considered.

Here, for simplicity, we consider only the following ones,

but the methodology is fairly independent from what fields

or attributes are selected:

• IPSrc and IPDst represent the source and destination IP

addresses of the packet class;

• pSrc and pDst represent the source and destination

transport-level ports of the packet class;

• tProto represents the transport-level protocol of the packet

class;

• domain represents the domain related to the web com-

munication which the packet class may represent;

• url represents the web location of the resource with

respect to which the communication represented by the

packet class happens;

• appInfo represents other header information related to the

application-level protocols of the packet class;

• body represents the IP payload.

Each packet class C ∈ T is modeled as a logical conjunction

of predicates, each one depending on variables representing

the values of specific packet fields or attributes. Let us denote

%C the set of predicates that model the traffic C ∈ T, -C the

set of variables on which at least a predicate in %C is defined

over. The information about which packet field or attribute

a predicate represents can be retrieved with the U : %C →A
function. Instead, the variables on which a predicate is defined

can be retrieved with the b : %C → P(-C) function. Each

predicate can be, in fact, defined over multiple variables: for

example, for a predicate representing an IPv4 address, four

variables are used, each one of them for a byte of the address.

Besides, note that not all the packet fields and attributes that

have been listed before must be modeled as predicates in

the %C set of each packet class, because some of them may

not be useful for a specific traffic identification. For instance,

predicates for url and domain fields are only defined for packet

classes representing web communications.

In the following, some examples of predicates are illus-

trated.

• In a predicate with the form G = E0;D4, the packet field or

attribute is bounded to have the specified value. Examples

are “IPSrc = 150.10.0.1” and “domain = google.it”. The

first example is formulated with a sugared syntax, an

abuse of notation that is used in the remainder of the

paper to make the model presentation easier to under-

stand. In particular,“IPSrc = 150.10.0.1” stands for the

predicate G1 = 150 ∧ G2 = 10 ∧ G3 = 0 ∧ G4 = 1, where G8
is the variable representing the i-th byte of the source IP

address packet field.

• In a predicate with the form G ∈ B4C, the packet field

or attribute is bounded to have a value that belongs to

the specified set. When the ∗ symbol is used as set, it

means that the variable can be assigned any legit value de-

pending on the predicate’s type (e.g., for tProto, ∗ stands

for the set of all the possible transport-layer protocols).

Examples are “IPSrc ∈ {150.10.0.1, 150.10.0.7}” and

“domain ∈ {google.it, youtube.com}”.

• In a predicate with the form G ⊆ A0=64, the packet

field or attribute is bounded to have a value that falls

into the specified range. This kind of predicate can be

applied only to interval variables, whose value can be

a range. When the ∗ symbol is used as range, it means

that the variable can be assigned any subset of values

depending on the predicate’s type (e.g., for pSrc and

pDst, ∗ stands for the full range [0, 65535]). Examples of

predicates could be “IPSrc ⊆ 150.10.0.0/24” and “pSrc

⊆ [80-110]”. The formulation of the predicate regarding

the range of values the source tranport-level protocol can

have is another example of the sugared syntax used in

this paper. In this case, “pSrc ⊆ [80-110]” stands for the

predicate G ≥ 80 ∧ G ≤ 110, where G is the variable

representing the port.

• For each packet field or attribute, specific predicates may

be defined. For example, considering the string type x

variable representing the IP payload, the contains(G,B)

predicate is true when the x variable contains the s value.

In addition, some functions are introduced to complete

the description of the traffic model. Their role is to enable

retrieving useful information from each traffic flow 5 :

• c: F→ (V)∗ retrieves the ordered list of nodes belonging

to the V set which are crossed by a specific flow 5 ∈ F.

c ([EB , CB0 , E0 , C01 , E1 , ..., E: , C:3 , E3]) = [EB , E0 , E1 , ..., E: , E3]
(1)

• g : F × V → T retrieves the traffic C ∈ T, belonging to

a specific flow 5 ∈ F and received by a specific node

E ∈ V. If the flow does not pass through E, then this

function returns C0, a special element of T representing

the packet class containing no packet (i.e., absence of

traffic).

g ([EB , CB0 , E0 , C01 , E1 , ..., E: , C:3 , E3], E1) = C01 (2)

• q: V × T → P(F) identifies the set of flows where the

specified node E ∈ V and packet class C ∈ T appear as

the first two elements of the list modeling those flows.

q (E, C) = { [E, C , E01, C01, ...], [E, C , E02, C02...], ...} (3)

To clarify the traffic flow model, a simple example is

discussed by exploiting the simple chain represented in Fig.

1, where <1 is a NAT, <2 is a firewall, <3 is a load balancer.

Let us suppose the following IP addresses for the chain nodes:

192.168.0.2 for B, 220.120.45.3 for <1, 150.76.20.9 for <2,

23.172.10.3 for <3 and 23.172.10.2 for 3. Then, let us consider

a traffic flow 5 from B to the TCP destination port 110 of

3. Each element of the chain will receive a different network

traffic belonging to this flow, because of active functions – i.e.,

NAT and load balancer – which can modify the IP addresses.

6

s <1 <2
<3

d

Fig. 1: Chain example to discuss traffic flow model

In particular, the traffic that is generated by B has the IP address

of the load balancer as a destination, while the traffics received

by the load balancer and by 3 have the IP address of the NAT

as a source. Here are some examples about how the functions

beforehand described work for this flow.

c (5) = [B, <1, <2, <3, 3]

g (5 , <1) = C1, g (5 , <2) = C2, q (B, C1) = { 5 }

%C1 = {IPSrc = 192.168.0.2, IPDst = 23.172.10.3,

pSrc ⊆ ∗, pDst = 100, tProto = TCP}

%C2 = {IPSrc = 220.120.45.3, IPDst = 23.172.10.3,

pSrc ⊆ ∗, pDst = 100, tProto = TCP}

Note that, although the packet classes C1 and C2 are charac-

terized by different predicates for the same packet fields or

attributes, they belong to the same flow.

At this stage, given the formal models of a chain and of its

traffic flows, let us introduce the deny predicate:

deny: V × T→ B

where B is the set of the two possible Boolean values. This

predicate is false for a function E ∈ V and packet class C ∈ T if

E can send packets of C to the next element in the chain, while

it is true otherwise. The truth of this predicate depends on

the behavior and configuration of the function, but it may also

depend on the state of the function (e.g., for stateful functions).

It is computed by solving the SMT problem, as it will be

detailed in Section V.

V. NETWORK FUNCTION MODELING

This section describes how the behavior of network nodes is

modeled. In particular, since the aim of the verification process

is to check the possibility that a specific packet class can reach

the destination through a chain, which in turn only depends

on the forwarding behavior of each function in the chain,

modeling the forwarding behavior is enough. This means that

such models must let us know if the modeled function drops

or forwards a traffic that belongs to an atomic flow. Note that

all packets belonging to an atomic flow are treated by the

function in the same way by definition of atomic flow.

A large number of functions is considered in our approach,

in order to enable the verification of reachability policies in

realistic networks, whose characteristic is the heterogeneity

of functions that are exploited to provide a full service to

the users. Some examples are packet filter firewalls, web-

application firewalls, deep packet inspectors which block unde-

sired communications; VPN gateways and tunnel terminators

which enforce security properties such as authentication and

integrity; intrusion detection systems which identify potential

in-going attacks and consequently alert about their presence;

network address translators which shadow an internal network

from the outside; load balancers which decide the destination

server for any received packet.

The network functions can be classified into two main

classes: stateless and stateful functions.

Stateless functions take decisions based on the single ana-

lyzed packet without considering previously received traffic.

This kind of function is, in fact, not characterized by a state;

consequently, it is not able to evaluate conditions related to

packets that have previously crossed the function itself. The

configuration of a stateless function < ∈ M is thus modeled as

a pair ('<, 3<), where '< is a set of <match, action> rules,

whereas 3< is the default action that is applied whenever an

incoming packet does not match the conditions of any rule in

'<. In particular, the rules in '< are disjunct and contiguous,

such that each A ∈ '< is modeled as A = (�A , 0A), where

�A is the condition set of the rule, and 0A is the action that

must be applied when all the conditions are satisfied. Each

condition 2 ∈ �A is modeled as the tuple 2 = (?(-), attribute),
where 2.?(-) is a predicate that is applied on a set of

variables - . Instead, 2.attribute identifies the packet field or

attribute of interest for the predicate and consequently the

related variables, already used for the predicates modeling the

packet classes, on which it is defined. Then, the actions that

must be considered for modeling the forwarding behavior of

a network function are allow, if the matching traffic can be

forwarded, and deny, if instead the matching traffic must be

blocked. The possibility that a network function might modify

an input traffic is, instead, already considered when the flows

are computed.

Given an incoming traffic C ∈ T, a network function < ∈ M
checks if the traffic fields of C match the conditions of its

rules. The result of this check is represented by the match :

'< × T → B predicate, which is true for a rule and traffic

if the packet fields of the traffic satisfy all the conditions of

the rule, false otherwise. (4) shows how the match predicate

is formally defined over a rule A ∈ '< and an input packet

class C ∈ T.

match(A , C) := ∀2 ∈ �A .

(∃?C ∈ %C . (2.attribute = U(?C) ∧ 2.? (b (?C)) = true))
(4)

It is worth underlining that the <match, action> model

of a stateless function can be automatically extracted from

an abstract representation of a given network function in an

imperative language, pursuing approaches such as the one

proposed in [23].

As example, the model of a stateless packet filter firewall

will be presented in greater detail in Subsection V-A, with

some indications about how its model can be modified to

represent a deep packet inspector.

For what concerns stateful functions, they take decisions

depending not only on each single packet, but considering also

the previous packets that arrived at the functions themselves.

In order to model state, we should represent time or time-

ordering relations. However, this naive approach, followed

by other previously proposed methodologies, complicates the

formal model. Our alternative approach consists of modeling

just the possibility that certain packet classes are forwarded

or dropped, without keeping track of time relationships. This

7

statement will be clarified when the models of some typical

stateful functions will be illustrated later in this section. The

first is the model of the network address translator, which can

allow a communication towards an internal shadowed network

only if a corresponding state has been previously set. The

second model is, instead, related to a stateful packet filter

firewall which combines the configuration of a stateless packet

filter with state-based decisions.

A. Examples of stateless functions

Stateless packet filter firewall

An example of a function that belongs to the class of

stateless filtering functions is the packet filter firewall, which

takes forwarding decisions by considering only the IP 5-

tuple of a packet. The packet filter type that is considered

in this example is a firewall that works in two different

operative modes: (i) whitelisting, when it is configured with

a whitelist representing the only kinds of traffic allowed; (ii)

blacklisting, when it is configured with a blacklist representing

the only kinds of traffic denied. This aspect is modeled with

the whitelisting: V→ B predicate, which is true for stateless

firewall < ∈ V, if its operative mode is whitelisting, false

otherwise.

Then, for any A ∈ '<, the �A list only contains a single

action, that is the opposite of the default action: allow if '<

is a whitelist, deny if it is a blacklist. In the condition set

�A , instead, the predicates that characterize it are defined over

the variables of the input packet classes representing the fields

of the IP 5-tuple: IPSrc, IPDst, pSrc, pDst, tProto. Since the

variables representing addresses or ports can assume interval

values, then the predicates that can be defined over them as

rule conditions can also check the inclusion of a range in a

bigger one.

To show how the match predicate works in this case, a

simple example is presented. Let us suppose that a whitelisting

packet filter firewall is characterized by the following two

rules:

A1 = ({IPSrc ⊆ 220.12.5.0/24, IPDst = 33.150.10.3, pSrc ⊆ ∗,

pDst = 80, tProto = TCP}, {allow})

A2 = ({IPSrc = 220.12.5.1, IPDst ⊆ 33.150.0.0/16, pSrc ⊆ ∗,

pDst ⊆ ∗, tProto = TCP}, {allow})

Let us then consider the following input packet class for the

firewall:

C = {IPSrc = 220.12.5.1, IPDst = 33.150.10.3, pSrc ⊆ ∗,

pDst = 110, tProto = TCP, domain = "google.com"}

It follows that match(A1, C) = false because the predicates over

the destination port are in conflict, whereas match(A2, C) = true

because all the predicates match.

Having presented how the model of the configuration is

explicated for a packet filter firewall < ∈ M, the remaining

aspect that must be considered is to model how this function

type decides if an input packet class is forwarded or dropped.

This is achieved by introducing, for any possible input traffic

C ∈ T, the hard constraints represented in (5).

deny(<, C) ⇐⇒ (0) ∨ (1)

(0) = whitelisting(<) ∧ (�A ∈ '<. match(A , C))

(1) = ¬whitelisting(<) ∧ (∃A ∈ '<. match(A , C))

(5)

In words, < blocks a traffic C in two possible scenarios: (i)

< has a whitelisting configuration, without any allow rule

whose conditions are satisfied by C; (ii) < has a blacklisting

configuration, with a deny rule whose conditions are satisfied

by C.

Deep packet inspector

Another example of a stateless function is the deep packet

inspector (DPI). This security function is able to inspect and

detect the presence of elements contained in the IP payload.

The model for the configuration of a DPI < ∈ M can be

derived from the packet filter’s model, by redefining only the

condition set for each rule A ∈ '<. If for the packet filter

predicates on the variables representing the IP 5-tuple are

defined, for the DPI the contains predicate is used on the

variable representing the IP payload. In this way, when a traffic

C ∈) is received, the DPI checks if it satisfies the conditions

of at least a rule. In that case, the rule’s action (i..e, allow or

drop) is applied; otherwise, the default action is enforced.

Like for the packet filter firewall, we present a simple

example to clarify how the match predicate works with the

DPI’s model. Let us consider the following two rules of a

blacklisting DPI and the following input packet class:

A1 = ({contains(body, "weapon")}, {deny})

A2 = ({contains(body, "video")}, {deny})

C = {IPSrc = 220.12.5.1, IPDst = 33.150.10.3, pSrc ⊆ ∗,

pDst = 110, tProto = TCP, contains(body, "weapon") }

It follows that match(A1, C) = true, whereas match(A2, C) =

false.

Note that these models can be extended in order to also con-

sider filtering functions that can modify the received packets

before forwarding them to the next hop.

B. Examples of stateful functions

Network address translator

A first example of stateful function is the network address

translator (NAT). It shadows the private IP addresses of the

end-hosts of a sub-network by replacing them with its own

address and, at the same time, it filters traffic coming from

outside if it does not represent a reply to a communication

started from the shadowed sub-network. To characterize this

behavior, considering a NAT < ∈ M, the �< set contains the

IP addresses assigned to any shadowed end-host that can open

communications towards external networks. Note that, since

end hosts can be subnetworks, each 8 ∈ �< can be not only a

specific address, but also a range or a set of addresses as well.

The predicate shadowed : M × T → B thus models how

a NAT recognizes an IP address that must be shadowed.

This predicate returns true if the value hold by the variables

representing the source IP address for the packet class C ∈ T
is included in at least an element 8 ∈ �<. This behavior can

be defined as shown in (6).

shadowed(<, C) := (∃8 ∈ �<. ∃? ∈ %C . U(?) = "IPSrc" ∧ b (?) ⊆ 8) (6)

The forwarding behavior of a NAT is, then, modeled with

a pair of constraints. The first, shown in (7), states that a

NAT < ∈ M can forward the traffic C ∈ T to the next

8

hop if the source IP address is shadowed by the NAT and

consequently belongs to an end-host which can open any

communication towards external networks. For this kind of

packet class, the source IP address is modified with one of

the addresses assigned to the NAT.

shadowed(<, C) =⇒ ¬deny(<, C) (7)

The second constraint, instead, is related to the forwarding

of traffic whose source IP address is not shadowed by the

NAT. In this case, the traffic can be forwarded if there exists

the possibility that a packet class with opposite characteristics

can be received by the NAT. Through this definition, we can

avoid to introduce a variable representing the time, because the

verification process does not check that the packet class has

been effectively received in the past, but only the possibility

that it may be received.

For modeling this second constraint, three notations are

introduced:

• ` : V × T → T identifies the output traffic C2 ∈ T that

is generated by the node E ∈ V, after it has received the

input traffic C1 ∈ T.

• opposite: T×T→ B checks if two traffic elements C1 ∈ T
and C2 ∈ T have opposite characteristics. Considering that

the NAT works at level 3-4 of the stack ISO/OSI, then

the opposite predicate analyzes and compares only the

variables related to the IP 5-tuple, checking that the IP

address and port source of a traffic C1 is equal to the

corresponding destination field of the traffic C2.

• given a chain 2 ∈ C and two network nodes <8 , < 9 ∈ 2."

such that <8 ≠ < 9 , <8 ≺ < 9 means that <8 precedes < 9

in the chain.

Having introduced these notations, the forwarding of packet

classes coming from external (i.e., not shadowed) end-hosts is

modeled with the constraint (8).

¬shadowed(<, C)=⇒ (deny(<, C) ⇐⇒ (� 5 ∈ F. (0) ∧ (1)))

(0) = shadowed(<, g (5 , <)) ∧ opposite(g (5 , <) , ` (<, C))

(1) = ∀E ∈ c (5) | E ≺ <. (¬deny(E, g (5 , E)))

(8)

In words, a traffic coming from the outside can be forwarded

by the NAT if it exists the possibility that a traffic coming

from a shadowed end-host with opposite characteristics can

be received (i.e., there is not any middle-box that, in the path

from the source to the NAT, would block it).

Stateful packet filter firewall

A second example is the stateful packet filter firewall. The

version that has been modeled is a whitelisting firewall, with

a deny default action and a set of rules whose action is

to allow any traffic which satisfies the rule conditions. The

difference is, however, that every time a different kind of

traffic is received, the related information is internally stored

and represents the firewall’s state. Consequently, when an

input traffic does not satisfy the conditions of any rule, before

applying the default action, the function checks if traffic with

opposite characteristics has been received. In that case, the

communication is allowed.

The model of a stateful packet filter firewall < ∈ M is a

combination of the stateless firewall’s and NAT’s models. First,

focusing on the pair ('<, 3<), 3< is equal to deny, while

the condition set for every A ∈ '< is defined with the same

predicates as for the stateless version. The match predicate

works in the same way as well. Then, the forwarding behavior

of the firewall, given an input traffic C ∈ T, is modeled with

the constraints (9).

deny(<, C) ⇐⇒ (�A ∈ '<. match(A , C)) ∧ (� 5 ∈ F. (0) ∧ (1))

(0) = opposite(g (5 , <) , ` (<, C))

(1) = ∀E ∈ c (5) |E ≺ <. (¬deny(E, g (5 , E)) ∧

(�A ∈ '<. match(A , g (5 , <))))

(9)

In words, an input traffic C is dropped by the stateful packet

filter < if and only if there is no rule of < that matches C

and there is no flow 5 passing through < such that (b) the

ingress traffic of < belonging to 5 is opposite to the traffic

that < outputs when it receives C, and (c) there is no function

belonging to 5 before < that drops the traffic of 5 .

In a similar way, other stateful functions can be modeled and

supported by our approach, introducing additional constraints

in the function model.

VI. REACHABILITY MODELING

This section introduces the formal models of reachability

and reachability policy, and the verification algorithm.

A. Reachability formal definition

As our main aim is to formally verify reachability between

end-hosts of a network, i.e. between the elements of H, a

formal notion of the reachability concept is needed.

Reachability for a single chain 2 = (B, 3, ") and traffic C is

expressed by the reach predicate:

reach: C × T→ B

Intuitively, reach(2, C) is true if, assuming the source node 2.B

of the chain generates traffic C, targeted to destination node

2.3, C can actually reach its destination. Equation (10) shows

how this predicate is formally defined.

reach(2, C) := (∃ 5 ∈ q (2.B, C) .(∀< ∈ 2.". ¬deny(<, g (5 , <)))) (10)

In words, reach(2, C) returns true when there exists the

possibility that a flow 5 whose first two elements are 2.B

and C can reach the destination 2.3 through the chain 2. It

is indeed possible that the traffic is modified by intermediate

middleboxes such as NATs or load balancers. Concerning

these possible modifications, the model that we have intro-

duced for the traffic flows is sufficiently expressive to consider

the possibility that different packet classes can belong to the

same end-to-end communication from 2.B to 2.3.

B. Reachability policy model

Reachability policies are used by administrators to express

the reachability-based requirements that they want to verify in

a network graph. Formally, a reachability policy ? is a tuple,

composed by a source B, a destination 3, a packet class C

generated by B and a restriction A.

? = (B, 3, C , A)

First of all, policy ? expresses Assertion 1:

9

Assertion 1.

“The traffic C, generated from the source B, can reach the

destination 3 respecting the restriction A”

Specifically, A is a tuple composed of (i) a type, which can

be none, selection, set, sequence or list; and (ii) a set of service

functions " which the specified traffic must pass through.

A = (C H ?4, ")

When the administrator does not want to specify any

restriction for a policy ?, then A.CH?4 is set to none and A."

is the empty set ∅. Otherwise, when A.CH?4 ≠ =>=4, Assertion

2 must be true:

Assertion 2.

“The flows whose first two elements are B and C respectively

must pass through all the functions in "”

Moreover, if the restriction type is equal to sequence or list,

this means that " is an ordered set. In this case, Assertion 3

must also be true:

Assertion 3.

“The flows whose first two elements are B and C respectively

must sequentially pass through all functions in "”

Whereas, if the administrator specifies that the type of A is

equal to a set or a list, this means that the administrator wants

the packets derived from C to pass through only the functions

specified in " . In this case, Assertion 4 must be true:

Assertion 4.

“The flows whose first two elements are B and C respectively

must pass through only the functions specified in "”

In summary:

• if CH?4 = B4;42C8>=, Assertion 2 must be true;

• if CH?4 = B4C, Assertions 2 and 4 must be true;

• if CH?4 = B4@D4=24, Assertions 2 and 3 must be true;

• if CH?4 = ;8BC, Assertions 2, 3 and 4 must be true.

The predicate stf(r,c) is used to specify if the restriction A

is satisfied in the chain 2:

stf(A , 2) :=
©
«

(A .C H?4 = “B4;42C8>=′′ ∧ A ."\2." = ∅)∨
(A .C H?4 = “B4C′′ ∧ A ."\2." = 2."\A ." = ∅)∨

(A .C H?4 = “B4@D4=24′′ ∧ A ." ⊂ 2.")∨
(A .C H?4 = “;8BC′′ ∧ A ." = 2.")

ª®®
¬

(11)

For example, let us consider a policy related to the commu-

nication from a group of clients to a server of their company’s

network. Even though a reachability invariant is necessary, at

the same time a restriction is needed to protect the server from

potential attacks. A first possibility is to define the restriction

as A = (selection, “deep packet inspector”): in this case, the

traffic must at least pass through a function performing a deep

inspection and alerting when an attack is detected. A second,

more protective possibility is to to define the restriction as

A = (sequence, “firewall, deep packet inspector”): supposing

the firewall is already configured to block specific packet

classes, then the deep packet inspector is put behind it so

that alerts are risen only when the protection provided by the

firewall is overcome. Note that, if instead of selection and

sequence the types of A were set and list, then the deep packet

inspector and the firewall would be the only functions which

could be crossed between source and destination, forbidding

that the traffic passes through other potentially malicious

middleboxes.

Finally, it is interesting to note that an administrator may

omit the source, destination and packet class, using the symbol

‘*’. This means that all sources, destinations or packet classes

are evaluated.
B8 = ∗ → ∀ source

38 = ∗ → ∀ destination

C8 = ∗ → ∀ packet class

For example, ?1 = (�, ∗, ∗, A) and ?2 = (∗, �, ∗, A), with A =

(=>=4, ∅), permit to verify if the end-host A can be reached

by any other end-host with packets of any class, without any

other restriction.

C. Reachability verification

In order to enable the verification of the requirements

defined by the administrator as reachability policies, let us

introduce the predicate enforced(?, 2), which is true if policy

? is correctly enforced in chain 2. This predicate can be

expressed in terms of the previously defined predicates as

follows.

enforced(?, 2) := stf(?.A , 2) ∧ reach(?.C , 2) (12)

Having defined predicate enforced(?, 2), we define j(?,C)
as the function that identifies all chains in C that correctly

enforce the policy ?.

j (?, C) := {2 ∈ C | enforced(?, 2) } (13)

We present other five predicates that allow us to intro-

duce additional requirements about how many chains need

to satisfy the requirements specified in a policy. Specifically,

these predicates allow an administrator to verify if at least

one, only one, more than one, all or no chains satisfy the

requirements, thus allowing many varations (including, e.g.,

isolation verification).

Predicate enforced>=4 (?,C) verifies if at least one chain

exists that enforces the requirements in the policy ?:

enforced>=4 (?, C) := | j (?, C) | ≥ 1 (14)

Predicate enforced>=;H (?,C) verifies if only one chain exists

that enforces the requirements in the policy ?:

enforced>=;H (?, C) := | j (?, C) | = 1 (15)

Predicate enforced<>A4 (?,C) verifies if more than one chain

exist that enforce the requirements in the policy ?:

enforced<>A4 (?, C) := | j (?, C) | > 1 (16)

Predicate enforced0;; (?,C) verifies if all chains enforce the

requirements in the policy ?:

enforced0;; (?, C) := | j (?, C) | = |C | (17)

Predicate enforced=>=4 (?,C) verifies if no chains enforce

the requirements in the policy ?:

enforced=>=4 (?, C) := | j (?, C) | = 0 (18)

Moreover, we define two other functions handy to identify

which chains do not respect a policy (j>Cℎ4AB) and which

10

function in a chain blocks the traffic specified in the policy

(V). Given < ∈ 2." , let us denote 21 the subchain extracted

from 2 where the source is 2.B and the destination is <, 22

the subchain extracted from 2 where the source is < and the

destination is 2.3. Then:

j>Cℎ4AB (?, C) := {C \ j (?, C) } (19)

V (?, 2) := {< ∈ 2." | reach(?.C , 21) ∧ ¬reach(?.C , 22) } (20)

D. Reachability process

After the introduction of the predicates that are needed

for the verification of the reachability policies, the process

by means of which their formal verification is effectively

performed is described in the following.

Firstly, given a reachability policy ? = (B, 3, C, A), only the

chains on which it must be checked are extracted. A chain

2 ∈ C such that 2 = (B, 3, ") is extracted for ? if 2.B = ?.B

and 2.3 = ?.3.

Secondly, for each chain 2 extracted in the previous stage,

the traffic flows for that chain that start with the source

node and traffic specified in the policy are computed. This

computation is based on the traffic transformation made by

each function in the chain and on the atomic flow definition

provided in Section IV. This is feasible by analyzing the

configuration of the intermediate functions, focusing on their

transformation actions (e.g., a NAT modifies a packet coming

from an internal network replacing the source IP address with

an external address) and overlooking their forwarding behavior

(i.e., if they drop or not an input traffic).

At this point, after the computation of the flows, the SMT

problem is formulated. In this problem instance, the constraint

described in (10) is introduced to impose the enforcement

of the reachability property in the chain. Then, all the other

constraints which might generate some conflicts with this one

are introduced. These constraints involve the formal model of

network and traffic flows. In particular, in this stage only the

forwarding behavior is considered for the network functions,

because the way each function modifies input packet classes

has been already addressed in the previous step. Examples of

constraints modeling the forwarding behavior of the network

functions, and having an impact on the deny predicate, are (5)

for a stateless firewall, (7) and (8) for a stateful NAT.

After solving the problem instance, if the outcome is

positive, this means that the reachability has been formally

verified for the policy on an extracted chain. Alternatively, a

negative outcome means that the source of the policy cannot

reach the destination by generating the traffic specified by the

policy itself.

The same applies to all the other chains, possibly in parallel.

This way, it is also possible to check if at least one, only one,

more than one, all or no chains satisfy the policy, according

to the previously described purposes.

VII. MODEL VALIDATION

In this section, we first introduce the tool we developed,

implementing the proposed approach. Then, we provide an

extensive evaluation for both the approach and the implemen-

tation. Finally, we compare our technique with two of the most

relevant state-of-the-art tools and with the previous version of

VeriGraph.

A. Implementation

VeriGraph2.0 is an evolution of the previous framework,

VeriGraph, based on the new verification approach proposed

in this paper. It is a Java-based framework, released as open

source tool3 under the AGPLv3 license. Users can interact with

this framework by means of proper REST APIs. For example,

they can provide the service graph description in a custom

JSON, YAML, or XML-based format.

In order to exhaustively verify all the possible service chains

available in a given service graph, VeriGraph2.0 exploits the

Neo4j APIs [24] to store the graph on a local database and

to extract all the chains for a given source-destination pair.

Neo4j is a graph database platform, with a highly flexible

internal structure based on the so-called “stored relationships”

between data records. Each record is, in fact, characterized

by direct pointers to all the other records with which it has

a relationship. This innovative storage structure is exploited

by the query language that is used in Neo4j, where there is

no need to compute relationships because they are already

stored. Neo4j has been selected for these reasons, alongside

with its generality and simplicity. We acknowledge other

database solutions (e.g., OrientDB) or optimized path extrac-

tion algorithms might be considered as alternative. However,

a comparison among existing solutions in this field is outside

the scope of this paper, whose focus is on the efficiency of the

formal verification methodology. For this reason, this analysis

is left for future work.

On the extracted chains, VeriGraph2.0 performs (possibly

in parallel) the formal verification process. For this purpose

it exploits Z3, a state-of-the-art theorem prover developed

by Microsoft Research [25]. This tool can be used to model

and solve different kinds of mathematical logic and decision

problems, from traditional SAT problems to more complex

variants such as SMT. Therefore, it supports many theories

and offers the versatility that is required for the definition and

solution of complex problems, such as the verification problem

described in this paper.

B. Evaluation

An extensive evaluation of the proposed approach has been

carried out considering both the accuracy and the performance

for the two stages of the approach (i.e., the chain extraction

and the following reachability verification on each chain). This

evaluation has been performed on a 4-core Intel i7-6700 3.40

GHz workstation with 32 GB RAM. The adopted Z3 version

is 4.8.5, while the adopted version for Neo4j is 3.1.3.

Regarding the accuracy property, the correctness of the

chain extraction is intrinsic in the use of Neo4j as graph

database platform, which is a well-known and worldwide

adopted tool for operating on graphs. Instead, the correctness

3https://github.com/netgroup-polito/verigraph

11

10 20 30 40 50 60 70 80 90 100

0.1

1

10

100

Number of VNFs in the chain

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

10 rules (S)

100 rules (S)

1000 rules (S)

1000 rules (U)

S=satisfiability

U=unsatisfiability

(a) Computation time chart

10 20 30 40 50 60 70 80 90 100

10

100

1000

Number of VNFs in the chain

M
em

o
ry

u
sa

g
e

(M
B

)

10 rules

100 rules

1000 rules

(b) Memory usage chart

Fig. 2: Impact of the length of chains and policy on computation time and memory.

of the reachability verification performed on each chain has

been evaluated in different ways, considering both syntheti-

cally generated network chains and realistic use cases later

presented in this section (e.g., in Subsections VII-D and

VII-E). More specifically, some configuration errors have been

introduced for the functions composing the chain so that the

reachability between the end points of the chain is no longer

guaranteed (e.g., a filtering rule is added in an intermediate

firewall to block the traffic). We have thus checked that the

reachability property is satisfied when the configuration error

is absent, not satisfied when the error is present. Furthermore,

whenever possible, we have applied other verification tools

(e.g., Symnet [6]) on the same use cases, verifying that their

verification results are coherent with ours.

Regarding the performance property, the chain extraction

has been evaluated by generating a number of random service

graphs of different sizes and calculating the time spent to

extract the chains from them. The outcome of this first analysis

is that the time spent on chain extraction is proportional to the

size of the graph, but in any case satisfactory for real scenarios.

For example, it takes around 1 second for a graph containing

80 nodes. In contrast, the time taken by reachability evaluation

depends on many factors, e.g., the length of the extracted

chain, and the type and number of rules in the configuration

of each network function in the chain. For this reason, in the

rest of this section we present an evaluation of this stage, by

considering a single chain with varying features.

The scalability assessment of the reachability verification is

instead based on a synthetically generated service chain, that

is built according to the following conditions:

• 70% of the chain length is made by security filtering func-

tions (40% packet filter firewalls, 15% web-application

firewalls and 15% deep packet inspectors);

• 30% of the chain length is made by other network

functions (network address translators, load balancers,

traffic monitors and forwarders).

The ratio of network functions constituting the NFV chain has

been chosen to be 7:3 because it represents an unfavorable,

yet not totally unrealistic, case for the approach illustrated in

this paper, with respect to the ratios typically found in real

networks.

Each type of chain is thus identified by: (i) total number

of VNFs in the chain; (ii) number of filtering rules in the

configuration of each VNF representing a security function.

For each type of chain, we evaluate the computation time

of the verification process. Fig. 2a plots the results that have

been achieved for different types of chain, over 100 iterations

for each different test case. The box plots depicted in Fig.2a

show minimum, 5th percentile, median, 95th percentile and

maximum for the computed results. The same applies to all

the other box plots in the next figures of this section. For the

results depicted Fig. 2a, a differentiation with respect to the

output of the tests is made. More specifically, the box plots

associated to the S letter (with S standing for satisfiability)

are related to tests where it is verified that the reachability

property is satisfied, while the box plots associated to the

U letter (with U standing for unsatisfiability) are related to

tests where the reachability property is not satisfied. This

differentiation has no relevance for Fig. 2b, because it only

impacts the computation time.

A first observation is that the verification time does not show

an exponential behavior with respect to both the chain length

and the number of rules in each security function. This result

proves the scalability of our methodology and its applicability

to real network scenarios. For example, in the worst case we

considered in this validation, the computation time required

to perform the verification of a reachability invariant is 121

seconds, considering a chain made by 100 VNFs with 1000

rules in each security VNF.

Another observation is that not only the chain size, but also

the number of rules, has an impact on the performance, as

expected. This is particularly evident if the boxes representing

the cases of 100 rules and 1000 rules in Fig. 2a are compared.

Each filtering rule is actually modeled as a constraint in the

verification problem and the Z3 solver consequently needs

additional time to parse this constraint, together with all the

12

1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1

10

100

Ratio “security filtering VNFs : other VNFs”

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

Fig. 3: Impact of network function types on computation time

others. However, it is worth noticing how the 1000 rules case

represents a very extreme scenario, where 70% of all the

VNFs in each chain are security functions configured with

1000 rules each. Hence, the obtained computation time in this

case, although large with respect to the other cases, is a further

demonstration of the effectiveness of the approach in terms of

scalability.

It is also interesting to observe the difference in performance

between scenarios where the reachability invariant holds (blue

boxes) and scenarios where the reachability property is not

satisfied (black boxes). The verification time required in the

latter case is lower than the time needed in the former, even

though most of the constraints are the same. The reason is that

the adopted solver, Z3, is able to really fast identify a conflict

between the constraints, whereas it takes more time to check

if all of them can be satisfied.

The peak memory usage of the framework for different

number of VNFs in the chain is then shown in Fig. 2b. As it

can be observed, the required memory space in the scenarios

where each security VNF is configured with 1000 rules is

much higher than the other cases. The reason is the presence of

a bigger number of constraints and variables representing the

rules. Nevertheless, the peak memory usage does not exceed

800 MB even in the worst analyzed scenario, which is again

an extreme case of a chain made by 100 VNFs with 1000

rules in each security VNF.

The results presented so far have been achieved by keeping

the ratio between the number of security filtering VNFs and

other VNF types fixed at 7:3. Instead, Fig. 3 depicts the

outcome of an experimental evaluation, where this ratio is

varied from 1:9 to 9:1. The chain subject to this evaluation is

composed of 50 VNFs, and each security VNF is configured

with 1000 rules. A higher time is required for the verification

process as the percentage of security filtering VNFs increases

in the chain. This result is expected, because the formal models

designed for that class of functions are more complex than the

models of other VNF types. However, even the results deriving

from a 9:1 ratio, which represents an extreme scenario, are in

the same magnitude order as the ones deriving from the 7:3

ratio, used for the scalability validation of VeriGraph2.0.

10 20 30 40
1

10

100

1000

Number of VNFs in the chain

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

VeriGraph - 10 rules

VeriGraph - 100 rules

VeriGraph2.0 - 1000 rules

Fig. 4: Comparison between VeriGraph2.0 and VeriGraph

The achieved results overall show that the verification time

is in the order of seconds in the case of real-sized network

scenarios. This is reasonably in line with the requirements

dictated by an SDN/NFV environment, especially in terms of

time required by the verification process to authorize a newly

asked network reconfiguration. Moreover, the achievement

of such a scalability level has not been shown by other

existing works related to the formal verification of reachability

invariants. With this respect, in the rest of this section we

compare VeriGraph2.0 with its predecessor and with two of the

most relevant state-of-the-art tools for reachability verification,

in order to further support the effectiveness of our approach.

C. VeriGraph2.0 vs VeriGraph

As already explained, VeriGraph2.0 is the evolution of

VeriGraph [13]. Even though the tools used to implement

VeriGraph2.0 are the same used for VeriGraph (i.e., Neo4j

for chain extraction, and Z3 for policy verification), the

formulation of the SMT problem is completely different:

as detailed in the previous sections, Verigraph2.0 models

packet flows by means of predicates, rather than modeling

individual packets, and this model also enabled the elimination

of quantifiers. Moreover, Verigraph2.0 uses formal models

of network functions that are more detailed, so representing

the function behavior more closely to reality. For example,

VeriGraph2.0 models the rule conditions of a packet filter

firewall as predicates over the fields of the IP 5-tuple, while

in Verigraph they were simply defined over the IP source and

IP destination fields. Additionally, the policy model is richer;

for instance, as illustrated in Section VI, in VeriGraph2.0

it is possible to define restrictions for the enforcement of

reachability policies, which were not possible in Verigraph.

For what concerns performance, Fig. 4 shows the results of a

comparison between the two frameworks. The tests have been

carried out under the same conditions explained for the tests

relative to Fig. 2a, where a reachability property is positively

verified on a chain of increasing length. As it is clear from this

chart, the results achieved by VeriGraph2.0 when each security

VNF of the chain is configured with 1000 rules are much better

than the results achieved by VeriGraph on a chain of the same

13

Endhost1

NAT

Firewall

Web server

Endhost3

Endhost2 DPI

Fig. 5: Topology used in the comparison with SymNET

Test 1 Test 2 Test 3

1

2

3

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

SymNET

Verigraph2.0

Fig. 6: Comparison between VeriGraph2.0 and SymNET

length, but where each security VNF is configured with only

10 or 100 rules. Moreover, VeriGraph was not able to reach a

solution for the SMT problem in the following cases: chains of

length higher than 30 with security VNFs configured with 10

rules; chains of length higher than 10 when they are configured

with 100 rules; all the analyzed chains (including those that

are 10 VNFs long) when they are configured with 1000

rules. Therefore, the improvement reached by VeriGraph2.0 is

evident with respect to its predecessor: it can be successfully

applied with better performance and on longer chains, having

VNFs with more rules.

D. VeriGraph2.0 vs SymNET

In this section, we compare our approach with SymNET

[6], one of the latest tools for network reachability verification

available in the literature. As briefly described in Section II,

SymNET analyzes an abstract data plane model and checks

network configurations by using symbolic execution. A major

difference with respect to VeriGraph2.0 is that it explores

the entire network within a single execution, whichever is

the number and the type of policies to verify. VeriGraph2.0,

instead, extracts the chains and then considers only relevant

paths for the policies to verify, possibly in parallel.

The service graph adopted in this comparison, shown in Fig.

5, includes three end-hosts and some representative network

elements (NAT, firewall, DPI, web server). Using the tools, we

perform a reachability analysis on the given graph, considering

different test case scenarios by changing the configurations for

the various network elements. Fig. 6 shows the box plot for

the total time that is required by VeriGraph2.0 and SymNET

for the entire network exploration (it includes chain extraction

in VeriGraph2.0) and verification, averaged over 100 runs for

each test case.

In Test 1, we configure the firewall to drop all the packets

coming from the NAT to the web server and we perform the

reachability analysis from End-host 1 to the web server. In

Test 2 instead, the firewall is set to block only packets coming

from End-host 1 towards the webserver and the DPI is set to

block packets containing the string “virus” . In this scenario,

we check if a flow not containing the string “virus” in its body

will reach the Web Server from End-host 2. Finally, in Test

3 we check the reachability property between the web server

and End-host 3, without considering any configuration for the

network functions. The results show VeriGraph2.0 being more

performant than SymNET, on average, in terms of execution

time. In particular, VeriGraph2.0 shows a gain in performance

which is around or larger than 50% with respect to SymNET.

This could make the verification and then the deployment of

new services faster, thus favoring the rise of more flexible

networking services. Besides, the outputs produced by both the

tools are the expected ones: this further confirms the accuracy

of the approach proposed in this paper.

E. VeriGraph2.0 vs VMN

Like Verigraph2.0, VMN [8] can verify reachability poli-

cies in computer networks composed of several stateless and

stateful functions. Nevertheless, the formal models used to

formulate the verification problem are highly different. First

of all, the models used by VMN are based on LTL and

single packets, whereas VeriGraph2.0 adopts a direct FOL

formalization of packet flows, which entails higher simplicity.

Moreover, VeriGraph2.0 provides a larger pool of available

functions, and richer models for them (e.g., the difference for

packet filter models is the same illustrated in the comparison

with VeriGraph).

For what concerns performance, a comparison has been

made considering a topology illustrated in [8], which we

replicated to assess the performance of VeriGraph2.0 in the

same network scenario. Since it was not possible for us to

access the VMN tool, our results are compared with the ones

presented in the paper. The adopted topology (shown in Fig.

7) is a network that interconnects the Internet (represented

as an end point of the communications) with other subnets

through a firewall and a gateway. The subnets are classified

into three different types: public, private and quarantined.

Hosts belonging to a public subnet are allowed to initiate

and accept connections in both directions, whereas hosts of

a private subnet cannot accept incoming connections. Instead,

hosts in a quarantined subnet should be node isolated: this

means they are even not allowed to open communications to

the outside of their subnet. This scenario allows us to perform

a comprehensive comparison between the two tools as it

includes both reachability and isolation verification problems.

Moreover, it is also useful to evaluate the performance of

VeriGraph2.0 against the complexity of the defined policies.

The results of the comparison are depicted in Fig. 8. In

the x-axis, the network size is the total number of nodes of

the graph (i.e., end hosts and middleboxes). For the network

14

Internet

Firewall Gateway

Quarantined Subnet

Public Subnet

Private Subnet

Fig. 7: Topology used in the comparison with VMN

17 - A 17 - B 47 - A 47 - B 77 - A 77 - B

0.1

1

10

100

Network size (Hosts + Middleboxes)

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

public

quarantined

private

A=VeriGraph2.0

B = VMN

Fig. 8: Comparison between VeriGraph2.0 and VMN

size of each test case, two network nodes are the firewall and

the gateway. The remaining nodes are the end hosts, divided

into three equally numerous groups: one third is made of

public subnets, one third of private subnets, and one third of

quarantined subnets. The firewall is configured with a rule for

each private subnet, and two rules for each quarantined one.

From the analysis of the results, in the cases of public and

private subnets, it is possible to note a significant improvement

of performance shown by VeriGraph2.0 with respect to VMN.

It is worth noticing that the adopted test environments are

not completely aligned (a 10-core Xeon 2.6 GHz processor

with 256GB RAM is used in [8]). Since the computational

resources of the environment used to test VeriGraph2.0 are

inferior to those used to test VMN, the improvement achieved

by VeriGraph2.0 is even more than what appears from Fig.

8. Only in the case of quarantined subnets, the performance

of VeriGraph2.0 is slightly worse. The reason is that in this

scenario we check the unsatisfiability of the reachability policy

(i.e., the isolation), which requires a shorter exploration of the

space of solutions. Consequently, the difference in terms of

modeling between VeriGraph2.0 and VMN has a lower impact

and the difference of test environment (e.g., CPU speed, RAM)

might be more significant.

In conclusion, even though the results of the tests on

VeriGraph2.0 are not always better than those on VMN,

they are significantly better in most tests. Considering that

VeriGraph2.0 uses richer function models and that the com-

putational resources of its testing environment are inferior,

the approach illustrated in this paper shows indeed advantages

with respect to the alternative approach pursued in VMN.

VIII. CONCLUSIONS

This paper proposes a network modeling and a verification

approach, that allows network and security administrators to

check reachability-based policies in a service function graph,

composed of both stateless and stateful network security

functions.

Our reachability verification has a high usability because

it supports a large number of network security functions and

allows administrators to verify different types of reachability-

based requirements. Furthermore, it is totally reusable in case

of network topology changes, because we separate the generic

forwarding principles from the functional behavior of the

existing network functions.

We implemented our model in Java by using Z3, a state-of-

the-art Satisfiability Modulo Theory solver, and we validated

it in several network scenarios. We also compared our tool

with the state-of-the-art solutions in this field, showing how

it is able to significantly reduce verification times. This result

is obtained by means of efficient modeling and verification

techniques, and is fundamental for the dynamic SDN/NFV

environment where network topologies and configurations can

rapidly change.

For what concerns possible future work, we plan to extend

the expressivity of our network model by adding support for

new types of network security functions, such as intrusion

detection systems. Furthermore, we are planning to extend

our approach by supporting other types of verification, related

for example to information disclosure, latency constraints, and

reliability.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.
236–262, 2016.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual
history of programmable networks,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 2, pp. 87–98, April 2014.

[3] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” RFC 7665, Oct. 2015.

[4] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” RFC 7498, April 2015.

[5] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in 12th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 15). Oakland,
CA: USENIX Association, 2015, pp. 499–512.

[6] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proceedings of

the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: ACM, 2016, pp. 314–327.

[7] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J. Kang,
“Sfc-checker: Checking the correct forwarding behavior of service
function chaining,” in 2016 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), Palo Alto,

CA, USA, November 7-10, 2016, 2016, pp. 134–140.
[8] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying

reachability in networks with mutable datapaths,” in Proceedings of the

14th USENIX Conference on Networked Systems Design and Implemen-

tation, ser. NSDI’17. Berkeley, CA, USA: USENIX Association, 2017,
pp. 699–718.

15

[9] P. Mishra, E. S. Pilli, V. Varadharajan, and U. K. Tupakula, “Intrusion
detection techniques in cloud environment: A survey,” J. Netw. Comput.

Appl., vol. 77, pp. 18–47, 2017.
[10] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing

networks using software defined networking,” IEEE Trans. Reliab.,
vol. 64, no. 3, pp. 1086–1097, 2015.

[11] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12). San Jose, CA:
USENIX, 2012, pp. 113–126.

[12] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in Proceedings of the

ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New York,
NY, USA: ACM, 2011, pp. 290–301.

[13] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and
R. Sisto, “Formal verification of virtual network function graphs in
an sp-devops context,” in Service Oriented and Cloud Computing.
Springer, 2015, pp. 253–262.

[14] W. John, G. Marchetto, F. Nemeth, P. Skoldstrom, R. Steinert,
C. Meirosu, I. Papafili, and K. Pentikousis, “Service provider devops,”
IEEE Commun. Mag., vol. 55, no. 1, pp. 204–211, January 2017.

[15] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A nice
way to test openflow applications,” in Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 10–10.

[16] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “Vericon: Towards verifying controller
programs in software-defined networks,” SIGPLAN Not., vol. 49, no. 6,
pp. 282–293, Jun. 2014.

[17] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 13). Lombard, IL: USENIX, 2013, pp.
99–111.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veri-
flow: Verifying network-wide invariants in real time,” in 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

13). Lombard, IL: USENIX, 2013, pp. 15–27.
[19] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,

“Plankton: Scalable network configuration verification through model
checking,” in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 953–967.

[20] K. Zhang, D. Zhuo, A. Akella, A. Krishnamurthy, and X. Wang,
“Automated verification of customizable middlebox properties with
gravel,” in 17th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 221–239.

[21] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “Netsmc: A custom
symbolic model checker for stateful network verification,” in 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp.
181–200.

[22] D. Monniaux, “A survey of satisfiability modulo theory,” in CASC 2016

- 18th International Workshop, Bucharest, Romania, September 19-23,

2016, Proceedings, ser. Lecture Notes in Computer Science, vol. 9890.
Springer, 2016, pp. 401–425.

[23] G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework
for verification-oriented user-friendly network function modeling,” IEEE

Access, vol. 7, pp. 99 349–99 359, 2019.
[24] J. Webber, “A programmatic introduction to neo4j,” in Conference

on Systems, Programming, and Applications: Software for Humanity,

SPLASH ’12, Tucson, AZ, USA, October 21-25, 2012, G. T. Leavens,
Ed. ACM, 2012, pp. 217–218.

[25] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.

of the 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

Daniele Bringhenti received the M.Sc. degree
(summa cum laude) in computer engineering from
the Politecnico di Torino, Italy, in 2019, where he is
currently pursuing the Ph.D. degree in control and
computer engineering. His research interests include
novel networking technologies, automatic orches-
tration and configuration of security functions in
virtualized networks, formal verification of network
security policies.

Guido Marchetto is an associate professor at the
Department of Control and Computer Engineering
of Politecnico di Torino. He got his Ph.D. in Com-
puter Engineering in April 2008 from Politecnico di
Torino. His research topics cover distributed systems
and formal verification of systems and protocols. His
interests also include network protocols and network
architectures.

Riccardo Sisto received the Ph.D. degree in
Computer Engineering in 1992, from Politecnico di
Torino, Italy. Since 2004, he is Full Professor of
Computer Engineering at Politecnico di Torino. His
main research interests are in the area of formal
methods, applied to distributed software and com-
munication protocol engineering, distributed sys-
tems, and computer security. He has authored and
co-authored more than 100 scientific papers. He is
a Senior Member of the ACM.

Serena Spinoso received her M.Sc.Degree (summa
cum laude) and PhD in Computer Engineering in
2013 and 2017 from Politecnico di Torino, Turin,
Italy. Her research interests include techniques for
configuring network functions in NFV-based net-
works and formal methods applied to verify forward-
ing correctness of SDN-based networks.

Fulvio Valenza received the M.Sc. (summa cum
laude) and Ph.D. (summa cum laude) degrees
in computer engineering from the Politecnico di
Torino, Turin, Italy, in 2013 and 2017, respectively.
His research interests include network security poli-
cies. He is currently a Researcher with the Politec-
nico di Torino, where he works on orchestration and
management of network security functions in the
context of SDN/NFV-based networks.

Jalolliddin Yusupov received the M.S. degree in
2016 and Ph.D. in Computer Engineering from Po-
litecnico di Torino, Italy, in 2020. Currently, he is the
head of the Academic Department at Turin Polytech-
nic University in Tashkent, Uzbekistan. His primary
research interests include formal verification of se-
curity policies in automated network orchestration.
His other research interests include modeling, cyber
physical systems, and cloud computing systems.

