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Abstract—We propose a deep-learning method for feature
extraction from gait data of Parkinson’s disease patients. Our
goal is to verify whether a fine classification of gait between
similar groups can be achieved. To this end, we refer as a case
study to the Freezing of Gait (FOG), and we measure gait data
from two groups of patients, which exhibit (respectively, do not
exhibit) this symptom. Wearable inertial sensors are employed,
and data are collected during activities similar to those performed
by patients during their daily living. Moreover, most patients are
in daily on state, hence the two groups are difficult to classify, as
their gait does not exhibit evident differences. Whereas classical
Machine Learning methods are not sufficiently robust to perform
such a fine classification, if they are fed with features extracted
by means of a deep network, the results are satisfactory also
when a large dataset is not available and data present a mild
degree of heterogeneity.

Index Terms—Deep learning, Parkinson’s disease, freezing of
gait, gait, smartphone, wearable device, inertial sensor

I. INTRODUCTION

The clinical management of neurodegenerative disorders
strongly benefits from data related to patient’s activities in
unsupervised environment. Recently, the Movement Disorder
Society Task Force on Technology has published a roadmap
for the development of patient-centered digital monitoring
schemes, and their integration in the clinical practice [1]. Our
activities on Parkinson’s Disease (PD) are well in line with
this roadmap. We want to use low-cost, commonly available
instrumentation to seamlessly collect data from PD patients
during their Activities of Daily Living (ADL). This can enable
better follow up and clinical management of each single
person, producing a sort of electronic diary tuned on each
patient’s requirements and conditions.

In this paper, we focus on Freezing of Gait (FOG), a
very disturbing symptom that occurs in intermediate/advanced
stages of the PD, related to fluctuating response to L-Dopa.
FOG is very difficult to appreciate in the outpatient department
due to its episodic nature. Moreover, it generally occurs when
the patient is in off state, i.e., when the L-Dopa effects have
weared off. We want to answer this question: is it possible
to classify patients subject to FOG (FOG+) using inertial
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data related to their gait during ADL, and in their daily on
state, i.e. under the effect of prescribed medications? Is there
some subtle difference between the pace of FOG+ and FOG−

patients? Actually, gait impairments is known to be different
in FOG+ and FOG− subjects [2], [3], and are related to the
disease progression [4]. However, such differences may be
difficult to catch, especially if the gait is measured on short
time windows under unsupervised conditions, the patients
are in daily on state, and the clinical disease progression
(measured e.g. via the Hoehn Yahr scale) is similar between
the two groups. On the other hand, the capability to perform
a fine classification between FOG+ and FOG− can help
revealing slight motor fluctuation during ADL, and also other
activities and symptoms could be similarly monitored in order
to achieve a global perspective of the patients status. Moreover,
FOG impairs control of posture, increasing the risk of falls
[5]; therefore, controlling this symptom can indirecty yield a
prediction of fall risk.

First of all, we have faced the problem at hand by means of
classical Machine Learning (ML) methods. We have identified
a set of features already addressed in literature [6]–[8], and
used them to feed several ML algorithms. Even if such features
turned out to be significant, they revealed not sufficiently
robust to perform a fine classification between FOG+ and
FOG−. Hence, we propose an approach to extract features
in a fully-automatic manner, in order to perform classification
when a large dataset is not available and data present a mild
degree of heterogeneity. The approach is robust: it ensures
repeatability, as adding new patients does non entail a new
feature computation, and good generalization potential.

II. FFT AND CWT

Fast Fourier Transform (FFT) and Continuous Wavelet
Transform (CWT), are largely employed tools to study aspects
related to PD. FFT spectrum is mainly employed as a source
for feature extraction [9], [10], while CWT is often exploited
to perform gait analysis, as it enables easy detection of
heel-strike and toe-off events with sound precision [11]. The
method proposed in [11] relies on the CWT for step detection
in both PD subjects and elderly people, using an inertial sensor
placed on the lower back. In [4], walking parameters are
extracted in free-living environment by exploiting wavelets.



FOG episodes were recently investigated with a convolutional
neural network (CNN) in [12]. In order to detect FOG
episodes in free-living conditions, authors collect accelometer
and gyroscopic data from a smartphone stored in PD patient’s
trouser pocket. Then, signals are arranged in 2D images and
input to the CNN. To the best of our knowledge there is no
approach that exploits images representing FFT spectrum or
CWT spectrogram to perform a gait assessment of PD patients
during ADL.

III. MATERIALS AND METHODS

The data employed for our experiment have been collected
at the University Hospital Città della Salute e della Scienza,
Turin (Italy), which hosts the Regional Reference Center
for Parkinsons Disease and Movement Disorders. A total of
26 PD patients were recruited, and divided into FOG+ and
FOG− groups depending on their clinical records. Inclusion
criteria were a clinical diagnosis of PD with motor symptoms,
no major comorbidities, no significant vision or cognitive
impairments, and no mobility aid. All subjects were in daily on
state. The clinical characteristics of both groups are reported
in Tab. I. The study has been conducted in accordance with
the Declaration of Helsinki and approved by the local Ethics
Committee.

Group Subjects
(male)

Mean age
years ± SD

Years of
disease H&Y

FOG+ 14(7) 74.8± 6.4 8.6 ±7.0 2.8± 0.6

FOG− 12(8) 65.7± 10.7 7.1± 4.9 2.1± 0.2

TABLE I: PD characteristics.

Data were acquired during the scheduled clinic assessment
in the outpatient department in semi-supervised conditions, so
as to mimic ADLs in a typical home environment. During
each session, accelerometer (3-axis) and gyroscopic (3-axis)
signals were recorded by means of a smartphone (Samsung S5
mini) locked in a Velcro belt tied around participant’s waist.
This location is close to body mass center, and guarantees
the maximum patient’s comfort [1]. Inertial sensor data were
collected by means of the Android free App SensorLog [13]
and locally stored. Then, once exported in CSV format, data
were processed offline using MATLAB R2018b.

A. Data preprocessing

Inertial data were detrended and filtered with a 2nd order
zero-lag Butterworth low-pass filter with cutoff frequency 20
Hz [14]. In this study we only focus on gait, thus data
windows related to walking activity were extracted from the
inertial data. To overcome the dataset heterogeneity (in terms
of walked distance, duration of windows, number of steps),
we have extracted only central 5s from each detected walking
bout. The total number of windows amounts to 220 per axis
(82 FOG+ and 138 FOG−).

Then, we have turned 1-D signals into 2-D images in order
to feed a CNN. To this end, two types of image datasets

were built up using CWT (Morlet analytic wavelet), and FFT
spectrograms (Fig. 1). As CWT and FFT hold somewhat
related information, in order to understand if and how results
are affected by the kind of input images, the CNN performance
has been evaluated on both datasets.

(a) CWT FOG+ (b) FFT FOG+

(c) CWT FOG− (d) FFT FOG−

Fig. 1: CWT and FFT comparison. (a) and (b) ((c) and (d)
respectively) refer to the same window of a FOG+ (FOG−)
patient. Displayed component: M-L acceleration.

B. Deep learning for feature extraction

Gait features have been selected and extracted exploiting
pre-trained CNNs, as the available dataset is not large enough
to build up a net from scratch. Two types of CNNs, namely
AlexNet [15] and VGG-16 [16], exhibit a satisfactory trade-
off between performance and computational time. In order
to determine the best architecture for our classification pur-
poses, we have tested the CNNs on all components of both
accelerometer and gyroscope data. Furthermore, we have tuned
the layer to extract features from; finally, for each component,
we have selected the combination (i.e. CNN type and layer)
returning the best accuracy. The extracted features were fed
to a SVM with linear kernel. Since six outputs are provided
by the CNN, i.e. one for each acceleration and gyroscope
component, we computed the final class as the weighted
mean of classificator outcomes, with each weight fitting the
corresponding SVM accuracy. In order to limit computational
complexity, we have included the minimum set of components
ensuring the best final performance. To this purpose, a mis-
classification rate minimization was performed. The most
meaningful dimensions for data classification turned out to be
the mediolateral (M-L) acceleration and the angular velocity
signal around the vertical (V) direction, irrespective of the type
of image employed (CWT or FFT). The final configurations
are described in Tab. II for both CWT and FFT scenarios.



Sensor Net Layer Accuracy # of features
computed

CWT

M-L Acc. V GG− 16 ReLU 5.3 89.0% 100352

V Gyr. AlexNet FC7 91.1% 4096

FFT

M-L Acc. V GG− 16 ReLU 5.3 89.5% 100352

V Gyr. V GG− 16 FC6 86.8% 4096

TABLE II: Selected CNNs architecture. FC: Fully Connected
layer. ReLU: Rectified Linear Unit.

The fusion of layouts reported in Tab. II achieves a global
accuracy (in terms of 5-fold validation) of 93.6% and 90.0%
for CWT and FFT respectively. In order to assess robustness,
we have also carried out a Leave-one-patient-out (LOPO)
validation. As expected, the performance slightly impairs,
while maintaining reasonable values of 82.3% (with CWT)
and 84.5% (FFT). Results are reported in Fig. 2 (labeled M1).

C. Manual feature selection

A wide set of features has been selected by means of
a thorough literature analysis. The inclusion criterion is the
recognized capability to describe gait and postural control
in healthy, frail, faller, and/or PD freezer subjects. A total
number of 68 features has been identified, regarding all
components of both acceleration and angular velocity, and
related to movement intensity, gait smoothness, symmetry,
regularity, step and stride frequency. Once being extracted
from each walking window, the feature mean values evaluated
on FOG+ and FOG− patients have been compared. After
having assessed the data normality using the Lilliefore test, the
F-test on variances followed by T-test on mean values were
performed for those features exhibiting a normal distribution,
whereas Kolmogorov-Smirnov test followed by Wilcoxon test
on median values were addressed in case of non-normal
distribution.

Two different approaches have been validated for feature
selection. The first one consisted in selecting features with
different mean (median) values in FOG+ and FOG− sets (M2-
A), while the second one is based on the ReliefF algorithm
for assessing predictor relevance (M2-B). The two obtained
training sets (39 and 25 features respectively, listed in Tab.
III) have been input to several ML algorithms, and a 5-fold
cross validation was performed in order to avoid overfitting.
Moreover, LOPO validation was executed in order to test the
classifier robustness. Results of both validation processes for
different ML algorithms are reported in Fig. 2. For the sake
of brevity, in Fig. 2b only the best classifier performance
is displayed (SVM linear with Bayesian hyperparameters
optimization). The dramatic performance impairment of M2
in LOPO validation can be explained by the different data
management of the two validation algorithms. Being the
dataset composed of more than one window from each patient,

and since windows for training and test are randomly selected
by the cross-validation algorithm, it is likely that some data
windows of the patient under test are also used in the training
phase; this reduces the reliability of the results. LOPO avoids
this shortcoming, and provides a sensible validation of the
classifier robustness and generalization capability.

Source Extracted features FS M2-A (p) FS M2-B

[9], [17], [18] RMS 1:3,6 (<0.0002) 3,6
[19] Range 1:3,6 (<0.0001) 3,6
[18] Jerk 1:3 (<0.0001) 2,3,6
[18] Normalyzed jerk 1:3 (<0.0002) 2,3
[20] Spectral Entropy 1:3,6 (<0.0002) 3

[6], [20] Spectrum Peaks 1:4,6 (<0.0148) 3,6
[20] Normalyzed Spectrum Peaks 1,3,6 (<0.004) 3,4,6
[21] Harmonic Index 2 (<0.0001) ns
[22] Low Power Frequency 2:6 (<0.015) ns

[23], [7] Step variability 1 (<0.0001) 1
[6], [22], [23] Stride variability 1 (<0.0001) ns

[22], [23] Symmetry 1 (0.0047) 1
[23] Step time ns 1

[22], [23] Stride time ns 1
[6], [20], [7] Dominant frequency ns 1,3,5,6

TABLE III: Selected features, M2-A and M2-B methods. (1:3)
and (4:6) represent V, M-Ll and antero-posterior acceleration
and angular velocity. Features marked with ns were not
selected.

(a) 5-fold validation.

(b) LOPO validation.

Fig. 2: Validation results of several classifiers. Fig. 2b refers
to Linear SVM classificator.

IV. DISCUSSION

The classification results obtained with CNN feature ex-
traction are promising, and outperform all classifers fed with
manually extracted features in the LOPO validation. In fact,



different of classic ML approaches, features extracted and se-
lected by means of CNNs are able to capture subtle differences
in similar datasets. We believe that this result is not due to
improper feature selection in M2, since these features are
indeed significant in distinguishing the two samples (see Tab.
III) and have yielded high accuracy in the cross validation
phase (Fig. 2). Moreover, the classification performance is
not solely related to the dimension of the feature set, and
may even significantly impair with the addition of features,
particularly if a small training set is used [24]. An automated
feature extraction and selection substantially reduces the user-
dependency in the feature selection task, and errors in their
implementation. Moreover, the process is domain-independent
and could be used for a variety of classification problems.
The input data preprocessing is much less expensive for M1
compared to M2. On the other hand, computational times
and memory requirements for the training phase of M1 are
significantly greater than those of M2. Nevertheless, once
the net is trained, M1 processing times are no longer very
expensive (the feature extraction from a 3.5 min-long walking
signal last about 1.5s).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we employ deep-learning for feature extraction
from gait data of Parkinson’s disease patients. Our objective
is to employ wearable inertial sensors and to collect gait
data from PD patients during their activities of daily living.
We have shown that our method is effective in classifying
patients that exhibit Freezing of Gait from those which do
not, also when a large dataset is not available and data present
a mild degree of heterogeneity. Such an approach could be
employed to assess mild motor fluctuations during ADL,
not only related to gait, but also to other activities such as
standing, turning, postural instability for fall risk assessment.
Future developments will be in the direction of exploiting
deep learning to achieve a patient-centered follow-up of people
affected by PD (the electronic diary), as well by other neuro-
degenerative disorders.

REFERENCES

[1] Alberto J Espay and et.al, “A Roadmap for Implementation of Patient-
Centered Digital Outcome Measures in Parkinson’s disease Obtained
Using Mobile Health Technologies,” Movement Disorders Clinical
Practice (in press), pp. 1–7, 2019.

[2] “Increased foot strike variability in parkinson’s disease patients with
freezing of gait,” Parkinsonism & Related Disorders, vol. 53, pp. 58 –
63, 2018.

[3] Nellie Georgiou-Karistianis, Rachel Chee, Anna Murphy, Mary
Danoudis, and Robert Iansek, “Gait freezing in Parkinson’s disease
and the stride length sequence effect interaction,” Brain, vol. 132, no.
8, pp. 2151–2160, 05 2009.

[4] Silvia Del Din, Alan Godfrey, Brook Galna, Sue Lord, and Lynn
Rochester, “Free-living gait characteristics in ageing and Parkinson’s
disease: impact of environment and ambulatory bout length.,” Journal
of neuroengineering and rehabilitation, vol. 13, no. 1, pp. 46, 2016.

[5] Aner Weiss, Talia Herman, Nir Giladi, and Jeffrey M. Hausdorff,
“Objective Assessment of Fall Risk in Parkinson’s Disease Using a
Body-Fixed Sensor Worn for 3 Days,” PLoS ONE, vol. 9, no. 5, pp.
e96675, may 2014.

[6] Aner Weiss, Talia Herman, Nir Giladi, and Jeffrey M. Hausdorff,
“Objective assessment of fall risk in Parkinson’s disease using a body-
fixed sensor worn for 3 days,” PLoS ONE, vol. 9, no. 5, 2014.

[7] Aner Weiss, Talia Herman, Nir Giladi, and Jeffrey M. Hausdorff, “New
evidence for gait abnormalities among Parkinson’s disease patients who
suffer from freezing of gait: insights using a body-fixed sensor worn for
3 days,” Journal of Neural Transmission, vol. 122, no. 3, pp. 403–410,
mar 2015.

[8] J L Bellanca, K A Lowry, J M Vanswearingen, J S Brach, and M S
Redfern, “Harmonic ratios : A quantification of step to step symmetry,”
Journal of Biomechanics, vol. 46, no. 4, pp. 828–831, 2013.

[9] B Huijben, “The effect of walking speed on quality of gait in older
adults Gait & Posture The e ff ect of walking speed on quality of gait
in older adults,” Gait & Posture, vol. 65, no. January 2019, pp. 112–116,
2018.
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