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Abstract 22 

Physical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in 23 

vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools 24 

for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, 25 

bioreactors play a key role in assuring strict control, automation, and standardization in the 26 

production process of cell-based products for future clinical application. In this study, a compact, 27 

easy-to-use, tunable stretch bioreactor is proposed. Based on customizable and low-cost 28 

technological solutions, the bioreactor was designed for providing tunable mechanical stretch for 29 

biomimetic dynamic culture of different engineered tissues. In-house validation tests demonstrated 30 

the accuracy and repeatability of the imposed mechanical stimulation. Proof of concepts biological 31 

tests performed on engineered cardiac constructs, based on decellularized human skin scaffolds 32 

seeded with human cardiac progenitor cells, confirmed the bioreactor Good Laboratory Practice 33 

compliance and ease of use, and the effectiveness of the delivered cyclic stretch stimulation on the 34 

cardiac construct maturation.  35 
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1. Introduction 36 

Tissue engineering (TE) is a multidisciplinary research field whose primary purpose is the in vitro 37 

development of functional tissue constructs used as models for basic research, drug testing, and 38 

disease investigations, or ultimately aimed at repairing injured tissues or even organs [1,2]. 39 

According to the TE paradigm, the bioprocess for generating functional constructs is based on three 40 

key elements: cells, scaffolds, and culture environmental cues [3,4].  41 

Cells play a crucial role, since they generate the new tissue through proliferation, differentiation and 42 

maturation. In particular, the use of human stem or progenitor cells, which can differentiate into 43 

tissue-specific functional cell types, provides promising perspectives for patient-specific tissue 44 

models and personalized TE [5–10]. 45 

Scaffolds substantially serve as active biochemical and structural support for cell growth. In 46 

particular, decellularized extracellular matrix (ECM) is recognized as one of the most promising 47 

biological scaffolds, because of its native biochemical and biomechanical features, and its three-48 

dimensional (3D) microarchitecture [11,12]. 49 

Lastly, biomimetic chemical and physical environmental cues have proven to be fundamental for 50 

defining the fate and the functionality of the engineered constructs [13–16]. Focusing on strategies 51 

for engineering tissues that in vivo are physiologically subjected to mechanical stimuli (e.g., tensile 52 

or compressive load), several studies demonstrated that the use of dynamic culture devices 53 

providing adequate in vitro mechanical stimuli leads to significant improvements in structural and 54 

functional tissue maturation [17–20]. For example, it was observed that the controlled exposure of 55 

engineered skeletal muscle tissues to mechanical cyclic stretch promotes their development, with 56 

improved morphological, contractile and myogenic properties [21–24]. Furthermore, stretch was 57 

successfully applied for cultivating in vitro tendon and ligament grafts, with several studies 58 

demonstrating that mechanical stimulation is crucial for promoting tenocyte differentiation, tendon 59 

matrix synthesis, and construct tensile strength [25–30]. Dynamic culture devices providing stretch 60 

stimuli were also used for generating skin tissue models characterized by thick epidermal layers 61 

with high levels of expressed basement membrane proteins [31], and for ex vivo expansion of skin 62 

grafts, promoting dermal ECM synthesis [32,33]. Cyclic stretch plays a fundamental role in 63 

bioprocesses designed for the in vitro maturation of cardiac tissue models. A large body of literature 64 

demonstrated that the provision of cyclic stretch stimulation mimicking the cyclic diastolic filling of 65 

the ventricles promotes cell proliferation, myocardium-like morphological arrangement and 66 

maturation, and contractile performance of engineered cardiac tissues [34–42].  67 

The need of TE bioprocesses to provide biomimetic physical stimuli in a strictly controlled manner 68 

is faced using bioreactors. When equipped with advanced and programmable technological 69 
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solutions, these devices can guarantee control, automation, and standardization of the production 70 

process [43,44], fulfilling the rigorous requirements for clinical translation of cell-based products. 71 

Moreover, bioreactors represent useful platforms for generating in vitro tissue models, thus 72 

addressing the need for providing investigation methods alternative to animal-based 73 

experimentation. 74 

However, bioreactor-based approaches have to cope with a series of drawbacks limiting their wide 75 

spread. In particular, complex technology and high costs, often related to the high level of 76 

customization required by the specific application, represent relevant limiting factors [45]. 77 

Moreover, difficulty of use is a critical aspect affecting both custom-made and commercial 78 

bioreactor platform diffusion [46,47].  79 

Nowadays, the availability of affordable open-source and low-cost electronic solutions for 80 

bioprocess monitoring and control purposes and the diffusion of low-cost 3D printing technologies 81 

give the opportunity to rethink the design phase as well as to develop highly customizable and 82 

flexible bioprocess platforms at limited implementation costs [48–52]. In this perspective, we 83 

present here a compact, easy-to-use, tunable stretch bioreactor platform for TE applications. 84 

Customizable and low-cost technological solutions are adopted for the platform implementation. 85 

Using a purpose-built test bench, in-house validation tests are performed to assess the motor motion 86 

accuracy and repeatability. To demonstrate the bioreactor platform performance in a cell culture 87 

laboratory and to investigate the impact of cyclic stretch on maturation of engineered cardiac 88 

tissues, explanatory biological experiments on decellularized human skin (d-HuSk) scaffolds seeded 89 

with human cardiac progenitor cells (hCPCs), performed within the bioreactor platform, are 90 

presented. The hCPC-seeded d-HuSk scaffolds are subjected to controlled cyclic stretch, and the 91 

effect of cyclic stretch conditioning is analyzed in terms of cell organization and gene expression of 92 

typical cardiac markers. 93 

 94 

2. Materials and methods 95 

2.1 Bioreactor platform  96 

The design of the bioreactor platform was guided by specific requirements. Firstly, the device 97 

should provide tunable mechanical stretch for biomimetic dynamic culture of different engineered 98 

tissues (e.g., myocardium, skeletal muscle, skin, tendon, and ligament tissue). Then, it should 99 

accomplish general specifications of a bioreactor for TE strategies [17], particularly Good 100 

Laboratory Practices (GLP) compliance in terms of ease of assembling, cleaning, and use in a cell 101 

culture laboratory and with conventional laboratory equipment. Moreover, the bioreactor platform 102 



5 
 

should be modular for facilitating assembling/disassembling/cleaning procedures and 103 

customization, and it should be characterized by small size, to be easily handled under laminar flow 104 

hood and within the incubator. Lastly, for promoting the use of the system, the bioreactor platform 105 

should be designed and produced with easy-to-use and low-cost hardware and software, and overall 106 

it should guarantee reliability for long-term experiments within the incubator (37°C, 5% CO2, and 107 

90-95% humidity). 108 

Based on these requirements, the bioreactor platform is designed consisting of three main units (Fig. 109 

1A): (1) the culture unit, housing the constructs; (2) the stimulation unit, providing the biomimetic 110 

mechanical stimuli; (3) the control unit, devoted to the control of the stimulation unit. Both the 111 

culture unit and the stimulation unit are mounted on an aluminum planar base (342 mm x 128 mm) 112 

to be incubated, while the control unit is located outside the incubator.  113 

In detail, the culture unit, adapted from a previously developed device [53], is composed of a 114 

polycarbonate culture chamber (140 x 80 x 75 mm
3
 with a priming volume of ~100 ml) designed to 115 

house multiple constructs to be cultured simultaneously. Within the culture chamber, two opposite 116 

polyoxymethylene (POM) clamps allow grasping the constructs during stimulation. One clamp is 117 

mobile, coupled with a stainless steel through-shaft externally connected to the stimulation unit 118 

motor, while the opposite clamp is fixed (Fig. 1B). Silicone bellows (J-Flex rubber, Retford, UK) 119 

assure watertightness of the culture chamber. The culture chamber is inserted within an L-shaped 120 

chassis, previously developed for guaranteeing a correct positioning of the culture chamber on the 121 

planar base [54]. The stimulation unit consists of a watertight box (130 x 95 x 65 mm
3
), which 122 

houses a captive stepper motor (NEMA 14, Nanotec Electronic GmbH & Co. KG, Feldkirchen, DE) 123 

that generates a linear motion with a resolution of 10 µm/step. The motor provides the mechanical 124 

stimulation to the cultured constructs, controlled by the control unit. The latter is made of a compact 125 

box (170 x 150 x 60 mm
3
) containing a microcontroller board (Arduino Due, Arduino, Ivrea, IT), 126 

selected because it is an open-source and low-cost electronics platform, which is coupled with a 127 

small-sized motor driver (A4988, Allegro MicroSystems, Manchester, USA). The motor driver with 128 

built-in translator and current regulator acts as bridge component between the microcontroller and 129 

the motor, and enables motor control in open-loop configuration efficiently assuring the needed 130 

power supply. A user-friendly interface, based on push buttons and a 1.8” LCD screen (Arduino), 131 

allows the proper adjustment of the initial relative position between clamps and the setting of the 132 

stimulation parameters (i.e., stretching amplitude and frequency). A schematic diagram of the 133 

control unit implementation is reported in Figure 1C.  134 

To perform the explanatory biological tests, dedicated to culture cardiac constructs under cardiac-135 

like cyclic stretch, the microcontroller is programmed to generate a sinusoidal motor motion with 136 
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tunable stretching amplitudes (0.1-3.0 mm, by 0.1 mm steps) and frequencies (1-3 Hz, by 1 Hz 137 

steps). Available combinations of stimulation parameters for culturing constructs are reported in 138 

Table 1.  139 
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 Frequency (Hz) 

 1 2 3 

2.1 - 3 ●   

1.1 - 2 ● ●  

0.1 - 1 ● ● ● 

Table 1. Stimulation parameter combinations. Black dots indicate the available combinations. 141 

 142 

All culture chamber components in contact with medium or constructs are made of cytocompatible 143 

and autoclavable materials [53,55]. The L-shaped chassis housing the culture chamber and the 144 

stimulation unit box are manufactured in ABS thermoplastic material by fused deposition modelling 145 

(FDM) for guaranteeing design flexibility and cost-efficiency [54]. 146 

2.2 In-house tests 147 

The ease of use and the reliability of stimulation and control units were preliminarily tested in-148 

house. In detail, the motion accuracy of the stimulation unit operated by the control unit was 149 

characterized using a purpose-built test bench. A linear variable displacement transducer (LVDT, 150 

AML/EU/±5/S, Applied Measurements Ltd., Aldermaston, UK), mounted on a chassis and 151 

connected to a dedicated data acquisition system (Personal computer equipped with a cDAQ-9174 152 

coupled with a NI 9218 module, National Instruments, Austin, TX, USA), was put in contact with 153 

the through-shaft connected to the stimulation unit motor (Supplementary Fig. S1), and all the 60 154 

combinations of motor amplitude and frequency parameters were tested. In detail, for each possible 155 

combination, the motor imparted displacement was acquired continuously over 30 cycles (sampling 156 

rate = 1652 Hz). The measured LVDT signals were acquired, filtered (Butterworth low-pass filter, 157 

order 8, cut-off frequency = 10 Hz), and analyzed in LabVIEW environment (LabVIEW, National 158 

Instruments) to evaluate the peak-to-peak amplitude as well as the frequency of the recorded 159 

displacement signals. All measurements were carried out in triplicate. The motor displacement 160 

waveforms were characterized by comparing the measured waveforms with the prescribed ideal 161 

sinusoidal waveforms. The mean percentage errors of measured amplitude and frequency values 162 

with respect to the prescribed nominal values were expressed as mean ± standard deviation (SD).  163 

  164 
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2.3 Biological tests  165 

2.3.1 Bioreactor platform performance in a cell culture laboratory 166 

The bioreactor platform was then tested in a cell culture laboratory in order to assess its ease of use 167 

and compliance with GLP procedures. In detail, the components of the culture chamber were 168 

autoclaved and assembled under laminar flow hood, the culture chamber was filled with Dulbecco’s 169 

Modified Eagle’s Medium/Ham’s Nutrient Mixture F12 culture medium (Sigma-Aldrich, St. Louis, 170 

MO, USA), and the assembled system was placed in incubator without constructs but with the 171 

mechanical stimulation (1 mm, 1 Hz) switched on for 5 days. 172 

2.3.2 Preparation and culture of cardiac constructs 173 

To investigate the influence of biomimetic cyclic stretch on the maturation of cardiac constructs, 174 

explanatory biological tests were carried out on decellularized human skin (d-HuSk) scaffolds 175 

seeded with human cardiac progenitor cells (hCPCs) and hCPC-derived early cardiac myocytes.  176 

Concerning the scaffold preparation, human skin samples were obtained from patients undergoing 177 

abdominoplasty (n = 4, mean age 41.75 ± 2.36). Upon receipt, samples were washed in 178 

physiological saline solution, then subcutaneous tissue was removed and multiple specimens were 179 

cut (length = 20 mm, width = 10 mm) marking Langer’s line orientation. For decellularization 180 

treatment, specimens were enclosed in embedding cassettes housed in a purpose-built sample-181 

holder, put within a beaker filled with the decellularizing solution (700 ml) and placed on a 182 

magnetic stirrer, and kept under constant stirring (150 rpm) for 24 h [56]. The decellularizing 183 

solution contained 1% w/v sodium dodecyl sulfate (SDS) (Sigma-Aldrich) and 1% v/v Triton 184 

(Sigma-Aldrich). The specimens were then rinsed for 24 h in antibiotic solution containing 0.25 185 

μg/ml Amphotericin B, 100 U/ml Penicillin, and 50 U/ml Streptomycin (all from Sigma-Aldrich) in 186 

PBS, and lastly in sterile bidistilled water for additional 30 min [57,58]. The d-HuSk specimens 187 

were snap-frozen, mounted on a cryostat chuck using Tissue Freezing Medium (Leica 188 

Microsystems, Wetzlar, Germany), and sliced into 600-μm-thick sections by a Leica CM1950 189 

cryostat (Leica Microsystems). Cryosections of d-HuSk were sterilized by exposure to ultraviolet 190 

radiation for 40 min and rehydrated for one week with F12K medium in incubator (37° C, 5% CO2). 191 

The sterilized and rehydrated d-HuSk cryosections were then stored in standard culture conditions 192 

with the same medium until use. 193 

As regards the hCPCs, they were isolated from cardiac specimens derived from macroscopically 194 

uninjured areas of the left ventricle of explanted hearts of patients undergoing heart transplant 195 

because of end-stage heart failure (n = 10, mean age 49.5 ± 4.7). Specifically, following a 196 

previously described protocol [59] cardiac specimens were washed in physiological saline solution, 197 
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dissected, minced, and enzymatically disaggregated by incubation in 0.25% trypsin (Sigma-198 

Aldrich) for 6 h at 4 °C and in 0.1% w/v collagenase II (Sigma-Aldrich) for 30 min at 37 °C. The 199 

digestion was stopped by adding double volume of Hanks′ Balanced Salt solution (Sigma-Aldrich) 200 

supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich). Resulting fragments of tissue 201 

were further disaggregated by pipetting. Tissue debris and cardiomyocytes were then removed by 202 

sequential centrifugation at 100 g for 2 min, passage through a 40-μm cell strainer (BD Biosciences, 203 

Franklin Lakes, NJ, USA), and centrifugation at 400 g for 5 min. The obtained cell population was 204 

then incubated with anti-fibroblast MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) to 205 

magnetically label fibroblasts that were then removed loading cells onto a MACS column (Miltenyi 206 

Biotec) placed in the magnetic field of a MACS separator (Miltenyi Biotec). The negative fraction 207 

of unlabeled hCPCs ran through the column was collected and plated at a density of 4x10
3
 cells per 208 

cm
2
 in F12K medium, prepared from Nutrient Mixture F-12 Ham medium (Sigma-Aldrich) 209 

supplemented with 10% FBS (Sigma-Aldrich), basic fibroblast growth factor (Peprotech, Rocky 210 

Hill, NJ, USA), glutathione (Sigma-Aldrich), penicillin and streptomycin (Sigma-Aldrich).  The 211 

hCPCs were cultured in incubator (37°C, 5% CO2) and observed daily by an inverted phase-contrast 212 

microscope (Olympus, Tokyo, Japan). Medium was replaced every 3 days until the 75% confluence 213 

was reached. Then, an unselected subpopulation of hCPCs was induced to differentiate towards 214 

cardiac myocytes by adding 50 μg/ml of ascorbic acid (Sigma-Aldrich) and 10 ng/ml of Vascular-215 

Endothelial Growth Factor (Sigma-Aldrich) to the culture medium for 7 days. 216 

Successively, the d-HuSk scaffolds (n = 24) were seeded with 2.5x10
6
 hCPCs and 2.5x10

6
 hCPC-217 

derived early cardiac myocytes. After 7 days of static culture in Petri dish, half of the constructs (n 218 

= 12) were transferred, in pairs, into the bioreactor culture chamber with F12K medium and 219 

subjected to dynamic conditions (i.e., sinusoidal cyclic stretch, 10% strain, 1 Hz) for additional 7 220 

days (see Supplementary Movie 1) for mimicking the cyclic diastolic filling of the ventricles [60–221 

63]. As control experiment, the other half of the constructs (n = 12) were cultured statically in Petri 222 

dishes for the entire duration of 14 days (Fig. 2). Finally, constructs were cut into smaller specimens 223 

that were either fixed in 10% neutral-buffered formalin (Sigma-Aldrich) for morphological analyses 224 

or processed for RNA extraction for gene expression profiling. 225 

2.3.3 Histochemistry analysis 226 

Following standard protocols, subsets of constructs cultured in static conditions (control) or in 227 

bioreactor and fixed in 10% neutral-buffered formalin were dehydrated in a graded series of 228 

alcohols, embedded in paraffin and sliced into serial 5-µm-thick sections  [57,58].Sections were 229 

stained with Hematoxylin and Eosin (H&E) and with Mallory's trichrome staining using specific 230 

kits (both from Bio-Optica, Milan, Italy). Stained sections were observed by at least three 231 
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independent researchers using a light microscope DM2000 Led (Leica Microsystems) equipped 232 

with an ICC50HD camera (Leica Microsystems). 233 

2.3.4 Gene expression profile analysis 234 

Total RNA was extracted from hCPCs seeded on d-HuSk scaffolds, cultured both in static and 235 

cyclic stretch conditions, using Trizol Reagent (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, 236 

USA), according to the manufacturer's instructions. RNA was dissolved in RNase-free water and its 237 

final concentration was quantified at the NanoDrop 1000 spectrophotometer (Thermo Scientific, 238 

Waltham, MA, USA). All RNA samples were checked for quality and resulted suitable for gene 239 

expression profiling analyses. Analysis was performed as previously described [64]. Briefly, RNA 240 

from each sample was reverse transcribed into cDNA with QuantiTect Reverse Trascription Kit 241 

(Qiagen, Hilden, Germany) and gene expression was quantified by real-time qPCR using Power 242 

SYBR Green PCR Master Mix (Applied Biosystem, Thermo Fisher Scientific). DNA amplification 243 

was carried out using QuantStudio™ 5 Real-Time PCR System (Thermo Fisher Scientific) and the 244 

detection was performed by measuring the binding of the fluorescent dye SYBR Green I to double-245 

stranded DNA. The thermal cycling conditions included an initial enzyme activation at 95°C for 10 246 

min and 40 cycles consisting of a denaturation step at 95°C for 15 s and an annealing step at 60°C 247 

for 60 s. Melt curve analysis was performed to assess uniformity of product formation, primer 248 

dimer formation and amplification of non-specific products. Primers used in this study were 249 

designed with Primer3 software (http://frodo.wi.mit.edu) starting from the CDS (coding sequence) 250 

of mature mRNA available on GeneBank (Supplementary Table S1). All samples were tested in 251 

triplicate with the housekeeping gene (GAPDH) to correct for variations in RNA quality and 252 

quantity. Comparative quantification of target gene expression in the samples was performed based 253 

on cycle threshold (Ct) normalized to the housekeeping gene and using the 2-∆∆Ct method. 254 

2.3.5 Statistical analysis 255 

Data from gene expression profiling were analyzed by GraphPad Prism 5.0 (GraphPad Software, La 256 

Jolla, CA, USA) using Student’s two-tailed unpaired t-test. All experiments were performed in 257 

triplicate and data were averaged and expressed as the mean ± standard error of the mean. The 258 

statistical significance is denoted as * for p-value ≤ 0.05, ** for p-value ≤ 0.01, *** for p-value ≤ 259 

0.001. 260 

 261 

3. Results 262 

3.1 In-house tests 263 
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In-house tests confirmed the ease of use and the reliability of the stimulation and control units. In 264 

detail, tests on motor imposed displacement accuracy highlighted that real displacement waveforms 265 

agree with the prescribed ideal sinusoidal waveforms for all the available combinations of working 266 

conditions, as testified by the explanatory waveforms presented in Figure 3A. As regards the 267 

comparison between the measured stretching amplitude values and the nominal ones, mean error 268 

values up to 13.3%±7.3% were observed, with the largest deviation from the nominal curve 269 

corresponding to the combination characterized by minimum amplitude equal to 0.1 mm and 270 

frequency equal to 1 Hz. For nominal amplitude values higher than 0.4 mm the observed mean error 271 

values were lower than 4% (Fig. 3B). Concerning the nominal frequency, mean error values up to 272 

10.5% (corresponding to the combination characterized by amplitude equal to 1.3 mm and 273 

frequency equal to 1 Hz) were observed (Fig. 3C). 274 

3.2 Biological tests 275 

3.2.1 Bioreactor platform performance in a cell culture laboratory 276 

Preliminary tests performed in a cell culture laboratory confirmed ease of use, sterility maintenance, 277 

and functionality of the bioreactor platform in a standard incubator. During the explanatory cyclic 278 

stimulation tests run for 5 days in incubator, the system did not present adverse issues, the 279 

watertightness of the culture chamber and the stimulation unit was confirmed, and the culture 280 

medium did not present any signs of contamination. 281 

3.2.2 Histochemistry 282 

The H&E and Mallory's trichrome staining of the cardiac constructs revealed that, under both static 283 

(control) and dynamic (sinusoidal cyclic stretch, 10% strain, 1 Hz) culture conditions, hCPCs 284 

organized into a structured multilayered tissue on the surface of the d-HuSk scaffolds (Fig. 4). 285 

Noteworthy, the histochemical analysis highlighted that the dynamic culture promoted hCPC 286 

migration towards the inner layers of the scaffolds (Figs. 4B and 4D). 287 

3.2.2 Gene expression profile analysis 288 

The gene expression profile analysis of hCPCs extracted from constructs cultured under either static 289 

or dynamic conditions included genes typical of main cardiac cell lineages. In particular, in 290 

bioreactor-cultured constructs, a significant up-regulation of cardiac alpha actin (ACTC1), a marker 291 

typical of late differentiating and mature cardiac myocytes, was observed. On the opposite, markers 292 

typical of undifferentiated hCPCs (like CD117) or of early stages of cardiac myocyte differentiation 293 

(like TBX3 and TBX5) were significantly down-regulated with respect to control constructs (Fig. 294 

5). The transcription of other markers typical of cardiac myocytes, like MEF2C, CX43, and 295 

GATA4, did not differ significantly among constructs cultured in static or dynamic conditions, and 296 
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similarly happened for the transcription of the mesenchymal cell marker CD105 and of genes 297 

typical of smooth muscle cells (GATA6, ACTA2) and endothelial cells (ETS1, FVIII) 298 

(Supplementary Fig. S2). 299 

 300 

4. Discussion 301 

In TE research, a number of studies demonstrated that successful strategies for the in vitro 302 

generation of functional engineered tissues require a synergistic combination of appropriate cells, 303 

scaffolds, and biochemical and biophysical signals [65–67]. As specifically concerns mechanical 304 

cues, in the last two decades a plethora of custom-made bioreactors providing in vitro biomimetic 305 

mechanical stretch have been proposed [23,24,29–31,33,40,42]. In parallel, ready-to-use systems 306 

have been developed by commercial companies (e.g., Tissue Train 3D Culture System from 307 

FlexCell International, Hillsborough, USA; TC-3 from Ebers Medical Technology, Zaragoza, 308 

Spain; MCT6 from CellScale, Waterloo, Canada; BioDynamic 5100 from TA Instruments, New 309 

Castle, USA). All the developed culture devices substantially contributed to unravel the 310 

fundamental role that mechanical stretch has on structural and functional development of biological 311 

tissues and in regulating tissue homeostasis and pathophysiology. Moreover, their use increased the 312 

knowledge on sensitivity of cells to mechanical stimuli, to which cells react activating specific 313 

mechanotransduction pathways that can lead to phenotypic changes [68–71]. 314 

However, the proposed custom-made bioreactors were often based on complex technological 315 

solutions, difficult to use by non-trained operators in a cell culture laboratory and typically 316 

dedicated to highly specialized applications, while the commercial devices are generally expensive 317 

and not fully customizable. 318 

Taking into account these limitations, in this study we developed a compact, easy-to-use, tunable 319 

stretch bioreactor platform for culturing in vitro 3D engineered constructs under biomimetic stretch 320 

conditions. Particular attention was paid in developing reliable and affordable stimulation and 321 

control units. As regards the stimulation unit, the use of a captive stepper motor enables the 322 

provision of linear motion adopting an open loop control strategy ensuring high displacement 323 

resolution without the need for additional and complex feedback sensing solutions. In combination, 324 

a compact control unit, based on low-cost open-source hardware and freeware software, avoids the 325 

use of cumbersome and expensive equipment (e.g., laptop, data acquisition module, and 326 

commercial software). Moreover, the integrated user-friendly interface allows ease-of-use to not 327 

experienced operators as well as system portability. In-house performance tests confirmed that the 328 

bioreactor platform is reliable in providing accurate and repeatable stimulation within a range of 329 
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physiological interest. For imposed motor displacement values higher than 0.4 mm, the mean error 330 

values between the measured amplitude values and the nominal ones were lower than 4%, thus 331 

negligible, for all available stimulation parameter combinations. Conversely, for motor 332 

displacement values in the range of 0.1 - 0.4 mm, higher amplitude errors were calculated (Fig. 3). 333 

However, it should be noted that such small displacement values are not commonly adopted for 334 

mechanical stimulation of macroscopic constructs. This inaccuracy could be ascribed to the axial 335 

play of the motor shaft, and to inertial and vibrational phenomena that are intrinsic to stepper 336 

motors. In addition, possible signal artefacts during the LVDT data acquisition, due to inductive and 337 

capacitive electrical interference, could not be excluded. As concerns the stimulation frequency, 338 

measurements revealed negligible errors, probably ascribable to intrinsic technical limitations of the 339 

adopted low-cost microcontroller. 340 

Preliminary tests in a cell culture laboratory demonstrated that the device is easy-to-use with GLP 341 

compliant procedures, compact to handle and fit in a standard incubator, and guarantees 342 

watertightness, sterility maintenance and functionality.  343 

For investigating the effect of cyclic stretch on cardiac construct maturation, the biological 344 

experiments were  performed on decellularized human skin scaffolds seeded with hCPCs and 345 

cultured for 7 days in static conditions, and then transferred into the bioreactor (sinusoidal cyclic 346 

stretch, 10% strain, 1 Hz) for additional 7 days. The histochemical analysis showed cell engraftment 347 

on the scaffold surface in both controls and dynamically cultured constructs (Fig. 4), but only when 348 

subjected to cyclic stretch cells migrated towards the inner layers of the scaffolds, starting to 349 

colonize their 3D structure (Figs. 4B and 4D). The gene expression analysis highlighted a 350 

significant up-regulation of the ACTC1 marker, typical of late differentiating and mature cardiac 351 

myocytes, concomitantly with a marked down-regulation of CD117, TBX3 and TBX5 markers 352 

(Fig. 5), typical receptors for stem cells or early stage cardiac myocytes, suggesting that dynamic 353 

culture likely promoted hCPC differentiation towards mature cardiac myocytes, in accordance with 354 

previous studies [72–76].  355 

Although further and longer experimental tests will be necessary for comprehensively 356 

characterizing the effect of cyclic stretch on the maturation of d-HuSk scaffolds seeded with 357 

hCPCs, the latter particularly sensitive to the microenvironment, the preliminary promising findings 358 

provided evidence of the bioreactor platform reliability and suitability for cardiac tissue engineering 359 

applications. In the future, the possibility to switch from stretching to compression mode will be 360 

implemented in the bioreactor platform, and the device will be adapted to be equipped with an 361 

electrical stimulation unit [77] to provide combinable mechanical and electrical stimulations for 362 

mimicking the complex native cardiac environment. 363 
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In conclusion, adopting customizable and low-cost technological solutions, a compact, easy-to-use, 364 

tunable stretch bioreactor platform for biomimetic dynamic culture of 3D engineered was 365 

developed. Based on modular components and providing tunable stimulation, the proposed device is 366 

versatile and adaptable for different tissue engineering applications. Moreover, the choice of the 3D 367 

printing technology and low-cost hardware coupled with free and open-source software, 368 

substantially limited the development costs and will support in the future the use of the system as 369 

valuable tool for in vitro investigation and for future production of functional engineered constructs.  370 
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