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PRACTICAL NUMBERS AMONG THE
BINOMIAL COEFFICIENTS

PAOLO LEONETTI† AND CARLO SANNA‡

Abstract. A practical number is a positive integer n such that every positive
integer less than n can be written as a sum of distinct divisors of n. We prove
that most of the binomial coefficients are practical numbers. Precisely, letting
f(n) denote the number of binomial coefficients

(
n
k

)
, with 0 ≤ k ≤ n, that are

not practical numbers, we show that

f(n) < n1−(log 2−δ)/ log logn

for all integers n ∈ [3, x], but at most Oγ(x1−(δ−γ)/ log log x) exceptions, for all
x ≥ 3 and 0 < γ < δ < log 2. Furthermore, we prove that the central binomial
coefficient

(
2n
n

)
is a practical number for all positive integers n ≤ x but at most

O(x0.88097) exceptions. We also pose some questions on this topic.

1. Introduction

A practical number is a positive integer n such that every positive integer less
than n can be written as a sum of distinct divisors of n. This property has been in-
troduced by Srinivasan [19]. Estimates for the counting function of practical num-
bers have been given by Hausman–Shapiro [5], Tenenbaum [20], Margenstern [9],
Saias [15], and finally Weingartner [21], who proved that there are asymptotically
Cx/ log x practical numbers less than x, for some constant C > 0, as previously
conjectured by Margenstern [9]. On another direction, Melfi [11] proved that
every positive even integer is the sum of two practical numbers, and that there
are infinitely many triples (n, n + 2, n + 4) of practical numbers. Also, Melfi [10]
proved that in every Lucas sequence, satisfying some mild conditions, there are
infinitely many practical numbers, and Sanna [17] gave a lower bound for their
counting function.

In this work, we study the binomial coefficients which are also practical num-
bers. Our first result, informally, states that for almost all positive integers n
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there is a negligible amount of binomial coefficients
(
n
k

)
, with 0 ≤ k ≤ n, which

are not practical. Precisely, for each positive integer n, define

f(n) := #

{
0 ≤ k ≤ n :

(
n

k

)
is not a practical number

}
.

Our first result is the following.

Theorem 1.1. For all x ≥ 3 and 0 < γ < δ < log 2, we have

f(n) < n1−(log 2−δ)/ log logn

for all integers n ∈ [3, x], but at most Oγ(x
1−(δ−γ)/ log log x) exceptions.

As a consequence, we obtain that as x → +∞ almost all binomial coefficients(
n
k

)
, with 0 ≤ k ≤ n ≤ x, are practical numbers.

Corollary 1.1. We have∑
n≤x

f(n)�ε x
2−( 1

2
log 2−ε)/ log log x,

for all x ≥ 3 and ε > 0.

Among the binomial coefficients, the central binomial coefficients
(
2n
n

)
are of

great interest. In particular, several authors have studied their arithmetic and
divisibility properties, see e.g. [1, 2, 14, 16, 18].

In this direction, our second result, again informally, states that almost all
central binomial coefficients

(
2n
n

)
are practical numbers.

Theorem 1.2. For x ≥ 1, the central binomial coefficient
(
2n
n

)
is a practical

number for all positive integers n ≤ x but at most O(x0.88097) exceptions.

Probably, there are only finitely many positive integers n such that
(
2n
n

)
is not a

practical number. By a computer search, we found only three of them below 106,
namely n = 4, 10, 256. However, proving the finiteness seems to be out of reach
with actual techniques. Indeed, on the one hand, if n is a power of 2 whose base
3 representation contains only the digits 0 and 1, then it can be shown that

(
2n
n

)
is not a practical number (see Proposition 2.1 below). On the other hand, it is an
open problem to establish whether there are finitely or infinitely many powers of
2 of this type [4, 6, 8, 12].

We conclude by leaving two open questions. Note that since
(
n
0

)
=
(
n
n

)
= 1, we

have 0 ≤ f(n) ≤ n− 1 for all positive integers n. It is natural to ask when one of
the equalities is satisfied.

Question 1.1. What are the positive integers n such that f(n) = 0 ?

Question 1.2. What are the positive integers n such that f(n) = n− 1 ?
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Regarding Question 1.1, if f(n) = 0 then n must be a power of 2, otherwise
there would exist (see Lemma 2.4 below) an odd binomial coefficient

(
n
k

)
, with

0 < k < n, and since 1 is the only odd practical number, we would have f(n) > 0.
However, this is not a sufficient condition, since f(8) = 1. Regarding Question 1.2,
if n = 2k − 1, for some positive integer k, then f(n) = n − 1, because all the
binomial coefficients

(
n
k

)
, with 0 < k < n, are odd (see Lemma 2.4 below) and

greater than 1, and consequently they are not practical numbers. However, this
is not a necessary condition, since f(5) = 4.

Notation. We employ the Landau–Bachmann “Big Oh” notation O and the
associated Vinogradov symbol �. In particular, any dependence of the implied
constants is indicated with subscripts. We write pi for the ith prime number.

2. Preliminaries

This section is devoted to some preliminary results needed in the later proofs.
We begin with some lemmas about practical numbers.

Lemma 2.1. If m is a practical number and n ≤ 2m is a positive integer, then
mn is a practical number.

Proof. See [10, Lemma 4]. �

Lemma 2.2. If d is a practical number and n is a positive integer divisible by d
and having all prime factors not exceeding 2d, then n is a practical number.

Proof. By hypothesis, there exist positive integers q1, . . . , qk ≤ 2d such that
n = dq1 · · · qk. Then, using Lemma 2.1, it follows by induction that dq1 · · · qm
is practical for all m = 1, . . . , k. In particular, n is practical. �

Lemma 2.3. We have that pa11 · · · pass is a practical number, for all positive inte-
gers a1, . . . , as.

Proof. It follows easily by induction on s, using Lemma 2.1 and Bertrand’s pos-
tulate pi+1 < 2pi. �

For each prime number p and for each positive integer n, put

Tp(n) := #

{
0 ≤ k ≤ n : p -

(
n

k

)}
.

We have the following formula for Tp(n).

Lemma 2.4. Let p be a prime number and let

n =
s∑

j=0

djp
j, d0, . . . , ds ∈ {0, . . . , p− 1}, ds 6= 0,
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be the representation in base p of the positive integer n. Then we have

Tp(n) =
s∏

j=0

(dj + 1).

Proof. See [3, Theorem 2]. �

For each prime number p, let us define

ωp :=
log((p+ 1)/2)

log p
.

The quantity ωp appears in the following upper bound for Tp(n).

Lemma 2.5. Let p be a prime number and fix ε ∈ (0, 1/2). Then, for all x ≥ 1,
we have

Tp(n) < nωp+ε

for all positive integers n ≤ x but at most O(p3x1−ε) exceptions.

Proof. For x ≥ 1, let k be the smallest integer such that x < pk. Clearly, we have

E(x) := #
{
n ≤ x : Tp(n) ≥ nωp+ε

}
≤

k∑
j=1

#
{
pj−1 ≤ n < pj : Tp(n) ≥ p(j−1)(ωp+ε)

}
. (1)

Moreover, thanks to Lemma 2.4, we have∑
pj−1<n≤ pj

Tp(n) ≤
∑

0≤ d0,...,dj−1<p

j−1∏
i=0

(di + 1) =

(
p−1∑
d=0

(d+ 1)

)j

=

(
p(p+ 1)

2

)j
,

and consequently

#
{
pj−1 ≤ n < pj : Tp(n) ≥ p(j−1)(ωp+ε)

}
≤ 1

p(j−1)(ωp+ε)

∑
pj−1<n≤ pj

Tp(n)

≤ 1

p(j−1)(ωp+ε)

(
p(p+ 1)

2

)j
=
p(p+ 1)

2
p(1−ε)(j−1) < p2+(1−ε)(j−1), (2)

for all positive integers j. Therefore, putting together (1) and (2), and using that
ε < 1/2, we obtain

E(x) <
k∑

j=1

p2+(1−ε)(j−1) � p2+(1−ε)k ≤ p2+(1−ε)(log x/ log p+1) < p3x1−ε, (3)

as desired. �
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Remark 2.1. The constant 1/2 in the statement of Lemma 2.5 has no particular
importance, it is only needed to justify the � in (3). Any other real number less
than 1 would be fine.

For all x ≥ 1, let κ(x) be the smallest integer k ≥ 1 such that p1 · · · pk ≥ x.

Lemma 2.6. We have

κ(x) ∼ log x

log log x
and pκ(x) ∼ log x,

as x→∞.

Proof. As a well-known consequence of the Prime Number Theorem, we have

log(p1 · · · pk) ∼ pk ∼ k log k, (4)

as k → +∞. Since

log(p1 · · · pκ(x)−1) < log x ≤ log(p1 · · · pκ(x)),
and κ(x)→ +∞ as x→ +∞, by (4) we obtain

pκ(x) ∼ κ(x) log κ(x) ∼ log x,

which in turn implies

κ(x) ∼ κ(x) log κ(x)

log κ(x) + log log κ(x)
∼ log x

log log x
,

as desired. �

For every prime number p and every positive integer n, let βp(n) be the p-adic
valuation of the central binomial coefficient

(
2n
n

)
.

Lemma 2.7. For each prime p and all positive integers n, we have that βp(n) is
equal to the number of digits of n in base p which are greater than (p− 1)/2.

Proof. The claim is a straightforward consequence of a theorem of Kummer [7]
which says that, for positive integers m,n, the p-adic valuation of

(
m+n
n

)
is equal

to the number of carries in the addition m+ n done in base p. �

Proposition 2.1. If n is a power of 2 and if all the digits of n in base 3 are equal
to 0 or 1, then

(
2n
n

)
is not a practical number.

Proof. It follows by Lemma 2.7 that β2(n) = 1 and β3(n) = 0, that is,
(
2n
n

)
is an

integer of the form 12k± 2. However, it is known that, other than 1 and 2, every
practical number is divisible by 4 or 6, see [19]. �

We will make use of the following result of probability theory.
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Lemma 2.8. Let X be a random variable following a binomial distribution with
j trials and probability of success α. Then

P[X ≤ (α− ε)j] ≤ e−2ε
2j

for all ε > 0.

Proof. See [13, Theorem 1]. �

For each prime number p, let us define

αp :=
1

p

⌈
p− 1

2

⌉
,

so that αp is the probability that a random digit in base p is greater than (p−1)/2.

Lemma 2.9. Let p be a prime number and fix ε ∈ (0, 1/2). Then, for all x ≥ 1,
we have

βp(n) > (αp − ε)
log n

log p

for all positive integers n ≤ x but at most O(px1−2ε
2/ log p) exceptions.

Proof. For x ≥ 1, let k be the smallest integer such that x < pk. Clearly, we have

E(x) := #

{
n ≤ x : βp(n) ≤ (αp − ε)

log n

log p

}
≤

k∑
j=1

#
{
pj−1 ≤ n < pj : βp(n) ≤ (αp − ε)j

}
≤

k∑
j=1

#
{

0 ≤ n < pj : βp(n) ≤ (αp − ε)j
}
. (5)

Given an integer j ≥ 1, let us for a moment consider n as a random variable
uniformly distributed in {0, . . . , pj − 1}. Then, the digits of n in base p are j
independent random variables uniformly distributed in {0, . . . , p− 1}. Hence, as
a consequence of Lemma 2.7, we obtain that βp(n) follows a binomial distribution
with j trials and probability of success αp. In turn, Lemma 2.8 yields

#{0 ≤ n < pj : βp(n) ≤ (αp − ε)j} ≤ pje−2ε
2j. (6)

Therefore, putting together (5) and (6), and using that ε < 1/2, we get

E(x) ≤
k∑

j=1

pje−2ε
2j � (pe−2ε

2

)k ≤ (pe−2ε
2

)log x/ log p+1 < px1−2ε
2/ log p, (7)

as desired. �
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Remark 2.2. The constant 1/2 in the statement of Lemma 2.9 has no particular
importance, it is only needed to justify the � in (7). Any other real number less
than (1

2
log 2)1/2 would be fine.

3. Proof of Theorem 1.1

Assume x ≥ 3 sufficiently large, and put

ε :=
δ − γ

log log x
+

4 log log x

log x
∈ (0, 1/2).

Let n be a positive integer. By Lemma 2.3 and by the definition of κ(n), we
know that p1 · · · pκ(n) is a practical number greater than or equal to n. Since all

the prime factors of
(
n
k

)
are not exceeding n, Lemma 2.2 tell us that if p1 · · · pκ(n)

divides
(
n
k

)
then

(
n
k

)
is practical. Consequently, we have

f(n) ≤ #

{
0 ≤ k ≤ n : p1 · · · pκ(n) -

(
n

k

)}
≤

κ(n)∑
j=1

Tpj(n).

Therefore, it follows from Lemma 2.5 that

f(n) <

κ(n)∑
j=1

nωpj+ε, (8)

for all positive integers n ≤ x but at most

�
κ(x)∑
j=1

p3jx
1−ε � p4κ(x)x

1−ε � (log x)4x1−ε = x1−(δ−γ)/ log log x

exceptions, where we also used Lemma 2.6.
Suppose that n satisfies (8). Since ωp is a monotone increasing function of p,

we get that

f(n) < κ(n)n
ωpκ(n)+ε = n

ωpκ(n)+log κ(n)/ logn+ε
. (9)

Moreover, for n�γ 1 we have

ωpκ(n) < 1− log 2

log pκ(n)
+

1

pκ(n) log pκ(n)
< 1− log 2− γ/4

log log n
, (10)

and
log κ(n)

log n
<

γ/4

log log n
, (11)

where we used Lemma 2.6. Furthermore, since n ≤ x, we have

ε <
δ − γ/2
log log n

. (12)
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Consequently, putting together (10), (11), and (12), we obtain

ωpκ(n) +
log κ(n)

log n
+ ε < 1− log 2− δ

log log n
,

which, inserted into (9), gives

f(n) < n1−(log 2−δ)/ log logn

as desired. The proof is complete.

4. Proof of Corollary 1.1

Obviously, we can assume ε < 1
2

log 2. Put γ := 2ε and δ := 1
2

log 2 + ε, so that
0 < γ < δ < log 2. For all x ≥ 3, let E(x) be the set of exceptional n ≤ x of
Theorem 1.1. Then we have∑

n≤x

f(n) =
∑

n /∈E(x)

f(n) +
∑

n∈E(x)

f(n) <
∑
n≤x

n1−(log 2−δ)/ log logn + #E(x)x

�ε x
2−(log 2−δ)/ log log x + x2−(δ−γ)/ log log x � x2−(

1
2
log 2−ε)/ log log x,

as claimed.

5. Proof of Theorem 1.2

For the sake of notation, put

s := 16, ηs :=

∑s
i=1 αpi − 1∑s
i=1

√
log pi

, εj := ηs
√

log pj,

for j = 1, . . . , s. A computation shows that εj ∈ (0, 1/2) for j = 1, . . . , s.
For x ≥ 1, it follows from Lemma 2.9 that

s∑
j=1

βpj(n) log pj >
s∑

j=1

(αpj − εj) log n = log n, (13)

for all positive integers n ≤ x, but at most

�
s∑

j=1

pjx
1−2ε2j/ log pj � x1−2η

2
s < x0.88097

exceptions. Suppose that n is a positive integer satisfying (13). Then,

d :=
s∏

j=1

p
βpj (n)

j > n.

Also, by Lemma 2.3 we have that d is a practical number, and by the definition
of βpj(n) we have that d divides

(
2n
n

)
. Moreover, since all the prime factors of
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2n
n

)
are not exceeding 2d, Lemma 2.2 yields that

(
2n
n

)
is practical. The proof is

complete.

Remark 5.1. A comment is in order to explain the choice of the parameters εj in
the proof of Theorem 1.2. Given a positive integer s, one could fix some prime
numbers q1 < · · · < qs and some real numbers ε1, . . . , εs ∈ (0, 1/2) such that
q1 · · · qs is a practical number and

∑s
j=1(αqj − εj) ≥ 1. Everything would proceed

similarly, with an estimate of the number of exceptions given by

O
(
xmax{1−2ε21/ log q1,...,1−2ε2s/ log qs}

)
.

To minimize the exponent of x, the optimal choice for εj is

εj = ηs(q1, . . . , qs)
√

log qj, ηs(q1, . . . , qs) :=

∑s
i=1 αqi − 1∑s
i=1

√
log qj

,

for j = 1, . . . , s, which gives the estimate

O
(
x1−2ηs(q1,...,qs)

2
)
.

Since αp = 1
2

+ O(1
p
) for each prime number p, we get that ηs(q1, . . . , qs) is max-

imized when qj = pj, for j = 1, . . . , s, and that ηs(p1, . . . , ps) → 0 as s → +∞.
Lastly, some numeratical computations verify that the maximum of ηs(p1, . . . , ps)
is reached for s = 16.
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Angew. Math. 44 (1852), 93–146.

8. J. C. Lagarias, Ternary expansions of powers of 2, J. Lond. Math. Soc. (2) 79 (2009), no. 3,
562–588.

9. M. Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number
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