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Hierarchical Divergence Conforming Bases for
Tip Singularities in Quadrilateral Cells

Roberto D. Graglia , Fellow, IEEE, Andrew F. Peterson , Fellow, IEEE, and Paolo Petrini , Member, IEEE

Abstract— Electromagnetic scattering from targets such as thin
conducting plates induce singular currents and charges at sharp
edges and sharp tips. In this article, a hierarchical family of
divergence-conforming singular basis functions are presented for
modeling the singularities associated with current and charge
density at tips. These new basis functions are used to increment
existing edge-singular bases so that on cells that contain a
singular tip where two singular edges join together, the final base
combines a hierarchical polynomial representation with linearly
independent singular terms that incorporate general exponents
that may be adjusted for the specific wedge angle of interest and
for the specific angle at the tip. Several variations on the tip
functions are proposed.

Index Terms— Basis functions, hierarchical basis functions,
method of moments, singular basis functions, tips, wedges.

I. INTRODUCTION

THE electromagnetic modeling of complex 3-D struc-
tures requires numerical techniques. In recent years,

higher-order representations have been developed to improve
accuracy and efficiency of these approaches [1]. Higher-order
representations on smooth parts of an object can be effective,
but the presence of wedges, sharp edges, and tips can negate
the improvement in efficiency due to the unbounded nature
of current and charge densities in these locations. Several
types of special basis functions have been developed for the
purpose of representing singular currents and charge densities
near edges [1]–[3]. To date, less attention has been directed at
the effect of tips [4], such as the tips of a square conducting
plate [5]. The current density and charge density at a plate tip
are known to be infinite, with a singularity that is different
from that arising along the plate edge [6]. Throughout this
article we use the term “edge singularity” to describe a
singularity occurring along a line segment within the domain,
such as the boundary of a conducting plate on which the
current is expanded. An edge singularity takes up one side
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Fig. 1. Flat surface meshed by quadrilateral cells. The surface shown in the
figure has 12 edges, eight salient corners, and four reentrant corners. Edge
singularities take up one side of a cell; tip singularities occur at a corner of
a cell.

of a cell. A “tip singularity” occurs at a single point in a
domain, typically the corner of a cell, and involves a different
behavior as explained below (see Fig. 1).

A tip singularity may be modeled by the apex of a cone.
A conducting cone that has been flattened in the limiting
case is known as a plane angular sector (PAS), and can be
used to determine the field behavior near the tips of plates
or apertures [7]–[9]. The PAS was studied by Satterwhite
and Kouyoumjian [7] who proposed an exact solution in
sphero-conal coordinates (r, θ, ψ), where r is the distance
from the tip and the angle ψ ranges from 0◦ to 180◦ across
one side of the sector (note that the polar frame (ρ, ς) can
describe a PAS with a common distance from the tip, but the
angles ς and ψ are not simply related).

The application of interest is electromagnetic scattering,
involving an incident uniform plane wave of monochromatic
frequency that induces currents on the conducting target,
which in turn produce scattered fields. The PAS scattering
problem, just like the canonical problem of the diffraction
by a quarter-plane or the scattering from a cone, are classic
electromagnetic problems treated by various authors using
the Wiener–Hopf or other sophisticated asymptotic techniques
(see for example [10]–[22] and references therein). That said,
from the exact solution given in [7] one can extract an
asymptotic expansion of the current in terms of sphero-conal
coordinates [4]

Jr �
∞�

n=0

∞�
q=1

A2n−1,q(ψ) r2n−1+νo,q + A2n,q(ψ) r2n+νe,q

sinψ

(1)
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Fig. 2. Singularity exponents for salient PEC sectors.

Jψ � sinψ
∞�

n=0

∞�
q=1

B2n−1,q(ψ) r2n−1+νo,q (2)

with a corresponding expression for the charge density in the
form

∇ · J �
∞�

n=0

∞�
q=1

C2n−1,q(ψ) r2n−1+νe,q + C2n,q(ψ) r2n+νo,q

sinψ
.

(3)

The exponents in (1)–(3) are the sum of an integer m (even
or odd) that depends on the outer summation index n plus
an irrational number (indicated by the Greek letter νo,q or
νe,q ) that depends on the inner summation index q . These
exponents do not depend on the frequency and grow slowly
with q and more rapidly with n [4]. The so-called even or
radial current-components are associated with even values of
m = 2 n. The odd or tangential current-components are
associated with odd values of m = 2n − 1. The even/odd
designation originates with the type of boundary conditions
imposed on the Lame equations [7]. Note that (2) involves
only odd exponents. Note also that the terms in the sums
(1)–(3) may or may not be excited from a particular source,
and therefore may or may not be present in a particular
solution even if a vertex is present.

Brinkley [23] used the results of [7] to improve the accuracy
of the far-field results obtained with high-frequency techniques
and current-based approaches (i.e., physical optics and its
extensions) in many nonspecular regions around a flat plate.
In fact, by considering a finite (but not too small) number of
coefficients νoq and νeq , one gets better approximations of “the
diffracted vertex current” that yield results that compare better
with numerical results and measurements for most cases.

The tangential current component is unbounded along the
two edges forming the tip, although the even components
vanish at the tip. Of interest is the fact that the leading order
singularity of the current (1), and (2) is not directly related to
that of the charge density (3). In fact, (1) and (2) and Fig. 2
show that for salient sectors the leading order singularity of
the current is νo −1 while that for the charge density is νe −1.

Throughout this article, as in (1)–(3), we denote terms
related to even components with the subscript “e,” while we
use the subscript “o” to denote terms related to odd compo-
nents. In the following the dependence on q is understood
and the (integer) subscript q may be omitted. In addition,

we sometimes specify the singularity order by the values of q
and n since in the exponents we report the correct value 2n
and 2n − 1 for the even and odd components, respectively.

The critical parameters are the exponents νo and νe of
“salient” perfect electric conducting (PEC) sectors shown
in Fig. 2 for q = 1; these exponents may be obtained in
the manner developed in [7] and have been tabulated in [4]
up to q = 4 (for a 90◦ sector), and in [6] and [9] for q = 1.
Sectors having aperture angle higher than 180◦ are termed
“reentrant”; these are out of the scope of this article and ought
to be numerically modeled in a manner different from the one
reported in this article.

Previous work on this topic was published by Andersson,
who carried out a method of moments (MoM) analysis of
the rectangular plate by developing special basis functions
that provide the leading order current and charge singularities
on rectangular cells within the electric field integral equation
(EFIE) [5]. However, most MoM approaches for the EFIE are
based on divergence-conforming basis functions, and Ander-
sson’s functions for the square plate are only approximately
so. A second attempt at the corner problem was proposed by
Ozturk et al. [24], who employed triangular cells, but included
only one exponent at the tip.

In the following, improved divergence-conforming basis
functions are proposed for modeling tip singularities of salient
sectors of arbitrary aperture angle. These new functions form a
hierarchical set whose lowest-order members are motivated by
the Andersson bases; members of the set may be added to the
edge-singular bases of [3] in cells connected to tips to more
properly model the current and charge density singularities.
We present results for planar conducting plates.

Section II discusses why numerical models capable of
modeling edge singularities are inadequate for modeling tip
singularities. Section III introduces the coordinates and vari-
ables used to describe tip cells. The new functions to model the
odd and even current component near a tip are presented and
discussed in Section IV. The functions of Section IV span three
rectangular cells; Section V introduces corrective techniques
that reduce the domain of the tip singular functions to a single
quadrilateral cell. The numerical technique used to compute
the MoM integrals associated with singular tip-functions is
described in a companion article [25], while [26] describes the
integration of the edge-singular basis functions given in [3].
Numerical results in the frequency domain are reported and
discussed in Section VI.

II. WHAT THE OTHER HIGH-ORDER BASES ARE MISSING

The inadequacy of polynomial or edge-singular bases to
deal with tip singularities is evident by considering the behav-
ior of the current near a 90◦ sector tip; in this case the leading
order singularity of the current is νo − 1 = −0.18534 while
that of the charge density is νe − 1 = −0.70342 (see [4]).
For salient sectors the singularity of the charge density of the
even current-component is always stronger than that of the
odd current-component.

Table I reports the Andersson bases in the Cartesian refer-
ence system with origin at the 90◦ sector tip [5]. The bottom
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TABLE I

ODD AND EVEN CURRENT-COMPONENTS FOR A 90◦ TIP

of Table I reports the “reconstructed” currents and divergences
obtained from the hierarchical basis of [3, Table II] consisting
of edge-singular functions associated with the two edges that
form the sector tip. The fact that the charge density (3) does not
contain a term proportional to r νo−2 led Andersson to model
the “odd” current-component proportional to r νo−1 with a
basis function having zero divergence over its entire definition
domain [5].

By rewriting the Andersson bases from Table I in polar
(ρ, ς) coordinates, one obtains equations that agree with
(1)–(3); for instance,�

x2 + y2

x y
= 1√

sin ς cosς
=

√
2√

sin(2ς)
. (4)

Although the Andersson basis functions and the recon-
structed functions of Table I obtained from the hierarchical
basis of [3, Table II] look similar, the odd current of Andersson
is unbounded at the tip whereas the reconstructed Joapprox. is
exactly equal to zero on the sector tip to satisfy the boundary
conditions along the edges. Also, the divergence of Joapprox.

vanishes for x and y going to zero with the same speed,
i.e., for x = y → 0. A similar consideration is repeated
for the even current-components. At the tip, the singularity of
the divergence of Andersson’s function is completely different
from the reconstructed one. Approaching the tip, both ∇ · J e

and ∇ · Jeapprox. diverge, but clearly with different rates since,

Fig. 3. Tip functions span three adjacent quadrilateral cells, locally numbered
counterclockwise from 1 to 3. The tip of the sector coincides with the free
vertex of cell 2, not adjacent to cell 1 nor to cell 3. The tip aperture angle of
the salient sector is between 0◦ and 180◦ .

from Table I

∇ · J e

∇ · J eapprox.

= 2 (1 + νe)

��
x2 + y2

�νe

x + y
. (5)

This suggests that the models must be improved in the imme-
diate vicinity of the tip itself. In Sections III–V, we introduce
vector sets able to mimic the asymptotic expressions (1)–(3)
and then extract basis functions of singularity order q and n.
In the end, we will retain only the functions that are unbounded
at the tip. This implies that we will retain only the functions
with singularity order n = 0 because the other functions
for n ≥ 1 yield a zero contribution to the current and its
divergence around the tip.

III. PARENT VARIABLES AND SINGULAR FUNCTIONS

ON TIP CELLS

The tip basis functions are piecewise defined on three adja-
cent quadrilateral cells, locally numbered counterclockwise
from 1 to 3 in Fig. 3. The tip of the sector coincides with
the free vertex of cell 2, not adjacent to cell 1 nor to cell 3.

Each basis function piece is defined on a 2-D parent-cell,
and then mapped onto the 3-D observer or child space. The
vector r denotes a point in the child space. In turn, the cells are
parametrized by four dummy parent-variables

�
ξβ, ξβ±1, ξβ+2

�
whose subscripts are counted modulo 4, with [1]

ξβ + ξβ+2 = 1 (6)

ξβ+1 + ξβ−1 = 1. (7)

The cell edges are also locally numbered from 1 to 4 in coun-
terclockwise order, and four edge-vectors that are functions of
the child-variable r are then defined, with [1]

�β + �β±2 = 0. (8)

To avoid confusion, we identify with different subscripts the
variables and the edge-vectors of cell 2 with respect to those
used for cells 1 and 3, so as to ensure the following.

1) Cell 1 has its ξi+1 = 0 edge in common with the ξ j = 0
edge of cell 2.

2) Cell 3 has its ξi−1 = 0 edge in common with the ξ j−1 =
0 edge of cell 2.

Hence, the dummy variables used to describe cells 1 and 3
are {ξi , ξi±1, ξi+2}, while cell 2 is described by the variables
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TABLE II

ODD AND EVEN FUNCTIONS OF ORDER n, FOR n ≥ 0 AND INTEGER

�
ξ j , ξ j±1, ξ j+2

�
. Cell 2 has its vertex ξ j+1 = ξ j+2 = 0 on the

sector tip, while the singular edges of cells 1 and 3 are along
the local coordinate-line ξi = 0, as in [3]. Fig. 3 shows the
edge vectors � j+1 and � j+2 of cell 2, and the edge-vector �i

of the cells 1 and 3.

IV. BASIS FUNCTIONS FOR TIP SINGULARITIES

Table II shows the expression of the tip singular functions
of singularity order n. T and are tangential functions,
R is an even radial function. The functions T and R are
piecewise defined on three adjacent cells locally numbered
counterclockwise from 1 to 3, as shown in Fig. 3. j+1, j+2

are bubble tangential functions that span only the number 2
cell. In the Table, J (with no subscript) indicates the Jacobian
of the transformation from parent to child space of each cell.
Demonstration of the continuity of the normal component
of T and R along the edge in common to a cell pair is
straightforward, and it is left to the interested reader. The value
of the two constants KT and K R of Table II does not affect the
conformity to the divergence of the functions and therefore,
in applications, one can safely use KT = K R = 0.

By replacing Tn(ξi , 1) with (νξν−1
i − 1) in the T 1 and T 3

parts of T on cells 1 and 3, one obtains the edge-singular

functions

e�i±1(r) = �
νξν−1

i − 1
�
�i±1(r) (9)

of [3, Table I], apart a sign adjustment. The same applies to
functions R1 and R3.

The piece T 2 of T has zero divergence and is obtained from
the potential 	2 as follows:

	2 =
�
ξi+1 ξi+2

�
ξ2

i+1 + ξ2
i+2

�νo+2n−1
(10)

T 2 = n̂ × ∇	2 + KT
	
� j−1(r)− � j (r)



(11)

where n̂ is the unit normal to the plane angular sector. Fig. 4
shows the behavior of T and R for n = 0 and KT = K R = 0
on a 90◦ sector described by three equal square cells of unit
side. Fig. 5 shows the behavior of the bubble functions j+1

and j+2 for n = 0 on the same 90◦ sector.
Outside a small circular area around the tip, the normal

component of the tip functions along the ξ j+1 = 0 edge (and
the ξ j+2 = 0 edge) must go to zero as the square root of
the distance from the edge itself [27], therefore proportional
to

�
ξ j+1 (or

�
ξ j+2). Since the functions we consider are

even or odd, the behavior is shown only for the components
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Fig. 4. Tip functions of singularity order n = 0 with vector plots reported at
the top and divergence reported at the bottom. The behavior of the tangential
function obtained for νo = 0.81466 is shown at left. The radial function for
νe = 0.29658 is shown at right.

Fig. 5. Bubble functions j+1 (at left) and j+2 (at right) for n = 0,
νo = 0.81466. The vector function plots are at the top, their divergence is
reported at the bottom. The divergence of j+1 is zero along the ξ j+2 = 0
edge while ∇ · j+2 = 0 along the ξ j+1 = 0 edge.

orthogonal to the ξ j+1 = 0 edge, that is, the components along
the gradient of ξ j+1. In fact, in the limit of small ξ j+1, and
for 0 ≤ ξ j+1 < ξ j+2 and KT = K R = 0, one obtains⎡⎢⎢⎢⎣

T2

R2

j+1

⎤⎥⎥⎥⎦ · ∇ξ j+1 ≈
�
ξ j+1

J

⎡⎢⎢⎢⎣
AT ξ

2n+νo−3/2
j+2

ξ
2n+νe−1/2
j+2

−ξ2n+νo+1/2
j+2

⎤⎥⎥⎥⎦ (12)

with AT = −(2 n + νo − 1/2).
Table III clarifies the modeling capabilities of the tip func-

tions on a 90◦ corner-cell with unitary Jacobian and side
length. In this case, by introducing a local polar reference
frame (ρ, ς) centered on the 90◦ tip, the tangential functions
T 2 and R2, and the bubble functions simplify as in Table III,
in agreement with Andersson [5] for n = 0, and with cosς and
sin ς given as in Table IV. Also, by considering the variation

TABLE III

TIP FUNCTIONS FOR A 90◦ CORNER

TABLE IV

PARENT TO POLAR COORDINATE MAPPING FOR THE

UNIT RIGHT ANGLED CORNER CELL

in ρ of these functions it is quite evident that, in the vicinity
of the tip, these are in full agreement with the asymptotic
expressions (1)–(3). Sufficiently far away from the tip and
from the edge(s) opposite the tip, however, the singularity
goes progressively over to the “edge” type. The T , R, and

functions can be normalized, for example, by setting��
cell2

�
T(n) · T(n)J dξ = 1 (13)��

cell2

�
R(n) · R(n)J dξ = 1 (14)��

cell2

�
j+1(n) · j+1(n)J dξ = 1 (15)��

cell2

�
j+2(n) · j+2(n)J dξ = 1. (16)
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Fig. 6. Modified tip-functions �T and �R of singularity order n = 0 with vector
plots reported at top and divergence reported at the bottom. The behavior of
the tangential function obtained for νo = 0.81466 is shown at left. The radial
function for νe = 0.29658 is shown at right.

As can be seen from Table III, the order m = 2n − 1 of the
T function is lower than the order m = 2n + 1 of the bubble
functions . Therefore, functions of order n should only
be used with the T function of order n + 1. At this point, it is
apparent that the bubble functions do not contribute to the
currents near the tip. Thus, in applications it may be sufficient
to use only the T and R functions of order n = 0. As a
matter of fact, the bubble functions were introduced and
discussed only to highlight that the function family of Table II
models the asymptotic behavior of the current given in (1)–
(3). A user may instead decide to use additional functions in
the q series higher than order q = 1. However, it may be quite
challenging to use functions of order q > 1 in an MoM code
because these functions are not very linearly independent of
each other. Given that as q grows the functions are essentially
zero near the tip (ρ = 0), the singular tip behavior is primarily
provided by the functions obtained with q = 1 (and n = 0).

V. MODIFICATION OF T AND R INTO BUBBLE FUNCTIONS

The divergence-conforming T and R functions of
Section IV span three cells; cell 2 containing the tip and
adjacent cells 1 and 3. However, it is simple to modify
these functions so that they span only cell 2 by adding some
corrective terms to T 2 and R2 that make them vanish along
the edges in common with cells 1 and 3. The corrective terms
shall not modify the value of the function and its divergence
at the tip. In this way, one obtains functions of the type
shown in Fig. 6 (we suggest the reader compare this figure
with Fig. 4).

For example, the T 2 function of Table II obtained for
KT = 0 can be modified to obtain the tangential function�T = T 2 + ξ j+1 Tn

�
ξ j+2, 1

�
� j−1(r)

− ξ j+2 Tn
�
ξ j+1, 1

�
� j (r) (17)

∇ · �T = ξ j+1 DT n
�
ξ j+2

� − ξ j+2 DT n
�
ξ j+1

�
J (18)

with

Tn(ξa, 1) =
�

1

2
+ ξ2

a (2n − 1 + νo)

ξ2
a + 1

���
ξ2

a + 1
�2n−1+νo

√
ξa

(19)

DT n(ξa) = 	
1 + ξ2

a (2νo + 4n − 1)

��

ξ2
a + 1

�2n−3+νo

√
ξa

. (20)

The divergence of �T is no longer zero but vanishes at the tip.
Likewise, one can add a corrective term to the R2 function

of Table II obtained for K R = 0 to produce the radial function�R = R2 − ξ j+1 Rn
�
ξ j+2, 1

�
� j−1(r)

− ξ j+2 Rn
�
ξ j+1, 1

�
� j (r)

+1 − ξ2
j+1�

ξ j+2

� j

J − 1 − ξ2
j+2�

ξ j+1

� j−1

J (21)

J ∇ · �R = (2n + 1 + νe)Rn
�
ξ j+1, ξ j+2

�
− 2

	
ξ j+1 Rn

�
ξ j+2, 1

� + ξ j+2 Rn
�
ξ j+1, 1

�

+2

�
ξ j+1�
ξ j+2

+ ξ j+2�
ξ j+1

�
(22)

with

Rn(ξa, ξb) =
��
ξ2

a + ξ2
b

�2n+νe

√
ξaξb

. (23)

The last two terms on the right-hand side of (21) ensure that
the divergence does not change sign along the two edges that
form the tip. The modified tip functions �T and �R of singularity
order n = 0 are shown in Fig. 6.

The preceding equations constitute an additive correction
technique, but alternatively one can use a multiplicative cor-
rection technique to replace T2 and R2 with

�T = T 2 cos2

�
πξ j+1

2

�
cos2

�
πξ j+2

2

�
(24)

�R = R2 cos2

�
πξ j+1

2

�
cos2

�
πξ j+2

2

�
. (25)

The divergence of (24) and (25) is

∇ · �T = π

��
ξ2

j+1 + ξ2
j+2

�2n−3+νo

4J
�
ξ j+1ξ j+2	�

ξ2
j+1 − ξ2

j+2

�
A − 2ξ j+1ξ j+2(2n + νo)B



(26)

∇ · �R = −

��
ξ2

j+1 + ξ2
j+2

�2n+νe

J
�
ξ j+1ξ j+2

×
�
π

A

2
− (2n + 1 + νe) cos2

�
πξ j+1

2

�
cos2

�
πξ j+2

2

��
(27)

with

A = ξ j+1 sin(πξ j+1) cos2

�
πξ j+2

2

�
+ ξ j+2 sin(πξ j+2) cos2

�
πξ j+1

2

�
(28)
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Fig. 7. Real part of the current induced on a 1λ×1λ plate at normal incidence.
The results at top-left are obtained with the [p, s,m] = [1, 1, 0] base. The
upper-right figure shows the difference in the real current obtained with
and without the tip-singular bases, magnified by a factor of 10. The bottom
figures show the contributions of the even (left) and odd (right) tip-singular
functions to the upper-left result, magnified by a factor of 20.

B = ξ j+1 sin(πξ j+2) cos2

�
πξ j+1

2

�
− ξ j+2 sin(πξ j+1) cos2

�
πξ j+2

2

�
. (29)

Once again, the last two terms on the right-hand side of (21)
should be added to (25) to guarantee that the divergence of �R
does not change sign along the two edges that form the tip.
We leave as an exercise for the interested reader to derive
the analytical expression for the divergence of these latter
functions.

VI. NUMERICAL RESULTS

This section reports results for infinitely thin metal plates
obtained by solving the EFIE with and without the tip-singular
functions presented in this article; the representation includes
the edge-singular quadrilateral basis of order [p, s,m] illus-
trated in [3]. The edge-singular background base is described
by an integer p denoting the background polynomial order,
an integer s giving the number of fractional exponents from
[3, eq. (4)] included in the edge-singular representation, and an
integer m providing the order of the edge-singular basis subset
in the longitudinal direction. For the tip-singular functions,
we report results obtained as follows.

1) The tip-functions described in Section IV that span three
rectangular cells (tip-functions A).

2) The multiplicative corrected tip-functions given in (24)
and (25) that span only the cell at the corner (tip-
functions B).

Fig. 7 shows results for the current induced by a mono-
chromatic plane wave normally incident on a square plate
of size 1λ×1λ meshed with 25 square cells of equal size
λ/5×λ/5. The plate is in the x, y-plane with sides parallel to
x and y, and the incident E-field is polarized in the negative
ŷ-direction. The figure shows results only for the real part
of the current; the imaginary part which is smaller than the

Fig. 8. Imaginary part of the induced current at grazing incidence on
two plates 0.2λ × 0.4λ spaced 0.05λ obtained using the [1,1,0] order base
augmented with the type B tip-singular functions.

Fig. 9. Imaginary part of the difference between results obtained with and
without tip-singular functions, magnified by a factor of 20.

real part is not reported. Fig. 7 at top left was obtained by
augmenting the [1,1,0] base with tip-singular basis functions
of the A type. Fig. 7 at top right show the difference between
the results at top left and the results obtained with the standard
[1,1,0] base without tip-singular basis functions (magnified
by a factor of 10). The contribution to the current shown at
top-left given just by the tip-singular even (at left) and odd
(at right) functions is shown in the bottom part of the figure.
Since we have used type A tip-functions, these contributions
span only the three square cells that form each of the four
plate corners, and not the entire plate; the figures at bottom
show only the behavior around the bottom left corner of the
plate.

For the far-zone fields, the results with and without the
tip-singular functions are similar. Nonetheless, near-field dif-
ferences in the current density are clearly visible in Fig. 7 at
top right. The order of the system matrix of the problem treated
with the edge-singular base of [3] (without the tip functions)
is 216, with CN = 440. With the tip functions, the order of
the system matrix is 224, with CN = 600.

Figs. 8 and 9 consider the case of two 0.2λ × 0.4λ plates
located in the Cartesian plane x, y with sides parallel to
x and y, and separated by a gap of 0.05λ. Each plate is
meshed identically by using 32 square cells of sidelength
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Fig. 10. Equilateral triangular plate at grazing incidence. The lefthand column of the figure shows, with the same scale, the real (at top) and imaginary
(at bottom) parts of the induced current obtained with the [1,1,0] base augmented by the tip-basis functions of the B type. The central column shows the
difference between the current obtained with and without the tip-singular functions, magnified by a factor of 10. At right, we show the contribution due just
to the tip-singular functions, also scaled by 10×. The 48-cell mesh is shown in the figures in the central and righthand columns.

Fig. 11. Backscatterer RCS versus the total number of unknowns (DoF) for the 1λ×1λ square plate (left-hand column), and for the equilateral triangular
plate with sides equal to 1λ (right-hand column), as the quadrilateral-cell meshes are uniformly refined. The results are reported using the same vertical scale
in dB square wavelengths; normal incidence results are reported at top, grazing incidence results at bottom. The legends of the bottom figures show the
markers used to distinguish the results obtained with four different base orders. Results for the [1,1,0] base are shown only in the figure at the bottom left
since they overlap the results obtained with the base [0,1,0] in the other figures. The results marked with red diamonds are obtained with a base augmented
by the tip-singular functions B.

λ/20. The plates are illuminated by a grazing-incident plane
wave propagating along the positive ŷ-axis with a unitary
E-field polarized along the positive x̂-direction. This structure
has been studied numerically by using the [1,1,0] order base
augmented or not with the type B tip-singular functions. While
the real part of the induced current shows little difference after
incorporating the tip-functions, some differences are evident
in the imaginary component of the induced current shown
in Fig. 8.

Fig. 9 shows the difference in the imaginary currents of
the two-plate problem of Fig. 8 obtained with and without

the tip-singular functions, magnified by a factor of 20. It is
evident that the dominant difference is due to the radial (even)
component of the current at the two adjacent tips along the
trailing edges (top of figure) of the plates.

Quadrilateral cells can model tips for a fairly wide range of
salient angles; for example, let us consider the triangular plate
of Fig. 10 located in the first quadrant of the Cartesian plane
x, y, with a side parallel to the x-axis, and on which impinges
a grazing plane-wave propagating along the positive ŷ-axis
with unitary E-field polarized along the positive x̂-direction.
Fig. 10 shows the real (top row) and the imaginary part
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(bottom row) of the current on the triangular plate (with sides
equal to 1λ) obtained with the [1,1,0] base augmented by the
tip-basis functions of the B type. Exponents for a 60◦ corner
are νo = 0.91904 and νe = 0.24010. It appears that in this case
the even tip singularity prevails over the odd one for the two
corners at bottom; for the top corner it is the other way around.

The preceding plots show differences between the results
obtained with and without the tip singular functions in the
near-field region (for example, for the induced currents), but
differences can also be observed for far-field results. Fig. 11
shows the backscatterer radar-cross section (RCS) obtained
with bases of different orders for the square plate of size
1λ×1λ considered in Fig. 7 (left-hand column), and for the
equilateral triangular plate with sides equal to 1λ of Fig. 10
(right-hand column). Normal incidence results are reported at
top, grazing incidence results are given at bottom. The results
obtained with a base augmented by the tip singular functions
B are those marked with the red diamonds. From these results,
it is quite evident that relative to a pure polynomial represen-
tation, the edge-singular functions dramatically improve the
convergence of these results, while the tip-singular functions
provide a more minor, secondary level of improvement that
is more noticeable for grazing incidence than for normal
incidence.

VII. CONCLUSION

New families of divergence-conforming basis functions for
modeling the singularities associated with current and charge
density at tips are presented. The new basis functions are used
to increment existing edge-singular bases so that on cells that
contain a singular tip where two singular edges join together,
the final base combines a hierarchical polynomial representa-
tion with linearly independent singular terms that incorporate
general exponents that may be adjusted for the specific wedge
angle of interest along edges and for the specific corner angle
at the tip. Results for the current induced by plane waves
incident on infinitely thin rectangular or triangular plates are
presented. From the few test cases examined in this article,
all of which involved problems where large edge currents
were induced by the excitations, one may conclude that the
addition of tip-singular functions to the existing edge-singular
basis sets generally provides second-order improvements in
the numerical results. In situations where edge effects are less
pronounced, however, tip singularities may take on greater
importance.
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