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Coupled thermo-mechanical finite element models with

node-dependent kinematics for multi-layered shell structures

G. Lia,∗, M. Cinefraa,, E. Carreraa,

aMUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract

Node-dependent Kinematics (NDK) shell finite element (FE) formulations are presented for

the steady-state thermo-mechanical analysis of laminated structures. The displacements and

temperature change are treated as primary variables in the FE models and are directly solved

through the coupled thermo-mechanical models. The enforcement of distributed temperature

boundary conditions on the top or the bottom surfaces of hierarchical shell elements is conducted

through the Linear Least Squares. The effectiveness of the proposed FE approaches is verified by

comparing the results against those from the literature. The application of adaptive refinement

approach based on the hierarchical elements and NDK to build FE models with optimal efficiency

is demonstrated through a numerical example.

Keywords: thermal stresses, node-dependent kinematics, composite shells, hierarchical

element, Carrera Unified Formulation

1. Introduction

Stresses due to temperature variation are important environmental effects on composite struc-

tures. In laminated shells, thermal stresses may induce matrix cracks or delaminations. In finite

element (FE) simulations, accurate thermal stress evaluations require reliable temperature esti-

mation and proper thermo-mechanical coupling.5

Heat conduction is governed by the Fourier law of conduction [10]. The resultant tempera-

ture variation causes strains in structures. Due to the thermo-mechanical coupling, straining of

structures also generates heat in transient and dynamic processes. In steady-state conditions,

thermo-mechanical problems are partially coupled, which means only the deformation due to
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temperature change is considered. Most works available in the literature adopt assumed tem-10

perature field. Das and Rath [7] considered the transverse shear effects in the bending of a thick

plate under the assumed temperature field. Miller et al. [23] reported the use of Kirchoff-Love

hypothesis in layered shell models, and the temperature variation was taken as input to the

analysis. Kant and Khare [13] used a higher-order model in FE modeling of multi-layered plates

under assumed linear temperature profile through the thickness. Adopting Reddy’s higher-order15

theory [24, 27], Khdeir and Reddy [17], Khare et al. [15] studied the response of cross-ply lam-

inated plates and shell under thermal fields with linear distribution through the thickness and

presented exact solutions, respectively. Khdeir [16] suggested closed-form solutions for circular

cylindrical shells under temperature field that has assumed uniform or linear variation through

the thickness. Based on a higher-order theory [26], Khdeir et al. [18] proposed exact solutions20

for cylindrical and doubly-curved shells under assumed thermal loads and various boundary

conditions.

Temperature field can be obtained in a separate step by solving Fourier’s equation and then

be used in a subsequent step on the structure as input data. Dumir et al. [8] used an improved

efficient zig-zag theory and a third order theory for cylindrical laminated shells, and the exact25

temperature profile described in a sub-layerwise manner was the input to the partially-coupled

thermo-mechanical models. Carrera [1] compared the structural response of multi-layered plates

under assumed linear and exact temperature profiles through the thickness and pointed out that

the exact temperature field is essential for thick plates. Cinefra et al. [5] developed shell finite

elements for the thermoelastic analysis of multi-layered structures under exact temperature fields30

obtained in a separate step.

Carrera Unified Formulation (CUF) is a general framework for the development of refined

plate and shell models proposed by Carrera [4]. Starting from a compact form of displacement

assumptions, weak form governing equations can be expressed through the fundamental nuclei

(FNs) [4]. The expressions of FNs are independent of the kinematic assumptions and are widely35

applicable to a variety of structural models. CUF framework facilitates the development of

advanced FE models. A variety of basis functions can be employed in either ESL (Equivalent-

Single Layer) or LW (Layer-Wise) approach to formulating refined structural theories [4]. In

CUF-based structural models, the type of basis functions adopted and the number of thickness

functions are both variable and can be treated as model input parameters. The refinement40

of the models can be gradually conducted until the prescribed accuracy is achieved. Besides

the refinement of kinematic assumptions, the shape functions can also be enhanced through
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p-refinement in hierarchical shell elements. As reported, p-refinement is more efficient than h-

refinement due to its high convergence rate [32, 30]. Also, the avoidance of re-meshing can

shorten the pre-processing time consumption. Moreover, it is reported that 2D hierarchical45

elements are not sensitive to locking phenomena when the polynomial order is sufficiently high

[31, 32, 29, 28, 9, 30]

Based on CUF, Carrera and Zappino [2] introduced the dependence of kinematic assumptions

on the shape functions in refined FE models. This approach was named as Node-dependent

Kinematics (NDK). Trough NDK, various kinematic models can coexist in a shell element and50

be blended by the shape functions over the shell in-plane domain. More importantly, NDK

allows for the local kinematic refinement in the critical region with local effects to be captured.

The features make NDK feasible in the construction of simultaneous global-local models with

multiple kinematic models [22]. Since no additional coupling or modification of mesh is needed,

NDK is convenient to use in FE analyses. In general, the solution accuracy can be improved by55

enriching the assumptions of the displacement field. Meanwhile, the increased number of model

variables leads to raised computational costs in FE analyses. With NDK technique, accuracy in

the local area can be kept with lower computational efforts. Li et al. [22] demonstrated that in

comparison with 3D elements, the NDK-based refined shell elements have much higher numerical

efficiency while guaranteeing the 3D solution accuracy in the local region.60

In the present work, the NDK technique is extended to partially coupled steady-state thermo-

mechanical simulations. p-version hierarchical shape functions are applied to the shell elements,

and FE models with variable ESL/LW nodal capabilities is adopted in the numerical analysis.

Hierarchical Legendre Expansions are employed as basis functions of the refined LW models and

used in combination with Taylor-type kinematic higher-order models. An adaptive refinement65

procedure based on NDK to obtain accurate approximates of structural responses is presented,

and the numerical efficiency of the proposed approach is demonstrated through numerical exam-

ples on laminated shell structures.

2. Preliminaries

Fig. 1 shows a differential element of a shell [25], in which α and β indicate the lines of

curvature on the middle surface and z the thickness direction. The infinitesimal area dS parallel

to the middle surface at z is:

dS = Hα Hβ dα dβ = Hα Hβ dΩ (1)
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Figure 1: A differential element of a doubly curved shell structure. Rα and Rβ are the radii of curvatures in α
and β directions, respectively. dΩ is the infinitesimal area on the middle surface.

in which dΩ is the infinitesimal area on the middle surface of the shell. An elemental volume dV

is given by:

dV = Hα Hβ Hz dα dβ dz . (2)

For shells with constant radii of curvature, the metric coefficients Hα, Hβ , and Hz read:

Hα = (1 + z/Rα), Hβ = (1 + z/Rβ), Hz = 1 . (3)

where Rα and Rβ are the principal radii of curvature of the middle surface. For more details70

about shell theories, the reader is referred to the works of Leissa [20], Reddy [25].

For doubly curved shells, corresponding to the displacement vector u(α, β, z) = {u, v, w}⊤,
the strain vector is arranged as:

ε = {εαα, εββ , εzz, εβz, εαz, εαβ}⊤ (4)

and the strain components can be obtained by considering:

ε = bu (5)
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in which the differential operator matrix b reads:

b =
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
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(6)

Note that when Hα = Hβ = 1 (Rα → ∞, Rβ → ∞), a shell becomes a plate which is flat in

geometry.

The temperature gradient vector ϑ can be obtained through:

ϑ = −∇ θ (7)

where ∇ is the gradient operator vector. For doubly curved shells, ∇ takes the following form:

∇ = { ∂α
Hα

,
∂β
Hβ

, ∂z}⊤ (8)

For a homogeneous medium, the linear constitutive relations in matrix form read:

σ = Cε− λ⊤θ (9)

q = κϑ (10)

wherein σ is the stress vector, q the heat flux vector, and λ the thermal stress coefficients vector.

For shells with double curvatures, σ is arranged as:

σ = {σαα, σββ , σzz, σβz, σαz, σαβ}⊤ (11)

In orthotropic materials, there exist three orthogonal planes of symmetry. In the material
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coordinate system (1, 2, 3), the material coefficient matrix Cm takes the following form:

Cm =


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(12)

which is characterized by nine independent material constants, namely the Young’s moduli (E1,

E2, E3), the shear moduli (G23, G13, G12), and the Poisson ratios (ν12, ν13, ν23). For more75

details, one is referred to the work of Reddy [25].

The heat conduction coefficient matrix κm in the material coordinates reads:

κm =











κ11 0 0

0 κ22 0

0 0 κ33











(13)

Temperature increase causes the structure to expand and results in the change of stresses. This

effect is captured by the thermal stress coefficients vector λ. Expressed in the material coordinate

system (1, 2, 3), λm has the following relation with the thermal expansion coefficients αm:

λ⊤m = Cm αm (14)

wherein

αm =
{

α11 α22 α33 0 0 α12

}⊤

(15)

For the transformation of the material coefficient matrices from the material coordinate system

to the analysis system, the reader is referred to Li [21].

3. Node-dependent Kinematic shell FE models

Based on CUF, the displacements of a plate structure can be approximated as:

u(x, y, z) = Fτ (z)uτ (x, y) (16)
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where the thickness functions Fτ (z) are determined by the adopted theories of shell structures,80

and uτ (x, y) are the in-plane displacement vectors. As presented by Carrera et al. [4], both ESL

and LW models for laminated shells can be considered in the CUF framework.

In FE models with Node-dependent Kinematics (NDK):

u(x, y, z) = F i
τ (z)Ni(x, y)uiτ

δu(x, y, z) = F j
s (z)Nj(x, y)δujs

(17)

in which δ denotes the virtual variation, and F i
τ (z) and F j

τ (z) represent kinematic assumptions

defined on node i and j, respectively. In a further step, general expressions of the stiffness

matrix and the load vector of the FE models, the Fundamental Neuclei (FNs), can be obtained85

by applying the Principle of Virtual Displacements (PVD). Some examples of FNs have been

given by Carrera et al. [4].

In LW-type kinematic models, thickness functions are expressed by using the non-dimensional

thickness coordinate ζ in each layer. In the present work, the 1D hierarchical Legendre Expan-

sions (HLE) are adopted as thickness functions in the LW framework. The explicit expressions

of thickness functions adopting 1D HLE are:

Fτ (ζ) =




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1

2
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1

2
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√
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2

∫ ζ

−1

Lτ−1(x)dx =
Lτ (ζ)− Lτ−2(ζ)√

4τ − 2
τ = 2, 3, · · ·

(18)

in which Lτ (δ) are the Legendre polynomials. Such basis functions in Eqn. 18 are also adopted

in the construction of the 2D hierarchical (p-version) elements (see references [32, 30]).

4. Coupled thermo-mechanical shell FE models90

4.1. Weak-form governing equations

For a unit volume in the kth layer of the laminated shell, by applying PVD, one has:

δEp = δW (19)

in which:

δEp =

∫

V

(σk⊤δεk − qk⊤δϑk)dV (20)
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δW =

∫

Γ

(δuk⊤p̄+ δθk q̄n) dΓ (21)

wherein Ep represents the potential energy, W the external work, p the surface traction vector,

qn the normal heat flux, and hn the normal moisture flux. For steady-state cases, the inertial

work is discarded.

The approximations of the primary variables are:

uk = Ni F
i
τ

k
u
(k)
iτ , δuk = Nj F

j
s

k
δu

(k)
js . (22)

θk = Ni F
i
τ

k
θ
(k)
iτ , δθk = Nj F

j
s

k
δθ
(k)
js . (23)

in which for ESL models u
(k)
iτ = uiτ , and for LW models u

(k)
iτ = uk

iτ . This rule also applies to95

other variables.

The essential boundary conditions are considered through:

Ni F
i
τ

k
ū
(k)
iτ = u on Γu, Ni F

i
τ

k
θ̄
(k)
iτ = θ on Γθ. (24)

By considering the above FE approximations, the strain-displacement relations in Eqn. 5, the

gradient equations in Eqn. 7, and the constitutive relations in Eqn. 9, one can obtain:

δu
(k)
js

⊤

: Kuu

ijτs
k
u
(k)
iτ +Kuθ

ijτs

k
θ
(k)
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js
k
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(k)
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k
θ
(k)
iτ = P θ

js

k
(25)

and the fundamental nuclei (FNs) of the generalized stiffness matrices are:

Kuu

ijτs
k =

∫

Ω

∫

Ak

(bNjF
j
s

k
)⊤Ck(bNiF

i
τ

k
)HαHβdz

kdΩ (26)

Kuθ
ijτs

k
= −

∫

Ω

∫

Ak

(bNjF
j
s

k
)⊤λk⊤(NiF

i
τ

k
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Kθθ
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k
= −

∫

Ω

∫
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(∇NjF
j
s

k
)⊤κk(∇NiF

i
τ

k
)HαHβdz

kdΩ (28)

in which Ak is the thickness domain of the kth layer and Ω the element in-plane domain on the
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middle surface. For examples of FNs for refined shell models, the reader is referred to the work

of Li et al. [22].

External loads caused by the essential boundary conditions can be considered as:

P ū

js

k
= −Kuu

ijτs
k
ū
(k)
iτ −Kuθ

ijτs

k
θ̄
(k)
iτ (29)

P θ̄
js

k
= −Kθθ

ijτs

k
θ̄
(k)
iτ (30)

FNs for the loads due to natural boundary conditions read:

P
p̄

js

k
=

∫

Γp

NjFsp̄dΓ on Γp (31)

P q̄
js

k
=

∫

Γq

NjFsq̄ndΓ on Γq (32)

Since the boundary conditions mentioned above are imposed on different external sub-surfaces,

their load vectors can be assembled separately then summed up as:

Pu = P ū + P p̄ (33)

P θ = P θ̄ + P q̄ (34)

The generalized stiffness matrix and load vector need to be assembled within each element,100

then on the whole FE model level. The assembly technique of CUF-based FE models has been

elaborated by Li [21].

4.2. Enforcement of temperature boundary conditions

To impose distributed temperature on the top or the bottom surfaces of hierarchical shell

elements, one needs to consider:

θ̄(α, β) = Ni(α, β) θ̄i (35)

For shell elements adopting Lagrangian interpolation polynomials, since the nodal unknown θ̄i is

the exact value of the temperature field, it is straightforward to impose the above boundary con-105
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ditions on FE models. However, for hierarchical elements, θ̄i are merely mathematical weighting

coefficients which need to be calculated to approximate the temperature boundary conditions to

be enforced.

The procedure to calculate θ̄i for hierarchical shell elements is, in essence, a curve-fitting

problem. To guarantee the approximation accuracy, the number of essential sampling points110

should be higher than the number of shape functions. In the present work, these unknowns are

obtained through the Linear Least Squares (LLS). For hierarchical elements of order p, besides

the four vertex nodes, the number of equally-spaced sampling points in each direction in the in-

plane domain is chosen to be p+4. After θ̄i are obtained, by considering Eqn. 30, the temperature

boundary conditions can be imposed on the FE models.115

4.3. Adaptive refinement

The order of the elements and nodal kinematic assumptions are refined adaptively. The order

of the hierarchical elements, the kinematic assumptions in the local critical region, the area of the

local region, and the kinematic models refined in the non-critical zone, are one-by-one gradually

enhanced or enlarged until the desired relative difference between two consecutive simulation120

rounds is reached.

In the current work, the numerical convergence threshold δ is chosen to be 1%, which means

that the mathematical enhancement of the FE models stops when:

max(

∣

∣

∣

∣

∣

u
(M)
i − u

(M−1)
i

u
(M)
i

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

σ
(M)
ij − σ

(M−1)
ij

σ
(M)
ij

∣

∣

∣

∣

∣

) ≤ δ i = 1, 2, 3. (36)

in which M is the current round of simulation.

5. Results and discussion

In this section, the adopted FE models are first validated by comparing the FE results with

those obtained through analytical solutions for three example of multi-layered shells, then a125

two-layered spherical shell with local distributed temperature is simulated with NDK shell FE

models. The numerical efficiency is assessed through the number of DOFs used and CPU time

consumed. The distributed temperature boundary conditions are enforced on the hierarchical

shell elements through the LLS approach.
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5.1. Heat conduction in hybrid five-layered cross-ply cylindrical shells130

Hybrid five-layered cylindrical shells are considered in the first numerical example, which

focuses on the heat conduction simulation. The laminated shells, with the stacking sequence

[PVDF/90°/0°/90°/PVDF], consist of a core with three equal-thickness graphite-epoxy layers

and two external faces made of polyvinylidene fluoride (PVDF). Each PVDF layer takes one-

tenth of the total thickness, thus the ply thickness follows [h0

10 /
4h0

15 /
4h0

15 /
4h0

15 /
h0

10 ]. The thermal

conductivities of the graphite-epoxy are k11 = 36.42W/mK, k22 = k33 = 0.96W/mK, and of the

PVDF layers k11 = k22 = k33 = 0.24W/mK. The axial length of the cylindrical shells is L = 4m

and the radius R = 1m. The temperature rise on the bottom of the shells is constraint to be

θ(−h
2 ) = 0, and on the top surface, the imposed temperature follows:

θ(α, β,
h

2
) = θ0 · sin(

πα

L
) (37)

in which θ0 = 1K.

Single-element FE models consisting of p-version shell elements with refined kinematics are

built. Radius-to-thickness ratios R/h = 2,4, and 100 are considered. By increasing the element

order and refining the kinematic assumptions gradually and considering a convergence threshold

of δ = 0.01% for the temperature, p5-HLP3 (fifth-order p-version element and third-order Leg-135

endre polynomials as thickness functions in the LW framework) has been chosen to provide the

numerical estimation of temperature. Table 1 reports a comparison of the obtained temperature

against reference solutions given by Kapuria et al. [14], Kulikov and Plotnikova [19], and Fig. 2

shows the through-thickness variation of temperature. It can be observed that the obtained

numerical results agree well with the reference solutions.140

Table 1: Temperature rise in the five-layered cylindrical shell at L/2 and z̄ = ±0.4.

z̄ = −0.4 z̄ = 0.4

Rβ/h 4 100 4 100

Present 0.2398 0.2511 0.7385 0.7511
Kapuria et al. [14] 0.2398 0.2511 0.7385 0.7511

Kulikov and Plotnikova [19] 0.23984 0.25106 0.73853 0.75106

5.2. Spherical sandwich shell under the temperature field with a linear through-thickness profile

This numerical example emphasizes on the thermo-mechanical coupling effects. The simply

supported sandwich shells considered have the lamination sequence [0°/core/0°], and the material

11
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Figure 2: Through-thickness variation of temperature on the hybrid five-layered cylindrical shells with polyvinyli-
dene fluoride (PVDF) layers. Numerical results obtained with the employed FE models are compared against the
reference solutions.

properties are as in Table 2. The composite faces have equal thickness 0.1h, where h is the total

thickness of the shells. The lengths of the edges are a = b = 1m, and the radii of in the two

in-plane direction are equal, which means Rα = Rβ = R. Radius-to-thickness ratios R/h = 5,

10, 20 and ∞ (plate) are considered, and the length-to-thickness ratio analyzed include a/h = 4

and 100. The assumed temperature field has a linear profile through the shell thickness and

bi-sinusoidal in-plane distribution which means:

θ(α, β, z) = (T0 +
z

h
T1) · sin(

πα

a
) sin(

πβ

b
) (38)

where T0 = 0K and T1 = 1K. As a result, the imposed temperature on the top surface is 0.5K

and the bottom surface -0.5K. The adopted simply supported boundary conditions are:

α = 0, a : v = 0, w = 0, θ = 0;

β = 0, b : u = 0, w = 0, θ = 0.
(39)

Table 2: Mechanical properties of the faces and core on the spherical sandwich shells.

E1 E2, E3 G12, G13 G23 ν12, ν13, ν23 α22 α11, α33
(GPa) (GPa) (GPa) (GPa) (10−6/K) (10−6/K)

Faces 172.37 6.89 3.45 1.38 0.25 20.0 1.0

Core 0.28 3.45 0.11 0.41 0.25 2.0 0.1

A quarter of the structure is simulated by single-element FE models employing p-elements

12



and higher-order Legendre-type kinematics (HLE). Based on the convergence study, the FE

model p11-HLE5 is chosen to provide the numerical results. The obtained numerical estimation

of the deflection at the centroid of the shells have been summarized in Table 3. For comparison145

purposes, the results provided by Carrera et al. [3] using closed-form solutions based on LD4

(fourth-order Lagrange polynomials as thickness functions) and by Khare et al. [15] with a

higher-order deformation model HOST12 have also been listed. A high agreement between the

present results and the reference solutions can be observed, which demonstrates that the thermo-

mechanical coupling effects are appropriately considered in the proposed models.150

Table 3: Displacement estimations on the spherical sandwich shells under the temperature field with a linear
through-thickness profile.

R/h 5 10 20 Plate

a/h = 4
Present 4.3496 4.3730 4.3789 4.3809
LD4 [3] 4.3426 4.3657 4.3715 4.3735

HOST12 [15] 4.2032 4.2343 4.2422 4.2448

a/h = 100
Present 0.8630 1.4111 1.6767 1.7890
LD4 [3] 0.8637 1.4118 1.6774 1.7896

HOST12 [15] 0.8780 1.4368 1.7077 1.8221

5.3. Composite cylindrical panels with imposed temperature on top and bottom surfaces

Two-layered cylindrical panels with lamination sequence [0°/90°] (from bottom to top, with

equal thickness) under enforced temperature on the external surfaces are studied. The dimensions

of the cylindrical panels are: length and width a = b = 0.1m, radii Rα = 0.1m and Rβ = ∞.

Radius-to-thickness ratios Rα/h = 2, 10 and 500 are investigated. On the bottom surface, the

imposed temperature is θ0(α, β,−h
2 ) = 0K, and on the top surface θ0(α, β,

h
2 ) follows:

θ0(α, β,
h

2
) = θM · sin(πα

a
) sin(

πβ

b
) (40)

in which θM = 50K. The panels are simply supported, and the boundary conditions follow

Eqn. 39.

The mechanical and thermal properties of the lamina, set by referring to the work of Jacquemin

and Vautrin [12], are given in Table 4 . The heat conduction coefficients (κ11, κ22, and κ33) are155

assumed with reference to the work of Hicks [11].

With the help of the symmetric boundary conditions, a quarter of the shell is simulated by

single-element models employing a hierarchical shell element. The convergence error threshold
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Table 4: Mechanical properties of T300/5208 composite lamina.

E1 E2, E3 G12, G13 G23 ν12, ν13 ν23 α11 α22, α33 κ11 κ22, κ33
(GPa) (GPa) (GPa) (GPa) (10−6/K) (10−6/K) (W/mK) (W/mK)

181 10.3 7.17 2.39 0.28 0.43 0.02 22.5 4.6 0.7

for this case is chosen to be δ = 0.1%. In Table 5, in which pm-HLEn indicate a FE model

with mth-order hierarchical element adopting n-th order HLE as thickness functions. As shown160

in Table 5, the order of the shape functions is first increased, then the order of the thickness

functions are enhanced until the numerical convergence is achieved. The final results obtained

for Rβ/h = 2, 10, 500 are summarized in Table 6. For comparison purposes, the results obtained

with nine-node Lagrangian elements (Q9) are also reported. For the thin shells with Rβ/h = 10

and 500, to mitigate the shear and membrane locking phenomena, the Mixed Interpolation of165

Tensorial Components (MITC) technique is applied to Q9 elements, leading to MITC9 elements.

First-order Shear Deformation Theory (FSDT) is also tested. The numerical efficiency of FE

models is assessed through the number of degrees of freedom (DOFs) and the relative CPU time

t̄, which is measured by dividing the CPU time consumed by the single-element model p2-HLE1.

The reference solutions were presented by Cinefra et al. [6]. Through-thickness variations of170

transverse stresses σαz, σβz, and σzz are reported in Fig. 3, wherein the stresses for the cylindrical

panels with Rβ/h = 500 are amplified certain times for the convenience of observation.

From Table 5, it can be observed that the p-refinement is more convenient to conduct than

the h-refinement. By simply increasing the order of the shape functions without re-meshing, the

numerical accuracy can be improved. Meanwhile, the p-refinement requires a fewer number of175

increased DOFs in each enhancement step than h-refinement, which is more promising to lead

to optimal numerical efficiency. Fig. 3 shows that the CUF-based refined shell FE models used

in the present work are capable of giving numerical results with 3D accuracy.

As summarized in Table 6, the numerical results obtained with CUF-based refined FE models

through the adaptive refinement are in agreement with those given by analytical solutions as180

presented by Cinefra et al. [6], and slight differences can be observed on the thick cylindrical

panel with Rβ/h = 2. Fig. 4 compares the temperature profiles through the thickness of the

shells obtained by the coupled thermo-mechanical models and those provided by Cinefra et al. [6].

For the cylindrical panels with Rβ/h = 2 and 10, the temperature profiles achieved in different

approaches are marginally different.185

It should be noted that in the coupled thermo-mechanical FE models in the present work,
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Table 5: Displacement and stress estimations on the two-layered cylindrical panels with Rβ/h = 500.

Mesh Ni Fτ w/10−3mm σαα/KPa σββ/KPa σαβ/KPa σαz/KPa σβz/KPa σzz/KPa DOFs CPU time
(a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a, b,−h

2 ) (a, b
2 ,

h
4 ) (a2 , b,

h
4 ) (a2 ,

b
2 , 0) t̄

1×1 p2 HLE1 6.552 -13645 595.2 -27.81 -44.45 -177.7 -5203 96 1.0
1×1 p3 HLE1 8.477 -13158 205.6 -54.58 -21.11 -101.7 -4959 144 1.0
1×1 p4 HLE1 8.327 -13244 -421.3 62.91 9.79 -11.15 -5113 204 1.1
1×1 p5 HLE1 8.314 -13271 -347.1 47.70 16.66 -1.065 -5157 276 1.1
1×1 p6 HLE1 8.330 -13272 -293.1 47.08 15.52 -2.457 -5157 360 1.2
1×1 p7 HLE1 8.327 -13271 -293.2 47.40 15.49 -2.500 -5156 456 1.3
1×1 p8 HLE1 8.327 -13271 -294.3 47.43 15.50 -2.481 -5156 564 1.4
1×1 p9 HLE1 8.327 -13271 -294.3 47.42 15.50 -2.481 -5156 684 1.6

1×1 p9 HLE2 8.227 -11024 1765 40.52 14.57 -2.803 9.468 1140 1.9
1×1 p9 HLE3 8.227 -11025 1764 40.52 15.07 -3.355 8.150 1596 2.3
1×1 p9 HLE4 8.227 -11025 1764 40.52 15.07 -3.355 8.160 2052 2.8
1×1 p9 HLE5 8.227 -11025 1764 40.52 15.07 -3.355 8.160 2508 3.3

5×5 MITC9 HLE5 8.228 -11020 1807 41.30 15.15 -3.385 8.263 5324 8.3
10×10 MITC9 HLE5 8.227 -11024 1775 40.69 15.10 -3.362 8.162 19404 24.3

1×1 p9 FSDT 1.933−4 -2.046 -1.577 1.234×10−2 1.017×10−3 2.999×10−3 – 380 1.4

Cinefra et al. (2017)(Analytical) 8.2246 -11025 – – 15.070 – –

the temperature and displacement solutions are both treated as primary variables in the FE

formulations and the equation system is solved in one step. While in the reference work [6], first

the through-thickness temperature profile is achieved by solving the heat conduction equation

through a combination of hyperbolic sine and cosine series, then in an a priori way, the 3D190

temperature field is obtained by means of multiplying the temperature profile by the in-plane

bi-sinusoidal distribution. Such solutions do not work rigorously for thick curved structures.

FSDT fails in giving reasonable numerical approximations in the tested cases even for the thin

cylindrical panel with Rβ/h = 500 mainly due to its incapabilities in rendering the temperature

distribution through the thickness. MITC9 elements with hierarchical Legendre expansions as195

thickness functions can achieve comparable accuracy as the hierarchical shell elements but at the

cost of more DOFs and higher computational time consumption.

Table 6: Displacement and stress estimations on the two-layered cylindrical panels with various Rβ/h values.

Rβ/h Mesh Ni Fτ w/10−3mm σαα/KPa σββ/KPa σαβ/KPa σαz/KPa σβz/KPa σzz/KPa DOFs CPU time
(a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a, b,−h

2 ) (a, b
2 ,

h
4 ) (a2 , b,

h
4 ) (a2 ,

b
2 , 0) t̄

2

1×1 p7 FSDT 0.3012 -393.7 371.2 149.7 2.233 -3.984 5.482 266 1.2
1×1 p7 HLE8 16.91 -6923 9619 -44.79 529.4 -1112.0 271.9 2584 3.2
5×5 Q9 HLE8 16.90 -6898 9709 -45.16 526.2 -1123 273.9 8228 5.3

Cinefra et al. (2017)(Analytical) 16.403 -7073.4 – – 541.76 – –

10

1×1 p9 FSDT 0.1999 -84.43 49.08 27.63 1.486 1.683 1.179 399 1.5
1×1 p9 HLE5 18.67 -8934 8950 1113 545.4 -497.9 342.8 2508 3.4
10×10 MITC9 HLE5 18.67 -8929 8975 1118 546.5 -499.0 343.9 19404 23.9

Cinefra et al. (2017)(Analytical) 18.570 -8957.6 – – 543.49 – –

500

1×1 p9 FSDT 1.933−4 -2.046 -1.577 1.234×10−2 1.017×10−3 2.999×10−3 – 399 1.4
1×1 p9 HLE5 8.227 -11025 1764 40.52 15.07 -3.355 8.160 2508 3.3
10×10 MITC9 HLE5 8.227 -11024 1775 40.69 15.10 -3.362 8.162 19404 24.3

Cinefra et al. (2017)(Analytical) 8.2246 -11025 – – 15.070 – –
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Figure 3: Through-thickness variation of transverse stresses on the two-layered cylindrical panels with imposed
temperature on top and bottom surfaces. Radius-to-thickness ratios Rβ/h = 2, 10, and 500, are considered. FE
models adopt p-version shape functions and hierarchical Legendre expansions (HLE) as thickness functions.
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Figure 4: Through-thickness variation of temperature on the two-layered cylindrical panels with Rβ/h = 2, 10,
and 500. Numerical results obtained with the employed FE models are compared against the reference solutions.
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5.4. A two-layered spherical shell under local distributed temperature

A two-layered laminated spherical shell with lamination sequence [0°/90°] under temperature

imposed on the local region on the top surface is considered. The lamination sequence is [0°/90°]200

(from bottom to top), and the two layers have equal thickness. The shell has length and width

a = b = 0.1m, radii R = Rα = Rβ = 0.1m, and radius-to-thickness ratio R/h = 20. The lamina

properties are the same as in Table 4 in Section 5.3.

The local region covers 1
5 × 1

5 of the central area on the top surface, and the temperature

distribution follows:

θ0(α, β,
h

2
) = θM · sin(πα

5a
) sin(

πβ

5b
) α ∈

[

2a

5
,
3a

5

]

, β ∈
[

2a

5
,
3b

5

]

. (41)

where the magnitude of the temperature is θM=50K. On the bottom surface and in the rest area

on the top surface, the temperature is constrained to be zero. The boundary conditions on the205

edges are set according to Eqn. 39.

A quarter of the structure is models with 5 × 5 hierarchical shell elements with the help of

symmetric boundary conditions. Fist of all, the kinematic model is set to be FSDT, and the

order of the hierarchical elements is increased. Secondly, the local region which covers only one

element is simulated with refined LWmodels adopting progressively refined LWmodels with HLE210

and the non-critical area modeled with FSDT, leading to FE models denoted as FSDT-HLEn×1,

see Fig. 5(a). And then, the locally refined region is expanded to the range of 2 × 2 elements,

and the corresponding FE models are represented by FSDT-HLEn×4, as illustrated in Fig. 5(b).

Finally, in the non-critical area, the employed kinematics is switched to ESL models adopting

TE2 (second-order Taylor Expansions). Considering the in-compatibility of LW and ESL models,215

the threshold of the relative difference between two rounds is chosen to be δ ≤ 10.0%, which lead

to a reasonable estimation of most of the stresses.

The results obtained are summarized in Table 7. Note that the relative CPU time reported

is measured with reference to the time consumption of the model p2-FSDT, similarly to the

previous case in Section 5.3. From Table 7, it can be observed that eighth-order elements can220

give good in-plane approximations, and HLE5 used on the 2×2 local region can lead to reasonably
good estimation of the structural responses. The refinement of kinematic models in the outlying

zone can also help to improve simulation accuracy. The NDK model TE2-HLE5×4 provides

comparable accuracy with the uniformly refined model HLE5, yet with a significantly reduced

number of DOFs and CPU time consumption. Figs. 6 and 7 compare the temperature and σαz225

17



(a) FSDT-HLEn×1

FSDT

(b) FSDT-HLEn×4

Figure 5: FE models with variable FSDT/HLEn nodal kinematics for the two-layered cylindrical shell under local
distributed temperature. The region with nth-order HLE thickness functions in FE model (a) covers one element;
in FE model (b) it covers four elements.

Table 7: Displacement and stress evaluations for the two-layered spherical shell with R/h = 20 under local
distributed temperature.

Ni Fτ w/10−3mm σαα/KPa σββ/KPa σαβ/KPa σαz/KPa σβz/KPa σzz/KPa DOFs CPU time
(a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) ( 23a40 ,

23b
40 ,−h

2 ) (a, 11b20 ,
h
4 ) ( 11a20 , b,

h
4 ) (a2 ,

b
2 , 0) t̄

p2 FSDT 0.01522 -38.11 45.36 -3.378 0.6302 1.556 0.1068 672 1.0
p3 FSDT 0.01511 -37.64 39.41 -3.689 0.2622 0.3914 0.1494 1092 2.5
p4 FSDT 0.01532 -39.91 32.90 -3.972 0.1487 0.06048 0.2575 1687 4.2
p5 FSDT 0.01539 -40.11 33.01 -4.026 0.1251 -0.00423 0.2621 2457 6.0
p6 FSDT 0.01540 -39.97 33.59 -4.060 0.1384 0.03509 0.2548 3402 6.3
p7 FSDT 0.01540 -39.96 33.59 -4.070 0.1374 0.03198 0.2538 4522 9.9
p8 FSDT 0.01540 -39.96 33.58 -4.072 0.1374 0.03204 0.2542 5817 15.4

p8 FSDT-HLE1×1 4.357 -10134 5523 -1240 511.5 -446.5 -2933 6052 15.5
p8 FSDT-HLE2×1 4.049 -8440 7760 -1044 441.7 -298.8 -107.8 6428 16.5
p8 FSDT-HLE3×1 4.092 -7997 8403 -1047 422.8 -477.4 80.48 6804 18.2
p8 FSDT-HLE4×1 4.092 -7952 8420 -1048 422.9 -476.3 117.6 7180 19.1
p8 FSDT-HLE5×1 4.094 -7930 8423 -1048 421.2 -470.3 110.4 7556 20.9

p8 FSDT-HLE5×4 4.104 -7902 8501 -1065 439.7 -470.7 103.8 11478 36.1
p8 TE2-HLE5×4 4.108 -7889 8420 -1055 439.9 -465.7 110.9 10713 45.9

p8 HLE5 4.106 -7889 8480 -1055 439.8 -463.1 115.1 36564 175.3
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obtained with the uniformly refined FE model HLE5 and TE2-HLE5×4, respectively. It can be

observed that both the temperature and stress fields obtained with different FE models agree

well.

-2.7e-06 5.0e+0120 40

TEMPERATURE_[C]

(a) HLE5

-2.7e-06 5.0e+0120 40

TEMPERATURE_[C]

(b) NDK model TE2-HLE5×4

Figure 6: Numerical estimations of temperature (K) distribution for the two-layered spherical shell with R/h = 20
under local distributed temperature, obtained with 5 × 5 p8 elements. In (a), HLE5 thickness functions are
uniformly used for all shape functions; in (b), only shape functions in the local critical region covering four
elements are allocated to HLE5 thickness functions, and the outlying are adopts TE2 kinematic assumptions.

-2.8e+05 8.7e+050 500000

Sigma_XZ

(a) HLE5

-2.8e+05 8.7e+050 500000

Sigma_XZ

(b) NDK model TE2-HLE5×4

Figure 7: Numerical estimations of σαz(Pa) for the two-layered spherical shell with R/h = 20 under local
distributed temperature, obtained with 5 × 5 p8 elements. In (a), HLE5 thickness functions are uniformly used
for all shape functions; in (b), only shape functions in the local critical region covering four elements are allocated
to HLE5 thickness functions, and the outlying are adopts TE2 kinematic assumptions.

6. Conclusions

Coupled thermo-mechanical shell finite element models with Node-Dependent Kinematics230

(NDK) for steady-state problems are presented. The coupled thermo-mechanical shell models

can give the temperature variation and displacement solutions directly in a one-step manner.

Through numerical examples on composite laminated shell structures, an adaptable refinement

approach based on NDK is demonstrated, and the numerical accuracy and efficiency of the NDK

FE models are assessed.235

• For thick curved structures, the coupled thermo-mechanical models can provide more ap-

propriate solutions compared to a two-step procedure (firstly obtain the temperature profile
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through the thickness, then substitute the thickness profile into the thermal stress calcula-

tion).

• The mathematical enhancement of FE models, namely the refined kinematics assumption240

over the shell thickness and the increase of the order of the p-version elements, empowers

one to fully utilize the capabilities of a given set of 2D mesh grids in obtaining accurate

structural responses with quasi-3D accuracy.

• The use of NDK makes it convenient to improve the numerical accuracy with balanced

computation costs.245

This adaptive refinement approach requires the minimum level of re-meshing work and is

promising to help increase the efficiency of engineering simulations. It can be further extended to

other situations such as plasticity and damage modeling, delamination simulations, and contact

analyses.
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