
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fractal scaling and crack-size effects on creep crack growth / Carpinteri, Alberto; Niccolini, Gianni; Rubino, Alessio. - In:
STRENGTH, FRACTURE AND COMPLEXITY. - ISSN 1567-2069. - ELETTRONICO. - 13:3(2020), pp. 1-131.
[10.3233/SFC-200260]

Original

Fractal scaling and crack-size effects on creep crack growth

IOS postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.3233/SFC-200260

Terms of use:
openAccess

Publisher copyright

Accepted manuscript of an article  published in STRENGTH, FRACTURE AND COMPLEXITY. The final publication is
available at IOS Press http://doi.org/10.3233/SFC-200260

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2857120 since: 2020-12-18T19:33:14Z

IOS Press



Fractal scaling and crack-size effects on creep crack growth 

Alberto CARPINTERI1, Gianni NICCOLINI1, Alessio RUBINO1 

1Department of Structural, Geotechnical and Building Engineering,                                  

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

Email: alberto.carpinteri@polito.it, gianni.niccolini@polito.it,                              

alessio.rubino@polito.it (Corresponding author) 

Abstract 

Scaling effects on the creep crack growth behaviour are investigated by analyzing 

the results of compact tension (CT) tests on different-sized notched steel 

specimens appearing in the literature. Creep crack growth rate data are correlated 

to the elastic stress-intensity factor in terms of a Paris-type law, d𝑎/d𝑡 = 𝐶  𝐾 , 

where 𝐶   turns out to be a crack-size dependent coefficient of proportionality. 

Considering specimens with the same loading configuration (CT) and the same 

thickness, the observed crack-size effect on the creep crack growth rate is 

discussed on the basis of self-similarity considerations, and geometrically 

interpreted in terms of fractal tortuosity of the crack profile. A size-independent 

formulation of the creep crack growth law correlating renormalized quantities is 

finally deduced and confirmed by the experimental results. 
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1 Introduction 

Design and integrity assessment of structural components operating at high 

temperatures have typically to account for the creep behaviour under steady-state 

conditions, where the strain rate 𝜀̇ strongly depends on the applied stress 𝜎 

according to the Norton law [1,2]: 

 

𝜀̇ = 𝐴 𝜎 ,                                                   (1) 

 

where A and 𝑛, the latter being known as creep sensitivity [3], are temperature-

dependent material parameters. 

Actually, failure of structural components operating under creep conditions can 

occur by either creep rupture or creep crack growth. The former is most likely in 

components which are initially flaw-free or containing benign defects. However, 

the presence of inherent sharp defects, which can grow and ultimately cause brittle 

fracture, has necessitated characterizing the creep crack growth as well, often 

relegating the “flaw-free” condition to a mere idealization. 

Despite the predictive character of fracture mechanics, whereby the results from 

laboratory specimens can be extrapolated to make predictions on full-sized 

structural components, and the number of studies conducted about creep, only a 

few of them were directly aimed at investigating size effects. In the current paper, 

the approach of fracture mechanics is supplemented by self-similarity and fractal 
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geometry considerations to re-examine the observed crack-size effects on the 

creep crack growth behaviour for metallic materials. 

 

2 Characterizations of creep crack growth by Fracture Mechanics 

To properly identify a fracture parameter able to account for creep in the crack 

growth behaviour, a schematic representation of the creep deformation process in a 

cracked body has been considered. Immediately after loading, 𝑟 ⁄ -type (being 𝑟 

the distance from the crack tip) and HRR [4,5] singular stress distributions are 

respectively generated in linear elastic and power-law hardening materials. In 

either case, if extensive creep deformation has had time to increase in size before 

the crack propagation, neither the elastic stress-intensity factor, 𝐾, nor the 𝐽-

integral [6,7] ―characterizing the HRR solution― can adequately characterize the 

crack-tip stress field. That is due to the nonlinear and time-dependent character of 

creep deformation, which is not admitted in linear elastic fracture mechanics 

(LEFM) and elastic-plastic fracture mechanics (EPFM) formulations [8-10]. 

By analogy with the 𝐽-integral, Landes and Begley [11], Nikbin et al. [12] defined 

the 𝐶∗-integral as a path-independent crack-tip parameter characterizing stress and 

strain rate fields when creep strains dominate: 

 

𝐶∗ = ∫ 𝑊∗ d𝑦 − 𝑡 (∂�̇� ∂𝑥⁄ )d𝑠,                              (2) 
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(being 𝑊∗ = ∫ 𝜎  d
̇

𝜀̇  the strain energy density rate, Γ a contour surrounding 

the crack tip, 𝒕 the traction vector, and �̇� the displacement rate vector) 

 

𝜎 ∝ (𝐶∗ 𝑟⁄ ) ( )⁄ ,                                     (3.a) 

𝜀̇ ∝ (𝐶∗ 𝑟⁄ ) ( )⁄ .                                     (3.b) 

 

By comparing with the HRR solution, the analogy between creeping and power-

law hardening materials is apparent. 

Several studies [11,13-16] demonstrated that the creep crack growth rate (CCGR) 

can be described by an expression of the form: 

 

d𝑎

d𝑡
= 𝐷  𝐶∗ ,                                                    (4) 

 

where 𝐷  is a material constant and 𝜙 ≲ 1. It can be noted that for intermediate 

values of the creep sensitivity 𝑛, CCGR data are correlated to the 𝐶∗-integral 

according to Eq.(4) [8,10]. 

More recently, extensive work in the field of time-dependent fracture mechanics 

(TDFM) has been devoted to the analysis of the so-called constraint effects on 

CCGR. In analogy with EPFM [17-19], results of recent research have extended 

TDFM beyond the limits of single-parameter theory, where a two-parameter (C*-
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Q) approach has been proposed to characterize crack-tip constraint at elevated 

temperatures [19-22]. The Q parameter is introduced for quantifying the constraint 

effects during creep, in terms of deviations of the actual crack-tip stress-field 

―generally determined by numerical FEM analysis― from the HRR field in Eq. 

(3). Numerical and experimental studies reported in the literature [23-32] regard 

the dependence of these effects on loading configuration [27,28,31], as well as 

crack depth [23,26,29] (in-plane constraint effects), and specimen thickness (out-

of-plane constraint effects) [24-25]. The general conclusion is that higher 

constraint levels at the crack tip provide higher creep cracking rates. 

Within the single-parameter assumption, several parameters have been hystorically 

proposed for characterizing the creep crack growth behaviour, as reported for 

instance in [12,33]. It was emphasized that for creep-ductile materials, defined as 

those in which the creep crack growth rate is negligible compared to the creep 

zone expansion rate, the creep zone completely engulfs the uncracked ligament 

before the crack actually propagates, causing extensive stress redistribution [8-10]. 

This circumstance occurs in highly susceptible materials to creep deformation, i.e. 

when 𝑛 ≫ 1  [3], whereby the crack-tip singularity tends to disappear according to 

Eq.(3.a). That makes a description in terms of net section stress or reference stress 

𝜎  appropriate [34,35]: 

 

d𝑎

d𝑡
= 𝐵  𝜎 ,                                                           (5) 
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where 𝐵  and s are material parameters. 

A relevant attempt [36-39] to consider creep as a thermally activated process led to 

the following Arrhenius-type relationship: 

 

d𝑎

d𝑡
∝ exp 𝑄∗,                                                       (6) 

 

where Q* is a function dependent upon the applied stress, the absolute temperature 

𝑇, the specimen size b, the gas constant 𝑅, and the activation energy ∆𝐻  for crack 

extension. As regards the size-scale effects, the Authors found a power-law 

dependence of the CCGR on the specimen size b. 

When a little creep deformation accompanies crack growth, the initial stress 

distribution remains virtually unaltered by creep, and 𝐾 (or 𝐽) continues to 

characterize the stress state around the crack tip. Such creep-brittle behaviour, 

defined as that in which the creep crack growth rate da/dt is comparable to the 

creep zone expansion rate [8-10], occurs in case of high CCGR values when the 

specimen always remains in small-scale creep condition. For this circumstance, 

occurring at short times (when the stress-strain response is predominantly elastic) 

or for materials designed to resist large-scale creep deformations (i.e. with creep 

sensitivity 𝑛 ≅ 1), the creep crack growth rate is satisfactorily described in terms 

of stress-intensity factor 𝐾 by means of a Paris-type law [40,41]: 
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d𝑎

d𝑡
= 𝐶  𝐾 ,                                                         (7) 

 

where 𝐶  and q are material parameters.  

Hereinafter, the attention will be focused on a set of CCGR data from an 

experimental campaign on CT steel specimens, originally correlated to both 𝐶∗ 

and K [47]. Despite CCGR is currently interpreted in terms of 𝐶∗ in the framework 

of constraint effects for most practical situations, on that occasion some success 

was found in correlating CCGR data to the elastic stress-intensity factor, K. In this 

case, the observed shift of the experimental curves is compatible with a crack-size 

effect, which can be interpreted in terms of self-similarity and fractal tortuosity of 

the crack profile, along the line of recent studies on fatigue crack growth [42-46]. 

 

3 Experimental characterization of creep crack growth 

The creep crack growth behaviour of CT 1% CrMoV steel specimens of various 

sizes ―standard and ultra-large specimens respectively of 50.8 mm and 254 mm 

in width, with thickness ranging from 6.35 to 63.5 mm― was investigated by 

Tabuchi et al.[47]. After introducing a fatigue pre-crack of 3 mm for standard 

specimens and of 15 mm for ultra-large specimens at room temperature, the 

Authors conducted creep crack growth tests at 538 °C. The tested geometry is 
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outlined in Fig. 1, where the markers indicate the specimens under investigation. 

In this paper, the analysis is restricted to specimens with the same thickness (12.7 

mm), and differing in width, i.e. in the initial crack length (3 and 15 mm), in order 

to isolate the crack-size effects on the CCGR. 

The Authors discussed the experimental data both in the framework of TDFM and 

of LEFM, correlating satisfactorily creep crack growth rate by Eqs.(4) and (7), 

respectively. Characterization of da/dt in terms of the 𝐶∗-integral pointed out 

increasing creep crack growth rate with increasing specimen thickness, whereas 

neither specimen-width nor crack-size effects were observed. The specimen-

thickness effect was already interpreted in the framework of the constraint effects, 

whereby the achievement of plane-strain conditions in very thick sections result in 

less creep ductility and higher cracking rates. Instead, lack of crack-size (or 

specimen-width) effects on creep crack growth rate was considered surprising, 

given that pre-crack of ultra-large specimens was five times longer than standard 

ones, and worthy of further investigation. 

Actually, the characterization of creep crack growth rate in terms of 𝐾 by Eq.(7) 

did not demonstrated thickness effects for specimens with the same width, but, 

rather, a right- and downward shift of CCGR data with increasing specimen width, 

or pre-crack length. The power-law exponent 𝑞 of the two fitting curves varies 

over the range 14.1-14.7 (the average exponent is 𝑞 = 14.4 ± 0.4. As shown in Fig. 

2, da/dt for ultra-large specimens was about 1000 times lower than that for 

standard specimens for a given value of 𝐾. That may be interpreted as a crack-size 
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effect whereby creep crack growth rate increases by decreasing the crack size, 

similarly to what happens with Paris law [42-46]. As a straightforward 

consequence, short cracks under creep conditions are expected to propagate at 

higher rates. 

 

4 Generalized creep crack growth law 

From a physical point of view, correlating creep crack growth rate da/dt by an 

expression in the form of Eqs.(4), (5) or (7) provides little information on the 

multiple factors that affect creep crack growth. In the case of the above results, 

where CCGR data are satisfactorily correlated to 𝐾, a functional dependence upon 

a series of LEFM parameters can be properly stated: 

 

d𝑎

d𝑡
= 𝛷(𝜎, 𝐾, 𝑇; 𝜎 , 𝐾 , 𝐾 , 𝛸, 𝑇 ; 𝑎),                               (8) 

In particular, the governing parameters include (i) a threshold value 𝐾  of the 

stress-intensity factor, below which creep crack growth does not occur [48], (ii) 

the thermal diffusivity 𝑋 (m s ) which controls the stress-induced migration of 

vacancies responsible for creep deformation, and (iii) the absolute melting 

temperature 𝑇  of the material (creep is commonly found to become severe when 

the operating temperature exceeds 0.4 𝑇 ). It is worth noting that the loading 
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configuration and the specimen thickness are not included as variable parameters, 

since geometry (CT) and thickness (Fig. 1) are fixed in the current analysis. 

Considering 𝜎 , 𝐾 , 𝛸, 𝑇  as independent variables, the dimensional analysis [49] 

yields the following expression in terms of dimensionless parameters: 

 

d𝑎

d𝑡
=  

𝑋

𝑎
𝛷  

𝜎

𝜎
,

𝐾

𝐾
 ,

𝐾

𝐾
 ,

𝑇

𝑇
 ,

𝑎

𝑎
 ,                            (9) 

 

where 𝑎  represents the fracture sensitivity of the material as a function of the 

fracture toughness 𝐾  and tensile strength 𝜎 , 𝑎 = (𝐾 𝜎⁄ ) 𝜋⁄ . 

On the other hand, power-law relationships, such as those presented to describe 

creep crack growth rate, give the evidence of self-similarity, wherein a 

phenomenon reproduces itself over different time and space scales. It has been 

observed that self-similar solutions describe the intermediate asymptotic behaviour 

of fatigue crack growth when “the influence of the initial conditions has 

disappeared but the influence of the instability has not yet intruded” [50-53]. 

Accordingly, characterization of creep crack growth in terms of power laws is 

signature of an intermediate asymptotic regime, which is achieved in the mid-

range of growth rates, i.e., when the crack has started to propagate although the 

material is sufficiently far from failure. The so-called incomplete self‐similarity 

prevails at this stage, corresponding to a power-law dependence of creep crack 

growth rate on certain dimensionless parameters. 
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Let us consider 𝑎 and 𝐾. Since the above experimental evidences have shown the 

dependence of the creep crack growth rate on 𝑎 and 𝐾, incomplete self-similarity 

is assumed in the corresponding dimensionless parameters 𝑎 𝑎⁄  and 𝐾 𝐾  ⁄ . Thus, 

Eq.(9) takes the following power-law asymptotic form: 

 

d𝑎

d𝑡
=  

𝛸

𝑎
𝛷

𝜎

𝜎
,
𝐾

𝐾
 ,

𝑇

𝑇

𝑎

𝑎
 

𝐾

𝐾
 ≡ 𝐶  𝐾 .               (10) 

 

Comparing the generalized creep crack growth law of Eq.(9) with Eq.(7) gives: 

 

𝛾 = 𝑞                                                          (11.a) 

 

𝐶 ≡  
𝛸

𝑎
𝛷

𝜎

𝜎
,
𝐾

𝐾
 ,

𝑇

𝑇

𝑎

𝑎
 𝐾                         (11.b) 

 

Eq.(10) is formally identical to the classical Paris-type law in Eq.(7) for creep 

crack growth, but the coefficient of proportionality 𝐶  is not simply a function of 

the material properties and temperature, but turns out to depend on the actual crack 

length 𝑎 as well. The exponent 𝛾  governing such size effect cannot be obtained 

from the dimensional analysis, but rather using experimental data. 

Deviations from the mid-range power-law behaviour, predictable within 

intermediate asymptotics, have been experimentally verified [48] when the 



 
 
 

13

conditions of non-propagating crack, for 𝐾 → 𝐾 , and Griffith-Irwin instability, 

for 𝐾 → 𝐾 , are approached, yielding a Paris-type curve illustrated in Fig. 3. 

 

5 Fractal approach to creep crack growth 

Since the publication of the celebrated article by Mandelbrot and co-workers [54], 

the fractal nature of metal fracture surfaces has been widely recognized. Such a 

fractal character has been revealed also for metallic substructures under creep 

conditions [55,56]. Repeated observations at various magnifications have shown 

that the structure replicates itself in a self-similar way in a range of intermediate 

scales, falling between the micro-scale ―influenced by grains, inclusions and 

dislocations― and the macro-scale ― characterized by the size of the specimen 

and the notch from which the crack propagates. Accordingly, a geometric 

interpretation of crack-size effects on the creep crack growth rate is obtained in the 

context of fractal geometry [57,58], whereby the crack profile can be modelled as 

an invasive fractal set 𝑎∗, with projected length 𝑎 and topological dimension 

1 + 𝑑G (0 < 𝑑G < 1): 

 

𝑎∗ ≃ 𝑎 G .                                                          (12) 

 

On the other hand, revisiting the Griffith energy balance in the context of fractal 

cracks yields the following scaling law:  
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𝐾 ≃ 𝐾∗𝑎 G/  ,                                                     (13) 

 

where 𝐾∗ is the renormalized stress-intensity factor with anomalous physical 

dimensions [𝐹][𝐿] G ⁄ . 

Exploiting Eq.(12), an application of the derivation rule for composite functions 

gives: 

 

d𝑎

d𝑡
=

d𝑎

d𝑎∗

 d𝑎∗

d𝑡
=

 d𝑎∗

d𝑡

𝑎 G

1 + 𝑑G
.                                    (14) 

 

Inserting Eqs. (13) and (14) into Eq.(7) yields: 

 

 d𝑎∗

d𝑡

𝑎 G

1 + 𝑑G
= 𝐶 𝐾∗ 𝑎 G / .                                     (15) 

 

Analogously to fractal fatigue models [42-46], if the following scale-invariant 

relationship between fractal quantities is assumed for creep crack growth: 

 

 d𝑎∗

d𝑡
= 𝐶∗ 𝐾∗ ,                                                (16) 

 

Eq. (15) reduces to: 
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𝐶 (𝑎) =
𝐶∗

1 + 𝑑G
𝑎 G( / ),                                  (17) 

 

which returns by another route the crack-size dependency of the coefficient 𝐶  as 

in Eqs.(10) and (11.b). Comparing Eqs.(11.b) and (17) gives 𝛾 = −𝑑G(1 + 𝑞/2). 

Note that Eq.(17) predicts a negative scaling of 𝐶  due to fractal roughness of the 

crack profile (i.e., for 𝑑G > 0). Accordingly, the creep crack growth rate da/dt in 

Eq.(7) is a decreasing function of the crack length as pointed out by the 

aforementioned experimental results. It should be noted that by combining the two 

scaling behaviours of d𝑎 d𝑡⁄  and 𝐾 with respect to the crack size 𝑎 ―see Eqs.(13) 

and (14) ― it is possible to predict the right- and downward shift of CCGR curves. 

The experimental CCGR curves (with da/dt in mm h−1 and 𝐾 in MPa m1/2) are 

renormalized by a transformation of the axes 𝐾 and d𝑎/d𝑡 of the form, 𝐾 →

𝐾∗ = 𝐾 𝑎 G/  and d𝑎/d𝑡 → d𝑎∗/d𝑡 = 1 + 𝑑G 𝑎 G  d𝑎/d𝑡 , where 𝑎 is equal to 

3 and 15 mm. The renormalized data collapse onto a single line (shown in Fig. 4), 

illustrating the fulfilment of the crack-size independent creep crack growth law 

given by Eq.(16). The dimensional increment 𝑑G of the crack profile is adjusted to 

achieve the best data collapse, yielding 𝑑G = 0.58 ± 0.09 and, contextually, the 

following scale-invariant law: 
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 d𝑎∗

d𝑡
= 10 .  𝐾∗ . .                                                (18) 

 

6 Discussion and conclusions 

Experimental data about creep crack propagation for specimens with a pre-existing 

sharp defect are re-examined, revealing a clear crack-size effect on cracking rates 

when correlated to the elastic stress-intensity factor, K. These findings are 

formalized in the framework of dimensional analysis and intermediate 

asymptotics, leading to a generalized formulation of the creep crack growth law, 

d𝑎/d𝑡 = 𝐶  𝐾 , where the effects of the initial crack length as well of multiple 

parameters are taken into account. An application of the fractal geometry leads to 

the definition of a scale-invariant law, d𝑎∗/d𝑡 = 𝐶∗ 𝐾∗ , able to uniquely 

characterize the creep crack growth behaviour of the material, regardless of the 

size scale. Similarly to fatigue crack propagation (where analogous scaling laws 

are obtained by the change of variable t → N, i.e., time → number of cycles), 

fractal roughness of the crack surfaces ―through the dimensional increment 𝑑G― 

is predicted to be responsible for the negative scaling of 𝐶 , whereby short cracks 

propagate at higher rates according to the experimental evidence. 

Assuming for 𝐾  the same scaling effect as for 𝐾  and 𝐾, 𝐾 = 𝐾∗  𝑎 G/ , the 

shift of the nominal CCGR curves with crack size, as represented in Fig. 5(a), is 

obtained. Then, the collapse of the renormalized curves onto a Paris-type scaling 
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function (solely material and temperature dependent) of Fig. 5(b) is an obvious 

consequence. 

Extensive experimental work has to be conducted to confirm the present fractal 

approach. In particular, the investigation of a threshold limit, below which creep 

crack growth does not occur (see dashed branch of Paris-type curves in Fig.5), is 

related to the ability to inspect smaller and smaller cracks. Further studies could 

also concern the application of fractal geometry concepts to interpret crack-size 

effects on creep crack growth rate in terms of the 𝐶∗-integral.   
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Figure captions 

 

Fig. 1. Geometry and size of CT specimens tested (adapted from [47]) 

 

 

Fig. 2. Shift of experimental CCGR curves correlating da/dt with 𝐾 (adapted from 

[47]) for different initial crack lengths, accounting for the crack-size effect. 

 

Fig. 3. Schematization of CCGR diagram: power-law stage corresponds to the 

intermediate asymptotic behaviour. 

 

Fig. 4. Collapse of the renormalized CCGR data onto the fitting line represented 

by Eq.(18) in the fractal 𝐾∗  vs d𝑎∗/d𝑡 diagram. 

 

Fig. 5. Predicted nominal CCGR curves (a) and renormalized curve in the fractal 

diagram (b), where 𝑣  (or 𝑣 ∗) and 𝑣  (or 𝑣 ∗) denote threshold and critical 

CCGRs given by Eq.(14). The dashed line represents the region to be carefully 

investigated. 
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Fig. 5 (a) 

 

 

Fig. 5 (b) 


