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Abstract. The development and detail design of complex electrohydraulic actuators for aircraft 

flight controls require the use of accurate, high fidelity fluid-dynamic simulations in order to 

predict the behaviour of the system within its whole operating envelope. However, those 

simulations are usually computationally expensive, and simplified models are useful for the 

preliminary design phases and real-time health monitoring. Within this context, this work 

presents a review of low fidelity models for the fluid-dynamic behaviour of an electrohydraulic 

servovalve. Those are intended to run in real time as digital twins of the physical system, in 

order to enable the execution of diagnostic and prognostic algorithms. The accuracy of the 

simulations is assessed by comparing their results against a detailed, physics-based high 

fidelity model, which computes the response of the equipment accounting for the pressure-flow 

characteristics across all the internal passageways of the valve. 

1.  Introduction 

Electro Hydraulic (EH) servomechanisms are widely employed within current generation aircraft 

flight control systems, since they provide power density unmatched by alternative technologies and a 

very high reliability. Among the most common applications in aerospace technology, EH actuators are 

used for powering fly-by-wire aerodynamic surfaces, landing gear retraction, steering and braking, as 

well as several secondary users. However, to match the safety requirements for the use in commercial 

and military aviation, redundancies and health monitoring strategies are usually needed [1,2]. Urata 

proposes in [3-9] several studies on the effect on the behavior of hydraulic servovalves of various fault 

modes, namely leakage flux, fringing, eddie currents, and asymmetry of the air gap in the torque 

motor. Detailed, high fidelity analysis of servovalve behavior are available in [10, 11], leveraging 

Computational Fluid Dynamics (CFD) and electromagnetic Finite Elements (FE). However, those 

high fidelity simulations are usually too computationally expensive for onboard time-constrained 

applications, such as monitoring and diagnostic routines. Within this context, accurate yet simple 

models are needed to simulate the behavior of the system in real time. The most basic architecture of 

an electrohydraulic actuator includes a control electronics module, which compares the current 

position with the setpoint to compute the current command to a servovalve. The valve, usually with a 

two-stage, flapper-nozzle design, is the regulating element that routes the hydraulic fluid to the control 

ports of the motor element, typically a linear jack or a rotary hydraulic  
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Figure 1. (a) Typical design of a hydraulic actuator and its flapper-nozzle servovalve. (b) Pressure-

flow rate-spool position characteristic of the servovalve, obtained through the High Fidelity model 

 

motor, which converts hydraulic power into mechanical power in order to move the user (e.g. a control 

surface of the aircraft). The servovalve is the most complex element of the actuator. The typical design 

for a two-stage, four-way, flapper-nozzle servovalve is represented in Figure 1 (a). The input current 

flows through the torque motor and moves the flapper towards one of the nozzles. As a result, the 

pressure on the two sides of the spool becomes unbalanced and causes the spool itself to move from its 

null position, opening or closing the fluid passageways on the sleeve. Eventually, the spool 

displacement, through the feedback spring, draws the flapper back to an equilibrium position, 

equalizing the pressures on the spool. 

In this work we propose a review of simplified models for the fluid-dynamic behavior of a 

servovalve, which is the component of an EH actuator characterized by the most complex and 

nonlinear behavior; accurately modelling its behavior is an essential step to obtain reliable real-time 

emulators of the operation of the servosystem. Those models are intended to run with low 

computational resources within digital twins and monitoring models for electrohydraulic actuators. 

The models are evaluated and compared with a high fidelity, physics-based simulation. 

2.  High fidelity model 

We employ a High Fidelity (HF) model as a simulated test bench for the simplified representation of 

the servovalve [12]. The HF model evaluates the flow-pressure characteristic of each passageway, to 

determine the pressure drop across the valve. As shown in Figure 1 (b), the differential pressure to the 

control ports 𝑃12 varies approximately linearly with spool position 𝑥𝑆 and flow rate 𝑄𝐽, when the spool 

itself  is close to the null position. As the spool moves further away from its center position, 𝑃12 

increases up to the supply pressure differential (𝑃𝑆𝑅). When the valve is closed (i.e. 𝑥𝑆 ≈ 0), the 

differential pressure can grow higher than 𝑃𝑆𝑅, if the hydraulic circuit downstream the servovalve 

imposes a flow rate 𝑄𝐽 ≠ 0: this effect is known as water hammer. 

The HF model is computationally expensive and not suitable for real time evaluation. Additionally, 

it depends on a number of parameters which are not available from the datasheet of a servovalve, such 

as information related to the geometry of the fluid passageways and the clearances between spool and 

sleeve. Hence, low fidelity simulations usually rely on linearized servovalve models, which only 

depend on parameters that are easily measurable considering the valve as a black-box. One of the most 

common linearized formulations can be expressed as: 

𝑃12 = 𝐺𝑃(𝑥𝑆 − 𝑄𝐽/𝐺𝑄) 

where 𝐺𝑃 is the pressure gain (i.e. the ratio between differential pressure and spool position at zero 

flow) and 𝐺𝑄 is the flow gain (i.e. the ratio between flow rate and spool position at zero differential 

pressure). This linearized model has a significant flaw that lies in its inability to account for the water 

hammer effect, nor for pressure saturation and leakage through the valve clearances. 
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3.  Simplified models 

The limitations of the linearized models usually make them unsuitable for real-time health monitoring 

tasks, since the discrepancies between the model and physical system can trigger false positive fault 

detections. Hence, the following paragraphs provide a review of more elaborate yet computationally 

light servovalve models, intended to overcome some of the issues associated with the linearized ones. 

3.1.  Model A 

Model A was firstly introduced in [13] (issued in Italian language). It is intended to account for a 

variable supply differential pressure 𝑃𝑆𝑅, as well as for the leakage across the clearance between the 

spool and sleeve of the valve, through the leakage coefficient 𝐶𝐿𝐾. As shown in Figure 2 (a). The 

variable 𝑃𝑆𝑅 is considered by replacing the pressure gain 𝐺𝑃 with 𝑃𝑆𝑅/𝑥𝑆𝑆, where 𝑥𝑆𝑆 is the spool 

displacement needed saturate the control pressure, so that 𝑃12 = 𝑃𝑆𝑅. To account for leakage, the 

model assumes that an additional flow rate 𝑄𝐿𝐾 = 𝑃12𝐶𝐿𝐾 passes through the valve causing a pressure 

drop, quantified as 𝑄𝐿𝐾𝐺𝑃𝑄, where 𝐺𝑃𝑄 = 𝐺𝑃/𝐺𝑄. 

3.2.  Model C1 

Model C1, introduced in [14], is a modification of model A intended to add a sensitivity to the 

pressure saturation. Excluding the water hammer effect, a valve can normally provide a maximum 

differential pressure equal to the supply differential pressure of the hydraulic circuit. Model C1, with a 

layout similar to model A, has a saturation block upstream the leakage evaluation, as shown in the 

block diagram of Figure 2 (b). 

3.3.  Model C2 

Model C2, proposed in [14] is described by the block diagram shown in Figure 2 (c). It corrects model 

C1 by placing the saturation downstream the leakage evaluation block. This way, the maximum 

differential pressure is allowed to rise up to the supply differential pressure, as opposed to model C1 

where |𝑃12| ≤ 𝑃𝑆𝑅/(1 + 𝐺𝑃𝑄𝐶𝐿𝐾). 
 

 

Figure 2. (a) Block diagram of Model A. (b) Block diagram of Model C1. (c) Block diagram of 

Model C2. (d) Block diagram of Model C3. (e) Block diagram of Model C5. 

t 
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3.4.  Model C3 

Model C3, introduced by [15] is an alternative correction of model C1. The saturation is kept upstream 

of the leakage evaluation; this leakage evaluation block has a modified transfer function intended to 

account internally for the pressure saturation, through the limitation of the effective spool 

displacement 𝑥𝑆 to the saturation value 𝑥𝑆𝑆. The block diagram of Model C3 is shown in Figure 2 (d). 

3.5.  Model C5 

Model C5 was initially proposed in [16]. It is intended to evaluate the interaction between pressure 

saturation and leakage evaluation in a more in a more realistic way. To do so, an equivalent spool 

position 𝑥𝑆𝑡 is introduced that accounts for the fluid flow passing through the valve and a potentially 

variable supply pressure: 

𝑥𝑆𝑡 = 𝑥𝑆 −
𝑄𝐽𝐺𝑃𝑄𝑥𝑆𝑆

max(𝑃𝑆𝑅 , 𝑃𝑣𝑎𝑝)
 

that is equivalent to reduce the effect of the flow feedback with 𝑃𝑆𝑅, down to the vapor pressure 𝑃𝑣𝑎𝑝. 

The effective spool position is multiplied by a variable pressure gain, to compute the differential 

pressure and account for saturation and leakage flow: 

𝑃12 = 𝑥𝑆𝑡
𝑃𝑆𝑅

max(|𝑥𝑆𝑡|, 𝑥𝑆𝑆) + 𝐺𝑃𝑄𝐶𝐿𝐾𝑥𝑆𝑆
 

As a result, the effect of the leakage flow is evaluated in a manner similar to Model C3, by 

considering the interaction with the saturation of the differential control pressure. The model is shown 

in the block diagram of Figure 2 (e). 

4.  Results 

The models are assessed by computing their pressure-spool position characteristic for multiple 

values of the flow rate 𝑄𝐽. This results in the maps shown in Figure 8, that shall be compared to that of 

the HF model (Figure 2). From the comparison with the HF map, clearly none of the simplified 

models is able to correctly simulate the water hammer effect. Although this condition rarely happens 

in the normal operation of a hydraulic system, it can have a significant impact on the behavior of the 

actuator in case of a pressure drop in the hydraulic supply. 

As expected, Model A is not able to account for the pressure saturation at ±𝑃𝑆𝑅 = 20𝑀𝑃𝑎. The 

saturation is correctly estimated by models C2 and C5, while Model C1 underestimates the maximum 

differential pressure value, being the leakage evaluation downstream the pressure saturation. Model 

C3 has an anomalous behavior near saturation for small spool displacements, meaning that the 

proposed technique to consider the interaction between pressure saturation and leakage flow is not 

completely satisfying. This behavior is corrected by the modification introduced with Model C5. 

5.  Conclusions 

Five simplified models for the fluid dynamic behavior of a hydraulic servovalve were reviewed and 

compared with a high fidelity simulation. The results showed that none of those simplified emulators 

is able to simulate the behavior of the valve in its whole operating envelope. Specifically, the 

simplified models are not suitable for evaluating the water hammer effect. With this regard, further 

development is required in future works. However, some of those simplified models (in particular 

models C2 and C5) can be successfully employed, with different levels of accuracy, provided a limited 

operating envelope is considered. 
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Figure 3. Pressure-flow-spool position maps 

of the simplified models. (a) Model A; (b) 

Model C1; (c) Model C2; (d) Model C3; (e) 

Model C5 
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