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1 INTRODUCTION

Seismic isolation has emerged as one of the most powerful techniques in the ensemble of
retrofitting methodologies [1]-[5] to improve the safety and resilience of infrastructure sys-
tems [6]-[7]. In the more general seismic approach, seismic isolation of bridges permits to ob-
tain the uncoupling of the deck from the horizontal earthquake’s components, leading to a
significant reduction of the deck acceleration and, as consequence, of the forces transmitted to
the pier.

Several studies [1]-[4] have been carried out in the last decades investigating the effective-
ness of the isolation devices and carrying out experimental and analytical studies on the seis-
mic response of bridges isolated by sliding isolation systems finding out as these kind of
devices are quite effective and efficiency in the aseismic bridges’ design. Ghobarah and Ali [5]
and Turkington et al. [8] showed that the presence of lead-rubber bearings shift the natural
period of the structure and increases the amount of damping, moreover they permit to distrib-
ute the seismic forces approximately evenly between pier and abutment. Jangid [9] studied the
seismic response of bridges seismically isolated by lead-rubber bearings (L-RB) to bidirec-
tional earthquakes outlining that the bidirectional interaction of the restoring forces of the L-
RB has not negligible effects on the seismic response of the isolated bridges. In [10]-[11], the
seismic behaviour of bridges seismically isolated by adopting friction pendulum system (FPS)
was studied. When FPS bearings are used, the natural period of the isolated structure becomes
independent of the mass of the superstructure and it just has a dependence on the radius of
curvature of the sliding surface [12].

Another important feature of this isolation system is mainly related to the energy dissipa-
tion mechanism that becomes possible thanks to the velocity dependent friction between the
sliding surfaces and the composite material on the slider [13]-[17]. In addition, it has been
demonstrated in [18]-[19] that the characteristics of an FPS become more effective by intro-
ducing a second sliding surface obtaining the so called double concave friction pendulum
(DCFP). In particular, Kim and Yun [20] studied the positive effects of a double concave fric-
tion pendulum system on a bridge response considering different combinations of radii of
curvature and of friction coefficients.

Other studies [21]-[22] have been more oriented to define design approaches by means of
the seismic reliability-based design (SRBD), in which the main uncertainties such as the
seismic input and the system properties have been taken into account. In [23] the optimal
properties of FPS able to minimize the seismic response of bridge under earthquake having
different frequency contents representative of different soil conditions has been evaluated.

This study analyzes the influence of the double concave friction pendulum (DCFP) isolator
properties on the seismic performance of isolated bridges taking into account the pier-
abutment-deck interaction. The behavior of these systems, as also described in [10]-[24] is
analyzed by employing an eight-degree-of-freedom (8dof) model representative of the rein-
forced-concrete pier flexibility in addition to the presence of a rigid abutment and deck,
whereas the DCFP isolator behaviour is described combining two single FPSs in series [18]-
[19]. For each sliding surface, a widespread model which considers the variation of the fric-
tion coefficient with the sliding velocity is adopted [15]-[16]. The uncertainty in the seismic
input is taken into account by means of a set of natural records with different characteristics.
The variation of the statistics of the response parameters relevant to the seismic performance
of the isolated bridges is investigated through a nondimensionalization of the motion equa-
tions, as also implemented in [25]-[28] developing an extensive parametric study.
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2 EQUATIONS OF MOTION

An 8-degree-of-freedom (dof) system is employed to model the isolated bridge configura-
tion of Figure 1. Specifically, 5 dof are given by the lumped masses of the pier, 2 dof corre-
spond to the two slider masses of the DCFP isolators, located respectively on the pier and on
the abutment, and 1 dof is related to the rigid deck mass [10].

a) Ud b)

mo [ Usa
/l\ Surface 1
X8
m.
N rface 2
DCFP,
ST

Surface 1

e f rface 2
DCFP,
ST

Y Y

Figure 1: 8dof model of bridge isolated with DCFP bearings: relative displacements with respect to the ground a)
and drifts between masses b) .

The equations of motion governing the response of the model representing a bridge on
DCEFP isolators, in terms of relative displacement with respect to the ground (Figure 1a) sub-

jected to the seismic input U (1) is:

m, [ G, (1) +ii, (1) [+ F, 0+ F, () =0

Mg, [, (1) +ii, (1) |-, +F,, (=0

my, [, (1) +ii, (1) [-F,, 0+ F,, (1) =0 (lab.c,d.e)
Mys [ 1,5 (8) iy (1) [0, [ (1) =100 (1) ]+ g5 [ s (£)=U, (£) |- Fyp () =0

M [ (1) i (1) [ g (1) =0 (6] ki [0 (8) -, (1) ]+
= [ (0)= (1)Ko [ (0)=0, ()] =0 or =14

where U; denotes the displacement of the superstructure relative to the ground, ug, the dis-
placement of the slider of the DCFP device on the pier with respect to the ground, U, the dis-
placement of the slider of the DCFP device on the abutment with respect to the ground, u;
(i=1,..,4,5) the displacement of pier i-th mass relative to the ground, my, m., and m,, respec-
tively the mass of the deck and of the two DCFP devices respectively on the pier and on the
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abutment, m; (i=1,..,4,5) the mass the i-th lumped mass of the pier, k; and c; (i=1...,4,5)
respectively the stiffness and inherent viscous damping constant for each dof of the pier, t the
time instant, the dot differentiation over time, F;, (t) and F;, (t) denote the reaction of the

DCFP bearings on the abutment and on the pier, respectively, for the upper
(J = 1) and lower surface (J = 2). The deck isolated by DCFP isolators is herein considered
without any viscous capacities [28].

A DCFP can be modeled as a serial combination of two single FPS. Thus, according with
[18]-[19], when the inertial force associated with the movement of the small slider mass is
neglected, the reaction forces (F2 and F1) at the lower and upper surface become the same and
can be readily obtained as follows:

F=F=F=—"9 (i My (R (1 )sen (i) + Ry (11 ) sgn ;)

_ 2
' R +R, R +R, @

where U is related to the total deformation of the double concave friction pendulum, U, to the
deformation of the upper surface and u, to the lower one. The first part of the right hand side
of Eq.s (2) represents the restoring stiffness (K, ) of the combined DCFP from which the

restoring natural period can be obtained as follows:

_ M9 3)

comb —
R +R,

T,=2x (R1+R2)/g 4)

where g is the gravity constant, Ry and Rz are the radii of curvature of the DCFP.

In Eq.(2), f, (t'lj (t)) (j=1,2) is the coefficient of sliding friction, which depends on the slider
slip velocity along one of the two bearing internal surfaces, indicated with U (1‘), and

sgn(l')j) (J=1,2) with sgn(-) denoting the sign function. Note that the subscript 1 refers to the

upper surface whereas the subscript 2 refers to the lower surface. On the other hand, the sec-
ond part of the Eq.s (2a,b), under the hypothesis that sliding occurs on both surfaces and in
the same direction, represents the equivalent friction coefficient of the DCFP [18]:

_H R+ R, (5)

In the above discussion, it is also assumed that the DCFP bearings used to isolate the deck and
placed, respectively, on the pier and on the abutment have the same characteristics, so that it’s
obvious they move simultaneously.

Moreover, experimental results [14]-[16] suggest that, for each sliding surface, the coefficient
of sliding friction of Teflon-steel interfaces obeys to the following equation:

H; (”;) = H; —(ﬂf,max —/ll-,mm)-eXp(—a‘zZJ) for j=1,2 (6)

in which g; . represents the maximum value of friction coefficient attained at large veloci-

ties of sliding, and y; ,, represents the value at zero velocity. To further simplify the problem,
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in the following analyses it is assumed that g; . =34, . based on a regression of the exper-

imental results, whereas the exponent « is assumed equal to 30 [14]-[16].

3 NON-DIMENSIONALIZATION OF THE EQUATIONS OF MOTION

In order to analyze the role of each characteristic parameter controlling the seismic behav-
iour of the system under investigation, the results obtained solving the equations of motion
are reduced to a non-dimensional form as discussed in [26]-[28].

To easily obtain the deformation of the isolators along each sliding surface, Eq.(1) can be re-
written in terms of drifts between the masses of the system instead of displacement respect to
the ground:

my X, (t) +m, X, (t) + md.ic'p5 (t) —+ md)'c'p4 (t) + md.v'c'p3 (t) + md)'c'p2 (t) +

+m, ¥, (£)+c,x, (1) +F,(1)+ R, () =-myi, (¢)

My, X (1) +m, %5 (1) +m %, (1)+m % (1) +m X, (1)+

+Mg,X (t) _Ep (Z)+ Flp (t) = _mSpﬁg (t)

sp“tpl
M (1)~ B, (1) + By, (6) = -m i, (1)

msX,s (6)+m %, (1) +m X (1)+m %, (1)+m %, (1)—c,%,(1)+

+CPSXrJS (t) + k175xn5 (Z) - Fln (Z) = _’nnSﬁg (t)

Mmoo, (1) +m 5% (1) +m K, (1)+m, % (£)—c,s%,s (£)—k,sX,s (1) +

+cp4)'{p4 (t)+kp4xp4 (t) = —mp41'jg (t)

M, ¥, (t)+m %, (1)+m X, ()= Cpa¥ (?) — kX, (t)+

+Cp3>Zp3 (f) + kpgxp3 (Z) = —111,)31:1; (f) (7a,b,C,d,e,f,g,h)

MyoX s (1) +m %, (1) = €nX s (1) =Ko s () F €0, (1) T koo (2) = =m0 (2)

mplxm (t)_cpzxpz (f) _kpzxpz (t) +cplxnl (r)+kﬁlxl7| (f) = _nlﬁ'ﬁg (f)

where:

mg| 1 (3 SR
F.= > |’ Xoi TXe X, = Xg |+ 4, | s8N Z:)<p|+x6+)@7—.>s8
=1

i i=1

ba (8a,b,c,d)
=TS0 o 5 fn()
sz:(%+mspjg|:R12 (X6)+(/uzp()%6))(sgn()'(6)):|
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After that, dividing all the equations by m,, Eq.(7) applies:

Ko (1) 45, (1) + 5,5 (1) 45, (1) 4 X5 (1) 45, (1) + 5, (1) + 28,0,%, (1) +

{Rlla (izsl‘;xpi X T X = Xs)+ﬂ1a(V)(sgn[i
)+ (5 5 5,0

Xy X T X7 — X vj :{+
1

A ()’(’6 (1) + X, (1) +%,, (1) + X5 (1) + %, (1) +%,, (t))+
1

8] ) o ) (2 o] oy ) 5) =)

2p

s (t)—g{ Rlla (i Xp X + X, —xg\}+ yld(v)[sgn(izs;xp, R+~ = vjﬂJr
+G+ ﬂsaj g { Rl (%) + (454 (%)) (sen (x's))} — A, (1)

Ay (xns (1) +%,, () +%, (1) +5,, (1) + %, (z))— 28,05, (1) + 28,50, A X5 (1) + 07 A X5 (1) +

—(% + ﬂsp) g |:%p(xé)+(:uzp ()-(6 ))(Sgn(x'é ))} =AU, ([)

Apa (xm (1)+%,:(1)+%,,(1)+%, (’))_ 28 5@y Aps¥ s (1) = @) A% ,s (T) +

428,00, 2%, (1) + @0, 2,0, (1) = =40, (1)

(9a,b,c,d,e,f,g,h)
Aps (Xps (1)+%,,(0)+%, (’)) =220, A% (1) = @ 2%, (1) + 28 50,32, :%, (1) +
+ Ay Xos (V) = =20, (1)
A (XPZ (1)+%, (I)) 28,30 ,34,,% 5 (1) — @0y Ay X, (1) + 2 L@, 20, %,, (1) +
+ @, A X () = = A, (1)
¥ (1) =28 0 540 % ), (1) — @5 A% (1) + 280, A%, (1) + 0, A, x,, (1) = =200, (1)
and the following ratios are introduced:
A= % A = % A = %
pi — > “sa T ’ sp >
My My My
(10a,b,c.d,e,f)
kcomb kpi Cpl
Wy = > Opi =, [—> §pi:2—
m, m, M@,

where the first three terms are the mass ratios, the third and the fourth terms are the circular
frequency of vibration of the isolated deck and of the i-th dof of the pier and the one denotes
the damping factor of the i-th dof of the pier.

Inspired from [26]-[28], let us introduce the time scale 7 =twy in which @, is the fundamen-

tal circular frequency of the isolated system with infinitely rigid superstructure, considering
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the equivalent stiffness of the DCFP isolator k and the seismic intensity scale a,, ex-

comb >

pressed as U, (#) = a,((r) where ((7) is a non-dimensional function of time describing the

seismic input time-history, the following non-dimensional equations can be obtained:

0, (2) i (2 (7)1, () 7 (2) 4, () mﬂwmd[#%% ()22 ny, )}

Z{R [z""“ iy *V’7()v’s(f)]+
+[%[;%. )+, () +y7, (1)~ v (T)B[Sgn(il/}m(f)ﬂ/% ()49 (7) - (r))ﬂ o

0 i=1

2 [ () 40,5 (2) #07,0 (7) #97,5 (2) 07, (7) 7, (T)]_g{

2

11 (¥ .
— v, (z')+¥sgn(w7 )}-#

Rlp a)d 0

+(%+ /lspjg [Rllz% (r)+ ,Uzpa(l/ J) sgn (7 )} =—2,((r)

2p “d 0

j’sal/)g (z-)_g

2[ 1 12[gwpi(r)wb(r)+y,7(f)_y,8(r)J+

R]a @y

+[Ma [iw‘m(rwm(r)+w7(r)—w'x(T)JJ[Sgn[iw”‘m“’}“(T)+W7(T)_W“(T)m+

0 \i=l i=1

w Ao
Aps [‘/7;vs ()4, (1) 4 o (7) 4475 (7) 97, (T)J =284, (1) 428 52,5 f%s (r)+ p;)zps Wos (7)+
d

d

2p “Yd

1 1 1 (W :
_(2ng[R2w<,(r)+%sgn(wﬁ)}=—ﬂpsf<f>

2

. a5 19 [9)
j’lﬂ I:WM (T)-Hiiﬂ (T)'HﬁpZ (T)+V7pl (T)J _zéVS)VPS w—’jl//'ﬁ (T)+2§p4ln4 TMV/M (T)_lui w_pzsl//PS (T)+
d d
2

@
+ﬂ’p4 a)ip;l//pét (T) = _ﬂ’p4r(r)

d

. Dy (2 &)
ﬂp} [‘/ﬂs +l//112 (z')+1//[,| (Tﬂ 7266;;4)"04 w_p:l//;m (T)+ 25[}3}'03 a)_p}Wps (7)72;;4 w_p;'//;m (T)+
d
2

,
s i;l//p.? (r)= —Aps(7)
@y

2
@Dy @, . 2]
s [0, (7) 4107, (1) |- 28,44, w—’:y/p3 (r)+26,,2,, w—”zwpz ()=, CT'?V’“ (r)+ (11 a,b,c.d,e.f,g,h)
d d
2

®
b2~V (7) = =2, ((7)
@y

+A

2 2

N o, ® ®
/1p1‘/’n!( )= 25;:2}%2 '/’uZ( )+28,4, _pl‘/’,ﬂ (r)=4, _pzz‘/’pz (7)+/1p17pz]‘/’p1 (T)=_/1pl'r(f)
@y @y @y

Furthermore, the following non-dimensional parameters that control the bridge system of Fig-
ure 1 have been adopted:
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Hwi = a ’ H/Ii = j’pl = a > Hisa ://i’sa’ I—I}Lsp :/’i’spﬂ
m
@ ) ¢ ) (12a,b,c,d,e,f,g)
N AL Mo (V)Y
Mo (v4)= @ M, (v,) === » Mg =cy
0
I, I, 11, are the previously defined mass ratios, I1, describes the viscous damping

inherent respectively to the pier dof. Regarding the control parameters of the pier, indeed, the
parameters @, are related to the fundamental vibration pulsation @, (the first vibration mode)
2. M,

as well as the sum of the mass ratios is related to the overall mass ratio I, = A, = HS  and,
md

finally, all the damping factors are assumed equal to I1 g = S
The non-dimensional parameters 1, T, measure the isolator strengths, provided by the
friction coefficients of the two isolators, respectively. Since these parameters depend on the
response through the velocities, the following parameters are used in their steads:

H* — /leax,ag , H* — Ileax,pg

Toa T gy (13a,b)

It is important to observe that the normalized response of the dynamic system does not de-
pend on the seismic intensity level ao. Conversely, the seismic response depends also on the

function /I(r) and also on the isolation circular frequency @, (or period Ty =27/ ®,).

The non-dimensional response parameters that describe the dynamic response of the deck and
of the i-th dof for the pier and the two sliders are, respectively:

2 2 2
v, = ud,peaka)d v, = Xq ,peaka)d o (X6 + Xy )peak Wy
Ud e [+ \ s Xd - - >
Sa(Tq) Sa(Ts) Sa(Ta)
2 2 2
u [0) u [0) X [0)
k““d 5,peak ““d k““d . .
W, = p,peal — _Po.pea W, _ Ji,peak™”d with |:1,...,8

* o Sa(Ty)  Sa(Ty)

4 PARAMETRIC STUDY

This section presents the results of an extensive parametric study carried out on the bridge
system of Fig. 1 to evaluate the performance of bridges isolated with DCFP bearings.

tSA(Ty) (14a,b.c,d)

Seismic input description

The evaluation of the seismic performance of any engineered systems should account for
the variability of the intensity, frequency content, and duration of the records at the site. Co-
herently with the performance-based earthquake engineering (PBEE) approach [29]-[30], this
study separates the uncertainties related to the seismic input intensity from those related to the
characteristics of the record (record-to-record variability) by introducing a scale factor, a,, i.e.

an intensity measure (IM). By this way, the randomness in the seismic intensity can be de-
scribed by a hazard curve, whereas the ground motion randomness for a fixed intensity level
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can be described by selecting a set of ground motion realizations characterized by a different
duration and frequency content, and by scaling these records to the common @, value. In line

with the criteria of efficiency, sufficiency, and hazard computability [34]-[35], in this study,
the spectral pseudo-acceleration, S, (Ty ), at the isolated period of the system, Ty =27/,

is assumed as intensity measure. This IM is related to the spectral displacement S; by the re-

lation S, (Ty)= @3S, (T4) . Many studies (e.g., [34]-[35]) demonstrated that S, is more effi-

cient than the peak ground acceleration, and its use permits to reduce the response dispersion
for the same number of ground motion considered and to obtain more confident response es-
timates for a given number of records employed.

Recording Station Vs3o Source M R PGAmax

# Year Earthquake Name Name g [m/sec] (Fault Type) [-] [km] [g]

1 1994 Northridge Beverly Hills - Mulhol 356 Thrust 6.7 133 0.52
2 1994 Northridge Canyon Country-WLC 309 Thrust 6.7 26.5 0.48
3 1994 Northridge LA — Hollywood Stor 316 Thrust 6.7 229 0.36
4 1999 Duzce, Turkey Bolu 326 Strike-slip 7.1 413 0.82
5 1999 Hector Mine Hector 685 Strike-slip 7.1 265 0.34
6 1979 Imperial Valley Delta 275 Strike-slip 6.5 33.7 035
7 1979 Imperial Valley El Centro Array #11 196 Strike-slip 6.5 294 0.38
8 1995 Kobe, Japan Nishi-Akashi 609 Strike-slip 6.9 8.7 0.51
9 1995 Kobe, Japan Shin-Osaka 256 Strike-slip 6.9 46 0.24
10 1999 Kocaeli, Turkey Duzce 276 Strike-slip 7.5 98.2 0.36
11 1999 Kocaeli, Turkey Arcelik 523 Strike-slip 7.5 537 0.22
12 1992 Landers Yermo Fire Station 354 Strike-slip 7.3 86 0.24
13 1992 Landers Coolwater 271 Strike-slip 7.3 821 042
14 1989 Loma Prieta Capitola 289 Strike-slip 6.9 9.8 0.53
15 1989 Loma Prieta Gilroy Array #3 350 Strike-slip 6.9 314 0.56
16 1990 Manjil, Iran Abbar 724 Strike-slip 74 404 0.51
17 1987 Superstition Hills El Centro Imp. Co. 192 Strike-slip 6.5 358 0.36
18 1987 Superstition Hills Poe Road (temp) 208 Strike-slip 6.5 11.2 045
19 1987 Superstition Hills Westmorland Fire Stat. 194 Strike-slip 6.5 15.1 0.21
20 1992 Cape Mendocino Rio Dell Overpass 312 Thrust 7.0 22.7 0.55
21 1999 Chi-Chi, Taiwan CHY101 259 Thrust 7.6 32 0.44
22 1999  Chi-Chi, Taiwan TCU045 705 Thrust 7.6 77.5 0.51
23 1971 San Fernando LA - Hollywood Stor 316 Thrust 6.6 395 0.21
24 1976  Friuli, Italy Tolmezzo 425 Thrust 6.5 202 0.35
25 1980 Irpinia Bisaccia 496 69 213 094
26 1979 Montenegro ST64 1083 Thrust 6.9 210 0.18
27 1997 Umbria Marche ST238 n/a Normal 6.0 21.5 0.19
28 2000 South Iceland ST2487 n/a Strike-slip 6.5 13 0.16
29 2000 South Iceland (a.s.)  ST2557 n/a Strike-slip 6.5 150 0.13
30 2003 Bingol ST539 806 Strike-slip 63 14.0 0.30

Table 1. Selected ground motions for time history analysis.

In this specific study, the choice of S, (Ty) as IM is motivated by the fact that if all the rec-

ords are normalized to S, (Td ) , then the normalized displacement response of a system with

1712



P. Castaldo, G. Amendola, D. Gino, E. Miceli.

period T, rigid superstructure and mounted on a frictionless isolator is equal to 1 for each

record and it is not affected by the record-to-record variability. Thus, this system can be as-
sumed as reference case for evaluating the influence of the isolator friction and of the isola-
tion period on the response statistics. The record-to-record variability is described through a
set of 30 real ground motion records reported in Table 1.

Seismic performance description

This study considers the following set of response parameters relevant to the performance
of the isolated system (Eq. (10)): the peak isolator deformation between the two devices
Ug max and Xy .., the peak displacement of pier’s top relative to the ground u and the

p,max

peak relative displacement along the pier X These parameters have be expressed in non-

pl,max °
dimensional form according to Eq.s (11) and (13).
By repeatedly solving Eqn. (9) for the ground motions records reported in Table 1, a set of
samples is obtained for each output variable used to monitor the seismic performance.

In this paper, the response parameters are assumed to follow a lognormal distribution as wide-
ly employed in PBEE [29]-[30] and in many parametric studies concerning the performance
of structural systems also since the log-normality assumption permits to estimate, with a lim-
ited number of samples, the response at different percentile levels, which is very useful for
system reliability assessment [25],[31]-[41].

A lognormal distribution can be fitted to the generic response parameter D (i.e., the extreme
values y, vy, W, s Wy, of Eq.s (11) and (12) by estimating the sample geometric mean,

GM (D) , and the sample dispersion, [ ( D) , defined as follows:

GM (D)=1/d, -...-d, (15)
\/(mdl ~1n[GM (D)])" +.....ct (Indy ~In[GM (D) ])

p(D)=0,(D)= (16)

N -1

where dj denotes the i-th sample value of D, and N is the total number of samples. The sample
geometric mean is an estimator of the median of the response and its logarithm coincides with

the lognormal sample mean 24, (D) [26].

Parametric study results

This section shows the results of the parametric study carried out to evaluate the relation
between the isolation and bridge properties and the system performance, for the reference
seismic input described through the ground motion records of Table 1.

Note that any model uncertainty is considered in the numerical analyses [43]-[45]. The con-
figuration of Table 2 has been used for the DCFP bearings properties.

The two DCFP devices on the abutment and on the pier are identical. So, it follows that
IT,, =11, =11, as well as I1,, =IT,;, =TI ;. The parameter I, =¢, is assumed equal to

5%, the isolated bridge period Tq is varied in the range between 2s, 2.5s, 3s, 3.5s and 4s, the
pier period T, in the range between 0.05s, 0.1s, 0.15s and 0.2s. Assuming that each of the pier

Asa

masses are equal, TT, = 4, has been considered varying in the range between 0.1, 0.15 and 0.2,

IT, in the range between 0 (no friction) and 2 (very high friction). For numerical reasons, the
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ratio I, is assumed equal to 0.005. Therefore, numerical investigations have been carried out

on several different systems by varying the main dynamic parameters and for two different
DCFP bearing configurations for 30 different time history seismic input.

For each value of the parameters of interest in the parametric study, the differential equation
of motion, i.e., Eqn. (9), has been repeatedly solved for the different ground motion consid-
ered. The Bogacki-Shampine integration algorithm available in Matlab-Simulink [42] has
been employed choosing a variable step to improve the solution accuracy. The probabilistic
properties of the normalized response have been evaluated by estimating the geometric mean,
GM, and the dispersion, f, of the parameters of interest through Eqns. (15) and (16).

R1/R2 ,Ul,max/ H2max  Heqv
Case 1 2 4 3u

Table 2. DCFP bearings properties within the parametric analysis.

Figs. 2-5 show the statistics (GM and £ values) of the response parameters considered, ob-
tained for different values of the system parameters varying in the range of interest. Each fig-
ure contains three surface plots, corresponding to different values of I1,. Only the results

corresponding to Tp= 0.1s and Tp= 0.2s are illustrated.

a) b)
1 -
)
4
35
0 oz 25 5
0 05 1 e 77777274 235
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~.06 ﬁ = /
~.§ J s =y
0.4
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<74
0 = 3 3 3.5
T I g s ! Y
1‘[*// [-] al® H*/, [] T‘[[s]

Figure 2. Normalized displacement of pier top vs. [T", and Tq: median value and dispersion for Tp = 0.1s (a and b)
and Tp = 0.2s (c and d) for different values of ITy. The arrow denotes the increasing direction of ITx.
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Fig. 2 plots the results concerning the normalized displacement of pier top W, with respect to
the ground. It is noteworthy that for very low H; values, GM (l//up) decreases by increasing

HL , whereas for high H; values it increases by increasing H;. Thus, there exists an optimal
value of HL such that the displacement of pier top is minimized. This critical value is in the

range between 0 and 0.5 depending on the values of Ty, T, and I1,. In addition to that,
GM (y/up) decreases significantly with increasing I1, and decreasing T,, which control di-
rectly the main modal period of the pier (for higher @j, smaller will be the displacement of
the pier top). Ty has an influence on GM (l//up) leading to a general decrease for its increase.
The dispersion ﬂ(‘/’up) shows a maximum value approximatively at the same value of H:
that gives the minimum value of GM (1//up ) The response dispersion increases with increas-
ing vibration period T, and mass ratio I1,. From low to high values of T;, the dispersion

p (l//up ) tends to increase.

mo* /] - B T‘I/N] I-I*/I [ - Td[s‘]

Figure 3. Normalized deck displacement vs. IT", and Tq4: median value and dispersion Tp = 0.1s (a and b) and
Tp = 0.2s (c and d) for different values of IT,. The arrow denotes the increasing direction of IT;.
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Figure 4. Normalized pier bearing deformation along the lower surface vs. IT", and Tq: median value and disper-
direction of ITy.

sion for Tp = 0.1s (a and b) and Ty = 0.2s (c and d) for different values of ITx. The arrow denotes the increasing
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direction of ITx.

Figure 5. Normalized pier bearing deformation along the upper surface vs. IT", and Tq4: median value and disper-
sion for Ty = 0.1s (a and b) and Ty = 0.2s (c and d) for different values of ITx. The arrow denotes the increasing
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Fig. 3 (a,c) shows the response statistics of the normalized deck displacement y/, , which cor-

responds to the overall deformation of the bearing placed on the abutment, since this latter is
the peak value with respect to the displacement relative to the pier top of the other device due

to the flexibility of the pier. Obviously, GM (‘//ud ) decreases significantly as HL increases. In
general, the values of GM (l//ud ) increase slightly for increasing values of T, and of IT,, and

they are not affected significantly by T,. The values of the dispersion f (t//ud ), plotted in Figs.
3(b,d), are very low for low H: values due to the high efficiency of the IM employed in the

study, and attain their peak for high values of H:. The other system parameters have a re-

duced influence on f (wud ) compared to the influence of H: .

Fig. 4(a) and (c) show the variation with the system parameters of the geometric mean of the
normalized pier bearing deformation along the lower surface GM (y, ), for Tp=0.1s and

Tp=0.2s. This parameter decreases at first quickly, and then slightly increases after values of
I , close to 0.5, reaching a maximum for I , close to 1. The values of the dispersion

p (l//x6 ) , plotted in Figs. 4 (b,d), are very low for low H: values, and increase monotonically

with H:. The other system parameters have a negligible influence on ﬂ(l/lxs) compared to

the influence of H; )

Fig. 5(a) and (c) show the variation with the system parameters of the geometric mean of the
normalized pier bearing deformation along the upper surface GM (y, ), for Tp =0.1s and Tp =

0.2s. This parameter decreases hyperbolically with increasing IT .- The values of the disper-
sion ,B(l//X7 ) , plotted in Figs. 5(b,d), are very low for low H; values, and show a maximum
for H; ~ 1, reaching very high values close to 1.5. Once again, the other system parameters

have a no significant influence on £ (z//X7 ) compared to the influence of H: .

These last figures demonstrate the highest influence of the upper surface, characterized by
higher values of the sliding friction coefficient and of the radius of curvature to define the
global response of the seismic DCFP device as shown by the both statistic in Fig. 3. In fact, it
is the upper surface that plays a crucial role for high intensity to elongate the isolated period
and to dissipate more energy.

5 OPTIMAL VALUES

The existence of an optimal value of the friction coefficient able to minimize the displace-
ment of pier top is the result of counteracting effects that occur for increasing values of the
friction coefficient as already highlighted in [23]: increase of the isolator strength with in-
crease of the equivalent stiffness and with a reduction of the corresponding equivalent funda-
mental vibration period; increase of participation of higher vibration modes as well as transfer
of forces towards the superstructure; increase of energy dissipation (equivalent damping).

soptimum With T, and T, for T, = 2s (Fig. 6 a) and T, = 3s

(Fig. 6 b) obtained by considering the minimization of the median (i.e., 50" percentile) of the

Fig. 6 reports the variation of T

normalized displacement of pier top W, in the range of IT" , between 0 and 0.5. It is ob-
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served that IT° uoptimum generally increases along with I1,, T, and T;. According to Eqn. (13),

the optimal friction coefficient of the upper surface can be easily calculated as

*
Hy,opt ' SA (Td ) . .
f o = and of lower surface since the ratio is assumed equal to 4 (Table 2).
g
Thus, it increases linearly with the IM level.
T.=2 T.=3
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Figure 6. Critical values of normalized friction vs. ITx and Tp for T¢ =2s (a) and Tq =3s (b).

6 CONCLUSIONS

This paper investigates the seismic performance of bridges isolated with double concave
friction pendulum (DCFP) isolators considering the pier-abutment-deck interaction. They are
illustrated the results of a parametric study for different isolator and bridge properties and var-
ious response parameters that are of interest for monitoring the seismic behavior. The behav-
ior of these systems is analyzed by employing an eight-degree-of-freedom model accounting
for the pier flexibility.

An ensemble of ground motions is considered to simulate the record-to-record variability ef-
fects, and a nondimensionalization of the results of the equation of motion is proposed to un-
veil the parameters controlling the problem.

The influence of dynamic and DCFP system properties are evaluated by considering the geo-
metric mean (GM) and dispersion of each normalised response parameter, assumed to follow
a lognormal distribution.

The results demonstrate that the increase of the normalized friction coefficient leads to a de-
crease of the deck response whereas the normalized response of the pier presents a particular
trend showing the existence of an optimal value able to minimize this curve. The value of the
optimal non-normalised friction coefficient depends on the structural properties. Specifically
higher values are required for high pier period combined to high isolated deck period.
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