POLITECNICO DI TORINO Repository ISTITUZIONALE

Biochar Emerging applications

Original Biochar Emerging applications / Tagliaferro, Alberto; Rosso, Carlo; Giorcelli, Mauro (2020). [10.1088/978-0-7503-2660-5]
Availability: This version is available at: 11583/2855032 since: 2020-12-07T15:54:58Z Publisher: IOP
Published DOI:10.1088/978-0-7503-2660-5
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 151.60.43.15

This content was downloaded on 07/12/2020 at 11:05

Please note that terms and conditions apply.

Emerging applications

Emerging applications

Edited by Alberto Tagliaferro, Carlo Rosso and Mauro Giorcelli

Politecnico di Torino, Turin, Italy

© IOP Publishing Ltd 2020

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, or as expressly permitted by law or under terms agreed with the appropriate rights organization. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency, the Copyright Clearance Centre and other reproduction rights organizations.

Permission to make use of IOP Publishing content other than as set out above may be sought at permissions@ioppublishing.org.

Alberto Tagliaferro, Carlo Rosso and Mauro Giorcelli have asserted their right to be identified as the authors of this work in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

ISBN 978-0-7503-2660-5 (ebook) ISBN 978-0-7503-2658-2 (print) ISBN 978-0-7503-2661-2 (myPrint) ISBN 978-0-7503-2659-9 (mobi)

DOI 10.1088/978-0-7503-2660-5

Version: 20201201

IOP ebooks

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.

Published by IOP Publishing, wholly owned by The Institute of Physics, London

IOP Publishing, Temple Circus, Temple Way, Bristol, BS1 6HG, UK

US Office: IOP Publishing, Inc., 190 North Independence Mall West, Suite 601, Philadelphia, PA 19106, USA

Contents

Pref	ace	xiv
Ackı	nowledgements	XV
Edit	or biographies	xvi
	of contributors	xvii
List	of contributors	AVII
Par	t I Biochar: feedstocks, production, and characterization	
1	Introduction to the biochar world with a focus on	1-1
	new possible applications	
	Thomas R Miles	
1.1	Introduction	1-1
1.2	Biochar properties	1-1
1.3	Products and markets	1-2
1.4	Forms of biochar	1-4
1.5	Methods to apply biochar	1-5
1.6	Production	1-5
1.7	New applications	1-8
1.8	Summary	1-9
	Organizations	1-10
	References	1-11
2	Controlling the conversion of biomass to biochar Paola Giudicianni, Raffaele Ragucci and Ondřej Mašek	2-1
2.1	Thermal decomposition of biomass undergoing pyrolysis	2-2
2.2	Pyrolysis operating conditions affecting the electrical, mechanical, and adsorption properties of biochar	2-5
	2.2.1 Physical, chemical, and mechanical properties of biochar as a filler in composites	2-6
	2.2.2 The physical and chemical properties of biochar involved in adsorption mechanisms	2-7
	2.2.3 The effect of operating variables on lignocellulosic biomass derived biochar	2-9
2.3	The effect of feedstock composition on biochar properties	2-13
	2.3.1 Biochar from raw vegetal biomass	2-14
	2.3.2 Toxicity issues related to the presence of organic and inorganic contaminants in biochar from phytoremediation activities	2-18

	2.3.3 Biochar from residues of biological and biochemical treatments of biomass	2-18
2.4	Can biomass properties be altered to control biochar properties?	2-20
	2.4.1 Biomass doping for enhanced biochar production	2-20
	2.4.2 Mechanical pre-treatment of biomass	2-21
2.5	Predictive approaches for biochar properties: current trends and perspectives	2-21
	Acknowledgements	2-23
	References	2-23
3	Large scale biochar production and activation Edoardo Miliotti and David Chiaramonti	3-1
3.1	Introduction	3-2
3.2	Slow pyrolysis	3-4
	3.2.1 Kilns	3-5
	3.2.2 Retorts	3-5
	3.2.3 Converters	3-6
3.3	Hydrothermal carbonization	3-8
3.4	Activated carbon production	3-9
	3.4.1 Rotary kilns	3-10
	3.4.2 Multiple hearth furnaces	3-11
	3.4.3 Fluidized beds	3-11
3.5	Conclusions	3-11
	References	3-11
4	Microwave heating-assisted pyrolysis of biomass	4-1
	for biochar production Sherif Farag and Jamal Chaouki	
4.1	Microwave fundamentals	4-1
4.2	The main parameters to describe microwave heating	4-2
4.3	Microwave-assisted pyrolysis of biomass and waste	4-2
4.4	The effects of microwaves on biochar properties	4-3
4.5	Applications of biochar from microwave pyrolysis	4-5
	4.5.1 Wastewater treatment	4-5
	4.5.2 Agricultural sector	4-7
	4.5.3 Gas adsorption	4-8
4.6	Conclusions	4-8
	References	4-9

5	Biochar characterization methods Ondřej Mašek, Anna Bogush, Anjali Jayakumar, Christian Wurzer and Clare Peters	5-1
5.1	Introduction	5-1
	5.1.1 Sampling	5-2
	5.1.2 General sample preparation for analysis	5-2
5.2	Biochar compositional analysis	5-3
	5.2.1 Elemental (CHNSO) analysis	5-3
	5.2.2 ICP-OES/MS	5-4
	5.2.3 X-ray fluorescence	5-4
	5.2.4 XAS (XANES and EXAFS)	5-4
	5.2.5 XPS	5-5
5.3	Structural characterization of biochar	5-5
	5.3.1 X-ray μ -tomography	5-6
	5.3.2 Electron microscopy (SEM/EDX)	5-6
	5.3.3 Surface area	5-7
	5.3.4 Raman spectroscopy	5-7
	5.3.5 X-ray diffraction (XRD)	5-8
5.4	Biochar stability	5-9
	5.4.1 Elemental ratios (O/C and H/C)	5-9
	5.4.2 TGA-based methods (proximate analysis and R50 index)	5-9
	5.4.3 Edinburgh stability tool	5-10
	5.4.4 Nuclear magnetic resonance (NMR) spectroscopy	5-11
5.5	Other key biochar characteristics	5-11
	5.5.1 Electrical and electrochemical properties	5-11
	5.5.2 pH	5-12
	5.5.3 Surface functional groups (FTIR)	5-12
	5.5.4 Magnetic properties	5-13
5.6	Conclusions	5-13
	References	5-14
6	Cellulose nanocrystals as natural feedstocks for advanced	6-1
	carbon materials Mattia Bartoli, Michael Chae and David C Bressler	
6.1	Cellulose nanocrystals: production and properties	6-1
6.2	Cellulose nanocrystals as the feedstock for new	6-5

6.3	Perspectives on the cellulose nanocrystals and related carbon materials	6-9
	References	6-9
7	Biochar-based circular economy Harn Wei Kua, Ondřej Mašek and Souradeep Gupta	7-1
7.1	A circular economy based on bio-waste recycling and recovery	7-1
7.2	Biochar as part of a circular economy	7-2
7.3	Waste recycling through biochar production and utilization	7-3
7.4	Upcycling of residues via biochar as an additive in construction materials	7-3
7.5	Cascade/sequential uses of biochar	7-4
7.6	Beyond technologies	7-5
	7.6.1 Enabling policies to accelerate the development of biochar	7-5
	7.6.2 Developing biochar within an industrial symbiotic network	7-6
7.7	Conclusions	7-7
	References	7-7
8	Shielding effectiveness of biochar composites at microwave frequency	8-1
	Muhammad Yasir and Patrizia Savi	
8.1	Introduction	8-1
8.2	Transmission, reflection, and absorption	8-3
8.3	Waveguide method for transmission reflection evaluation	8-4
0.0	8.3.1 Sample fabrication	8-4
8.4	Conclusions	8-8
	Acknowledgements	8-9
	References	8-9
9	Flame retardant polymer systems containing biochar:	9-1
	current state-of-the-art and perspectives Samuele Matta, Mattia Bartoli and Giulio Malucelli	
9.1	Introduction	9-1
	Introduction	J-1

9.3	Conclusions and perspectives	9-5
	References	9-6
10	Review of biochar as a sustainable mortar admixture and	10-1
	evaluation of its potential as coating for PVA fibers in mortar	
	Harn Wei Kua, Souradeep Gupta and Sek Teng Koh	
10.1	Introduction—the need to improve the fiber reinforcement of cementitious composites	10-1
10.2	A review of the state-of-the-art of biochar as a supplementary admixture in cementitious composites	10-3
	10.2.1 Biochar as an additive in cementitious composites	10-3
	10.2.2 Biochar as a supplement for self-healing concrete	10-5
	10.2.3 The role of biochar to modify carbonation potential and enhance the performance of recycled aggregate concrete	10-5
	10.2.4 Biochar as an additive in concrete and lightweight mortar subjected to elevated temperature	10-6
	10.2.5 Biochar based coating for polymer fibers to improve the strength of fiber-reinforced mortar	10-7
10.3	Materials and methods	10-7
10.4	Results and analyses	10-9
	10.4.1 Characterization of biochar	10-9
	10.4.2 Mechanical characterization and influence on mechanical properties	10-10
	10.4.3 Influence on permeability	10-12
10.5	Conclusions	10-13
	References	10-13
11	Biochar addition to inorganic binders Daniele Ziegler, Elisabetta Di Francia, Patrizia Savi and Jean-Marc Tulliani	11-1
11.1	Introduction	11-2
11.2	Electromagnetic interference shielding effectiveness	11-2
11.3	Internal curing ability	11-4
11.4	Cargo for self-healing cementitious materials	11-6
11.5	Carbon sink	11-7
11.6	Patents: an updated survey	11-8
11.7	Conclusions	11-10
	References	11-10

12	Insight into the mechanical performance of biochar containing	12-1
	reinforced plastics	
	Carlo Rosso, Oisik Das and Mattia Bartoli	
12.1	Towards non-conventional carbonaceous fillers: biochar as a potential resource for the production of reinforced plastics	12-1
12.2	Bulk properties of biochar containing reinforced plastics	12-2
12.3	Surface properties of biochar containing reinforced plastics	12-9
12.4	Future challenges: a perspective on the uses of biochar for advanced mechanical applications	12-10
	References	12-11
Part	t III Biochar: other emerging applications	
13	Sensing properties of biochar	13-1
12.1	Daniele Ziegler, Elisabetta Di Francia and Jean-Marc Tulliani	10.1
	Introduction	13-1
	Sensor optimization Biochar as a humidity sensor	13-2 13-3
	Biochar in electrochemical sensing applications—electrode	13-5
13.4	modifier	13-3
13.5	Biochar in electrochemical sensing applications—heavy metals detection	13-6
13.6	Biochar in electrochemical sensing applications—organic compounds	13-10
13.7	Conclusions	13-15
	References	13-15
14	Monolithic wood biochar properties and supercapacitor	14-1
	performance relationships	
	Aldrich Ngan, Johnathon N Caguiat, Li Tao, Donald W Kirk and Charles Q Jia	
14.1	Introduction	14-2
14.2	Experimental details	14-3
	14.2.1 Biochar electrode preparation and characterization	14-3
	14.2.2 Electrode performance in a supercapacitor	14-4
14.3	Results and discussion	14-6
	14.3.1 Relationships between biochar physical properties	14-6
	14.3.2 Dependence of supercapacitor performance on biochar properties	14-9

14.4	Conclusions	14-12
	References	14-13
15	Applications of biochar in gas/water purification and in contaminated soil remediation	15-1
	Hanieh Bamdad, Griffin Loebsack, Naomi Klinghoffer, Ken Yeung, Kelly Hawboldt and Franco Berruti	
15.1	Biochar as an adsorbent	15-2
	15.1.1 Biochar in gas adsorption	15-2
	15.1.2 Biochar in liquid adsorption	15-4
15.2	Biochar soil remediation	15-8
	15.2.1 Inorganic pollutants/resources	15-8
	15.2.2 Organic pollutants	15-9
15.3	Summary and conclusions	15-9
	References	15-9
16	Applications of biochar catalysts Naomi Klinghoffer	16-1
16.1	Introduction	16-1
16.2	Biochar properties	16-2
	16.2.1 The role of biochar morphology in catalytic activity	16-3
	16.2.2 The role of biochar composition in catalytic activity	16-3
	16.2.3 Role of surface functionalities in catalytic activity	16-4
16.3	Modified biochar catalysts	16-5
	16.3.1 Biochar as a catalyst support	16-5
	16.3.2 Activation and functionalization of biochar catalysts	16-5
16.4	Applications for biochar catalysts	16-7
	16.4.1 Tar removal	16-7
	16.4.2 Biodiesel production	16-8
	16.4.3 NO_x removal	16-9
	16.4.4 Electrochemical applications	16-10
	16.4.5 Bio-oil upgrading and biomass hydrolysis	16-11
16.5	Conclusions and outlook	16-11
	References	16-12

Preface

This eBook is aimed to highlight the perspectives of biochar as a substitute for oil derived carbon materials in advanced applications. In this eBook the most renowned research team from all over the world have brought their experience to assess the viability and perspectives of several innovative biochar applications. Many of the applications discussed in this eBook have been already proposed/tested/developed using other environment unfriendly carbon materials like carbon black, carbon nanotubes and graphene. We will show in this eBook that the environment friendly biochar is a viable alternative to them, its widespread use eventually leading to an eco-friendly era for carbon materials.

A quick look to the index readily shows that biochar has interesting perspectives in various field, some traditional, some innovative. A specific attention is dedicated to the use of biocahar as a filler in composite materials, where it can represent a viable alternative to existing fillers for large scale and low cost applications.

We really hope that you enjoy to read this eBook discovering new biochar applications or deepening your understanding in a particular application where you have not yet think that biochar could be a key material.

We are sure that after reading the eBook you'll share our view: biochar will be among the leadres of a new eco-friendly carbon era.

Enjoy!

Acknowledgements

Alberto, Carlo and Mauro would be grateful to all the authors that with their friendship and professional efforts have given their outstanding contribution that brought this eBook form the realm of wishful thinking to reality. IOP staff support in all steps of the editorial process is also gratefully acknowledged.

Editor biographies

Alberto Tagliaferro

Alberto Tagliaferro is an associate professor of solid-state physics at Politecnico di Torino, Italy, where he is head of the Carbon Group, and an adjunct professor at the University of Ontario Institute of Technology, Canada. He has been active in the field of carbon materials, their properties and applications for almost 30 years and has co-authored over 190 publications.

Carlo Rosso

Carlo Rosso holds a PhD in machine design and construction from Politecnico di Torino (2005) and he has been an Associate Professor in machine design at the Department of Mechanical and Aerospace Engineering of Politecnico di Torino since 2016. His main research topics focus on the dynamics of mechanical components with particular attention on gears and metal replacements in the automotive industries. In particular, he focuses on the usage of nanofiller

for improving performance in composite materials and the usage of thermoplastic reinforced materials for structural applications. He is the author of four patents and the founder of two start-ups, one of which is Spin-Off of Politecnico di Torino. He is the (co-)author of 70+ publications on machine design topics. He has a good relationship with the industrial framework of the Piedmont region and he has signed industrial research agreements valuing more than €920 000.

Mauro Giorcelli

Mauro Giorcelli is an electronic engineer with PhD in physics. He is a co-founder of the Carbon Group of Politecnico di Torino (Italy) and his career is dedicated to carbon materials. In particular, he is interested in the properties that carbon materials could impart to composite materials. He started to work in the biochar field over five years ago and his collaborations are worldwide, from Canada to Asia and the European Union. He has published over 80 articles

which have garnered over 900 citations (Scopus).

List of contributors

Justice Asomaning

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, AB, Canada

Hanieh Bamdad

Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada

Mattia Bartoli

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Franco Berruti

Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada

Anna Bogush

Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK

David C Bresslerb

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, AB, Canada

Johnathon N Caguiat

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada

Michael Chae

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, AB, Canada

Jamal Chaouki

Mohammed VI Polytechnic University, Ben Guerir, Morocco

David Chiaramonti

POLITO/RE-CORD, Via del Campo di Marte 9, 50137 Florence, Italy

Oisik Das

Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden

Sherif Farag

Department of Chemical Engineering, Polytechnique Montreal, Montréal, QC, Canada

Elisabetta Di Francia

Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Paola Giudicianni

Istituto di Ricerche sulla Combustione, CNR, Naples, Italy

Souradeep Gupta

School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia

Kelly Hawboldt

Department of Engineering and Applied Science, Memorial University, St John's, NL, Canada

Anjali Jayakumar

UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK

Charles Q Jia

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada

Donald W Kirk

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada

Naomi B Klinghoffer

Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada

Sek Teng Koh

Department of Building, National University of Singapore, Singapore

Harn Wei Kua

Department of Building, National University of Singapore, Singapore

Tao Li

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada

Griffin Loebsack

Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada

Giulio Malucelli

Politecnico di Torino, Department of Applied Science and Technology and Local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy

Ondřej Mašek

UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK

Samuele Matta

Politecnico di Torino, Department of Applied Science and Technology and Local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy

Thomas R Miles

Executive Director, United States Biochar Initiative, Golden, CO, USA

Edoardo Miliotti

RE-CORD, Piazza degli Innocenti 2b, 59100, Florence, Italy

Aldrich Ngan

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada

Clare Peters

UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK

Raffaele Ragucci

Istituto di Ricerche sulla Combustione, CNR, Naples, Italy

Carlo Rosso

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Patrizia Savi

Politecnico di Torino, Department of Electronics and Telecommunications, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Jean-Marc Tulliani

Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Muhammad Yasir

Politecnico di Torino, Department of Electronics and Telecommunications, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Ken Yeung

Departments of Chemistry and Biochemistry, Western University, London, ON, Canada

Daniele Ziegler

Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Turin, Italy