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Abstract
Tuned mass dampers (TMDs) and nonlinear energy sinks (NESs) are two viable options 
for passively absorbing structural vibrations. In seismic applications, a trade-off exists in 
their performance, because TMDs’ effectiveness varies with the structural stiffness while 
NESs’ effectiveness varies with the earthquake intensity. To investigate this trade-off sys-
tematically, a lifecycle cost- (LCC-) oriented robust analysis and design method is here 
proposed, in which the effectiveness of a solution is measured by the reduction it entails in 
the expected cost of future seismic losses. In it, structural stiffness variability is modelled 
using a worst-case approach with lower and upper bounds, while seismic intensity variabil-
ity is inherently captured by the incremental dynamic analyses underlying every LCC eval-
uation. The resulting worst-case lifetime cost provides a rational metric for discussing pros 
and cons of TMDs and NESs, and becomes the objective function for their robust optimi-
zation. The method is applied to the design of TMDs and NESs on a variety of single- and 
multi-story linear building models, located in a moderate-to-high seismic hazard region. 
Mass ratios from 1 to 10% and structural stiffness reductions up to 4 times are considered. 
Results show that TMDs are consistently more effective than NESs even in the presence 
of large stiffness reductions, provided that structural stiffness uncertainty is considered in 
design. They also show that a conventional robust  H∞ design provides for TMDs a solution 
which is very close to that obtained by minimizing the proposed LCC metric.

Keywords Passive vibration absorption · Tuned mass damper · Nonlinear energy sink · 
Lifecycle cost optimization · Robust design · Worst-case approach

1 Introduction

Dynamic vibration absorbers (DVAs) are passive control devices widely used in vibra-
tion mitigation of civil structures (Housner et  al. 1997). Most applications are meant to 
improve serviceability conditions of slender low-damped structures under quasi-stationary 
excitation. Seismic applications are less common, mainly because the efficacy of passive 
absorption diminishes with the impulsiveness of the input and with the excursions of the 
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structural response in the inelastic range. Nevertheless, considerable effort has been made 
in the last decades to assess the seismic effectiveness of DVAs and to enhance it through 
improving existing types of device and their optimal design criteria (Luo et  al. 2014a; 
Greco et al. 2016; Lu et al. 2018; Matta 2019a).

Typically, a DVA is a single-degree-of-freedom (SDOF) mass-spring-damper system 
appended to the primary structure. Driven by the motion of its structural support, the DVA 
absorbs vibration energy from the structure and locally dissipates it. Various types of DVA 
exist, characterized by different types of spring and damper components.

Linear DVAs, known as tuned mass dampers (TMDs), use a linear spring and a lin-
ear viscous damper arranged in parallel. Dating back to the first half of the twentieth cen-
tury (Den Hartog 1956), TMDs absorb vibration energy through resonating with the target 
structural mode (typically the most energetic one) by means of frequency tuning. Because 
the natural frequency of the TMD is fixed, its suppression bandwidth is relatively narrow, 
and its effectiveness diminishes if detuning occurs due to changes in the natural frequency 
of either the target mode or the absorber (Taflanidis et al. 2009; Marano and Greco 2009).

As an alternative to TMDs, nonlinear DVAs have been proposed, known as nonlinear 
energy sinks (NESs), which combine a linear viscous damper with a smooth nonlinear 
spring (Roberson 1952; Gendelman et  al. 2001). The nonlinear spring is typically con-
ceived to provide a restoring force that is cubic in the displacement; this can be practically 
achieved through different arrangements, including the track NES (Wang et al. 2015b), the 
wire NES (McFarland et al. 2005), and the bumper NES (Luo et al. 2014b). Because of 
the cubic spring, NESs are “essentially nonlinear” devices, with no fixed natural frequency 
(Vakakis et al. 2003). Unlike TMDs, they do not need tuning to a specific structural fre-
quency, and can suppress energy over a broader bandwidth through targeted energy transfer 
(TET), i.e. the nearly one-way, irreversible transfer of vibration energy from the primary 
structure to the absorber, in which energy is confined and dissipated without backscatter-
ing (Nucera et al. 2007). NESs can resonantly interact with one or more structural modes 
through isolated resonance capture or resonance capture cascades (Vakakis et  al. 2003). 
They can also redistribute vibration energy from lower modes to higher modes, whose con-
tribution to structural displacement is usually less significant (Wang et al. 2019). On the 
other hand, NESs’ nonlinearity makes their effectiveness depend on the structural vibration 
amplitude, and therefore on the excitation level. Under harmonic or impulse loads, an acti-
vation input threshold exists, below which energy is not efficiently dissipated, and above 
which the vibration suppression capabilities progressively decrease (Vakakis et al. 2009).

Comparing TMDs and NESs, a performance trade-off seems immediately recognizable, 
whereby TMDs appear more sensitive to detuning, but independent from the input level as 
long as the structure remains linear, while NESs appear sensitive to changes of the excita-
tion intensity, but less affected by shifts in the structural modal frequencies.

To the aim of seismic mitigation, TMDs’ sensitivity to detuning and NESs’ sensitivity 
to the input amplitude may largely influence their effectiveness. Structural frequency shifts 
often occur during seismic events, as the equivalent linear stiffness of the primary struc-
ture (including contributions from soil and nonstructural components) tends to decrease 
because of reversible or irreversible response nonlinear excursions (Clinton 2006). On the 
other hand, performance-based earthquake engineering requires that an entire set of seis-
mic intensities be considered in evaluation and design, each contributing to future seismic 
damages and losses.

A conspicuous literature exists on the seismic effectiveness of TMDs and, to a lesser 
extent, of NESs, including a few papers comparing the two types. In Gourdon et al. (2007) 
NESs’ robustness to structural frequency shifts is examined under sinusoidal loads. NESs 
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are proven effective against two impulsive seismic records, but no comparison with TMDs 
is provided, as well as no investigation of NESs’ performance under a varying seismic 
amplitude. In Wang et al. (2015b) a TMD and two variants of NES are compared under 
impulse and seismic loading. Impulse analyses show the robustness of the TMD to ampli-
tude scaling and of the NESs to stiffness variations. Seismic analyses under a scaled set of 
records show the superior performance of the TMD when the structural stiffness is nomi-
nal, and of the NESs when the structural stiffness is reduced to 50%. No seismic analysis is 
repeated using a different amplitude scaling. In Luo et al. (2014b) six NES devices (includ-
ing smooth and non-smooth types) are simultaneously operated on a nine-story large-scale 
model of a building structure under ground motions. Experimental tests show that a rapid 
mitigation of the structural response is achieved. Numerical simulations show the efficacy 
of the system against two sets of records representing two distinct earthquake intensi-
ties. No comparison with TMDs is reported. Simulating numerically the same benchmark 
building under earthquake records, in Luo et al. (2014a) structural stiffness reductions are 
shown to more heavily reduce the seismic effectiveness of TMDs than that of NESs. How-
ever, no comparison is reported under varying seismic amplitudes. In Lu et  al. (2017) a 
NES is tested on a large-scale five-story building model. Significant reductions of struc-
tural displacements and accelerations are reported, involving multiple vibration modes. No 
comparison with a TMD is presented. In Boroson et al. (2017) robustly optimized multiple 
NESs are studied on structures subjected to impulse loading. They are shown to widen 
the range of input amplitudes over which the single NES is efficient, and to improve its 
nominal and robust performance. No seismic action is considered and no comparison with 
TMDs is reported. In Oliva et al. (2017) a NES is numerically tested on a SDOF structure 
under white noise base excitation. An approximate optimization based on statistical lin-
earization is proposed, resulting in design formulas providing NES’s optimal parameters 
as a function of the input intensity. No comparison with a TMD is reported. In Wang et al. 
(2019) a TMD, a smooth NES and a non-smooth NES are compared on a tall building 
under impulse and seismic loading. Various objectives are considered for optimization 
and assessment, some incorporating economic factors. As far as the response mitigation is 
concerned, the three optimal devices achieve a similar performance under impulse loads, 
the TMD proving superior against amplitude variations and the two NESs against stiffness 
variations. Under seismic loading, the TMD proves the best option when structural stiff-
ness is nominal, the worst when this latter is reduced to 50%. No uncertainty is considered 
in design.

Throughout the aforesaid studies, the trade-off in seismic efficacy between TMDs and 
NESs, although ascertained qualitatively, seems not yet completely clarified in quantitative 
terms. In most studies, the comparison between TMDs and NESs resolves in a sensitivity 
analysis of their respective performance versus arbitrary variations in the structural stiff-
ness and in the input intensity. In no case the expectation of stiffness shifts is exploited in 
design to enhance the absorbers’ robustness and, at the same time, the economic impact of 
different seismic intensities is used to evaluate and maximize their lifetime benefits.

The main goal of this paper is to fill in this gap and to investigate that trade-off sys-
tematically, for single TMDs and single NESs applied on linear building structures sus-
ceptible to stiffness variations under earthquake loading. To this purpose, a lifecycle cost- 
(LCC-) oriented robust analysis and design method is proposed, in which the effectiveness 
of a solution is measured by the reduction it entails in the expected cost of future seis-
mic losses. Structural stiffness variability is modelled using a worst-case approach with 
lower and upper bounds, while seismic intensity variability is inherently captured by the 
incremental dynamic analyses underlying every LCC evaluation. The resulting worst-case 
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lifetime cost provides a rational metric for discussing pros and cons of TMDs and NESs, 
and becomes the objective function for their robust optimization. Different components of 
the total lifecycle cost are also specifically addressed, including the cost of drift-dependent 
and acceleration-dependent damages as well as the cost of human losses, throwing some 
light on other trade-offs existing between alternative control objectives. The method is 
applied to the design of TMDs and NESs of varying mass ratio on single- and multi-story 
building structures, located in a moderate-to-high Italian seismic hazard region. The results 
offer a quantitative comparison of two devices in multiple design scenarios, which seems 
to be lacking in the existing literature.

2  The structural model

Single- and multi-story building models are considered in this study, representing existing 
reinforced concrete (RC) frame building structures. For simplicity, they are planar models, 
with only one lateral DOF per story in the x direction, and they are linear models. Regard-
ing this latter aspect, although existing RC structures approaching collapse may exhibit 
an inelastic response with potentially ductile behavior, a linear elastic response is here 
assumed, and potential inelastic excursions are simplistically modelled as a reduction in the 
equivalent structural stiffness, assumed constant throughout the seismic event, and uniform 
along the structure. These simplifying modelling assumptions are clearly inadequate to 
closely reproduce the several degradation mechanisms potentially occurring in RC frames 
under severe seismic shaking. Their adoption cannot generally ensure unbiased estimations 
of peak structural response quantities (on which LCC is made to depend), particularly in 
dissipative inelastic structures. These modelling assumptions strictly delimit the scope of 
this paper, whose conclusions have therefore no claim of general validity for all categories 
of RC frames. An in-depth investigation of how sensitive such conclusions are to model-
ling assumptions is left for future works. In any case, because most modelling assump-
tions, with the exception of those reflecting in structural frequency shifts (here specifically 
accounted for), are likely to affect the performance of both absorbers in a similar way, with 
only minor influence on their relative cost-effectiveness, which is indeed the main focus 
of this paper, it is believed that the main conclusions of this work will achieve an accept-
able level of generality. Additionally, it should be noticed that exactly the same modelling 
assumptions (elastic model with uniform stiffness scaling) are quite common in TMDs’ and 
NESs’ literature (Matta 2011; Luo et al. 2014a; Wang et al. 2015b, 2019). Their simplicity 
accounts for the issue of detuning in a more succinct way than a rigorous nonlinear model 
would do, implicitly addressing other potential causes of structural frequency variation, 
not directly related with seismic damage (long-term material degradation, environmental 
loads, random fluctuations of mechanical properties, …). Their greater clarity establishes 
a common ground to compare the results of different studies. Their reduced computational 
burden allows for an easier incorporation in a design procedure, particularly if robustly 
oriented.

Atop these planar models a TMD or a NES is alternatively mounted for improving the 
seismic structural response. Three configurations are thus compared: the uncontrolled one, 
the TMD-controlled one and the NES-controlled one.

Denoting as Ns the number of stories of the building, the equations of motion for the 
combined structure-absorber system subjected to a ground acceleration input are expressed 
as follows (Fig. 1):
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where � = [u1 u2 … uNS
]T is the horizontal displacement vector of the structure relative to 

the ground; � , � and � are the mass, damping and stiffness matrices of the structure; üg 
is the ground acceleration; �g = [11… 1]T is the topological vector related to the ground 
acceleration; pa is the absorber reaction force; �a = [0… 01]T is the topological vector cor-
responding to the absorber location; ua is the horizontal displacement of the absorber rela-
tive to the ground; and ma is the mass of the absorber (TMD or NES).

In Eqs. 1 and 2 the absorber reaction force pa is expressed, respectively for the TMD 
and for the NES, by

where ca is the damping coefficient of the absorber (TMD or NES); ka is the linear stiffness 
coefficient of the TMD; and �a is the nonlinear stiffness coefficient of the NES.

To account for structural stiffness variations, the (actual) stiffness matrix K in Eq. 1 
is taken as

where K0 is the nominal stiffness matrix and δ is the stiffness reduction factor, scaling all 
matrix coefficients in the same way.

Complemented by Eqs. 3 and 4, Eqs. 1 and 2 are linear when the absorber is a TMD 
and nonlinear when the absorber is a NES. They are both numerically solved herein 
using Matlab Simulink, in accelerator mode so as to shorten the run time (Gidaris and 
Taflanidis 2013). Each absorber is fully described by three independent design param-
eters. Denoting by m the total mass of the structure, and by ω1, ω10 and ζ1 respectively 
the (actual) circular frequency, the nominal circular frequency and the damping ratio of 
its fundamental mode, those three parameters are defined as follows:

(1)𝐌�̈� + 𝐂�̇� +𝐊𝐮 = −𝐌𝐭güg + 𝐭apa

(2)maüa + pa = −maüg

(3)pa = ca(u̇a − u̇NS
) + ka(ua − uNS

)

(4)pa = ca(u̇a − u̇NS
) + 𝜒a(ua − uNS

)3

(5)� = �0∕�

Fig. 1  Schematics of the planar 
model of the NS-story building 
structure with either a TMD or a 
NES atop
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• for the TMD as: (1) the mass ratio µ = ma/m; (2) the (nominal) frequency ratio 
r = ωa/ω10, ωa being the TMD natural frequency; and (3) the TMD damping ratio ζ = ca/
(2ωa ma);

• for the NES as: (1) the mass ratio µ = ma/m; (2) the (nominal) nonlinear stiffness ratio 
ρ = χa/(ω5

10 ma); and (3) the (nominal) NES damping ratio ξ = ca/(2ω10 ma).

All said parameters are dimensionless except ρ, measured in  s3 m−2 in the I.S. The mass 
ratio µ is identically defined for the two absorbers. For the TMD, r and ζ are classically 
defined. For the NES, ξ is defined like ζ, except that ω10 replaces ωa (inexistent for a NES), 
and ρ is defined so that its optimal value would be nearly independent from ω10 if the seis-
mic input were a zero-mean stationary Gaussian white noise process (Oliva et al. 2017).

3  The lifecycle cost performance

3.1  Conventional versus LCC performance measures

The seismic performance of passive control systems is generally evaluated by comparing 
the controlled and the uncontrolled values of some measurable response quantities, called 
the engineering demand parameters (EDPs). Various EDPs can be chosen, depending on 
the deterministic or stochastic nature of the models used to describe the structural system 
and the seismic action, or on the particular design objective.

Conventional EDPs include the peak value over time of some relevant system output, 
deterministically computed under one or more selected seismic records (Ohtori et  al. 
2004). Preferably, a set of records is often used, representing a certain intensity level at 
the site, and the EDP is averaged over the set. If the system is nonlinear, repeating the 
procedure for multiple intensity levels reveals how the performance of the control system 
depends on the seismic intensity (Matta 2019b).

Alternatively, LCC performance evaluation criteria are increasingly used in earthquake 
engineering to quantify the economic advantages of a mitigation system, on either new 
or existing constructions (Ang and Lee 2001). Unlike conventional EDPs, which cannot 
weigh the relative impact of different seismic intensities, the LCC provides a concise and 
rational scalar measure of the cost-effectiveness of a solution, expressed in monetary units 
and directly useable by asset managers.

Several recent studies have adopted a LCC perspective to analyze or design control sys-
tems for seismic or wind mitigation. A systematic probabilistic framework for LCC evalu-
ation and optimization is presented in Taflanidis and Beck (2009) and later improved in 
Gidaris and Taflanidis (2015), generally applicable to any engineering system under seis-
mic hazard and specifically demonstrated on RC frame buildings retrofitted with fluid 
viscous dampers. In Hahm et al. (2013) LCC is used to evaluate the cost-effectiveness of 
semi-active magneto-rheological dampers on cable-stayed bridges under earthquake load-
ing. In Micheli et al. (2019) LCC is used to discuss the cost-effectiveness of viscous and 
friction dampers designed to ensure performance-based code-compliant accelerations in 
steel frame tall buildings under wind loading. In Beheshti and Asadi (2020) LCC is used as 
the minimization objective for the optimal seismic retrofit of steel frames with viscoelastic 
dampers, while accounting for their temperature dependence. In Jiang et al. (2020) a new 
seismic LCC assessment methodology relying on cost-based fragility analysis is proposed 
to measure the effectiveness of steel panel walls installed in steel frame buildings.
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More specifically, LCC concepts have also been used to analyze and design TMDs, for 
the purposes of either wind mitigation (Wang et al. 2015a; Ierimonti et al. 2018) or seismic 
mitigation (Lee et al. 2012; Matta 2015; Ruiz et al. 2016; Matta 2018). Conversely, to the 
best of the author’s knowledge, no application of LCC concepts to NESs is reported in the 
literature, though the amplitude dependence of their performance should make them ideal 
candidates for LCC assessment.

In this paper, LCC is used to evaluate and compare the seismic effectiveness of TMDs 
and NESs. The remaining of this Section provides the details of the adopted criterion for 
LCC analysis.

3.2  Engineering demand parameters for LCC analysis

In seismic engineering, LCC assessment requires the analysis of the structure under multi-
ple levels of earthquake intensity. To this aim, incremental static or dynamic analyses can 
be used (Vamvatsikos and Cornell 2002). When applied to structures controlled through 
VDAs, LCC methods implementing nonlinear dynamic analysis are required. Among 
these, multiple-stripe dynamic analysis (MSDA) is widely adopted. It consists in perform-
ing multiple suites of nonlinear dynamic analysis at different seismic levels, each level cor-
responding to a given return period, or equivalently to a given exceedance probability in a 
given time, according to the seismic hazard at the site. The result is the correlation between 
the seismic intensity and the corresponding structural response, described by one or more 
EDPs (Lagaros et al. 2006).

Selecting the appropriate EDP is crucial in LCC analysis. Among the various EDPs pro-
posed in the literature for evaluating the seismic performance of frame building structures, 
the peak interstory drift ratio θ is by far the most used (Ghobarah et al. 1999). Consolidated 
relations exist between θ and performance conditions (immediate occupancy, life safety 
and collapse prevention), as well as between θ and damage states, in the academic litera-
ture (Wen and Kang 2001; Ghobarah 2004; Su et al. 2016) and in building codes (SEAOC 
Vision 2000; FEMA-273 1997; FEMA-350 2000; CSA A23.3-04 2004; PEER Report 
2010/05). Additionally, because damage to building contents may be sensitive not only to 
θ but also to the acceleration of their supports, another significant EDP is the peak story 
acceleration A. θ-sensitive contents are typically claddings and partitions in their in-plane 
mode. A-sensitive contents are typically furniture and equipment (Elenas and Meskouris 
2001), suspended ceilings and automatic sprinklers (Ramirez et al. 2012; Ierimonti et al. 
2018), as well as claddings and partitions in their out-of-plane mode.

In this paper, MSDA is used for performing LCC analyses. It is applied to the planar 
model presented in Sect.  2, by considering NL = 8 intensity levels, each described by a 
suite of NR = 14 spectrum-compatible records. θ and A, separately computed at each story, 
are used as the significant EDPs, and their relation with damage is taken as proposed for 
RC frame structures in Mitropoulou et al. (2010) based on the works by Ghobarah (2004) 
and by Elenas and Meskouris (2001), according to the ND = 7 damage states reported in 
Table 1.

3.3  LCC evaluation model

The expected earthquake-related total cost CTOT of an existing building over its residual 
lifetime t can be defined as
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where Ca is the initial cost of the absorber, comprising its material and labor costs, and C(t) 
is the present value of future seismic damages and losses, accounting for various cost cat-
egories: the cost of structural and non-structural repair, the cost of loss of contents, the cost 
of injury recovery, the cost of human fatality, and other direct or indirect economic losses 
(e.g. rental and income costs) (Wen and Kang 2001; Lagaros et al. 2006).

Because the aim of this paper is the comparison of TMDs and NESs in terms of their 
damage cost savings, rather than in terms of their construction and installation cost (which, 
in the lack of more accurate cost models, can be in fact deemed approximately equal for 
the two absorbers), attention will be mainly focused on the damage cost C, whose mini-
mization provides the LCC-optimal solution. For the existing building with no absorber, C 
coincides with the uncontrolled building damage cost, Cunc. For the controlled building, the 
more C decreases with respect to Cunc, the more cost-effective the absorber is.

According to its dependence on the two relevant EDPs, the damage cost C can be 
defined as

where C� is the drift-dependent damage cost and CA is the acceleration-dependent damage 
cost.

Assuming a Poisson model of earthquake occurrences, and an immediate restoration 
of damaged buildings to their original intact state after every significant earthquake, C� 
and CA are given (Wen and Kang 2001) respectively by

where �i
o,�

 and �i
o,A

 are the mean frequencies of occurrence of the ith damage state, respec-
tively for θ-dependent and A-dependent damages; ta = (1 − e−�t)∕� is the actualized time 
period, with λ being the momentary discount rate; and Ci

�
 and Ci

A
 are the θ-dependent and 

the A-dependent costs of the ith damage state, respectively given as

(6)CTOT (t) = Ca + C(t)

(7)C = C� + CA

(8a)C� = ta

ND
∑

i=1

Ci
�
�i
o,�

(8b)CA = ta

ND
∑

i=1

Ci
A
�i
o,A

Table 1  Damage states as a function of the selected EDPs (Mitropoulou et al. 2010)

Damage state Peak interstory drift ratio θ (%) (Ghobarah 
2004)

Peak floor acceleration A (g) 
(Elenas and Meskouris 2001)

1-None 0.0 ≤ θ < 0.1 0.00 ≤ A < 0.05
2-Slight 0.1 ≤ θ < 0.2 0.05 ≤ A < 0.10
3-Light 0.2 ≤ θ < 0.4 0.10 ≤ A < 0.20
4-Moderate 0.4 ≤ θ < 1.0 0.20 ≤ A < 0.80
5-Heavy 1.0 ≤ θ < 1.8 0.80 ≤ A < 0.98
6-Major 1.8 ≤ θ < 3.0 0.98 ≤ A < 1.25
7-Destroyed 3.0 ≤ θ 1.25 ≤ A
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where Ci
dam

 is the damage repair cost, Ci
con,�

 is the cost for the loss of θ-sensitive contents, 
Ci
con,A

 is the cost for the loss of A-sensitive contents, Ci
ren

 is the rental loss cost, Ci
inc

 is the 
income loss cost, Ci

inj,m
 is the minor injury cost, Ci

inj,s
 is the serious injury cost, and Ci

fat
 is 

the human fatality cost (Mitropoulou et al. 2010). Noticeably, 7 cost categories provide Ci
�
 

in Eq. 9a, and only one cost category provides Ci
A
 in Eq. 9b.

For the ith damage state, the cost of each category is computed according to Table 2, 
where the basic costs, reported in the third column, provide the first component of the cal-
culation formulas reported in the second column. The damage state parameters, providing 
the last component of the calculation formulas, are reported in Table 3 (Mitropoulou et al. 
2010).

Following Wen and Kang (2001), the occurrence of each damage state is governed by 
the drift ratio intervals and the acceleration intervals reported in Table 1, according if drift-
dependent or acceleration-dependent damages are concerned.

Referring to drift-dependent damages, and denoting as �i the lower bound for the ith 
damage state, �i

o,�
 in Eq. 8a is given by

where �i
e,�

 is the mean frequency of exceedance of �i and can be obtained as

In Eq.  11, f is an appropriately shaped function, whose parameters are determined by 
exactly fitting the NL known �j

e – �j pairs, each pair corresponding to a specific intensity 
level, having probability of exceedance Pj

e in a given time period τ j. For each intensity, �j
e 

is derived, according to Poisson’s law, as

while �j is the average value of θ obtained through nonlinear dynamic analyses under the 
corresponding suite of records. In this paper, f is expressed as the weighted sum of a piece-
wise hyperbolic function and a piecewise linear function, as in Matta (2015). A graphical 
representation of f will be shown later, in Fig. 3.

Similarly, referring to acceleration-dependent damages, and denoting as Ai the lower 
bound for the ith damage state, �i

o,A
 in Eq. 8b is given by

where �i
e,A

 is the mean frequency of exceedance of Ai and can be obtained as

In Eq. 14, f has the same expression as in Eq. 11, and its parameters are determined by fit-
ting the NL known �j

e – Aj pairs, where �j
e is still given by Eq. 12 and Aj is the average value 

from nonlinear dynamic analyses.

(9a)Ci
�
= Ci

dam
+ Ci

con,�
+ Ci

ren
+ Ci

inc
+ Ci

inj,m
+ Ci

inj,s
+ Ci

fat

(9b)Ci
A
= Ci

con,A

(10)�i
o,�

= �i
e,�

− �i+1
e,�

(11)�i
e,�

= f (�i)

(12)�j
e
= −

1

� j
ln(1 − Pj

e
)

(13)�i
o,A

= �i
e,A

− �i+1
e,A

(14)�i
e,A
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Admitting that damage and cost at each story depend only on the EDPs computed at that 
story, the procedure described above is separately conducted for every story to determine 
the individual story cost, and finally the overall building cost is derived by summing over 
the building height. The only exception are the costs related to the collapse damage state 
(“7-Destroyed”), which is supposed to be governed, for every story, by the largest θ along 
the building height, because the collapse of any story is admitted to imply the collapse of 
the whole building.

4  The robust lifecycle cost design

Based on the LCC evaluation procedure exposed in Sect. 3, multiple objective functions 
can be identified, which will be used in this paper to investigate the trade-off between the 
two absorbers. For convenience, all said objectives are defined by normalizing the con-
trolled value of a predefined quantity to its corresponding uncontrolled value.

The main objective is the normalized overall LCC, defined as C∗ = C∕Cunc (the “*” 
superscript denoting normalization). This appears the most rational and objective perfor-
mance metric, regarded in this paper as the preferential and decisive optimality criterion 
for designing a dynamic absorber.

Three other secondary objectives are proposed as partial LCC metrics. They are defined, 
respectively, as C∗

�
= C�∕C�,unc(normalized θ-dependent LCC), C∗

A
= CA∕CA,unc (normal-

ized A-dependent LCC), and C∗
h
= Ch∕Ch,unc(normalized human LCC), where Ch is the 

lifecycle cost of injuries and fatalities, obtained by summing up categories 5–7 in Table 2. 
Compared with C∗ , these three objectives allow discussing the trade-offs that exist between 
cost- oriented and safety-oriented design strategies, as well as between displacement and 
acceleration reduction approaches.

Two further objectives are finally introduced for each seismic level and for each story, 
respectively defined as �j∗ = �j∕�

j
unc (normalized θ) and as Aj∗ = Aj∕A

j
unc (normalized A). 

These objectives allow measuring absorbers’ performance in a more conventional way, and 
discussing its amplitude dependence.

Because the structural stiffness is uncertain, and variable with the stiffness reduction 
factor δ according to Eq.  5, both the uncontrolled and controlled quantities defining the 
abovementioned objectives, and therefore the objectives themselves, are dependent on δ. To 
avoid the need of an accurate probabilistic uncertainty description, a worst-case approach 

Table 3  Damage state parameters for cost evaluation (Mitropoulou et al. 2010)

Damage state Mean dam-
age index 
(%)

Loss of func-
tion index 
(%)

Down time 
index (%)

Expected 
minor injury 
rate

Expected 
serious injury 
rate

Expected death 
rate

1-None 0 0 0 0 0 0
2-Slight 0.5 0.9 0.9 3.0 × 10−5 4.0 × 10−6 1.0 × 10−6

3-Light 5 3.33 3.33 3.0 × 10−4 4.0 × 10−5 1.0 × 10−5

4-Moderate 20 12.4 12.4 3.0 × 10−3 4.0 × 10−4 1.0 × 10−4

5-Heavy 45 34.8 34.8 3.0 × 10−2 4.0 × 10−3 1.0 × 10−3

6-Major 80 65.4 65.4 3.0 × 10−1 4.0 × 10−2 1.0 × 10−2

7-Destroyed 100 100 100 4.0 × 10−1 4.0 × 10−1 2.0 × 10−1
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is here adopted in which δ can take any possible value between a lower bound and an upper 
bound. The lower bound is taken as 1 (nominal stiffness) and the upper bound, denoted as 
d, is variously assigned.

For both absorbers, once the mass ratio µ is chosen, the search domain is two-dimen-
sional, the design variables being r and ζ for the TMD, ρ and ξ for the NES. Consequently, 
depending on the assigned values of µ and d, and referring independently to any of the 
objective functions defined above, here generically denoted as Fob, each single-objective 
robust optimization problem can be formulated, respectively for the TMD and the NES, as

The solution of Eqs.  15a and 15b is obtained, simultaneously for all the objectives, by 
exploring the two-dimensional search space over a unique, sufficiently large, domain, so 
to encompass the global minima of every Fob, and with a sufficiently dense mesh, so to 
achieve the desired accuracy. More efficient optimization algorithms might be used, but 
hardly any so simple and controllable. This criterion provides not only the multiple individ-
ual optima but also the trade-off among different objectives, representable in the classical 
form of Pareto fronts, thus offering a view into the solution of the multi-objective optimi-
zation problem (Goldberg 1988). At the same time, this criterion also provides an immedi-
ate understanding of the sensitivity of each objective function to the design variables.

5  The case studies

The robust optimization methodology exposed in Sect. 4 is applied to the optimal design 
of a TMD and a NES on four different models of existing RC frame building structures, 
located in a moderate-to-high seismic region. The main features of the proposed case stud-
ies are reported in this section.

5.1  The seismic input

The four buildings are located in L’Aquila (Central Italy), at geographic coordinates 
42°21′57.60″ N and 13°23′39.84″ E, on a Type B soil according to Eurocode 8 (EN 1998-
1:2004). The site seismic hazard is defined according to the INGV seismic hazard maps 
adopted by the Italian building code (NTC MIT 2018). Eight hazard levels of increasing 
return period TR are considered, whose main characteristics are reported in Table 4. For 
each level, 14 spectrum-compatible natural seismic records are selected, compliant with 
the 5%-damped pseudo-acceleration horizontal elastic spectrum specified by NTC (MIT 
2018) (Fig. 2). They are extracted from the European Strong-Motion Database, for sites 
on Type B soil. They are chosen so that their moment magnitude M and their source-to-
site distance R approach those representative of the seismic hazard at the site, and they are 
scaled to match the elastic response spectra at the site. The complete list of records in each 
set is reported in the “Appendix”.

(15a)Fob,opt = min
r,�

max
�

Fob, [ropt, �opt] = argmin
r,�

max
�

Fob, 1 ≤ � ≤ d

(15b)Fob,opt = min
�,�

max
�

Fob, [�opt, �opt] = argmin
�,�

max
�

Fob, 1 ≤ � ≤ d
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5.2  The uncontrolled structure

5.2.1  The nominal model

The four buildings are modelled as planar linear frame structures according to Sect. 1, hav-
ing respectively 1, 3, 8 and 15 stories, and accordingly denoted as B01, B03, B08 and B15. 
Regular in elevation, they have constant interstory height of 3.5 m, and equal mass in every 
story. Their stiffness matrix is shear-type, and their damping ratio is 0.03 in every vibration 
mode. Their nominal stiffness matrix K0 is assigned so that:

• the nominal fundamental period is T10 = C1H
0.75 , where H is the building height and 

C1 is 0.075, as suggested for RC frame buildings (Su et  al. 2016; Eurocode 8; NTC 
MIT 2018);

• the interstory stiffness is distributed along the height in proportion to the design shear 
force computed for the reference return period TR = 475 years (BSE hazard level), as 
obtained through a multi-modal spectral analysis using the corresponding elastic spec-
trum and the SRSS combination rule; this condition entails, along the building height, 
a uniform design value of the interstory drift, and an approximately parabolic interstory 
stiffness.

The main structural features of the four nominal models are reported in Table 5, showing 
for each building: (1) the distribution of the nominal interstory stiffness along the height, 
normalized to the story mass; (2) the nominal natural frequencies of the first three modes; 
(3) the percentage modal masses of the first three modes.

For the sake of the LCC evaluation, a surface of 1000  m2 and a mass of 560  kg/m2 
(comprising 500 kg/m2 due to permanent loads and 0.3 times 200 kg/m2 due to residential 
live loads) is conventionally assumed for each floor of every building. Additionally, the 
lifetime t is assumed as 50 years and the annual discount rate λ as 0.02.

With these data, the LCC of the four uncontrolled nominal buildings can be com-
puted. Figure 3a, b exemplify, for the 8th story of building B08, the determination of the 
annual frequencies of exceedance of the different damage states, respectively in terms 

Set 6 (TR = 475 years)

(a) (b)

Fig. 2  Horizontal pseudo-acceleration 5%-damped elastic spectra: a Set 6 (TR = 475 years): individual spec-
tra and their average, compared with the target normative spectrum; b Sets 1–8: average and target spectra
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of drift-sensitive (a) and acceleration-sensitive damages (b). The black circles represent 
the “forward step” of the procedure, corresponding to the NL EDP–frequency pairs com-
ing from time-history analyses. The continuous line represents their interpolation by f in 
Eqs.  11 and 14. The white circles represent the “backward step” of the procedure, pro-
viding the ND EDP–frequency pairs, from which the annual frequencies of occurrence are 
derived according to Eqs. 10 and 13 (as exemplified in Fig. 3a for the 5th damage state).

For the four uncontrolled nominal buildings, the lifecycle cost Cunc is reported in Fig. 4a, 
b, respectively decomposed among cost categories (a) and damage states (b), and in both 
cases normalized to the initial building cost C0 , computed as the replacement cost of all 
structural components and contents. It results that Cunc ranges from 4.36% (for B01) to 
8.53% (for B03) of the initial building cost, expectedly for a moderate-to-high seismic haz-
ard. Referring to the cost categories (Fig. 4a), for building B01 the acceleration-dependent 
cost (8th category, yellow) largely prevails over the drift-dependent cost (the other 7 cat-
egories), while for buildings B03, B08 and B15 the acceleration-dependent cost is second 
after structural damage cost (1st category, dark blue). Injury costs are nearly irrelevant, 

Interstory drift ratio θ (-) Floor acceleration A (m/s2)A
nn
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l f
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qu
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 e
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ee
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e
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1 2 3 4 5 6 7

1 2 3 4
5

6 7

(a) (b)
φ φ

φ

Fig. 3  Uncontrolled nominal building B08. Annual frequency of exceedance for the 8th story, as a function 
of: a the drift ratio; b the floor acceleration. Black circles: from analyses; white circles: from fitting

B01    B03 B08    B15 B01         B03    B08        B15

0C
Cunc

0C
Cunc

(a) (b)

Fig. 4  Lifecycle cost Cunc for the four uncontrolled nominal buildings, normalized to the initial building 
cost C0 : a decomposition in cost categories; b decomposition in damage states
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while the fatality cost increases with the building height, ranging from 0.26% (for B01) to 
3.92% (for B15), in percentage of Cunc . Referring to the damage states (Fig. 4b), most dam-
age appears to be inflicted in the “4-Moderate” damage state, followed by the “3-Light”. 
Collapse damage costs range from 2.89% (for B08) to 4.96% (for B01).

5.2.2  The uncertain model

The four nominal building models are turned into their corresponding uncertain models by 
incorporating into the stiffness matrix the stiffness reduction factor δ. The structural perfor-
mance, in terms of both EDPs and costs, becomes a function of δ. Various values of δ will 
be considered in this paper, ranging from 1 to 4.

5.3  The absorber and the controlled structure

A single TMD and a single NES are separately mounted atop each building. Three mass 
ratios µ are considered for each absorber, respectively equal to 1%, 5% and 10%. The two 
design variables of each absorber are determined by solving the minimization problem in 
Eqs. 15a and 15b. Because δ affects any objective function in those equations, its upper 
bound d determines the worst-case optimal solution.

6  The results

The results of applying the proposed design methodology to the selected case studies are 
reported in this Section, respectively for the nominal and the uncertain models.

6.1  The nominal LCC design

The nominal design is accomplished by solving Eqs.  15a and 15b with d = 1, respec-
tively for the TMD and the NES. Many design scenarios are addressed, according to all 
possible combinations of: (1) the four buildings; (2) the three mass ratios; and (3) the 
various objectives introduced in Sect.  4. The adoption of a unique large search space 
permits the simultaneous optimization of several objectives. For example, Fig.  5a, b, 

* θC
,

* A
C

*
θC

*
AC

ρ10log ρ10log
ξ ξ

*1 θ
,

*8 A

*8A

*1θ

*
,optAC

*
,optCθ

*8
optA

*1
optθ

(a) (b)

Fig. 5  Optimization of a NES on nominal building B01 (µ = 5%). Dependence of some objectives on the 
NES’s parameters: a LCC-type objectives ( C∗

�
 and C∗

A
 ); b EDP-type objectives ( �1∗ and A8∗)
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referring to a NES having µ = 5% on building B01, show how the same search grid 
can simultaneously minimize multiple objectives: two LCC objectives, C∗

�
 and C∗

A
 (in 

Fig. 5a), and two EDP objectives, �1∗ and A8∗ (in Fig. 5b). The trade-off among the dif-
ferent objectives is immediately understood, as well as the sensitivity of each Fob to the 
design variables.

In Fig.  6, still considering building B01 but adopting �j∗ as the Fob (with j = 1–8), 
the optimal solution is plotted versus the seismic level for both TMD and NES, and for 
the three mass ratios. Figure  6a–c show the TMD’s optimal parameters, ropt and �opt , 
and the corresponding �j∗opt . Figure 6d–f show the NES’s optimal parameters, �opt (in log 
scale) and �opt , and the corresponding �j∗opt . Figure 6g compares the same curves already 
plotted in Fig. 6c, f, for better clarity. Focusing on the absorbers’ optimal parameters, it 
appears that these are nearly amplitude independent for the TMD but not for the NES, 
whose optimal stiffness ratio �opt largely decreases with the seismic level. Focusing on 
the absorbers’ optimal performance, it appears that: (1) this is nearly amplitude inde-
pendent for both absorbers; (2) the TMD is systematically superior to the NES. Similar 
results might be shown for Aj∗ , omitted for brevity.

Clearly, the nearly amplitude independent performance recognized in Fig. 6g is con-
ditioned on the assumption that, at each seismic level, the absorbers’ parameters should 
be equal to their respective optimal values corresponding to that level, i.e. should vary 
with the seismic intensity according to Fig.  6a, b, d, e. Because this adjustability is 
impossible for passive devices, the actual performance shall be optimal only at a certain 
intensity level, and degraded at all others. The proposed LCC approach will identify the 
best compromise among different intensities, thus minimizing the overall extent of that 
degradation.

To better focus on the LCC design approach, the EDP objectives can be conveniently 
replaced by the four LCC objectives, i.e. the main objective C∗ and the partial objectives 
C∗
�
 , C∗

A
 and C∗

h
 . The corresponding nominal optimal solution is then reported in Table 6 

for the TMD and in Table 7 for the NES, covering all combinations of the four buildings 
and the three mass ratios.

Tables 6 and 7 suggest the following considerations, valid in the absence of stiffness 
uncertainty:

optρ10log

optr optς

optξ

*j
optθ

*j
optθ

*j
optθ(a) (b) (c)

(d) (e) (f)

(g)

ith seismic level ith seismic level ith seismic level

ith seismic levelith seismic level ith seismic level ith seismic level

TMD TMD TMD

NES NES NES

Fig. 6  Optimal �j∗ and corresponding optimal parameters for a TMD and a NES installed on building B01 
in nominal conditions, as a function of the seismic intensity level
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• Among the three partial objectives, C∗
h,opt

 is consistently the smaller, followed by C∗
�,opt

 
and then by C∗

A,opt
 , while the main objective C∗

opt
 is intermediate between C∗

�,opt
 and 

C∗
A,opt

 . In other words, if optimized for a partial objective at a time, absorbers are more 
efficient in reducing drift-related costs than acceleration-related costs, and human costs 
more than any other cost. This difference is caused by the nonlinear relation existing 
between the reduction of costs and the reduction of EDPs: an equal reduction in drifts 
and accelerations at all seismic levels produces cost reductions that differ among the 
various damage states, and between θ-dependent and A-dependent costs. For example, 
the first row of Table 6 (TMD on building B01 with µ = 1%) shows four optimal solu-

Table 6  Nominal TMD design according to the 4 LCC objectives, for the 4 buildings and the 3 mass ratios

μ (–) Building Fob = C∗ Fob = C∗
�

Fob = C∗
A

Fob = C∗
h

ropt �opt C∗
opt

ropt �opt C∗
�,opt

ropt �opt C∗
A,opt

ropt �opt C∗
h,opt

1% B01 1.01 0.03 0.81 0.98 0.03 0.71 1.02 0.03 0.84 1.02 0.02 0.33
B03 1.02 0.05 0.75 1.02 0.05 0.71 1.05 0.05 0.81 1.03 0.03 0.59
B08 0.98 0.07 0.82 0.98 0.07 0.78 2.44 0.10 0.89 0.97 0.08 0.37
B15 0.95 0.03 0.84 0.95 0.03 0.81 2.95 0.18 0.90 0.95 0.03 0.50

5% B01 0.94 0.10 0.64 0.92 0.10 0.47 0.95 0.10 0.68 1.00 0.10 0.21
B03 0.91 0.14 0.57 0.88 0.14 0.51 1.04 0.16 0.66 0.84 0.10 0.34
B08 0.92 0.26 0.67 0.90 0.21 0.63 2.13 0.45 0.74 0.83 0.54 0.28
B15 0.85 0.18 0.70 0.85 0.15 0.65 2.00 0.42 0.78 0.88 0.12 0.22

10% B01 0.86 0.18 0.56 0.85 0.14 0.40 0.88 0.18 0.60 0.83 0.19 0.16
B03 0.81 0.19 0.48 0.77 0.19 0.41 0.96 0.26 0.57 0.67 0.19 0.26
B08 0.80 0.28 0.60 0.75 0.23 0.55 1.19 0.46 0.64 0.44 0.77 0.25
B15 0.77 0.29 0.62 0.77 0.24 0.56 1.30 0.51 0.69 0.80 0.24 0.21

Table 7  Nominal NES design according to the 4 LCC objectives, for the 4 buildings and the 3 mass ratios

μ (–) Building Fob = C∗ Fob = C∗
�

Fob = C∗
A

Fob = C∗
h

�opt �opt C∗
opt

�opt �opt C∗
�,opt

�opt �opt C∗
A,opt

�opt �opt C∗
h,opt

1% B01 0.27 0.14 0.95 0.27 0.14 0.90 4.32 0.08 0.94 0.06 0.26 0.72
B03 0.10 0.12 0.90 0.12 0.12 0.87 3.46 0.17 0.93 0.00 0.05 0.64
B08 0.20 0.42 0.93 0.13 0.35 0.92 76.3 0.45 0.92 0.13 0.35 0.70
B15 0.23 0.40 0.94 0.05 0.13 0.93 990 1.19 0.93 0.08 0.08 0.65

5% B01 0.33 0.22 0.83 0.16 0.09 0.70 5.15 0.15 0.84 0.06 0.11 0.31
B03 0.07 0.37 0.74 0.04 0.33 0.70 0.16 0.56 0.78 0.01 0.14 0.37
B08 0.16 0.46 0.75 0.10 0.38 0.73 2.16 0.82 0.77 0.08 0.38 0.28
B15 0.06 0.40 0.78 0.08 0.33 0.76 1.52 1.15 0.80 0.03 0.16 0.42

10% B01 0.22 0.27 0.73 0.11 0.17 0.60 2.81 0.23 0.74 0.05 0.10 0.24
B03 0.05 0.33 0.62 0.05 0.25 0.58 0.10 0.58 0.67 0.01 0.13 0.28
B08 0.10 0.37 0.66 0.08 0.30 0.63 0.43 0.82 0.68 0.02 0.37 0.24
B15 0.04 0.42 0.68 0.04 0.35 0.65 0.54 0.82 0.72 0.02 0.30 0.32
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tions which are very close to each other in terms of ropt and �opt ; in fact, they are all 
characterized by reductions of about 12% in drifts and 14% in accelerations at every 
seismic intensity; yet their optimal objectives are quite different, ranging from 33 to 
84%.

• The TMD proves consistently superior to the NES, for all buildings, mass ratios 
and objectives (a total of 48 cases), with only one exception (building B08, µ = 10% 
and C∗

h,opt
 , where the NES is slightly better). On geometric average, the value of C∗

opt
 

obtained with the TMD is 84% of the value obtained with the NES. This percentage 
is nearly invariant with µ; it decreases to about 80% for B01 and B03, and increases to 
about 90% for B08 and B15. Referring to C∗

h,opt
 , the percentage drops to 73%.

• Regarding TMD’s optimal parameters, ropt tends to decrease with µ (as typical of 
TMDs) and with the building height. More confused is the trend for �opt , which tends to 
increase with µ but shows no clear relation with the building height. For B08 and B15, 
the TMD optimized for C∗

A
 tunes to the second structural mode instead of the first one, 

with ropt much higher than 1 and �opt much increased. The TMD optimized for C∗
h
 dif-

fers significantly from the TMD optimized for C∗ , in an apparently random way.
• Regarding NES’s optimal parameters, �opt tends to decrease and �opt tends to increase 

with µ, both showing no clear relation with the building height.
• Comparing the optimal damping ratios of TMD and NES, �opt appears basically smaller 

than �opt , particularly for small building heights. Consequently, the optimal value of the 
damping coefficient ca is significantly smaller, on average, for the TMD than for the 
NES.

One interesting result in Tables 6 and 7 is the difference among the optimal solutions corre-
sponding to different objectives. The trade-off among the four objectives is partially shown 
in Fig. 7. Namely, the C∗ – C∗

h
 trade-off is shown in Fig. 7a÷d, and the C∗

�
 – C∗

A
 trade-off in 

Fig. 7e÷h, for the four buildings. In each figure, Pareto fronts are shown (Goldberg 1988), 
composed by all non-dominated solutions encountered along the search grid. Obviously, 
these Pareto fronts include, at their ends, the individual optimal solutions already met in 
Tables 6 and 7.
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Fig. 7  TMD and NES Pareto fronts of the non-dominated solutions in the nominal case, for the 4 buildings 
and the 3 mass ratios: (a÷d) C∗ – C∗

h
 trade-off for the 4 buildings; (e÷h) C∗

�
 – C∗

A
 trade-off for the 4 buildings
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Figure 7 shows that, in the absence of stiffness uncertainty:

• NESs’ Pareto fronts are entirely dominated by TMDs’ Pareto fronts, for all buildings 
and for all mass ratios; i.e. the TMD is systematically superior to the NES.

• Increasing µ always improves performance: Pareto fronts drawn for µ = 1% are entirely 
dominated by Pareto fronts drawn for µ = 5%, and these by Pareto fronts drawn for 
µ = 10%.

• Referring to the TMD, Pareto fronts have a limited extension and a convex shape, 
showing small competitiveness between alternative objectives. In some cases, the front 
is nearly punctual, indicating that the same solution is optimal w.r.t. both objectives. 
This is the case, e.g., of the TMD on building B01 (Figs. 7a and e). This small trade-off 
ensures, for a TMD, that the most cost-effective solution is also nearly the safest for life 
protection. Only on B08 and B15 the TMD presents a relatively large C∗

�
 – C∗

A
 Pareto 

front (Fig. 6g, h), which indeed becomes concave for building B15 when µ = 1%. The 
two objectives are truly competing in these cases, because, for building B08 and, even 
more, for building B15, C∗

�
 is governed by the first structural mode whilst C∗

A
 by the sec-

ond, as already mentioned in commenting Table 6.
• Referring to the NES, although few Pareto fronts may be relatively narrow (Fig. 7c), the 

others generally appear wide and sometimes concave (Fig. 7a, b, e). This phenomenon 
does not seem due, as for the TMD, to an attempt of the NES to control higher modes 
(it appears also on building B01, which has a single mode), but rather to the inability 
of the NES to effectively control a large range of seismic intensities. Because C∗ is gov-
erned by intermediate intensities and C∗

h
 by the highest ones, a trade-off between cost-

effectiveness and safety necessarily arises for the NES.

In particular, if the TMD and the NES are nominally designed assuming C∗ as the only 
objective function, the two normalized EDPs, expressed by their mean value along the 
building height, are as shown in Table 8. For brevity, results are reported only for the BSE 

Table 8  Normalized mean 
EDPs, as provided by the 
nominally designed TMD and 
NES in case of TR = 475 years 
and TR = 2475 years, for the 4 
buildings and the 3 mass ratios

μ (–) Building TMD with Fob = C∗ NES with Fob = C∗

TR = 475 
years

TR = 2475 
years

TR = 475 
years

TR = 2475 
years

�̄�∗ Ā∗ �̄�∗ Ā∗ �̄�∗ Ā∗ �̄�∗ Ā∗

1% B01 0.88 0.87 0.88 0.86 0.96 0.95 0.97 0.95
B03 0.87 0.88 0.87 0.87 0.93 0.92 0.96 0.93
B08 0.89 0.93 0.83 0.91 0.96 0.96 0.94 0.94
B15 0.89 0.96 0.89 0.95 0.96 0.96 0.96 0.95

5% B01 0.80 0.76 0.74 0.71 0.86 0.84 0.90 0.84
B03 0.74 0.77 0.71 0.73 0.85 0.84 0.84 0.82
B08 0.80 0.83 0.77 0.80 0.85 0.85 0.81 0.81
B15 0.80 0.88 0.78 0.85 0.86 0.86 0.85 0.84

10% B01 0.75 0.69 0.71 0.65 0.86 0.81 0.79 0.73
B03 0.67 0.69 0.64 0.65 0.79 0.77 0.74 0.74
B08 0.75 0.77 0.73 0.74 0.80 0.79 0.77 0.74
B15 0.74 0.80 0.74 0.77 0.80 0.79 0.79 0.76
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(TR = 475  years) and MSE hazard levels (TR = 2475  years). The superiority of the TMD 
is evident, larger in terms of θ than in terms of A, and scarcely influenced by the hazard 
level. Namely, in geometric average, �̄�∗ and Ā∗ result, for the TMD, 0.91 and 0.94 times the 
respective values obtained for the NES.

6.2  The robust LCC design

The robust design is accomplished by solving Eqs. 15a and 15b with d > 1, respectively for 
the TMD and the NES. For example, d = 2 is assumed. For brevity, C∗ is the only objective 
function used for optimization. To reduce the computational effort, the values of δ over 
which the maximum of Fob is evaluated in Eqs. 15a and 15b are limited to the two bounds 
of the assigned interval, i.e. to 1 and d.

Results are reported in Tables 9 and 10, and can be commented as follows:

• C∗
opt obviously increases w.r.t. the nominal case. For the TMD, the increase is of 1.11 

times on average. For the NES, of 1.04 times. In the end, C∗
opt

 obtained for the TMD is 
0.90 times the value obtained for the NES.

• For the TMD ropt systematically decreases w.r.t. the nominal case (by 0.74 times on 
average), as expected (Matta 2011). For the NES �opt reduces on average (by 0.31 
times) but not systematically. For both absorbers the average reductions are more con-
spicuous as µ gets larger.

• For the TMD �opt systematically increases w.r.t. the nominal case (by 1.88 times on 
average), as expected (Matta and De Stefano 2009). For the NES �opt reduces on aver-
age (by 0.77 times) but not systematically. For the TMD the increase is less conspicu-
ous as µ gets larger, while for the NES the decrease shows no clear correlation with 
µ. At the end, the gap between �opt and �opt reduces, the former being on average 0.95 
times the latter.

• The normalized mean EDPs computed for TR = 475  years and TR = 2475  years 
confirm the superiority of the TMD already recognized in Table  8, although here 

Table 9  Robust TMD and NES 
design with d = 2 and Fob = C∗ , 
for the 4 buildings and the 3 
mass ratios

μ (–) Building TMD with Fob = C∗ NES with Fob = C∗

ropt �opt C∗
opt

�opt �opt C∗
opt

1% B01 0.80 0.12 0.91 0.27 0.14 0.95
B03 0.75 0.12 0.87 0.15 0.14 0.94
B08 0.79 0.19 0.89 0.18 0.42 0.93
B15 0.76 0.13 0.90 0.19 0.34 0.94

5% B01 0.74 0.17 0.74 0.17 0.14 0.84
B03 0.69 0.19 0.65 0.09 0.13 0.80
B08 0.63 0.30 0.73 0.01 0.27 0.79
B15 0.61 0.42 0.74 0.02 0.54 0.79

10% B01 0.70 0.21 0.64 0.09 0.20 0.76
B03 0.63 0.22 0.54 0.00 0.21 0.70
B08 0.53 0.33 0.65 0.01 0.22 0.72
B15 0.49 0.56 0.66 0.00 0.37 0.70
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reduced by structural stiffness variations. In geometric average, �̄�∗ and Ā∗ are, for the 
TMD, 0.93 and 0.98 times the respective values obtained for the NES.

To compare the robust solution obtained in this Subsection with the nominal solution 
obtained in the previous one, a robust analysis can be run, in which the LCC perfor-
mance of the two solutions is evaluated under structural stiffness variations, with δ rang-
ing from 1 to d = 2. Focusing on C∗ and C∗

h
 , their dependence on δ is shown in Fig. 8, for 

the two absorbers, the 4 buildings and the 3 mass ratios. Unlike in Fig. 7a÷d, the Pareto 
fronts are now replaced, for each value of δ, by a single sample corresponding to C∗

opt
.

Figure 8 can be commented as follows:

• For the nominal TMD (blue curves), C∗ tends naturally to increase with δ. For δ = 2, 
most of the nominal performance is lost in the case of small mass ratios, whilst a 
certain effectiveness survives in the case of large mass ratios (particularly for the 
multi-story buildings, because of their larger effective mass ratio). Also C∗

h
 (here no 

longer the objective of design) tends to increase with δ, until generally exceeding 1 
at some point. These trends are not exactly monotonic with δ, because the absorber 
effectiveness fluctuates as stiffness reductions randomly alter the “tuning” of the 
structure to the seismic loadings.

• For the robust TMD (green curves), C∗ tends to be maximum at the two ends of the 
δ interval (δ = 1 and δ = 2). This proves that these values of δ are the most difficult 
to simultaneously minimize, and indeed the only two over which the maximum in 
Eqs. 15a and b deserves to be computed. In any case, not only C∗ but also C∗

h
 (here 

not optimized) prove scarcely sensitive to δ. In the absence of stiffness reductions 
(δ = 1), the disadvantage of the robust TMD over the nominal TMD is generally 
minor (Fig. 8f, j). As a result, the robust green cluster generally appears more com-
pact than the nominal blue cluster, and favorably located more to the left and below.

Table 10  Normalized mean 
EDPs, as provided by the 
robustly designed TMD and 
NES (d = 2) in case of TR = 475 
yrs and TR = 2475 yrs, for the 4 
buildings and the 3 mass ratios

μ (–) Building TMD with Fob = C∗ NES with Fob = C∗

TR = 475 
years

TR = 2475 
years

TR = 475 
years

TR = 2475 
years

�̄�∗ Ā∗ �̄�∗ Ā∗ �̄�∗ Ā∗ �̄�∗ Ā∗

1% B01 0.95 0.96 0.95 0.94 0.98 0.95 0.99 0.95
B03 0.91 0.95 0.93 0.94 0.98 0.94 0.99 0.94
B08 0.93 0.95 0.94 0.94 0.96 0.96 0.97 0.94
B15 0.94 0.97 0.93 0.96 0.96 0.96 0.95 0.96

5% B01 0.86 0.85 0.85 0.82 0.92 0.85 0.98 0.86
B03 0.73 0.83 0.77 0.81 0.89 0.85 0.97 0.94
B08 0.81 0.88 0.82 0.85 0.86 0.88 0.86 0.85
B15 0.83 0.87 0.84 0.86 0.87 0.85 0.88 0.84

10% B01 0.79 0.77 0.80 0.74 0.87 0.85 0.89 0.76
B03 0.71 0.76 0.67 0.74 0.79 0.82 0.77 0.80
B08 0.76 0.83 0.76 0.80 0.80 0.84 0.80 0.80
B15 0.76 0.81 0.78 0.79 0.81 0.81 0.82 0.79
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• For both the nominal and the robust NES (red and magenta curves, respectively), the 
relation of C∗ and C∗

h
 with δ is less clearly recognizable, because of the lesser sensitivity 

of the NES to detuning. Yet, significant fluctuations of C∗ and C∗
h
 with δ appear for the 

nominal NES, which the robust design helps to reduce. This is particularly apparent for 
large mass ratios, in which case the magenta cluster appears more compact and decen-
tered, whereas for small mass ratios the red and magenta clusters tend to coincide.

• Comparing the nominal TMD and the nominal NES, a typical trade-off appears 
between the blue and the red clusters, showing that the TMD is preferable below a cer-
tain δ threshold, and the NES above it. Focusing on C∗ , the threshold tends to increase 
with the building height and with the mass ratio, ranging from 1.5 to more than 2 (for 
building B15 and for μ = 5% or μ = 10%, the TMD is superior for any considered δ).

• Comparing the robust TMD with both the nominal and the robust NESs, the green clus-
ter appears to entirely dominate both the magenta and the red ones. So, as long as δ ≤ 
2, the robust TMD proves superior to all possible NESs, sometimes by a large extent, in 
terms of both C∗ and C∗

h
.

To check if the superiority of the robust TMD continues to hold under larger stiffness vari-
ations than those assumed in design, Fig. 9 plots C∗ as a function of δ in the range from 1 
to 4. The same four optimal cases described above are compared (i.e. nominal TMD and 
NES, robust TMD and NES optimized for d = 2), plus two new ones that will be explained 
in Sect. 7.

Focusing on the first four cases, the corresponding C∗ – δ curves confirm, up to δ = 2, 
the results obtained in Fig. 8: the nominal TMD is the best option for small values of δ, and 
the robust TMD is better than any NES.
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As δ further increases, the lesser sensitivity of NES to detuning makes the TMD worsen 
more rapidly, until the performance of the robust TMD (green curve) intercepts that of the 
robust NES (magenta curve) at some δ threshold. Because the respective curves are not 
monotonic, an entire δ bandwidth exists (shown in grey), over which the performances of 
the robust TMD and of the robust NES are equivalent. Before that band the robust TMD is 
better, after it the robust NES is. The band tends to move rightward as the building height 
and the mass ratio increase. In 4 out of 12 cases (B08 and B15 for μ = 5% or μ = 10%) the 
band is absent, indicating that the TMD is always better in the explored δ interval. In the 
other 8 cases, on average, the band is centered at δ = 3. This means that the robust TMD, 
designed assuming as the worst possible case d = 2, has so large an advantage over the 
robust NES to still be preferable up to d ≥ 4 in 4 cases out of 12, and up to about d = 3 in 
the others. Obviously, if d = 4 were indeed a credible option, this value might be incorpo-
rated in the design, and the grey bands would consequently move even further to the right.

These results definitely prove that, in all the cases examined in this paper, the TMD is 
more convenient than the NES for seismic purposes, even under large fluctuations of the 
structural stiffness.

7  The robust TF‑based TMD design

Section 6 shows that, in all the examined cases, the TMD is seismically superior to the 
NES. This Section focuses on the TMD alone, to understand if conventional TMD design 
criteria, based on the optimal manipulation of input–output transfer functions (TFs) of the 
building-TMD system, can acceptably approximate the results of a LCC design.
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designed by minimizing C∗ ; (iii) the nominal and robust TMD, designed by minimizing the worst-case  H∞ 
transfer function (see Sect. 7 next). All robust designs are conducted assuming d = 2
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To this purpose, the  H∞ design proposed in Matta (2011) is here reformulated in a 
worst-case robust variant. Namely, denoting as TF = TF(ω) and TFunc = TFunc(ω) the con-
trolled and uncontrolled TFs from the ground acceleration to the maximum interstory drift 
(through the interposition of an appropriate Kanai-Tajimi filter centered on the first struc-
tural frequency), and subsequently introducing the normalized transfer function as 
TF∗ = TF∕max

�
TFunc , then the worst-case robust minimization of the  H∞ norm of the lat-

ter, defined by H∗
∞
= max

�
TF∗ , can be formalized as

The solution of Eq. 16 is reported, for the 4 buildings and the 3 mass ratios, in Table 11 
and in Fig. 10, for both the nominal case (d = 1) and the robust case (d = 2).

Table  11 reports the optimal parameters ropt and �opt , and the corresponding optimal 
objective function H∗

∞,opt
 . On average, the robust ropt is about 0.8 times the nominal ropt , 

(16)H∗
∞,opt

= min
r,�

max
�

H∗
∞
, [ropt, �opt] = argmin

r,�
max
�

H∗
∞
, 1 ≤ � ≤ d

Table 11  Nominal and robust 
TMDs designed according to 
Fob = H∗

∞
 , for the 4 buildings and 

the 3 mass ratios

μ (–) Building D = 1 (nominal design) D = 2 (robust design)

ropt �opt H∗
∞,opt

ropt �opt H∗
∞,opt

1% B01 0.97 0.06 0.49 0.79 0.19 0.82
B03 0.96 0.09 0.40 0.77 0.24 0.71
B08 0.96 0.10 0.38 0.77 0.24 0.67
B15 0.96 0.10 0.37 0.77 0.24 0.66

5% B01 0.92 0.14 0.30 0.74 0.26 0.52
B03 0.87 0.19 0.24 0.69 0.32 0.39
B08 0.85 0.21 0.23 0.68 0.31 0.35
B15 0.84 0.21 0.23 0.68 0.32 0.35

10% B01 0.86 0.19 0.23 0.69 0.30 0.38
B03 0.79 0.26 0.19 0.62 0.37 0.29
B08 0.74 0.29 0.19 0.57 0.41 0.27
B15 0.71 0.32 0.19 0.54 0.44 0.27
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Fig. 10  Worst-case normalized TFs for the  H∞-designed TMD, for the 4 buildings and the 3 mass ratios: a 
nominal case (d = 1); b robust case (d = 2)
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and the robust �opt is about 2.67, 1.64 and 1.45 times the nominal �opt , respectively for 
μ = 1%, 5% and 10%.

Figure  10 shows the optimal worst-case normalized TFs. Each TF in Fig.  10b is the 
envelope of 11 curves, corresponding to the 11 equally spaced values of δ here used to 
span the interval from 0 to d. The two highest, lateral peaks of each TF derive from the 
curves corresponding to the upper and lower bounds of that interval. This shows that the 
maximum in Eq. 16 can be indeed obtained by sampling the δ domain only at its two ends, 
thus saving computational time.

Comparing Table 11 with Tables 6 and 9 shows that the LCC design and the  H∞ design 
provide similar optimal solutions. The nominal  H∞ design gives a slightly increased ropt 
(1.03 times), the robust  H∞ design a slightly decreased ropt (0.96 times), while both  H∞ 
designs give an increased �opt (1.35 times on average).

By subjecting the  H∞-designed solutions to the robust analysis already applied in 
Sect. 6.2, the two aforementioned additional curves in Fig. 9 are obtained. They are the  H∞ 
counterpart of the dotted curves of equal color obtained with the LCC design. Compared 
to the LCC-designed TMDs, the  H∞-designed TMDs approximate them well. Their advan-
tage over the NESs is remarkable, especially because they are designed independently from 
any assumption on the seismic action.

8  Identification of the optimal mass ratio based on the absorber cost

The main focus of this paper is on the relative advantage of TMDs and NESs, measured by 
the reduction that either option achieves in terms of building damage costs. Accordingly, 
of the two components making the total cost CTOT in Eq. 6, no attention has been paid in 
previous sections to the cost of the absorber Ca , and all has been directed to the building 
damage cost C.

However, in moderate-to-high seismic hazard regions like the one here examined, par-
ticularly on linear or weakly nonlinear structures, C may be relatively small with respect 
to the initial building cost C0 , and potentially of the same order of Ca , if ordinary values 
of µ are considered. The cost of the absorber, strictly related to µ and possibly to other 
absorber parameters, becomes then a decisive term for assessing costs and benefits of the 
control system, i.e. its actual cost effectiveness. To this aim, performance shall be evalu-
ated no longer in terms of C but in terms of CTOT (the new, augmented objective function 
of design), and µ shall be no longer a fixed datum of the problem (as in Eqs. 15a and 15b) 
but indeed an independent design variable to be optimally identified (Matta 2018).

With no ambition to solve this augmented optimization problem comprehensively, this 
final section just briefly touches upon it, broadening the perspective and paving the way for 
future investigations. Naturally, such reformulation requires a cost model for the absorber. 
In the lack of more plausible alternatives, the simple cost model proposed for TMDs in 
Matta (2018) is here adopted for both devices. Such model, drawn from the analysis of 
previous work (e.g. Taflanidis and Beck 2009; Wang et al. 2015a; Ruiz et al. 2016; Greco 
et al. 2016), establishes a proportionality between the mass and the cost of the absorber, 
according to Ca = cu · ma . Because there is no evidence, in the literature or from the present 
study, that the unit cost cu should be significantly different for the two devices (for example, 
the optimal damping coefficients are similar for the two devices, particularly in the case 
of a robust design), the same value of cu = 1500 €/ton, taken from the range of values sug-
gested for TMDs in Matta (2018), is here assumed for both devices.
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With this assumption, and denoting with C∗
a
= Ca∕Cunc and with C∗

TOT
= CTOT∕Cunc 

respectively the normalized absorber cost and the normalized total cost, Table  12 
reports C∗

a
 , C∗ and C∗

TOT
 = C∗

a
 + C∗ , for the nominal (d = 1) and the robust (d = 2) optimal 

TMD and NES obtained in previous sections, for the 4 buildings and the 3 mass ratios. 
Obviously, C∗

TOT
 equals 1 in the uncontrolled case. Smaller values mean a profitable 

investment, larger values a wrong one. Results show that TMDs are much superior to 
NESs, even more in the light of C∗

TOT
 than of C∗ . For both devices, building B03 is the 

one that is more cost-effectively controlled, followed by B08. In all cases, the smallest 
C∗
TOT

 is obtained using µ = 1%, followed by µ = 5% and finally by µ = 10% (with the only 
exception of B03 for the TMD and for d = 2, in which case the smallest C∗

TOT
 is obtained 

using µ = 5%). This is the effect of the moderate seismicity of the site, which produces 
relatively limited damage costs, making large values of µ not economically acceptable, 
in that more expensive than their corresponding damage cost savings. In this circum-
stances the optimal µ, that minimizes C∗

TOT
 by sufficiently reducing C∗ without exces-

sively increasing C∗
a
 , tends to be small, in the order of 1% or less.

Of course, Table  12 does not exactly identify the optimal µ, but merely compares 
three values of it, for each combination of building and absorber type. Among these 
three values, µ = 1% seems reasonably close to optimal for the TMD, on average; it 
always ensures values of C∗

TOT
 smaller than 1, in both the nominal and the robust sce-

narios. Regarding the NES, µ = 1% seems reasonably close to optimal for buildings B03 
and B08, but larger than optimal for buildings B01 and B15, where its cost nullifies or 
even exceeds its benefits. To rigorously identify the optimal µ for each case, the LCC 
optimal design procedure illustrated in previous sections should be repeated over a 
range of µ around the expected optimum. Considering for example the TMD on build-
ing B03, this search for the optimal µ would provide (1) µ = 2.5% in the nominal case 
(d = 1), corresponding to C∗

a
 = 0.11, C∗ = 0.66 and C∗

TOT
 = 0.77, and (2) µ = 3.0% in the 

robust case (d = 2), corresponding to C∗
a
 = 0.13, C∗ = 0.73 and C∗

TOT
 = 0.86.

Table 12  Absorber, damage and total costs for the nominal (d = 1) and robust (d = 2) optimal TMD and 
NES as designed in previous sections, for the 4 buildings and the 3 mass ratios (optimal solutions in bold 
character)

μ (–) Building C∗
a

TMD d = 1 TMD d = 2 NES d = 1 NES d = 2

C∗ C∗
TOT

C∗ C∗
TOT

C∗ C∗
TOT

C∗ C∗
TOT

1% B01 0.09 0.81 0.90 0.91 1.00 0.95 1.04 0.95 1.04
B03 0.04 0.75 0.80 0.87 0.91 0.90 0.94 0.94 0.98
B08 0.06 0.82 0.87 0.89 0.94 0.93 0.98 0.93 0.98
B15 0.06 0.84 0.90 0.90 0.96 0.94 1.00 0.94 1.00

5% B01 0.44 0.64 1.08 0.74 1.18 0.83 1.27 0.84 1.28
B03 0.22 0.57 0.80 0.65 0.87 0.74 0.96 0.80 1.02
B08 0.28 0.67 0.95 0.73 1.01 0.75 1.03 0.79 1.07
B15 0.31 0.70 1.01 0.74 1.05 0.78 1.08 0.79 1.10

10% B01 0.88 0.56 1.43 0.64 1.52 0.73 1.61 0.76 1.63
B03 0.45 0.48 0.93 0.54 0.99 0.62 1.07 0.70 1.15
B08 0.56 0.60 1.16 0.65 1.21 0.66 1.22 0.72 1.28
B15 0.61 0.62 1.23 0.66 1.27 0.68 1.29 0.70 1.31
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Obviously, the results of Table 12 and of any search for the optimal µ strictly depend on 
the chosen absorber cost model. For example, a larger value of cu would further increase 
C∗
TOT

 and decrease the optimal value of µ, and viceversa. To achieve conclusive results 
about the absolute cost-effectiveness of the control, a more accurate cost model would be 
needed, especially in the present case, where the cost of the optimal absorber is compara-
ble with the cost savings it produces. Following previous proposals of absorbers capable of 
integrating additional non-structural functions, for example pursuing environmental objec-
tives (Matta and De Stefano 2009), this cost model might appropriately consider other cost 
advantages of the intervention, to be included in the final budget.

In conclusion, with all the limits of the adopted absorber cost model, and despite hav-
ing chosen a moderate seismicity site, the installation of a TMD of appropriate mass still 
appears a profitable investment for all the examined buildings, systematically more conven-
ient than the installation of a NES. Its absolute cost advantages would certainly increase 
if the seismic damage costs were a larger percentage of the initial building cost, i.e. if a 
higher seismicity at the site was considered, and maybe also if an inelastic building model 
was adopted. Investigations on these specific issues are left for future work.

9  Conclusions

The TMD and the NES are compared in this paper in the light of the building LCC and of other 
metrics, chosen as the design objectives. Uncertainty in the structural stiffness is assumed for 
performance optimization and assessment. A simplified  H∞ design is also proposed.

The main conclusions, resulting from simulating different design scenarios (various 
buildings and mass ratios) in moderate-to-high seismic hazard conditions, can be summa-
rized as follows:

• Proper account of seismic intensity variability is required for a reliable evaluation of 
NESs’ performance, which can be concisely achieved by adopting a LCC performance 
metric.

• Proper account of structural stiffness variability is required for a reliable evaluation of 
TMDs’ performance, which can be simply achieved by adopting a worst-case uncer-
tainty approach, for instance letting the stiffness reduction factor δ assume any possible 
value in a given range (from 1 to d).

• By accounting for both seismic intensity and structural stiffness variability, the pro-
posed LCC analysis and design methodology is a fair tool for comparing the two 
absorbers, exploiting their full potential.

• If a nominal LCC design is performed, the TMD proves largely superior to the NES 
as long as δ remains small. In fact, as long as δ = 1 and on geometric average, the LCC 
obtained with the TMD ( C∗

opt
 equal to 0.81, 0.64 and 0.56 for µ respectively equal to 1%, 

5% and 10%) is 0.84 times the value obtained with the NES ( C∗
opt

 equal to 0.93, 0.77 and 
0.67 for µ respectively equal to 1%, 5% and 10%). As δ increases, TMD’s performance 
worsens more rapidly than NES’s performance, until for δ > 1.5÷2 the NES becomes pref-
erable. The larger the mass ratio of the TMD, the slower its performance degradation.

• If a robust LCC design is performed assuming d = 2, the TMD loses little of its nominal 
performance as long as δ remains small, continuing to be much superior to the NES. In 
fact, as long as δ ≤ 2 and on geometric average, the LCC obtained with the TMD ( C∗

opt
 

equal to 0.89, 0.72 and 0.63 for µ respectively equal to 1%, 5% and 10%) is 0.90 times 
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the value obtained with the NES ( C∗
opt

 equal to 0.94, 0.81 and 0.72 for µ respectively 
equal to 1%, 5% and 10%). As δ increases, TMD’s performance degradation is delayed, 
so that the TMD continues to be preferable until δ > 3÷4, i.e. under stiffness variations 
which are nearly double their expected design value.

• In summary, in all the examined cases the NES does not appear seismically advanta-
geous with respect to the TMD, at least when uncertainty is incorporated in design.

Other conclusions can be listed as follows:

• A limited trade-off exists between drift-dependent and acceleration-dependent costs. 
For the TMD the trade-off is virtually absent on the single-story building but increases 
with the number of stories, as drifts remain governed by the first mode while accelera-
tions by the second.

• A limited trade-off exists for the TMD between the overall damage cost (including inju-
ries and fatalities) and the life safety cost alone, ensuring that the most cost-effective 
solution is also nearly the safest for life protection. A larger trade-off exists for the NES, 
because the overall damage cost is governed by intermediate seismic intensities, whilst 
the life safety cost by the highest ones.

• The proposed  H∞ design method proves a practical and reliable way to approximate the 
LCC-optimal TMD.

• In all examined case studies, because of the moderate-to-high seismicity of the site, dam-
age costs are relatively small with respect to initial building costs. The cost of the absorber 
proves therefore of the same order of magnitude of the damage cost savings. The optimal 
mass ratios are then small, resulting in a limited damage cost reduction. A more advanta-
geous performance would be achieved by considering a more severe seismic hazard.
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Table 16  The 14 records in Set 5 (return period TR = 201 years)

Earthquake 
name

Date Earthq. ID Station ID Waveform 
ID

Fault type M R (km) PGA (m/s2)

Anchialos 30/04/1985 659 ST1355 1996x Normal 5.6 15 0.2465
Ano Liosia 07/09/1999 474 ST1259 1715x Normal 6.0 14 3.2001
Erzincan 13/03/1992 250 ST205 535x Strike slip 6.6 13 3.8142
Friuli (after-

shock)
15/09/1976 63 ST35 126x Thrust 6.0 21 4.6466

Friuli (after-
shock)

15/09/1976 63 ST34 127y Thrust 6.0 33 1.2007

Friuli (after-
shock)

15/09/1976 65 ST24 146y Thrust 6.0 14 3.2959

Kalamata 13/09/1986 192 ST163 414x Normal 5.9 11 2.3537
Montenegro 15/04/1979 93 ST63 197y Thrust 6.9 24 2.3613
Montenegro 

(after-
shock)

24/05/1979 108 ST67 228x Thrust 6.2 33 1.9854

Patras 14/07/1993 276 ST178 572y Strike slip 5.6 27 0.4231
South Ice-

land
17/06/2000 1635 ST2482 4673y Strike slip 6.5 15 4.6775

South Ice-
land

17/06/2000 1635 ST2484 6263y Strike slip 6.5 7 5.0180

Umbria 
Marche

26/09/1997 290 ST83 595x Normal 5.7 25 0.3801

Umbria 
Marche

26/09/1997 290 ST265 759x Normal 5.7 32 0.3699
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Table 17  The 14 records in Set 6 (return period TR = 475 years)

Earthquake 
name

Date Earthq. ID Station ID Waveform 
ID

Fault type M R (km) PGA (m/s2)

Campano 
Lucano

23/11/1980 146 ST276 291y Normal 6.9 16 1.7247

Campano 
Lucano

23/11/1980 146 ST99 293y Normal 6.9 33 0.9750

Erzincan 13/03/1992 250 ST205 535x Strike slip 6.6 13 3.8142
Friuli (after-

shock)
15/09/1976 63 ST34 127y Thrust 6.0 33 1.2007

Friuli (after-
shock)

15/09/1976 63 ST24 134y Thrust 6.0 14 2.1355

Friuli (after-
shock)

15/09/1976 65 ST24 146y Thrust 6.0 14 3.2959

Griva 21/12/1990 627 ST1306 1875y Normal 6.1 36 0.9367
Kalamata 13/09/1986 192 ST163 414y Normal 5.9 11 2.6703
Kyllini 16/10/1988 210 ST159 435y Strike slip 5.9 36 1.5309
Lazio Abru-

zzo
07/05/1984 175 ST141 366x Normal 5.9 36 0.6902

Montenegro 15/04/1979 93 ST63 197y Thrust 6.9 24 2.3613
Montenegro 

(after-
shock)

24/05/1979 108 ST73 230y Thrust 6.2 8 2.6239

Panisler 30/10/1983 171 ST133 354y Strike slip 6.6 33 1.5754
Umbria 

Marche
26/09/1997 286 ST60 594x Normal 6.0 11 5.1383
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Table 18  The 14 records in Set 7 (return period TR = 975 years)

Earthquake 
name

Date Earthq. ID Station ID Waveform 
ID

Fault type M R (km) PGA (m/s2)

Ano Liosia 07/09/1999 474 ST1257 1713y Normal 6.0 18 0.8390
Campano 

Lucano
23/11/1980 146 ST99 293y Normal 6.9 33 0.9750

Duzce 1 12/11/1999 497 ST3141 6501x Oblique 7.2 26 1.2273
Erzincan 13/03/1992 250 ST205 535x Strike slip 6.6 13 3.8142
Friuli (after-

shock)
15/09/1976 63 ST34 127y Thrust 6.0 33 1.2007

Griva 21/12/1990 627 ST1306 1875y Normal 6.1 36 0.9367
Izmir 06/11/1992 259 ST162 549y Strike slip 6.0 41 0.8007
Kalamata 13/09/1986 192 ST164 413x Normal 5.9 10 2.1082
Montenegro 15/04/1979 93 ST63 197y Thrust 6.9 24 2.3613
Montenegro 

(after-
shock)

24/05/1979 108 ST77 232y Thrust 6.2 20 0.5426

Panisler 30/10/1983 171 ST133 354y Strike slip 6.6 33 1.5754
South Ice-

land
17/06/2000 1635 ST2482 4673y Strike slip 6.5 15 4.6775

Umbria 
Marche

26/09/1997 286 ST60 594x Normal 6.0 11 5.1383

Umbria 
Marche

26/09/1997 286 ST60 594y Normal 6.0 11 4.5383
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