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Abstract
In this study, a structural optimisation problem, addressed through a stochastic multi-
objective approach, is formulated and solved. The problem deals with the optimal
design of exoskeleton structures, conceived as vibration control systems under seis-
mic loading. The exoskeleton structure is assumed to be coupled to an existing primary
inner structure for seismic retrofit: the aim is to limit the dynamic response of the pri-
mary structure to prevent structural damage. A non-stationary filtered Gaussian white
noise stochastic process is taken as the seismic input. Design variables pertain to the
mechanical properties (stiffness, damping) of the exoskeleton structure. Two concur-
rent and competing objective functions are introduced, in order to take into account not
only safety performance but also economic cost considerations. The resulting trade-off
is solved searching the Pareto front by way of a controlled elitist genetic algorithm,
derived from the Non-dominated Sorting Genetic Algorithm-II. Sensitivities of Pareto
fronts and Pareto optimal sets to different system parameters are finally investigated
by way of a numerical application.
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1 Introduction

Engineering structures undergo environmental loads, both natural (seismic action,
wind pressure, sea waves, etc.) and anthropic (pedestrian-induced excitation, road and
railway traffic, etc.) that are dynamic in time and intrinsically stochastic in nature.
When the resulting structural vibration could reach levels impairing serviceability
and safety performance, it can be significantly reduced by way of vibration control
technologies [1–4].

In earthquake-prone regions, to improve the resilience of the built environment [5],
vibration control technologies can be successfully applied to the seismic retrofitting of
existing structures. To this end, one of the most promising strategies is currently given
by exoskeleton structures. We define an exoskeleton structure as a self-supporting
structural system set outside and suitably connected to a primary inner structure,
the latter being enhanced or protected, in a general sense, by virtue of this connec-
tion. Impressive real applications of exoskeleton structures to building refurbishment
projects already exist (e.g. Cannon Place, London, 2011 [6]). The potential for seismic
retrofitting is currently under investigation [7,8], mainly with reference to steel braced
frame or diagrid exoskeleton structures connected to reinforced concrete buildings [9–
11]. Attractive advantages are envisaged: the suitability to an integrated design of the
retrofitting intervention, combining structural safety, energy efficiency and environ-
mental sustainability; limited interference with existing structural and nonstructural
components; minimal service/business downtime, as the retrofitting intervention is
operated from the outside; consequent limited cost.

In this study, we conceive the exoskeleton structure as a vibration control system
under seismic excitation, a “sacrificial appendage” aimed at absorbing seismic loads,
reducing the dynamic response of the primary structure and preventing its damage.
The intra-connection between primary structure and exoskeleton structure is assumed
to be non-dissipative and sufficiently rigid under horizontal loads, e.g. as in the case
of frame structures connected at each floor level by means of horizontal steel trusses
[10]. The assumption of a rigid coupling essentially characterises the principle of
operation in terms of vibration control. Based on such a kinematic constraint, the
total force transmitted from the moving base to the mass of the coupled system is
split among the primary structure and the exoskeleton structure. If the mechanical
properties of the exoskeleton structure are purposely selected, the individual force
quota transmitted to the primary structure is greatly reduced, achieving a significant
control of its displacement response and overall internal state of stress [9,12]. Greater
reductions in the internal forces on the primary structure correspond, on the other
hand, to higher internal forces on the exoskeleton structure.

The search for a dynamic coupling is also characteristic of a classical vibration
control technology, the Tuned Mass Damper (TMD). In building applications, a TMD
is implemented as a relatively small auxiliary mass usually attached to the top of
the main structure to be protected [13]. The connection in between is deformable
and possibly dissipative. The principle of operation of TMD consists in inducing a
vibration energy transfer from themain structure to the auxiliarymass,whichdissipates
the energy away vibrating out of phase with the structural motion. The effectiveness
and robustness of TMD in controlling the earthquake-induced response are, however,

123



824 Journal of Optimization Theory and Applications (2020) 187:822–841

still questioned in literature and engineering practice, unless the mass ratio of the
device can be significantly increased [14–16].

As demonstrated in [9], the control effectiveness shown by an exoskeleton structure
depends on an appropriate selection of its mechanical properties (mass, stiffness and
damping). Nonetheless, specific design methods and optimisation procedures have yet
to be developed. In fact, previous works [17–22] on the optimisation of dissipative
inter-connections between adjacent structures are not directly applicable nor imme-
diately transferable to exoskeleton structures, due to different design variables and
objective functions.

This paper deals with the optimal design of an exoskeleton structure, coupled to an
existing primary structure to the purpose of seismic retrofit. The coupled structures
are modelled as a linear time-invariant dynamic system, whose governing equations
are given in Sect. 2. The system is composed of two linear viscoelastic oscillators,
representative of the reduced-order generalised model of the multi-degree-of-freedom
structures [23]. The constitutive hypothesis of linear viscoelasticity is deemed con-
sistent with the aim of preventing structural damage. The intra-connection between
the two structures is modelled as a non-dissipative, and in particular rigid, coupling
between the two oscillators. The stochastic nature of seismic excitation is explicitly
taken into account in the input signal, a non-stationary filtered Gaussian white noise
process derived from the Clough and Penzien spectrum [24]. Stochastic optimisation
[25–27] appears to be the most convenient approach to the optimal design of vibration
control technologies, since neglecting the randomness of dynamic loads may result in
suboptimal solutions [28].

Amulti-objective optimisation problem is then formulated and its numerical imple-
mentation is tackled by use of a genetic algorithm (Sect. 3). Safety and technology
cost are considered as concurrent objectives, in order to allow the designer to compare
and select the solution that better address not only performance but also economical
considerations. Two Objective Functions (OFs) are introduced. The first OF, concern-
ing safety, is probabilistic, reliability based [29] and defined in terms of displacements
relative to ground (deformations), which are directly correlatedwith structural damage
(deformation-sensitive). The second OF, concerning cost, is deterministic and given
as a weighted combination of the unit costs associated with the mechanical prop-
erties of the exoskeleton structure. Since the two OFs are shown to conflict under
seismic excitation, the trade-off is solved searching their Pareto front by way of a
controlled elitist genetic algorithm, derived from the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [30–32] and implemented in MATLAB [33]. Strictly speak-
ing, a bi-objective optimisation problem is solved; however, the proposed formulation
and numerical implementation are suited to be extended to multiple objectives. This
consideration is relevant when the exoskeleton structure is designed to meet multiple
performance levels at increasing earthquake intensities, according to the principles of
Performance-Based Seismic Design [34].

A numerical application of the optimisation methodology is later presented and
discussed. Optimisation results are investigated through parametric analyses, to appre-
ciate their sensitivity to variations in system parameters (Sect. 4). In Sect. 5, the main
conclusions from the study are drawn as well as suggestions for future research devel-
opments.
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Fig. 1 Structural model: coupled
primary–secondary oscillator
system
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2 Stochastic Dynamic Analysis

2.1 Structural Model

We consider a single structural system composed of two subsystems, a primary struc-
ture and an exoskeleton structure, coupled to each other by way of a non-dissipative
intra-connection. Without lack of generality, a suitable mechanical model is given by
two single-degree-of-freedom (sdof) oscillators, both having viscoelastic behaviour,
coupled via a Hooke spring of stiffness k (Fig. 1).

The dynamic equilibrium of the coupled primary–secondary oscillator system,
excited by ground acceleration üg(t), is drawn in the form

m1ü1 + c1u̇1 + k1u1 = −m1üg + k(u2 − u1),

m2ü2 + c2u̇2 + k2u2 = −m2üg − k(u2 − u1),
(1)

where u1(t) and u2(t) are the displacements, relative to ground, of primary and sec-
ondary oscillator, respectively, with the overdot denoting differentiation with respect
to time t ; m1, k1 and c1 are the mass, stiffness and damping coefficients of primary
oscillator; m2, k2 and c2 are the mass, stiffness and damping coefficients of secondary
oscillator.

The hypothesis of a rigid coupling between primary and secondary oscillator can
be viewed as the limit case of the Hooke spring with stiffness coefficient tending to
infinity, k → ∞. It follows u2 → u1 and, to the limit, Eq. (1) are replaced by the
dynamic equilibrium equation of an sdof system:

(m1 + m2)ü1 + (c1 + c2)u̇1 + (k1 + k2)u1 = −(m1 + m2)üg. (2)

The following parameters are defined:

ω1 =
√

k1
m1

, ζ1 = c1
2
√

k1m1
, ζ2 = c2

2
√

k2m2
, μ = m2

m1
, α = ω2

ω1
, (3)

which denote, respectively, the uncoupled natural frequencyω1 and damping ratio ζ1 of
the primary oscillator; the uncoupled damping ratio ζ2 of the secondary oscillator; the

mass ratio μ and the frequency ratio α between the two oscillators, being ω2 =
√

k2
m2
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Fig. 2 Block diagram representation of the stochastic seismic excitation model

the uncoupled natural frequency of the secondary oscillator. Equation (2) is rewritten
accordingly as:

(1 + μ)ü1 + (2ζ1ω1 + 2ζ2αω1μ)u̇1 + (ω2
1 + α2ω2

1μ)u1 = −(1 + μ)üg . (4)

2.2 Stochastic ExcitationModel

Strong ground motions caused by earthquakes are influenced by a number of ran-
dom phenomena correlated with the complex and irregular nature of the formations
traversed by seismic waves. To take into account such an uncertain nature, it is appro-
priate to model seismic excitation as a stochastic process.

In this study, the input to the structural system is the ground acceleration üg(t) due
to earthquake. It is modelled as a non-stationary filtered Gaussian stochastic process,
as per the Clough and Penzien Power Spectral Density (PSD) function for free-field
ground motions [24]:

üg = −ω2
pup − 2ζpωpu̇p + ω2

f uf + 2ζfωf u̇f ,

üp + ω2
pup + 2ζpωpu̇p = ω2

f uf + 2ζfωf u̇f ,

üf + 2ζfωf u̇f + ω2
f uf = −φ(t)w(t).

(5)

In (5), w(t) is a stationary Gaussian white noise with constant PSD S0 and zero
mean, uniformly modulated by function φ(t); uf(t) is the response of a first filter,
with frequency ωf and damping ratio ζf ; up(t) is the response of a second filter, with
frequency ωp and damping ratio ζp. The modulation function φ(t) is taken as the
piece-wise function proposed by Jennings et al. [35–38], whose formula is

φ(t) =

⎧⎪⎨
⎪⎩

(t/t1)2 , t < t1
1, t2 ≤ t ≤ t1
exp (−θ(t − t2)) , t > t2

(6)

being t1 and t2 the start and end times of the strong shaking phase and θ the coefficient
controlling the shape of the decaying end of the function.

A block diagram representation of the stochastic excitation model is given in Fig. 2.
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2.3 State-Space Governing Equations and System Response

By introducing the stochastic excitation (5) into the dynamic equilibrium Eq. (4), the
augmented dynamic system reads

(1 + μ)ü1 + (2ζ1ω1 + 2ζ2αω1μ)u̇1 + (ω2
1 + α2ω2

1μ)u1 = −(1 + μ)üg , (7a)

üg = −ω2
pup − 2ζpωpu̇p + ω2

f uf + 2ζfωf u̇f , (7b)

üp + ω2
pup + 2ζpωpu̇p = ω2

f uf + 2ζfωf u̇f , (7c)

üf + 2ζfωf u̇f + ω2
f uf = −φ(t)w(t) . (7d)

It is suited to state-space representation, given in the form:

ż = Az + B e(t), (8a)

y = Cz. (8b)

In the state equation (8a), z(t) = [
u1(t), u p(t), u f (t), u̇1(t), u̇ p(t), u̇ f (t)

]T is the
state vector;

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− (ω2
1+α2ω2

1μ)

1+μ
ω2
p −ω2

f − (2ζ1ω1+2ζ2αω1μ)
1+μ

2ζpωp −2ζfωf

0 −ω2
p ω2

f 0 −2ζpωp 2ζfωf

0 0 −ω2
f 0 0 −2ζfωf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

is the state matrix, function of the system parameters; B = [0, 0, 0, 0, 0, −1]T
is the input matrix; and e(t) = φ(t) w(t) is the applied input process. In the output

equation (8b), y(t) = [
u1(t), u̇1(t), üa

1(t)
]T is the output vector, listing structural

displacement u1(t) and velocity u̇1(t), both relative to ground, and structural absolute
acceleration üa

1(t) = ü1(t) + üg(t);

C =
⎡
⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0

− (ω2
1+α2ω2

1μ)

1+μ
0 0 − (2ζ1ω1+2ζ2αω1μ)

1+μ
0 0

⎤
⎥⎦ (10)

is the output matrix.
Given the assumptions of zero-mean, uniformly modulated, white noise input pro-

cess and zero initial conditions, the system response z(t) is, in turn, a zero-mean
non-stationary stochastic vector process, whose complete description can be given in
terms of time-variant covariancematrixRzz(t). The latter reduces toRzz = E(zzT), the
symbol E(·) denoting the expected value operator, and can be evaluated numerically
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[39] by solving the matrix differential equation [40,41]:

ṘZZ = ARZZ + RZZ AT + 2π S0φ
2(t)BBT. (11)

Once the covariance matrix Rzz(t) of the state vector is known, the covariance matrix
Ryy(t) of the output vector is subsequently obtained as

Ryy = E(yyT) = C E(zzT)CT (12)

3 Multi-objective Optimisation Problem

In this Section, the optimal design of the exoskeleton structure is tackled as a multi-
objective optimisation problem. The mathematical formulation of the problem and its
numerical implementation in a genetic algorithm are discussed.

3.1 DesignVariables

The primary structure is assumed to be known, while the exoskeleton structure is
designed through the optimisation problem. Referring to the coupled system intro-
duced in Sect. 2.1, the uncoupled natural frequency ω1 and damping ratio ζ1 of the
primary oscillator are considered as given data; mass ratio μ is taken as fixed; fre-
quency ratio α and the uncoupled damping ratio ζ2 of the secondary oscillator play the
role of design variables. Design variables are listed in the design vector b = (α, ζ2)

T.

3.2 Objective Functions

The optimal design of the exoskeleton structure is aimed at the minimisation of two
quantities of interest: the maximum displacement relative to ground of the primary
structure and the cost of the exoskeleton structure.

Concerning the first objective, we note that the displacement relative to ground
represents the engineering demand parameter which the damage of the primary struc-
ture is correlated with. For the displacement response process u1(t), we assume the
existence of a safe domain limited between an upper bound level +u1max and a lower
bound level −u1max, i.e. a symmetric double-barrier domain ±u1max with threshold
u1max > 0. Structural failure clearly occurs when u1(t) exceeds for the first time
either the upper or the lower bound level (event of first-passage failure). Adopting a
reliability-based optimisation approach, the first OF is defined as the maximum abso-
lute displacement u1max that is exceeded with a probability of failure not greater than
a prescribed value P̄f in a fixed time interval T :

O F1 := u1max : Pf(u1max, T ) = P {|u1(t)| > u1max; 0 ≤ t ≤ T } ≤ P̄f . (13)

The complement to one of the probability of failure Ps = 1− Pf is the probability of
survival, or reliability, of the primary structure.
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There are no exact analytical solutions yet for the probability of failure defined
in (13), although approximate solutions are available [40,41]. Forwide-band processes
and/or high threshold levels, it is reasonable to assume that the events of threshold
upcrossing are rare and independent: this makes the process counting the number of
upcrossings a Poisson Process (Poisson approximation of the first-passage problem
[41]). Starting from zero initial conditions, the probability of survival is the probability
of no threshold upcrossing in time interval (0, T ], hence the probability of failure can
be written as:

Pf(u1max, T ) = 1 − Ps(u1max, T ) = 1 − exp

(
−

∫ T

0
ν(u1max, t) dt

)
, (14)

in which ν(u1max, t) = 2ν+(u1max, t) is the unconditional upcrossing rate of a sym-
metric double-barrier problem, equal to twice the upcrossing rate ν+(u1max, t) of the
single-barrier problem. For a non-stationary zero-mean Gaussian process, it holds
[41]:

ν+(u1max, t) = σu̇1(t)

σu1(t)
exp

(−u2
1max

2σ 2
u1(t)

)
⎡
⎣ρu1u̇1(t, t) u1max√

2π σu1(t)
�

(
ρu1u̇1(t, t) u1max√

1 − ρ2
u1u̇1

(t, t) σu1(t)

)

+
√
1 − ρ2

u1u̇1
(t, t)

2π
exp

( −ρ2
u1u̇1

(t, t)u2
1max

2
(
1 − ρ2

u1u̇1
(t, t)

)
σ 2

u1(t)

)⎤
⎦ , (15)

where σu1 and σu̇1 are the standard deviations of u1(t) and u̇1(t), respectively;
ρu1u̇1(t, t) is the correlation coefficient; �(·) is the cumulative Gaussian distribution
function. The stochastic constraint condition in Eq. (13) is finally expressed as:

g(u1max, T ) =
∫ T

0
ν(u1max, t) dt + log(1 − P̄f) ≤ 0 (16)

Concerning the second objective, a sound and representative cost function is sought
for the exoskeleton structure, in order to compare the economic investment required
by competing design strategies. To this purpose, the cost components considered as
meaningful in this study are associatedwith themechanical properties of the secondary
oscillator, i.e. coefficients k2 and c2. Coefficient k2 represents the generalised stiffness
shown by the exoskeleton structure when subjected to the lateral forces due to earth-
quake. It depends on the material and geometric properties of structural members and
is correlated with design and sizing. Coefficient c2 represents the generalised damping
of the exoskeleton structure. It characterises the energy dissipation properties resulting
from both structural members (structural damping) and possible ad hoc devices, or
dampers (supplemental damping).
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A cost function is defined as a linear combination of stiffness and damping coeffi-
cients k2 and c2:

C = C(k2, c2) = k2 + λc2, (17)

where λ is a cost parameter, defined as the ratio between the unit costs associated,
respectively, with c2 and k2:

λ = unit cost(c2)

unit cost(k2)
. (18)

Cost parameter λ is used to take account of the generally different (higher) unit
cost shown by damping components compared to stiffness components. The cost
function (17), expressed per unit mass of the primary oscillator and rearranged by
introducing the system parameters (3), is taken as the second OF:

O F2 := C

m1
= μ(α2ω2

1 + 2ζ2αω1λ). (19)

3.3 Problem Formulation and Numerical Implementation

A dual criteria optimisation problem is formulated by requiring O F1 (13) and O F2
(19) to be minimised over the domain admissible for the design vector b:

min v(b) =
[

O F1(b)

O F2(b)

]
,

O F1(b) = u1max(b), O F2(b) = C(b)

m1
,

b = [α, ζ2]T,

subject to g(b) =
∫ T

0
ν
(
u1max(b), t

)
dt + log(1 − P̄f) ≤ 0,

αL ≤ α ≤ αU with αL, αU ∈ R
+,

ζL
2 ≤ ζ2 ≤ ζU

2 with ζL
2 , ζU

2 ∈ R
+
0 .

(20)

Objective functions O F1 (13) and O F2 (19) are expected to conflict with each
other: increments of the design variables α and ζ2 lead to reduce O F1 (the maxi-
mum displacement of the primary structure) [9] and to increase O F2 (the cost of the
exoskeleton structure). In such a case of conflicting objectives, a set of alternative
optimal solutions can be found in accordance with the concept of Pareto optimality
[42]. These solutions are said to be non-dominated or non-inferior optimal solutions in
the sense that, for each of them, one OF cannot be improved unless degrading another
one. Generally speaking, given two candidate design vectors bk and bl and defined
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the two corresponding objective function vectors

v(bk) = [
O F1(bk), . . . , O Fm(bk)

]T
,

v(bl) = [
O F1(bl), . . . , O Fm(bl)

]T
,

(21)

vector v(bk) is said to dominate vector v(bl) (denoted as v(bk) ≺ v(bl)) if

O Fi (bk) ≤ O Fi (bl) ∀ i ∈ [1, . . . , m]
∧ ∃ j ∈ [1, . . . , m] : O Fj (bk) < O Fj (bl).

(22)

If no feasible solution v(bk) does exist that dominates solution v(bl), then v(bl) is
classified as a non-dominated or Pareto optimal solution. The collection of all the
Pareto optimal solutions in the space of design variables is known as Pareto optimal
set; in the space of OFs, the locus corresponding to the Pareto optimal set is called
Pareto front. Each point on the front represents a trade-off betweenmultiple objectives
and, if no preference information is given, no trade-off can be valued better that the
others. Only the human decision maker (i.e. the structural designer in the present case)
can solve this uncertainty by selecting the single solution on the front that better agrees
with his/her own subjective preferences.

The Pareto front for the bi-objective optimisation problem (20) is found by using
the controlled elitist genetic algorithm implemented in MATLAB function gamultiobj
[33], which is a variant of the Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) [30–32]. Genetic algorithms have been long recognised as robust, reliable and
computationally efficient tools for multi-objective structural optimisation [43–45].
Compared to a typical elitist genetic algorithm, the controlled elitist genetic algorithm
adopted in the present study not always favours individuals with better fitness values,
but also includes individuals that help increase the diversity of the population, even
if they have a lower fitness value. This process maintains the diversity of population,
which improves crucially the convergence to an optimal Pareto front.

4 Results and Discussion

In this section, a numerical application of the methodology formulated in Section 3 is
shown and discussed. The design parameters for the optimisation problem are given
below.

Concerning the primary oscillator, fixed parameters are the uncoupled natural fre-
quency ω1 = 10.47 rad/s (corresponding period T1 = 0.6 s) and damping ratio
ζ1 = 0.05. The mass ratio between the secondary oscillator and the primary oscillator
is taken as μ = 0.001. The design vector b, listing frequency ratio α and the damp-
ing ratio ζ2 of the secondary oscillator, is assumed to vary in the admissible domain

b = {

b = [α, ζ2]T : α ∈ [10−1, 102] ∧ ζ2 ∈ [0, 1]}. Since ζ2 represents the gener-
alised damping ratio of the exoskeleton structure in the reduced-order dynamic model,
its variation range is chosen to encompass also the case in which the exoskeleton struc-
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Table 1 Parameters of the
stochastic seismic excitation
model

ωf 20 rad/s

ζf 0.7

ωp 3 rad/s

ζp 0.3

S0 294.30 cm2/s3

t1 2 s

t2 12 s

θ 0.4 s−1

Table 2 Setup parameters used
for the controlled elitist genetic
algorithm implemented in
MATLAB function gamultiobj

Maximum number of generations 400

Population size 50

Crossover fraction 0.8

Pareto fraction 0.35

ture is providedwith energy dissipation devices.Values of ζ2 up to 1.0 are able tomodel
such a supplemental damping in addition to the mere structural damping.

Regarding seismic excitation, parameters of the stochastic model are indicated in
Table 1.

As to the MATLAB function gamultiobj, setup parameters are listed in Table 2.
In the stochastic constraint condition (16), the considered probability of failure P̄f
is equal to 10−3 in T = 100 s, being such a value of T conservative for seismic
excitation. In O F2 (19), the cost parameter is λ = 10 N/m

Ns/m .
Surface plots in Fig. 3a, b depict O F1 and O F2 versus the design variables α and ζ2

spanning the admissible domain 
b. By inspecting the surfaces, it becomes apparent
that O F1 and O F2 have antithetical trends: as O F1, i.e. the maximum displacement
response of the primary oscillator, decreases, O F2, i.e. the cost associated with the
secondary oscillator, increases. A trade-off problem is hence posed between improv-
ing the performance of the controlled primary structure, minimising its displacement
response, and limiting the cost of the exoskeleton structure.

Contour plots matching the surface plots of Fig. 3a, b are reported in Fig. 4a, b,
respectively, to appreciate the sensitivity of O F1 and O F2 to variations of α and ζ2.
From Fig. 4a, the response function O F1 appears to be reduced by increments of
α, particularly pronounced when α > 10, and by increments of ζ2. Conversely, the
same increments cause the cost function O F2 to increase steeply in Fig. 4b. Both O F1
and O F2 are, broadly speaking, more sensitive to variations of α than of ζ2. Given a
fixed value of the mass ratio between the two oscillators, increments and decrements
of frequency ratio α correspond to increments and decrements of the stiffness of the
secondary oscillator.

In Fig. 4c, O F1 is normalised with respect to the maximum displacement of the
so-called uncontrolled primary oscillator, i.e, the primary oscillator considered as
uncoupled from the secondary oscillator. Values smaller than one imply a reduction
in the primary oscillator response by virtue of the coupling to the secondary oscilla-
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Fig. 3 Surface plots of O F1 (a) and O F2 (b) in the space of design variables α and ζ2. It is assumed:
ω1 = 10.47 rad/s (T1 = 0.6 s), ζ1 = 0.05, μ = 0.001
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Fig. 4 Contour plots of O F1 (a), O F2 (b) and normalised O F1 (c) in the space of design variables α and
ζ2; Pareto front (d) in the space of OFs and Pareto optimal solutions (e) in the space of design variables α

and ζ2. It is assumed: ω1 = 10.47 rad/s (T1 = 0.6 s), ζ1 = 0.05, μ = 0.001
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Table 3 Pareto front, values of
O F1 and O F2 and
corresponding optimal design
variables. It is assumed:
ω1 = 10.47 rad/s (T1 = 0.6s),
ζ1 = 0.05, μ = 0.001

Point O F1 (cm) O F2
(
N/m
kg

)
α (–) ζ2 (–)

1 15.46 0.01 0.29 0.00

2 14.41 8.41 8.27 0.52

3 13.06 28.84 15.78 0.46

4 12.30 55.71 22.35 0.20

5 11.00 59.52 22.54 0.80

6 9.56 124.11 33.20 0.46

7 7.95 171.52 38.84 0.75

8 7.32 200.22 41.97 0.81

9 6.38 253.45 47.23 0.89

10 5.72 355.59 56.41 0.56

11 4.95 384.85 58.40 0.89

12 3.74 544.38 69.54 0.96

13 3.51 622.44 74.58 0.80

14 3.06 726.85 80.64 0.81

15 2.46 910.30 90.30 0.85

16 2.34 1060.16 97.78 0.57

17 1.93 1117.45 100.00 1.00

tor. From the designer point of view, they prove the effectiveness of the exoskeleton
structure in reducing the dynamic response and damage level expected for the primary
structure under earthquake loading.

The Pareto front is shown in Fig. 4d, while the Pareto optimal solutions are illus-
trated in Fig. 4e, with the colour map highlighting the correspondence between the
two scatter plots. Besides, the optimal solutions are also overlapped with the contour
plots of OFs in Fig. 4a–c, to observe clearly the relative position. For each point of
the Pareto front, values of O F1, O F2 and of the optimal design variables are reported
in Table 3. Along the front, the response function O F1 decreases as the cost func-
tion O F2 increases, although the rate of variation is not constant: in a first section of
the front, the cost increase is less than proportional than the response decrease (O F2
increasing from 0.01 to 253.45 N/m

kg versus O F1 decreasing from 15.46 to 6.38 cm);
in a second section of the front, the cost increase is more than proportional than the
response decrease (O F2 increasing from 253.45 to 1117.45 N/m

kg versus O F1 decreas-
ing from 6.38 to 1.93 cm). From Table 3, it is observed that the reductions in O F1
are mainly due to increasing values of frequency ratio α and, secondarily, to higher
values of damping ratio ζ2.

The trade-off between the performance objective O F1 and the cost objective O F2
is instrumental in achieving the purpose of seismic retrofit. Along the Pareto front, the
designer is able to quantify and compare the costs required to achieve progressively
better performances of the retrofitted primary structure. Then, the designer is able to
select the single Pareto solution that ensures a performance considered as satisfactory
at a cost deemed as affordable. The selected Pareto solution identifies the values of
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Fig. 5 Sensitivity analysis to variations of the primary oscillator natural period T1: Pareto fronts (a) and
Pareto optimal solutions (b). It is assumed: μ = 0.001 and ζ1 = 0.05

frequency ratio α and damping ratio ζ2 that have to be implemented in the design of the
exoskeleton structure, i.e. its stiffness and energy dissipation properties, respectively.

Parametric analyses have been carried out to gain more insight into the sensitivity
of the Pareto optimal solutions to the design parameters. The analyses have been
conducted by varying one parameter at a time, while keeping the other ones fixed to
the values assumed in Fig. 4. Sensitivities to natural period T1 (Fig. 5) and damping
ratio ζ1 (Fig. 6) of the primary oscillator, to mass ratio μ (Fig. 7) and to cost factor λ

(Fig. 8) have been investigated.
Figure 5 shows the Pareto fronts and optimal sets obtained for increasing values

of the primary oscillator natural period T1 = 0.2, 0.4, 0.6 and 0.8 s. These values
correspond to primary structures with different stiffness properties, from stiff (T1 =
0.2 s) to relatively flexible (T1 = 0.8 s). As T1 increases, the Pareto fronts in Fig. 5a
move away from the origin of the Cartesian axes. This means that, for a more flexible
primary structure, the same response level (O F1) can be obtained only at the price
of a higher cost (O F2) of the exoskeleton structure. As apparent from the trend in
Fig. 5b, this higher cost is due to the greater values assumed by the optimal design
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Fig. 6 Sensitivity analysis to variations of the primary oscillator damping ratio ζ1: Pareto fronts (a) and
Pareto optimal solutions (b). It is assumed: μ = 0.001 and ω1 = 10.47 rad/s (T1 = 0.6 s)

variables α and ζ2, which O F2 is directly related to, in agreement with Eq. (19). The
inspection of the Pareto fronts also shows that their slope decreases with the increasing
T1, meaning that a greater variation in O F1 corresponds to a smaller variation in O F2.
In particular, by comparing the extreme points of each front: for the stiffest primary
structure (T1 = 0.2 s), the response function O F1 is reduced from 2.31 to 0.91 cm,
with the cost function O F2 rising from 0.00 to 1412.90 N/m

kg ; for the more flexible
structure (T1 = 0.8 s), the response function O F1 is reduced from 19.56 to 3.65 cm,
with the cost function O F2 growing from 14.50 to 630.90 N/m

kg .
In Fig. 6, the results obtained by varying the primary oscillator damping ratio

are presented, with values ζ1 = 0.02, 0.05 and 0.10 assumed in the analyses. As ζ1
increases, thePareto fronts inFig. 6a graduallymoves toward the origin of theCartesian
axes, meaning that the same response level (O F1) requires a lower cost (O F2) of the
exoskeleton structure.With regard to the optimal design variables in Fig. 6b, this result
corresponds to solutions with smaller damping ratio ζ2. The minimum response level
and maximum cost achieved by the optimal solutions are, nevertheless, independent
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of ζ1: the extreme points on the left section of the Pareto fronts are indeed comparable,
in terms of both O F1 and O F2.

Figure 7 illustrates the sensitivity of the optimisation results to variations of the
mass ratio μ. The investigated values are μ = 0.1%, 1% and 10%, which represent
progressively more massive exoskeleton structures. By increasing μ, the Pareto fronts
in Fig. 7a slightly move toward the origin of the Cartesian axes, meaning that the
optimal solutions with a larger mass ratio dominate, in the Pareto sense, the optimal
solutions obtained with a smaller mass ratio. Sensitivity to μ is notable by comparing
the left section of the fronts: it can be observed that, the larger the mass ratio μ, the
lower theminimum response level (minimum O F1) achieved by the optimal solutions,
although the corresponding cost (maximum O F2) increases significantly.

Figure 8 shows the effects of different values of the cost parameter, respectively, λ =
1, 10, 100 N/m

Ns/m . As λ increases, the Pareto fronts in Fig. 8a gradually move away from
the origin of the Cartesian axes, meaning that the optimal solutions with a higher cost
parameter are dominated, in the Pareto sense, by the optimal solutions with a lower
cost parameter. It is worth noting that the minimum value of the response function
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Fig. 8 Sensitivity analysis to variations of cost factor λ: Pareto fronts (a) and Pareto optimal solutions (b).
It is assumed: ω1 = 10.47 rad/s (T1 = 0.6 s), ζ1 = 0.05, μ = 0.001

O F1 achieved by the optimal solutions is basically independent of λ, whereas the
associated value of the cost function O F2 grows as λ grows.

5 Conclusions

In this study, a methodology for the optimal design of linear viscoelastic exoskeleton
structures has been developed. The exoskeleton structure has been conceived as a
vibration control system, whose mechanical properties (stiffness and damping) are
optimised in order to reduce the dynamic response and the expected damage of a
primary inner structure under seismic loading.

While the coupled primary and exoskeleton structures aremodelled as a determinis-
tic dynamic system, the optimisation problem has been addressed through a stochastic
approach, by assuming a non-stationary filtered white noise random process as the
seismic input. Two competing OFs have been defined, aiming at trading off the safety
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performance of the primary structure for the economic cost of the exoskeleton struc-
ture. Adopting a reliability-based objective function, the safety performance has been
expressed in terms of maximum displacement response and associated failure prob-
ability. A dual criteria optimisation has been performed by using a controlled elitist
genetic algorithm to determine the Pareto front and the corresponding optimal design
variables. Although presented with reference to a dual criteria problem, the proposed
methodology is suited to be extended to multicriteria optimisation.

The optimisation methodology, first formulated with general scope, has been sub-
sequently applied to a numerical application, in order to investigate features and
parameter sensitivity of the obtained optimal solutions. The inspection of the Pareto
fronts has proved the effectiveness of the exoskeleton structure in reducing the seismic
response and damage level of the primary structure. A trade-off between performance
and cost is posed and must be solved by the designer, called to select on the Pareto
front the single solution that ensure a performance considered as satisfactory at a cost
deemed as acceptable. The selected Pareto solution identifies the values of stiffness
and energy dissipation properties that have to be implemented in the design of the
exoskeleton structure. Both performance and cost are increased by increments in the
stiffness of the exoskeleton structure and, only secondarily, by increments in its energy
dissipation properties.

Sensitivity analyses have shown how significantly the system parameters (in par-
ticular, primary structure natural period and damping ratio, mass ratio between
exoskeleton and primary structure, cost factor) could influence the optimisation results.
In detail, dominated optimal solutions (in the Pareto sense) are obtained: with increas-
ing values of the natural period (flexibility) and decreasing values of the damping ratio
of the primary structure; by reducing the mass ratio between exoskeleton and primary
structure; for higher cost factors.

On the basis of the results obtained, a worthy future research development could
be to include uncertainties in structural parameters into the formulated stochastic
optimisationmethodology. Exoskeleton structureswith nonlinear hysteretic behaviour
could be of interest as well and would be investigated.
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