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Preface

This dissertation is submitted in partial fulfillment of the requirements for the Ph.D.
degree at the Faculty of Science, University of Copenhagen, Denmark. The work was
carried out at the Department of Mathematical Sciences, University of Copenhagen,
from October 2012 to September 2015. It was financed by the Department of Math-
ematical Sciences, the Carlsberg Foundation, the Lundbeck Foundation and the
Danish Cancer Society.

Paper I and Paper II are different form those in the original version of this thesis.
Specifically, in the original version of Paper I a minor error was present, which
required an assumption (cfr. equation (4.9)) to be slightly changed. Proposition 4.1
has been added to connect the new assumption with the original one. We thank the
student Peter Jenni from University of Freiburg for his help with spotting the error.
Paper II has been updated after receiving reviews from the journal it was submitted
to. Essentially, nothing has changed except for a wider definition of complex balanced
equilibria that are now allowed to be non-negative vectors. Consequently, Theorem
3.1 has been stated in a more general formulation, and a proof has been added for it
in Appendix B. Finally, calculations regarding Examples 2 and 4 have been added
in Appendix C.

This work is mostly the result of the fruitful collaboration with my supervisor,
Carsten Wiuf. Moreover, part of this work would not have been in the present form
without further precious comments by Elisenda Feliu. Work with other members of
the Statistics and Probability Theory Research Group at the Department of Math-
ematical Science have also been important, as well as getting involved and well
accepted in the Chemical Reaction Network international community. I would like
to thank Carsten Wiuf and Elisenda Feliu for introducing me to the community and
for their guidance. Finally, a pleasant and meaningful collaboration took place in
Madison during my three month stay abroad. I am grateful to David Anderson, Ghe-
orghe Craciun and Thomas Kurtz for their warm hospitality and for the significant
discussions we had. Finally, I would like to thank the Department of Mathemati-
cal Science for supporting my travels, which have been fundamental for me to get
involved in the international framework of chemical reaction network theory.
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Summary

Reaction systems have been introduced in the 70s to model biochemical systems.
Nowadays their range of applications has increased and they are fruitfully used
in different fields. The concept is simple: some chemical species react, the set of
chemical reactions form a graph and a rate function is associated with each reaction.
Such functions describe the speed of the different reactions, or their propensities.
Two modelling regimes are then available: the evolution of the different species
concentrations can be deterministically modelled through a system of ODE, while
the counts of the different species at a certain time are stochastically modelled by
means of a continuous-time Markov chain. Our work concerns primarily stochastic
reaction systems, and their asymptotic properties.

In Paper I, we consider a reaction system with intermediate species, i.e. species
that are produced and fast degraded along a path of reactions. Let the rates of
degradation of the intermediate species be functions of a parameter N that tends
to infinity. We consider a reduced system where the intermediate species have been
eliminated, and find conditions on the degradation rate of the intermediates such
that the behaviour of the reduced network tends to that of the original one. In partic-
ular, we prove a uniform punctual convergence in distribution and weak convergence
of the integrals of continuous functions along the paths of the two models. Under
some extra conditions, we also prove weak convergence of the two processes. The
result is stated in the setting of multiscale reaction systems: the amounts of all the
species and the rates of all the reactions of the original model can scale as powers of
N . A similar result also holds for the deterministic case, as shown in Appendix IA.

In Paper II, we focus on the stationary distributions of the stochastic reaction
systems. Specifically, we build a theory for stochastic reaction systems that is parallel
to the deficiency zero theory for deterministic systems, which dates back to the 70s.
A deficiency theory for stochastic reaction systems was missing, and few results
connecting deficiency and stochastic reaction systems were known. The theory we
build connects special form of product-form stationary distributions with structural
properties of the reaction graph of the system.

In Paper III, a special class of reaction systems is considered, namely systems

iii



iv

exhibiting absolute concentration robust species. Such species, in the deterministic
modelling regime, assume always the same value at any positive steady state. In the
stochastic setting, we prove that, if the initial condition is a point in the basin of
attraction of a positive steady state of the corresponding deterministic model and
tends to infinity, then up to a fixed time T the counts of the species exhibiting
absolute concentration robustness are, on average, near to their equilibrium value.
The result is not obvious because when the counts of some species tend to infinity,
so do some rate functions, and the study of the system may become hard. Moreover,
the result states a substantial concordance between the paths of the stochastic and
the deterministic models.

Short abstract

Reaction systems are mathematical models used in biochemistry and in a num-
ber of other fields. They model the evolution of a biochemical mechanism either
deterministically, by means of a system of ODEs, or stochastically, by means of a
continuous-time Markov chain. Our main concern is the stochastic modelling regime:
we study asymptotic results for the associated Markov chain when some parameters
of the model tend to infinity, in order to approximate the model by a simpler one
or to recover some features from its deterministic counterpart. We also study the
stationary distributions of the model. Specifically, in the first paper collected in this
manuscript the original stochastic model is approximated by a lower dimensional
one, where particular chemical species have been eliminated. We study different
kind of convergence of the reduced model to the original one, and we also prove
a similar result for the deterministic model. In the second paper connections be-
tween the form of the stationary distribution of a stochastic system and structural
conditions of the underlying chemical reactions are unveiled. Finally, in the third
paper we prove that if a chemical species has always the same value for any positive
steady state of a deterministic reaction system, then the counts of that species in
the stochastic model are, on average and up to a finite time T , near to that value.
This results holds when the counts of the other species in the initial condition tend
to infinity: in such a situation the production and degradation rates tend to infinity
as well, and the evolution of the different species counts is not clear a priori.



Dansk resumé

Reaktionssystemer er matematiske modeller, der blandt andet anvendes indenfor
biokemi og en række andre videnskabelige omr̊ader. Disse systemer modellerer ud-
viklingen af en biokemisk mekanisme enten deterministisk ved hjælp af et system
af almindelige differential ligninger eller stokastisk ved hjælp af en kontinuert tids
Markov kæde. Vores primære interesse er stokastisk modellering. Specielt udleder vi
asymptotiske resultater vedrørende den Markov kæde, der beskriver systemet, n̊ar
nogle parametre eller variable i modellen er store (‘g̊ar mod uendelig’). Dette er dels
med henblik p̊a at beskrive modellen med en simplere model (der fremkommer under
de asymptotiske betingelser) og dels med henblik p̊a at sammenholde den determi-
nistiske model til den stokastiske. Desuden har vi studeret stationære fordelinger for
de stokastiske modeller baseret p̊a kontinuert tids Markov kæder.

I den første artikel i denne afhandling tilnærmes den oprindelige stokastiske pro-
cess med en process af lavere dimension, der opn̊as ved at ‘eliminere’ visse kemiske
stoffer (variable) fra modellen. Vi studerer forskellige typer af konvergens af den op-
rindelige model til den reducerede model. Desuden viser vi et tilsvarende resultat for
deterministiske modeller baseret p̊a differentialligninger. I den anden artikel knyttes
forbindelser mellem den stationære fordeling for en stokastisk model og ligevægts-
punkter af en tilsvarende deterministiske model. Vi viser at strukturelle betingelser
der er formuleret for deterministiske modeller og som har stærke implikationer for ka-
rakteriseringen af ligevægtspunkterne, har en analog stokastisk formulering. Endelig
i den tredje artikel beviser vi en relation mellem deterministiske og stokastiske sy-
stemer for en bestemt klasse af reaktionssystemer: Hvis et kemisk stof (variable) i
et deterministisk system har den samme værdi i ligevægt for enhver startbetingelse,
s̊a er middelværdien af dette stof til enhver endelig tid i det stokastiske system tæt
p̊a den deterministiske ligevægtsværdi. Dette resultat gælder under visse betingelser
p̊a reaktionshastigheder og p̊a antallet af molekyler af de andre kemiske stoffer i
systemet.

v



vi



Contents

1 Introduction 1

1.1 Informal description of the models . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 My contribution in the international state-of-art . . . . . . . . . . . . 6

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mathematical background 11

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Graph theory and probability theory . . . . . . . . . . . . . . . . . . 12

2.3 Reaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Deterministic reaction systems . . . . . . . . . . . . . . . . . . 14

2.4.2 Stochastic reaction systems . . . . . . . . . . . . . . . . . . . 16

2.4.3 Classical scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Stationary distribution . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Deficiency theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Complex balanced equilibria . . . . . . . . . . . . . . . . . . . 21

2.5.2 Deficiency zero . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Overview of the results 27

3.1 Overview of Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Overview of Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Overview of Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii

4 Perspective 39

4.1 Future work on intermediate species . . . . . . . . . . . . . . . . . . . 39

4.2 Future work on stationary distribution . . . . . . . . . . . . . . . . . 42

4.3 Future work on ACR species . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

Papers

I Elimination of Intermediate Species in Multiscale Stochastic Reac-
tion Networks 51

IA Elimination of Intermediate Species in Deterministic Reaction Net-
works 85

II Product-form Poisson-like Distributions and Complex Balanced Re-
action Systems 99

IIIFinite time behavior of stochastically modeled chemical systems
with absolute concentration robustness 121



1
Introduction

1.1 Informal description of the models

Mathematics has been intensively used for modelling biochemical systems. In par-
ticular, the behaviour of systems of interacting species is usually studied by means
of reaction networks. These are particular mathematical structures that can give
rise to distinct dynamical models, known as deterministic and stochastic reaction
systems (Érdi & Tóth, 1989; Anderson & Kurtz, 2011, 2015). Specifically, a reaction
network can be thought as the collection of the transformations that the species
undergo in the biochemical system of interest: an example of transformation could
be A + B → C, where A, B and C are chemical species, and the bound between
two molecules of A and B may form a molecule of C. The left-hand side and the
right-hand side of the transformations are linear combinations of the species, and
are referred to as complexes. Furthermore, the transformations are named reactions,
and constitute a directed graph (the reaction graph) with the set of complexes as
nodes.

The main focus resides in modelling the dynamics of the biochemical system of
interest. In order to do this, first let z(t) be a real vector whose entries are non-
negative and express the concentration of the different chemical species at a specific
time t. A rate can be then associated with each reaction, as an example we can
associate the rate λ(z) = κzAzB with the reaction A + B → C, for a positive
constant κ. By considering the consumption and production of species given by each
reaction at the given rates, we model the evolution of z(t) by means of an ordinary
differential equation. This model is known as deterministic reaction system, more
details are given in Chapter 2.
Imagine, on the other hand, that few molecules are present in the system and that
we are therefore concerned about their counts, rather than their concentrations. Let
X(t) be a vector whose entries are natural numbers expressing such counts at a
specific time t. In this case we can imagine that for most of the time the molecules
float without interacting, and that the time to wait for the next reaction to take
place is a random variable, as well as which is the next occurring reaction. When a
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2 Chapter 1. Introduction

reaction takes place, the vector X(t) is changed accordingly. For example, if at time
t∗ the reaction A+B → C occurs, then X(t∗) is given by the previous state X(t∗−)
where the entries of the species A and B have been decreased by one, and the entry
of C is increased by one. The evolution of X(t) is modelled by a continuous-time
Markov chain, where the reaction rates are the transition rates. The model is named
stochastic reaction system, and a more detailed and formal introduction is given in
Chapter 2.

In both the deterministic and the stochastic models, a choice of rate functions for
a reaction network is called kinetics. A popular choice is the mass-action kinetics,
which corresponds to the hypothesis that the chemical components are well stirred.
Such kinetics assigns a polynomial rate function to each reaction, which is propor-
tional to the ways the present molecules can combine to give rise to the reaction.
The proportionality constants, termed rate constants, uniquely determine the kinet-
ics both in the deterministic and the stochastic models. A formal introduction to
mass-action kinetics is given in later chapters. As an example, the mentioned rate
function λ(z) = κzAzB for the reaction A + B → C corresponds to mass-action
kinetics for the deterministic model, and κ is a rate constant. The common choice
of polynomial kinetics (not only mass-action) for reaction systems attracted the in-
terest of many algebraists, who gave important contributions to chemical reaction
network theory, especially in the deterministic setting (Craciun et al., 2009; Karp
et al., 2012; Müller et al., 2013; Feliu, 2015).

1.2 Applications

Despite the formulation of the models we gave in terms of interacting chemical
species, chemical reaction network theory (which we will abbreviate by CRNT) can
be applied outside the field of biochemistry. Indeed, the symbols used for chemical
species may as well denote interacting organisms, or individuals with different char-
acteristics, or any kind of interacting objects. As a matter of fact, the Lotka Volterra
equations (Murray, 2002), dating back to 1910, can be seen as an early example of
deterministic reaction system where the interaction between a predator A and a
prey B is modelled through the reactions 0 → A (birth of a prey), A + B → B
(consumption of a prey), A + B → B (birth of a predator in abundance of preys)
and B → 0 (death of a predator). The considered kinetics was mass-action kinetics.

An early example of stochastic reaction system can be found in the SIR model
of diseased spread (Kermack & McKendrick, 1927), even though CRNT was not
mentioned. In this model we distinguish between susceptible, infected and recovered
individuals denoted by S, I and R respectively. The dynamics are governed by the
two reactions S + I → 2I (infection) and I → R (recovery). Here, as well, the usual



1.2. Applications 3

choice for the transition rates corresponds to mass-action kinetics.

CRNT has been fruitfully applied in a wide range of biological fields, such ecol-
ogy (May, 2001), epidemiology (Anderson & May, 1992), biochemistry (Cornish-
Bowden, 2004), cellular biology (Ingram et al., 2008) and systems biology (Kar-
lebach & Shamir, 2008). As an example outside biology, chemical reaction networks
can model queueing systems through reactions like 0→ Ci (arrival of a customer at
the queue i), Ci → Cj (change of queue) and Ci → 0 (departure of a customer from
the queue i). In this context, it is not surprising that connections can be found be-
tween CRNT and Petri nets (Angeli et al., 2007; Mairesse & Nguyen, 2009). CRNT
has been further applied in socio-economy (Peschel & Breitenecker, 1984; Peschel &
Mende, 1986) and in quantitative sociology (Weidlich & Haag, 2012). Moreover, an
interest in chemical reaction networks as programming language has been recently
developed: the power of the language of chemical reaction networks (Rothemund &
Winfree, 2000) and the possibility to physically implement them (Soloveichik et al.,
2010) arose interest in the computer science field (Doty et al., 2012; Cummings et al.,
2014).

In all the fields where CRNT has been applied, reaction systems serve as models
for the time evolution of interacting objects. If the models are accurate enough, then
they can be used to make predictions on the behaviour of real world phenomena and
to design ways to interact with them: well-understood phenomena can be used for
constructing new technology (as bio-computers that need no electricity to run), and
controlled interventions can be designed (as curing a disease by prescribing drugs,
or as intervention in an ecological system in order to save a species from extinc-
tion). Designing a model and testing it are certainly the first steps to understand a
phenomenon.

The dynamics of reaction systems can be simulated on a computer, which leads
to a consistent reduction of the time and the resources needed for experiments.
In particular, the outcome of simulations may suggest further investigations or a
more meaningful calibration of the experiment parameters: if the simulations are
compared to the observed phenomena, then the parameters could be better tuned,
or the proposed description of the interactions between the objects of interest could
be corrected.

Besides computational simulations, which with no doubt offer an important help
in trying to understand the mechanisms of interacting species, direct mathematical
analysis of the reaction network can be performed. The latter provides perhaps
a more robust insight: given a reaction system, by means of simulations we may
understand which kind of evolutions are feasible, while by performing a mathematical
analysis we can understand why. Specifically, a typical question in CRNT would be
what dynamical properties can be exhibited by a reaction system regardless the
choice of kinetics, or at least by only assuming that the rate functions assume a
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certain form. Such qualitative study is important because inferring the rate constants
from observations is often prohibitive, as is tuning the parameters of an experiments
with high accuracy. Concrete examples of qualitative characteristics of interest could
be whether a designed bio-chip computes the desired outcome in finite time, whether
the suppression of a chemical reaction in a cell could lead to a different form of
stationary behaviour, or whether a certain modification in an ecological environment
leads to the survival of all the species involved.

Two major concerns of CRNT are the study of the transient and the stationary
behaviours of the reaction systems. In the former case, the trajectory in compact
intervals of time is studied: for example, this is done in the classical scaling (see
Section 2.4.3), where the evolution of a stochastic reaction system is considered up
to a fixed time T , under the hypothesis that the counts of the different species are
high. On the other hand, the study of stationary behaviours concerns systems at
equilibrium or at operating speed, and the long term behaviours of the models. The
mathematical objects of interest in this case are steady states and limit cycles for
the deterministic reaction systems, and stationary distributions for the stochastic
reaction systems. As an example in the setting of stochastic models, imagine that
we are interested in designing a bio-chip that calculates the sum of two natural
numbers, say a+ b. As a chip, we can think of a box where a molecules of a species
A and b molecules of a species B are introduced, the reactions A→ C and B → C
occur, and the counts of the species C are then considered. It is not hard to see that
eventually the counts of the species C will be exactly a + b, which is the function
that we wanted the chip to calculate. In this case, our main concern is about the
final outcome, described by the stationary distribution and the absorbing states of
the stochastic system.

In the deterministic setting, the number of steady states is of interest: in a
simplified setting, we can consider the steady states as the equilibrium conditions
to which the observed phenomenon tends in a short time. In this case, the existence
of multiple steady states indicates the ability of the mechanism to actively respond
to the change of the environment by switching to one steady state to another. This
behaviour is called “biological switch” and it is intensively studied in cellular biology
(Markevich et al., 2004; Thomson & Gunawardena, 2009)’. Different mathematical
frameworks to recognize the multistationarity of a system by structural conditions of
the underlying reaction graph have been proposed (Horn & Jackson, 1972; Feinberg,
1987, 1988; Feliu & Wiuf, 2013; Müller et al., 2013; Joshi & Shiu, 2013; Feliu, 2015),
though much work has yet to be done in this direction.

In the deterministic setting, different stationary behaviours can be exhibited,
which are not captured by the presence of steady states. As an example, trajectories
can tend to a limit cycle, and therefore exhibit sustained oscillations : this is the
case of many important biological mechanisms including the “circadian clock”. The
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circadian clock is a biochemical mechanism responsible for regulating the sleep cycle
in our body, as well as for regulating the response of our body to the changing seasons
in the course of a year. The nature of this regulating mechanism at equilibrium is
of course cyclic, and cycles of different periods are involved (one day and one year).
Possible cures and further understanding of observed malfunctioning of the circadian
clock are a topic of great interest in biochemistry, however the study of this system is
difficult because of its complexity and because different changes happen on different
time scales (the process is a multiscale process). This problem sheds light on another
important use of CRNT in biochemistry: accurate mathematical analysis of the
models can provide means to successfully reduce its complexity in order to study the
characteristics of interest more efficiently. It would be computationally prohibitive
to simulate very large biochemical systems, and deep mathematical knowledge has
to be applied to perform a careful approximation of them. For example, if we want
to study the changes of the circadian clock across the different seasons, we might
reduce the system by averaging the changes happening at the time scales of minutes
and days, while if we want to study the mechanism that interfere with cellular
regulations in the scale of minutes, we consider the chemical species whose changes
occur on larger time scales constant. Reductions can sometimes unveil what the
essential structure of a biological systems is on the different time scales and which
reactions are mainly responsible for certain outcomes.

Regimes that are neither transient nor stationary might be of interest as well.
This is perhaps better explained with an example. Consider the Michaelis-Menten
mechanism

E + S ES E + P

which is used to model enzymatic transformation of a substrate S into a product P
by means of the enzyme E (Cornish-Bowden, 2004). Assume, moreover, that the ki-
netics is mass-action kinetics. Since enzymatic transformations appear frequently in
cellular biology, this simple model has been intensively studied since the beginning
of the twentieth century. A common assumption is the presence of a large concen-
tration of substrate and a much less concentration of enzyme. If the abundance of
substrate exceeds a certain threshold, the solution is saturated and, after a short
period and up to the eventual total consumption of substrate S, at any time point
almost all the enzymes E are bound to a substrate molecule in the complex ES.
Hence, the rate of the reaction ES → E +P is practically constant. This behaviour
is of interest because it can be observed for a long period, and can be considered as a
“quasi-stationary phase” of the system: it is manifested after a short transient phase
and precedes the proper stationary phase of the system, which is the total degrada-
tion of S. It cannot be considered as an apparent equilibrium of the system because
degradation of S and production of P is taking place, however it is a temporary
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“dynamical” equilibrium in the sense that the rates of the reactions are substantially
unchanged for a long time. It is worth noting that without the presence of an inter-
mediate complex ES, the described quasi-stationary phase would not exist. In fact,
the intermediate complex is usually not directly detectable in the experiments and
its existence has been suggested by the discrepancies of the observed dynamics of
enzymatic mechanisms and those predicted by the simpler model E + S → E + P
(Gunawardena, 2012).

Quasi-stationary phases are of interest whenever the systems reach an apparent
dynamical or static equilibrium for a large period of time: in the stochastic setting
the latter can be captured by the study of quasi-stationary distributions. As an
example we can consider a stochastic reaction system in ecology: if the model is
accurate enough, then the only possible stationary distribution is concentrated on
the extinction of all the species of interest, since every species eventually gets extinct
in nature. However, the extinction state is usually hit after a long waiting time, and
a quasi-stationary distribution of the model could be of interest if we want to predict
the behaviour of the system in the next twenty years.

1.3 My contribution in the international state-of-

art

The papers collected in this thesis contain my contribution in the field of CRNT,
developed at the Department of Mathematical Sciences, University of Copenhagen,
from October 2012 to September 2015. The aim of the articles collected here and
their relation to international state-of-the-art will be better explained in Chapter
3, after all the necessary mathematical background and the relevant known results
in CRNT have been introduced. However, the main objectives of our investigation
can be ultimately put down to complexity reduction of the network and study of
the relationship between the deterministic and stochastic models. The focus of the
study is both on the transient behaviours (Paper I, Appendix IA and Paper III) and
on the stationary distributions (Paper II).

Mechanisms in cellular biology are often very large and therefore analytically
and computationally untreatable. Moreover, it is often the case that the abundances
of the different reactants and the rates of the different reactions vary across differ-
ent levels of magnitude, as for the circadian clock. Such reaction systems are called
multiscale systems and their simulations are even more complicated. Approximation
of the dynamics has always been an issue, since the beginning of the study of en-
zyme kinetics (Cornish-Bowden, 2004), and it has become more compelling for the
study of more complex structures. In this setting, Paper I offers a way to approx-
imate the original stochastic reaction system by means of a reduced model, where
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special species called intermediates are removed. Such species are quickly consumed
intermediaries of chemical transformations. For example, in the reaction network
A→ H → B, H is an intermediate and, under certain assumptions on the kinetics,
we propose the reduction of the network to A→ B. In the paper, we study in detail
what is and what is not preserved by the reduction, assuming that the consumption
rates of the intermediates tend to infinity. Another example of intermediate species
is ES in the Michaelis-Menten mechanism. The paper lies in the framework of Kurtz
(1972), Kurtz (1978), Ball et al. (2006), Kang & Kurtz (2013) and Pfaffelhuber &
Popovic (2013), which focus on asymptotic results in order to simplify the study
of stochastic reaction systems. Kurtz (1972) is perhaps the first paper to connect
stochastic and deterministic reaction networks, and this is achieved by showing that
the deterministic model is in fact the weak limit of the stochastic model, under cer-
tain hypothesis. Kurtz (1978) is a refinement of the results in Kurtz (1972), while
Ball et al. (2006), Kang & Kurtz (2013) and Pfaffelhuber & Popovic (2013) indicate
piecewise deterministic stochastic processes as weak limits for multivariate stochas-
tic reaction networks. In the framework of the latter papers, particular species and
reactions are eliminated from the original models, however a reduction by means of
elimination of intermediates as described in Paper I cannot be performed. On the
other hand, the approximating model we introduce can be further simplified through
techniques developed in Ball et al. (2006), Kang & Kurtz (2013) and Pfaffelhuber &
Popovic (2013), to which our Paper I can be therefore considered as complementary.

In Appendix IA we show that the very same reduced model as in Paper I serves
also in the deterministic setting as approximation of the trajectory of the original
model. There is more: in the deterministic setting, algebraic techniques have been
succesfully employed to obtain reduced reaction systems. In particular, in Feliu &
Wiuf (2013) a reduced reaction system is obtained from the original deterministic
reaction system by elimination of intermediates species, and the number and type
of steady states of the two systems are related. Though our simplified model is
described in a different way and targets approximation of trajectories, in Paper I
we are able to prove it coincides with the reduced model from Feliu & Wiuf (2013),
showing in that way that the same simplified model serves different purposes.

We will see in later chapters that some dynamical properties of a reaction sys-
tem (either deterministic or stochastic) may depend on the particular choice of
kinetics, while in some special cases they are uniquely determined by the structural
properties of the reaction graph. Much effort has been put in investigating the con-
nection between graphical properties of a reaction network and the dynamics of a
corresponding reaction system: apart from developing a set of interesting theoreti-
cal results, the benefit of such investigation relies on the simplicity of working with
graphical conditions, in contrast with the difficulty to manage high-order ODEs or
stochastic processes, and the errors that affect rate functions inferred from biological
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experiments. We refer to Horn & Jackson (1972), Feinberg (1972) and Horn (1972)
as the pioneer works in this sense and as the fundamentals of deficiency theory, later
explained in this thesis (see also Feinberg, 1979, 1987, 1988). The main goal of this
theory is to infer the number and the type of steady states of a deterministic reac-
tion system by simple graphical conditions. Further related work has been recently
carried out, for example, in Shinar & Feinberg (2010), Boros (2013) and Craciun
(2015). For systems not falling into the setting of these papers, the possibility of
multiple steady states generally depends on the kinetics chosen and is not an easy
problem to address, but much has been done in this direction (Feliu & Wiuf, 2013;
Müller et al., 2013; Joshi & Shiu, 2013; Feliu, 2015). Despite an increasing interest
in stochastic reaction systems, few results connect graphical properties of the net-
work with dynamical features of the stochastic model: Jahnke & Huisinga (2007),
Anderson et al. (2010), Anderson et al. (2014a), Anderson et al. (2014b), Gupta &
Khammash (2014) and Joshi (2015) are nearly the only papers in this direction. The
four of them deal with the stationary distribution of the stochastic reaction systems,
in different situations. They also study the relationship between deterministic and
stochastic models, in the following sense: if a reaction network is considered and a
choice of rate constants is made, then we can either decide to consider the associated
deterministic mass-action system or the stochastic one. The addressed question is
how they are related, specifically how the steady states of the deterministic models
are connected to the stationary distribution of the stochastic model. In Anderson
et al. (2010), existence and uniqueness of an explicit product-form Poisson-like sta-
tionary distribution is proven for stochastic reaction systems whose reaction graph
has deficiency zero and is weakly reversible. Such result can be extended with no
effort to the broader family of complex balanced systems, which will be defined in
Chapter 2. In this case, the mean of the stationary distribution is strongly related to
the steady state of the deterministic model. In Paper II, we expand the main result
of Anderson et al. (2010) and fill the gap between the stochastic and deterministic
models by building a parallel deficiency theory for stochastic reaction systems. We
also define the concept of “complex balancing” in the stochastic setting, and prove
that it coincides with the known deterministic counterpart.

In Anderson et al. (2014b), a discrepancy between the dynamics of the stochastic
and deterministic systems is unveiled. As an example, consider the reaction network

A+B 2B B A

and fix two positive rate constants for the reactions. For the associated deterministic
mass-action system, any positive steady state exhibits the same concentration for
the species A, and A is therefore called an absolute concentration robust species.
Such species are important in biological mechanisms because they provide a fixed
response at equilibrium, regardless the environmental conditions, and therefore can-
not be the cause of biological “switches”. Structural sufficient conditions to recognize
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such species are studied in Shinar & Feinberg (2010). In our example, let the fixed
concentration of A at equilibrium be α, and let the sum of the initial concentrations
of A and B be N . We have that for any positive initial condition satisfying N > α,
the limit of the solution of the ODE is (α,N − α), where the first and the second
entries denote the concentration of A and B, respectively. On the other hand, if we
consider the stochastic mass-action system, we have that the process is absorbed
with probability 1 by the state (N, 0). The limit behaviour of the two models is
therefore very different, especially if we imagine N as a large number. A more gen-
eral statement is made in Anderson et al. (2014b), and it is proven that a large
class of reaction networks share the observed discrepancy property. Such class is
characterized by structural features of the reaction graph. The question left opened
by Anderson et al. (2014b) is the magnitude of the time at which the divergence is
revealed, and how different the behaviour of the two models is up to to a fixed finite
time T . Such question is addressed in Paper III, where we prove that, up to any
fixed time T , the stochastic and the deterministic dynamics are indeed very close.
To this goal, we make use of averaging techniques studied in Kurtz (1992).

1.4 Thesis structure

In Chapter 2 the necessary definition from CRNT are given. In particular, the formal
definition of the models introduced here are presented, as well as all the necessary
background to discuss in more details our contribution in the international state-
of-art of CRNT. Chapter 3 presents an accurate overview of the papers and their
relation with other existing results. Some interesting perspectives and possible future
works are discussed in Chapter 4, after which the bibliography with the references
used in Chapters 1-4 can be found. Finally, the papers containing our contributions
are collected, each one equipped with its own bibliography.
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2
Mathematical background

In this chapter the necessary definitions and results in CRNT are introduced (for
general references see Feinberg, 1987; Érdi & Tóth, 1989; Anderson & Kurtz, 2011,
2015). All the used notations and the needed definitions from CRNT are also re-
peated in the introductory sections of the papers collected here.

2.1 Notation

We let R, R0 and R+ be the real, the non-negative real and the positive real numbers,
respectively. Also let N be the natural numbers including 0.

For any real number a ∈ R, |a| denotes the absolute value of a. Moreover,
for any vector v ∈ Rp, we let vi be the ith component of v, ‖v‖ the Euclidean
norm, ‖v‖1 its L1-norm and ‖v‖∞ its L∞-norm, that is, ‖v‖ =

√∑
i v

2
i , ‖v‖1 =∑

i |vi| and ‖v‖∞ = maxi |vi|. We denote by [v] the vector of the floor functions
of the entries of v; that is, [v]i = bvic. For two vectors v, w ∈ Rp, we write v < w
(resp. v > w) and v ≤ w (resp. v ≥ w), if the inequality holds component-wise.
Further, we define 1{v≤w} to be one if v ≤ w, and zero otherwise, and similarly
for the other inequalities. If v > 0 then v is said to be positive. Moreover, 〈v, w〉
denotes the usual scalar product and supp v denotes the index set of the non-zero
components of v. For example, if v = (0, 1, 1) then supp v = {2, 3}. Finally, we define

vw =

p∏

i=1

vwii , and v! =

p∏

i=1

vi!,

with the conventions that 0! = 1 and 00 = 1. Moreover, for any real number N > 0,
we denote by Nwv the vector satisfying

(Nwv)i = Nwivi.

Finally, for any set A we will indicate by |A| its cardinality and for any a, b ∈ R,
a ∧ b and a ∨ b will denote min{a, b} and max{a, b}, respectively.

11
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2.2 Graph theory and probability theory

We assume basic knowledge on graphs. Specifically, we assume that it is known
what a directed graph, a directed path and a directed cycle are. Familiarity with the
concepts of connected and strongly connected components of a graph is useful, but
not required.

In this thesis different topics from probability theory will be mentioned and
used in connection to stochastic reaction systems (see 2.4.2). The theory we need
is covered by Master courses in most universities, and we assume it is known. For
convenience, in this section we summarize the main topics we will deal with. First,
stochastic reaction systems are continuous-time Markov chains. We will then deal
with the particular case of Poisson processes, and investigate the existence and
the form of the stationary distributions. As a reference on Markov chain theory
we propose Norris (1998); the definition as well as the meaning of the stationary
distribution in our particular case are proposed in section 2.4.4. Finally, we will
deal with the weak convergence of stochastic processes, which is intended to be with
respect to the Skorohod topology unless otherwise stated. For a reference, we suggest
consulting Ethier & Kurtz (2009).

2.3 Reaction networks

A reaction network is a triple G = (X , C,R), where X is a finite ordered set of
symbols, referred to as species, and C is a finite ordered set of linear combinations
of species on N, referred to as complexes. Any species Si ∈ X can be identified
with the vector ei ∈ R|X |, whose ith entry is 1 and whose other entries are zero.
Therefore, any complex y ∈ C will be identified with a vector in R|X | that is linear
combination of the vectors ei. Finally, R is a non-empty ordered subset of C × C,
whose elements are called reactions, such that for any y ∈ C, (y, y) /∈ R. Following
the usual notation, we will denote any element (yr, y

′
r) ∈ R by yr → y′r ∈ R, in

which case we then call yr the source complex and y′r the product complex of that
reaction. It is possible that a complex y ∈ C is the source (product) complex of
different reactions, and that it is both the source complex of one reaction and the
product complex of another reaction. It is commonly required that every species
S ∈ X appears in at least one complex, and that every complex y ∈ C appears as
an element in at least one reaction. It is possible to associate a directed graph with
G, where the set of nodes is the set of complexes C and the arrows are given by the
reactions yr → y′r ∈ R. Such graph is called reaction graph and uniquely determines
the reaction network, such that reaction networks are usually introduced by means
of their reaction graphs. As an example, consider the reaction network determined
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by

S1 + S2

2S2S3

(2.1)

In this case, the set of species is X = {S1, S2, S3}, the set of complexes is C =
{S1 + S2, 2S2, S3}, the set of reactions is R = {S1 + S2 → 2S2, S1 + S2 → S3, S3 →
2S2, 2S2 → S1 + S2}, and each complex is both a source complex and a product
complex of some reaction.

If the reaction graph of G is such that for any directed path from a complex y
to another complex y′ there exists a directed path from y′ to y, then G is weakly
reversible. For example, (2.1) is weakly reversible. The connected components of
the graph determine a partition of the complexes into different linkage classes. For
example, consider

S1 + S2 2S2S3 S4 S1

2S1 S5
(2.2)

The graph has two connected components, and the complexes are accordingly parti-
tioned into the linkage classes {S3, S1 + S2, 2S2, S4, S1} and {2S1, S5}. Formally, we
can introduce the relation  on the set of complexes, such that y  y′ if y = y′ or
if there exists a directed path from y to y′ in the reaction graph. Then, we define
the equivalence relation ∼ by

y ∼ y′ if y  y′ or y′  y.

The linkage classes are the equivalence classes of ∼. We can further define the equiv-
alence relation ' by

y ' y′ if y  y′ and y′  y.

The associated equivalence classes are termed strong linkage classes, and for the
network (2.2) they are given by {S3}, {S1 + S2, 2S2}, {S4, S1} and {2S1, S5}. Fur-
thermore, a terminal strong linkage class is a strong linkage class L with no directed
path out of it, that is such that for any y ∈ L

y  y′ ⇒ y′ ∈ L.

There are three terminal strong linkage classes in (2.2), that is {S3}, {S4, S1} and
{2S1, S5}. A complex is terminal if it belongs to a terminal strong linkage class.
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Finally, a reaction y → y′ ∈ R is terminal if any directed path that starts with
y → y′ is contained in a closed directed path. Equivalently, a terminal reaction
could be defined as a reaction whose source complex is terminal. It follows from the
definition of terminal complexes that the product complex of a terminal reaction is
terminal as well. In (2.2), the terminal reactions are S1 → S4, S4 → S1, 2S1 → S5

and S5 → 2S1. The subgraph determined by the terminal reactions is called the
terminal network and in this case is given by

S4 S1 2S1 S5

The terminal network is always weakly reversible, and an alternative definition of
weak reversibility can be formulated in the following way: a reaction network G is
weakly reversible if all its reactions are terminal. In such case, the terminal network
coincides with G.

For each reaction y → y′, the vector y′ − y, named reaction vector, corresponds
to the net gain of molecules given by the occurrence of the reaction. In Papers I and
III we denote the reaction vectors by the symbol ξ. The stoichiometric subspace of
G is the linear subspace of R|X | given by

S = span(y′ − y|y → y′ ∈ R).

For v ∈ R|X |, the sets (v + S) ∩ R|X |0 are called the stoichiometric compatibility
classes of G. For the network in (2.1), S = span((−1, 1, 0), (0, 1,−1)) ⊂ R3, which
is 2-dimensional, while for (2.2) we have S = R5. If there exists a positive vector
orthogonal to S, then the reaction network is called conservative. Equivalently, a re-
action network is conservative if every stoichiometric compatibility class is bounded.
For example, (2.1) is conservative because (1, 1, 1) is orthogonal to the stoichio-
metric subspace, while (2.2) is not conservative because the unique stoichiometric
compatibility class R5

0 is not bounded.

2.4 Dynamical systems

We will consider a reaction network G either as a deterministic dynamical system
on the continuous space R|X |0 , or as a stochastic dynamical system on the discrete
space N|X |.

2.4.1 Deterministic reaction systems

The deterministic model is normally used to describe biochemical machanisms with
a lage abundance of chemical reactants, such that the concentration of each reactant
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is considered, instead of the counts of the molecules present. We denote by z(t) the

non-negative real vector of R|X |0 whose entries are the concentrations of interest at

time t, and we call every vector of R|X |0 a state. The evolution of z(t) is modelled as
the solution to the ODE

z(t) =
∑

y→y′∈R
(y′ − y)

∫ t

0

λy→y′(z(s))ds, (2.3)

for some functions λy→y′ : R|X |0 → R0 and an initial condition z(0) ∈ R|X |0 . We require
that the functions λy→y′ are continuously differentiable, and that λy→y′(z) > 0 if and
only if supp y ⊆ supp z. Such functions are called rate functions, they constitute a
deterministic kinetics K for G, and the pair (G, K) is called a deterministic reaction
system. The rate functions express the velocity of the different reactions, as function
of the concentrations of the different species.

It follows from (2.3) that z(·) is confined to the stoichiometric compatibility
classes: for any t ≥ 0

z(t) ∈ (z(0) + S) ∩ R|X |0 .

In this sense, when existence and uniqueness of a steady state are investigated,
the addressed question is whether a steady state exists and is unique within each
stoichiometric compatibility class (Horn & Jackson, 1972; Feinberg, 1987, 1988).
We discussed in Section 1.2 that the possibility of multiple (stable) steady states is
also of interest, because it allows biological mechanisms to change their equilibrium
configuration in response to different external stimuli. The question addressed when
studying multistationarity is whether there exists a choice of kinetics (usually with
certain restrictions) that implies the existence of more than a (stable) steady state
on a single stoichiometric compatibility class (Feinberg, 1988; Markevich et al., 2004;
Thomson & Gunawardena, 2009; Feliu & Wiuf, 2013; Müller et al., 2013; Joshi &
Shiu, 2013; Feliu, 2015).
Note that in the case of conservative reaction networks the solution z(·) is bounded
because it lies within a bounded stoichiometric compatibility class, regardless the
initial condition z(0).

If λy→y′(z) = κy→y′zy for all reactions for some positive constants κy→y′ , then
the κy→y′ ’s are referred to as rate constants and the modelling regime is referred
to as deterministic mass-action kinetics. In this case, the pair (G, κ) is called a

deterministic mass-action system, where κ ∈ R|R|+ is the vector of rate constants. As
an example, the mass-action rate function for the reaction A+B → C has the form
λA+B→C(z) = κA+B→CzAzB for a positive constant κA+B→C , where zA and zB denote
the entries of z relative to the species A and B, respectively. The mass-action rate
function for 2A → 2B is quadratic in A and it is given by λ2A→2B(z) = κ2A→2Bz

2
A,

for a positive constant κ2A→2B.
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The mass-action kinetics assigns to each reaction a velocity that is proportional
to the concentrations of the species of the source complex, and therefore describes
well the dynamics of biochemical mechanism where the chemical components are
well-mixed.

As a remark, we stress that it is generally not clear whether z(t) exists for any
non-negative t: if we consider the reaction network 2A → 3A endowed with mass-
action kinetics, if the initial condition is positive then z(·) tends to infinity in a finite
time.

2.4.2 Stochastic reaction systems

The stochastic model is typically chosen when few molecules are present, so the focus
is on the evolution of their counts. This is similar to a jump process, indeed reactions
occur only in a discrete set of random time points and it is uncertain which one will
take place next. Let X(t) be the vector in N|X | whose entries are the species counts
at time t. The evolution of X(t) is usually modelled as a continuous-time Markov
chain with state space N|X |. At any state x ∈ N|X |, the states that can be reached in
one step are x+ y′− y for y → y′ ∈ R, with transition rates λy→y′(x). The functions
λy→y′ : N|X | → R0 are called rate functions, and we require that λy→y′(x) > 0 if and
only if x ≥ y. This requirement essentially allows a reaction to take place whenever
the molecules indicated by the source complex are present. For example, we want
that the reaction 2A → 2B may take place whenever at least two molecules of A
are present, otherwise it cannot occur. A choice of such rate functions constitute a
stochastic kinetics K for G and the pair (G, K) is called a stochastic reaction system
(the latter definition is not universally accepted, and in Paper I we will simply talk
about reaction networks with a kinetics).
If the reaction y → y′ occurs at time t, then the new state is

X(t) = X(t−) + y′ − y,

where X(t−) denotes the previous state. Following the terminology utilized in Kurtz
(1978), Ethier & Kurtz (2009), Anderson & Kurtz (2011) and Anderson & Kurtz
(2015), we can write

X(t) = X(0) +
∑

y→y′∈R
(y′ − y)Yy→y′

(∫ t

0

λy→y′(X(s))ds

)
, (2.4)

with Yy→y′ independent and identically distributed unit-rate Poisson processes. The

random variable Yy→y′
(∫ t

0
λy→y′(X(s))ds

)
counts how many times the reaction y →

y′ has occurred up to time t. It is worth pointing out the similarity between the
equations (2.3) and (2.4): they only differ for the Poisson processes Yy→y′ .
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It follows from (2.4) that, similarly to the deterministic case, X(·) is confined
within the stoichiometric compatibility class: for any t ≥ 0

X(t) ∈ (X(0) + S) ∩ R|X |0 .

In fact, X(t) ∈ (X(0) +S)∩N|X |, as X(t) takes values in N|X |. In particular, in case
of conservative networks, the continuous-time Markov chain X(·) given the initial
condition X(0) has a finite number of states, and properties like the existence of a
stationary distribution are automatically fulfilled.

If for any reaction y → y′ ∈ R

λy→y′(x) = κy→y′
x!

(x− y)!
1{x≥y},

then the constants κy→y′ are known as rate constants, as in the deterministic case,
and the modelling regime is referred to as stochastic mass-action kinetics. The pair
(G, κ) is, in this case, called a stochastic mass-action system. The mass-action rate
functions are proportional to the possible combinations of the present molecules
that can give rise to the reaction, and correspond to the hypothesis of a well-stirred
biochemical system. For example, the stochastic mass-action rate function for the
reaction A+B → C has the form λA+B→C(x) = κA+B→CxAxB for a positive constant
κA+B→C , while that for 2A → 2B is given by λ2A→2B(x) = κ2A→2BxA(xA − 1), for
a positive constant κ2A→2B. Note the difference with the deterministic mass-action
rate functions.

Finally, fix a time T > 0. As for the deterministic case, it is not clear whether
X(· ∧ T ) is stochastically bounded, meaning that almost surely supt∈[0,T ] ‖X(t)‖ <
∞. As a matter of fact, the stochastic mass-action system given by 2A→ 3A has a
positive probability to reach infinity in a finite time for any choice of rate constant,
given that the initial condition is strictly positive.

2.4.3 Classical scaling

The stochastic and the deterministic models have something in common. The origi-
nal purpose of the two models is actually to model the same biological phenomenon
under different abundances of the involved chemical reactants: if few molecules are
present, then a stochastic reaction system is considered, while if the molecules are
in high abundance and the concentrations are taken into account rather than the
counts, a deterministic reaction system is normally used. Since the underlying mod-
elled phenomenon, which is described by the reaction network, is the same, we might
expect some connection between the two models, or at least hope for it. The first
proven relationship appears in Kurtz (1972) and is further generalized in Kurtz



18 Chapter 2. Mathematical background

(1978). It states that, under the hypothesis of mass-action kinetics, the determin-
istic reaction system is the weak limit of the stochastic reaction systems, if both
the counts of the species and the volume of the modelled mechanism scale with a
parameter N tending to infinity. Here we give an informal presentation of the result,
in the case of mass-action kinetics.

Imagine that few molecules are reacting in a well-stirred closed compartment of
unitary volume. We model the dynamics of the reacting molecules by means of a
stochastic mass-action system with a specific reaction network and a certain choice
of rate constants. By (2.4), the associated process X(·) is given by

X(t) = X(0) +
∑

y→y′∈R
(y′ − y)Yy→y′

(
κy→y′

∫ t

0

X(s)!

(X(s)− y)!
1{X(s)≥y}ds

)

Now assume that the volume of the compartment is increased to N , where N is a
positive natural number. In a larger volume, it is harder for the floating molecules
to find each other, and the rate constants should be therefore rescaled accordingly.
Specifically, the probability that n ≥ 1 particular molecules meet in a volume N
in a specific time interval is equal to the probability that they meet in a volume 1,
rescaled by Nn−1. Moreover, if there is a spontaneous production of some species,
i.e. reactions with 0 as source complex, it seems legit to assume that in a larger
volume a higher generation is observed, in particular that its rate is proportional to
the volume. It follows that the rate constants for the new setting are given by

κNy→y′ = N1−‖y‖1κNy→y′ .

Assume that the initial condition XN(0) also scale with N . In particular, assume
that N−1XN(0) converges weakly to a non-negative real constant z(0), for N going
to infinity. Let XN(·) be the process of the stochastic reaction network with the new
parameters, and consider the vector of concentrations at time t

X̂N(t) = N−1XN(t).

The distribution of X̂N(·) is given by

X̂N(t) = N−1XN(0)+
∑

y→y′∈R
(y′−y)N−1Yy→y′

(
κNy→y′

∫ t

0

XN(s)!

(XN(s)− y)!
1{X(s)≥y}ds

)
.

If the magnitude of XN(t) is that of N and N is large, we can approximate the
latter by

X̂N(t) ≈ N−1XN(0) +
∑

y→y′∈R
(y′ − y)N−1Yy→y′

(
Nκy→y′

∫ t

0

(
X̂N(s)

)y
ds

)
.
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Inspired by the Law of Large Numbers for Poisson processes, we can intuitively
approximate further to

X̂N(t) ≈ N−1XN(0) +
∑

y→y′∈R
(y′ − y)κy→y′

∫ t

0

(
X̂N(s)

)y
ds,

which resembles the solution (2.3) of the deterministic mass-action system, pro-
vided that N−1XN(0) converges to z(0). As a matter of fact, we have that for any

T > 0, the rescaled process X̂N(· ∧ T ) converges to the ODE solution z(·) of the
deterministic mass-action system, under the assumption that z(t) exists for any t
in the compact time interval [0, T ]. This result, known as “classical scaling”, is for-
mally proved in Kurtz (1972) and Kurtz (1978). In Kurtz (1978) a stronger result is
actually shown, since no mass-action kinetics is assumed. Under some very general
technical assumptions, the weak convergence holds for a family of stochastic reaction
systems whose stochastic rate functions λNy→y′(·) are such that for any v ∈ R|X |0

lim
N→∞

N−1λNy→y′(bNvc) = λy→y′(v),

for certain locally Lipschitz functions λy→y′(·). These functions will constitute the
kinetics for the deterministic reaction system whose solution z(·) is the weak limit

of the rescaled stochastic processes X̂N(·), up to a finite time T . It is worth noting
that the result is about the transient behaviour of the stochastic reaction system,
and the stationary behaviour may differ gratly from that of z(·) (see Section 3.3 for
an example).

2.4.4 Stationary distribution

Here we recall some notion from Markov chain theory and apply it to the case of
stochastic reaction networks. First, we introduce some terminology and some state
characterisation, then we proceed with the definition of stationary distribution.

Definition 1. Let G = (X , C,R) be a reaction network.

a) A reaction y → y′ ∈ R is active on x ∈ N|X | if x ≥ y.

b) A state u ∈ N|X | is accessible from a state x ∈ N|X | if there is a sequence of q ≥ 0
reactions (yj → y′j)j=1,...,q such that

(i) u = x+
∑q

j=1(y′j − yj),

(ii) yj → y′j is active on x+
∑h−1

j=1 (y′j − yj) for all 1 < h ≤ q.
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c) A non-empty set Γ ⊆ N|X | is an irreducible component of G if for all x ∈ Γ and
all u ∈ N|X |, u is accessible from x if and only if u ∈ Γ.

d) G is essential if the state space is a union of irreducible components. G is almost
essential if the state space is a union of irreducible components except for a finite
number of states.

‘Accessible’, ‘irreducible’ and ‘essential’ are standard terms in Markov chain the-
ory. A reaction network is essential if and only if every state of the associated Markov
chain is ‘essential’ (Gusak et al., 2010). In Paulevé et al. (2014) essential networks
are termed ‘recurrent’, but here we do not follow this terminology as it may lead to
confusion. Indeed, the states of an essential network are not necessarily recurrent in
the usual sense of Markov chain theory, meaning that they will be visited again with
probability 1 if they are chosen as initial condition. This is shown by the following
stochastic mass-action system:

2S1 3S1 S1 0
κ1

κ2

κ3

(2.5)

We wrote the rate constants next to the arrow of the corresponding reaction. This
is usually done in CRNT and we will use this notation further on. The associated
Markov chain is a ‘birth-death process’ and due to some classical results no state is
recurrent in this case (Norris, 1998). Neverthless, the underlying reaction network
is essential, because every state of N is accessible from any other state.

A weakly reversible reaction network is essential (Paulevé et al., 2014), and fur-
ther conditions for being essential can be found in Paulevé et al. (2014). Any ir-
reducible component is contained in some stoichiometric compatibility class, and a
stoichiometric compatibility class may contain several irreducible components (Fig.
1B)

The stationary distribution πΓ on an irreducible component Γ is unique, if it
exists. It is characterised by the master equation (Anderson & Kurtz, 2011):

∑

y→y′∈R
πΓ(x+ y − y′)λy→y′(x+ y − y′) = πΓ(x)

∑

y→y′∈R
λy→y′(x), (2.6)

for all x ∈ Γ. If X(t0) follows the law of πΓ at time t0, then the distribution of X(t)
is πΓ for all future times t ≥ t0. In this sense, the stationary distribution describes
a state of equilibrium of the system. Moreover, if πΓ exists, then

lim
t→∞

P (X(t) ∈ A) = πΓ(A) for any A ⊆ Γ, (2.7)
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provided that X(0) ∈ Γ with probability one. In this sense, stationary distributions
can be regarded as the stochastic counterpart of the steady states of deterministic
reaction systems: if z(t0) is a steady state, then z(t) = z(t0) for all future times
t ≥ t0. Moreover, steady states are often limit points of ODE solutions. Therefore,
if our aim is to compare the different dynamics of stochastic and deterministic reac-
tion systems, it might be a good idea to study the connections between stationary
distributions and steady states. This is done in Anderson et al. (2010), Anderson
et al. (2014a), Anderson et al. (2014b) and Joshi (2015) as well as in Paper II. It
is worth underlying that in general it is not easy to solve (2.6) and calculationg
the stationary distribution can be hard, so additional information on its form given
by the steady states of the deterministic model may be useful. Remember that the
classical scaling introduced in section 2.4.3 does not give any information on the
relationship between the limit behaviours of the stochastic and the deterministic
reaction systems, as the convergence is up to a fixed time T .

2.5 Deficiency theory

Deficiency theory was introduced in 1972 by Horn & Jackson (1972), Feinberg (1972)
and Horn (1972) as a set of results concerning deterministic reaction networks. The
focus is connecting structural properties of the reaction graph with dynamical fea-
tures of the reaction systems, primarily under the hypothesis of mass-action kinet-
ics. Specifically, the existence and uniqueness of asymptotically stable steady states
within each stoichiometric compatibility class is investigated for systems whose net-
work is deficiency zero and weakly reversible. In (Horn & Jackson, 1972, Lemma
4C), the existence of globally asymptotically stable steady states within each stoi-
chiometric compatibility class was stated, but the argument contained a flow, which
was identified in Horn (1974). The question on whether the asymptotically stable
steady states of deficiency zero weakly reversible mass-action systems are also glob-
ally asymptotically stable gave rise to a conjecture that survived for more than 40
years and was recently positively solved by Craciun (2015).

Further studies concern higher deficiency networks (Feinberg, 1987, 1988; Boros,
2013), but they will not be presented in this thesis.

2.5.1 Complex balanced equilibria

The first milestone of deficiency theory is perhaps the concept of complex balanced
systems, introduced in Horn & Jackson (1972) as a generalization of the detailed
balanced systems, not treated in this thesis. The concept of complex balancing itself
is not related to structural properties of the network and depends on the kinetics,
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but important connections with weakly reversibility and deficiency have been proved.
We begin with the definition of complex balanced systems and complex balanced
equilibria.

Definition 2. A deterministic reaction system (G, K) is said to be complex balanced
if there exists a complex balanced equilibrium, that is, a positive equilibrium point
c ∈ R|X |+ for the ODE (2.3), such that

∑

y′∈C
λy→y′(c) =

∑

y′∈C
λy′→y(c) for all y ∈ C., (2.8)

with the convention that λy→y′(·) = 0 if y → y′ /∈ R.

The name ‘complex balanced’ refers to the fact that the flow, at equilibrium,
entering into the complex y equals the flow exiting from the complex. As an example,
consider (2.1) endowed with deterministic mass-action kinetics:

S1 + S2

2S2S3

κ1κ3

κ4

κ2

The associated deterministic mass-action system is complex balanced and

c =

(
κ2, κ1 + 2κ3,

κ2κ3

κ4

(κ1 + 2κ3)

)

is a complex balanced equilibrium.

The concept of complex balanced equilibria has been proved fruitful especially for
the deterministic mass-action systems. Under the hypotheses of mass-action kinetics,
(2.8) becomes ∑

y′∈C
κy→y′c

y =
∑

y′∈C
κy′→yc

y′ for all y ∈ C, (2.9)

with the convention that ky→y′ = 0 if y → y′ 6∈ R.

We extend Definition 2 to the stochastic mass-action systems, by saying that a
stochastic mass-action system (G, κ) is complex balanced if the deterministic mass-
action system (G, κ) is complex balanced. We might therefore refer to complex bal-
anced mass-action systems without specifying whether they are stochastically or
deterministically modelled.

The next theorem is a classical result (Horn & Jackson, 1972), which provides
the backbone for the further characterisation:
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Theorem 1. If a deterministic reaction system (G, K) is complex balanced, then G
is weakly reversible. Moreover, if K is mass-action kinetics, all positive equilibria
are complex balanced, that is, fulfil (2.9). Moreover, there exists exactly one com-
plex balanced equilibrium in each stoichiometric compatibility class, which is locally
asymptotically stable.

We have already mentioned that in the original version of the theorem, it is actu-
ally stated that complex balanced equilibria are globally asymptotically stable, but
the argument proving this stronger property contained an error which was spotted
and discussed in Horn (1974). However, the result as stated in Theorem 1 holds and
is a classical result (Horn, 1974; Feinberg, 1979, 1987).

2.5.2 Deficiency zero

The deficiency plays an important role in the study of complex balanced systems.
The deficiency of G is defined as

δ = |C| − `− s,

where ` is the number of the linkage classes of G and s is the dimension of the
stoichiometric subspace S (Feinberg, 1972; Horn, 1972; Feinberg, 1987). For example,
both the reaction networks in (2.1) and (2.2) have deficiency 0: in (2.1) we have δ =
3−1−2 = 0, while in (2.2) we have δ = 7−2−5 = 0. Oppositely, (2.5) has deficiency
δ = 4 − 2 − 1 = 1. By means of the above definition it is fairly easy to determine
the deficiency of a network, even for a big one, but its geometrical interpretation
stays hidden. Roughly speaking, the deficiency counts how many degrees of linear
dependence between the reaction vectors are determined by the particular choice of
complexes, and are not intrinsic in the structure of the graph itself. For example, in
(2.1) the reaction vectors of S1 + S2 → 2S2 and 2S2 → S1 + S2 are dependent, but
this dependence is implied by the particular structure of the network, in the sense
that if S1 + S2 and S2 are substituted by any other choice of complexes y and y′ in
the corresponding nodes of the graph, the reaction vectors of y → y′ and y′ → y
would still be linearly dependent. In other words, the dependence in this case comes
from the fact the the reaction is reversible, which is a structural property of the
reaction graph. On the other hand, if we consider the reaction network

S1 + S2 2S2 S2 S1
(2.10)

the linear dependence of the reaction vectors of S1 + S2 → 2S2 and S2 → S1 comes
from the particular choice of complexes. Indeed, if we keep the same graph and
we change S2 with another complex, say 2S1, then the two reaction vectors of the
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network are not dependent anymore. In (2.10), a linear dependence between the
reaction vectors exists, which is not determined by the structure of the graph. In
this case, the deficiency of the network is 1. We explore this concept more formally:
let {ey}y∈C be a basis of R|C|. Further, define

dy→y′ = ey′ − ey and ξy→y′ = y′ − y (2.11)

for y → y′ ∈ R. Let D = span(dy→y′|y → y′ ∈ R). Then dimD = m− ` (Feinberg,
1972). We have that the space D is linearly isomorphic to the stoichiometric subspace
S if and only if δ = 0. Specifically, consider the homomorphism

ϕ : R|C| → R|X |
ey 7→ y.

(2.12)

For y → y′ ∈ R, we have ϕ(dy→y′) = ξy→y′ and ϕ|D : D → S is thus a surjective
homomorfism. Therefore,

δ = dimD − s = dim Kerϕ|D, (2.13)

which implies that ϕ|D is an isomorphism if and only if δ = 0. It further follows that
the deficiency is a non-negative number.

We next state a classical results which elucidate the connection between complex
balanced systems and deficiency zero systems (Horn, 1972; Feinberg, 1972).

Theorem 2. The mass-action system (G, κ) is complex balanced for any choice of
κ if and only if G is weakly reversible and its deficiency is zero.

Another classical result is known by the name of ’Deficiency Zero Theorem’
(Feinberg, 1979, 1987). To state it, we first define cyclic composition trajectory of an
ODE as a closed directed path composed by concatenating finitely many trajectories
of the ODE. A cyclic composition trajectory can be for example a steady state,
a periodic orbit, a homoclinic cycle or a heteroclinic cycle. A cyclic composition
trajectory is non-trivial if it is not a single steady state.

Theorem 3 (Deficiency zero theorem). Consider a deterministic reaction system
(G, K) for which the deficiency is zero. Then the following statements hold:

i) if G is not weakly reversible, then the associated ODE admits no positive steady
state;

ii) if G is not weakly reversible, then the associated ODE admits no cyclic compo-
sition trajectory containing a positive state (i.e. a positive vector of R|X |);
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iii) if G is weakly reversible and K is mass-action kinetics, then there exists within
each stoichiometric compatibility class a unique positive equilibrium, which is
asymptotically stable. Moreover, there cannot exists a non-trivial cyclic compo-
sition trajectory in R|X |+ .

In case of non-weakly reversibility, something more precise can be stated (Fein-
berg, 1987):

Theorem 4. Consider a deterministic reaction system (G, K), and assume that the

deficiency of G is zero. If x ∈ R|X |0 is a steady state and y ∈ C, then supp y ⊆ suppx
only if y is terminal.

In Paper II we prove a slightly expanded version of Theorem 4 (See Paper II,
Theorem 7).

Theorem 3 can be applied to deterministic mass-action systems built on (2.1) and
(2.2) to exclude any ‘exotic’ behaviour of the associate solutions z(·). In particular,
any mass-action system built on (2.1) has exactly one locally asymptotically stable
steady state within each stoichiometric compatibility class, and all cyclic composi-
tion trajectories in R|X |+ are a single steady state. Moreover, by Theorems 2 and 1
each steady state is complex balanced. Moreover, from the Deficiency Zero Theo-
rem it follows that any deterministic reaction system built on (2.2) admits no cyclic
composition trajectory containing a positive state, regardless the chosen kinetics.
Furthermore, by Theorem 4 the second entry of every steady state is null, since 2S2

is a non-terminal complex in (2.2).
It is worth noting the amount of information we are able to gain on the dynamics of
deterministic reaction systems by only looking at simple structural properties of the
reaction network, such weakly reversibility and deficiency. Unfortunately things are
not so pleasant for higher deficiency models, thought some important result has been
proven for deficiency one reaction networks (Feinberg, 1987, 1988; Boros, 2013).
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3
Overview of the results

In this chapther a detailed overview of the results in the collected papers and their
relations with the existing theory is given. Some of the results that are proven in the
papers are stated here, and a part of them is stated in a reduced form. No attempt
is made to maintain the numeration that appears in the papers.

3.1 Overview of Paper I

The classical scaling described in Section 2.4.3 is the first attempt to connect the
stochastic and the deterministic models. Moreover, it provides an approximation for
the dynamics of the stochastic model by means of the ODE solution of deterministic
counterpart when the counts of the species are high, up to a finite time T . Such an
approximation is extremely useful because a high number of molecules prevents an
efficient computational analysis of the stochastic system, since the computational
time of the simulations is drastically increased. A natural question is whether a
similar approximation can be performed in a multiscale setting, i.e. when the abun-
dances of the different species strongly differ. This may happen in a model of a living
cell for example, where it is not uncommon to see chemical reactants scaling with
different orders of magnitude. Which kind of simplification can be performed in this
case? The question has been addressed in Ball et al. (2006), Kang & Kurtz (2013)
and Pfaffelhuber & Popovic (2013).
Formally, a multiscale setting can be defined by letting the counts of the different
species in the setup of Section 2.4.3 to scale with different non-negative powers of N .
Namely, consider a vector α ∈ R|X |0 of non-negative powers, such that N−αXN(0)
converges weakly to a non-negative real random variable Z(0): the vector α ex-
presses the magnitudes of the different chemical species. Moreover, we let the rate
functions scale with powers of N as well: assume that there exists a non-negative
vector β ∈ R|R|0 , which we index for simplicity by the reactions in R, such that, for
any y → y′ ∈ R,

N−βy→y′λNy→y′(bNαxc) −−−→
N→∞

λy→y′(x) (3.1)

27
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uniformly on compact sets of R|X |0 , where the function λy→y′ : R|X |0 → R0 is a locally
Lipschitz function. For mass-action kinetics, if the constants κNy→y′ are of the form
Nηy→y′κy→y′ with κy→y′ > 0 and ηy→y′ ∈ R, then

λNy→y′(N
αx) = Nηy→y′κy→y′

(Nαx)!

(Nαx− y)!
1{Nαx≥y} .

This means that the right scaling for the rate function λNy→y′ is

βy→y′ = ηy→y′ + 〈α, y〉 .
Indeed, with this choice we have (3.1) uniformly on compact sets, where

λy→y′(x) = κy→y′
∏

i∈supp y
αi=0

xi!

(xi − yi)!
1{xi≥yi}

∏

i∈supp y
αi>0

xyii .

In order to state the convergence results, we need the following conditions:

Assumption 1. Let T be a positive real number. We assume that:

i) the magnitude of the function rates is bounded by the availability of the species
whose amount is changed by the reaction, that is

max
y→y′∈R : ξy→y′,i 6=0

βy→y′ ≤ αi , (3.2)

where ξy→y′ is as in (2.11), and ξy→y′,i denotes its ith component;

ii) the rescaled process is uniformly stochastic bounded, meaning that for any ν > 0,
there exists a constant Υν such that

lim sup
N→∞

P

(
sup
[0,T ]

X̂N
t (S) > Υν

)
< ν ;

iii) if we let
ξ∗y→y′ = lim

N→∞
Nβy→y′N−αξy→y′ ,

then the process

Z∗(t) = Z(0) +
∑

y→y′∈R
βy→y′=0

ξ∗y→y′Yy→y′

(∫ t

0

λy→y′(Z
∗(s))ds

)

+
∑

y→y′∈R
βy→y′>0

ξ∗y→y′

∫ t

0

λy→y′(Z
∗(s))ds (3.3)

is well-defined up to T . In particular, its distribution is uniquely defined and
Z∗(·) is bounded with probability 1 up to time T .
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In our setting, the mass produced or consumed by a reaction y → y′ is of
the order of Nβy→y′ and the counts of a species Si are of order Nαi . Therefore,
in Assumption 1(i) we allow for the rescaled amounts of species to change in a time
scale that is equal to or larger than the one considered, meaning in the latter case
that we do not observe any significant variation of the rescaled counts of the species
in a finite time. Following the terminology of Pfaffelhuber & Popovic (2013), an
equality in (3.2) defines a single-scale system: the term “single-scale” refers to the
fact that all the entries of N−αXN(·) evolve on the same time scale. Different time
scales can be considered by simply scaling the rate functions by a common factor,
typically a power of N : if for example the rate functions are all divided by N , then
the dynamics on the time scale of t′ = Nt are considered. In this case, the entries of
the vector β are all decreased by 1. The time scale of interest is explicitly stated in
Kang & Kurtz (2013) and Pfaffelhuber & Popovic (2013) by means of a real number
γ (the time scale will be then given by Nγt), however it is ignored in this manuscript
since the dynamics on any time scale can be considered by simply rescaling the rate
functions. It is worth noting that some restrictions are imposed by Assumption 1(i),
which prevents evolutions of the rescled amounts of species that happen in a faster
time scale than the one observed. We have the following result (Kang & Kurtz, 2013;
Pfaffelhuber & Popovic, 2013):

Theorem 5. Assume that Assumption 1 holds. Then, the stopped process N−αXN(· ∧ T )
converges weakly to Z∗(· ∧ T ).

In the limit process Z∗(·), each reaction y → y′ is associated with a vector ξ∗y→y′
which has a smaller support than ξy→y′ , due to Assumption 1(i). In particular, the
reaction y → y′ can be eliminated from the asymptotical approximation of the model
if ξ∗y→y′ = 0.

Techniques introduced in Kang & Kurtz (2013) and Pfaffelhuber & Popovic
(2013) allow to handle systems with a set of species that does not satisfy (3.2). For
example, assume that the set of species is partitioned into a set of slow species Xs,
for which (3.2) holds, and a set of fast species Xf , for which

max
y→y′∈R : ξy→y′,i 6=0

βy→y′ = αi + θ ,

foa a certain common θ > 0. Such a system is referred to as a two-scale system
in Pfaffelhuber & Popovic (2013). The idea to simplify the system is that the fast
species, whose changes happen at a faster time scale, reach a stationary distribution
before that the slow species can significantly change their concentration. Let ps and
pf be the canonical projections of R|X | onto the spaces of the slow and the fast
species, respectively. For the sake of simplicity, we introduce the notation

λy→y′(ps(x), pf (x)) = λy→y′(x).
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We define
ξ∗,fy→y′ = lim

N→∞
Nβy→y′N−α−θpf (ξy→y′) ,

and assume that the process

Zv
f (t) = pf (Z(0)) +

∑

y→y′∈R
βy→y′=0

ξ∗y→y′Yy→y′

(∫ t

0

λy→y′
(
v, Zv

f (s)
)
ds

)

+
∑

y→y′∈R
βy→y′>0

ξ∗y→y′

∫ t

0

λy→y′
(
v, Zv

f (s)
)
ds

has a unique stationary distribution πv for any v ∈ R|Xs|0 . Then, assuming that all the
integrals in the next definition are finite and under some other technical conditions,
the stopped process ps(X

N(· ∧ T )) converges weakly to the process defined by

Zs(t∧T ) = ps(Z(0))+
∑

y→y′∈R
βy→y′=0

ps(ξ
∗
y→y′)Yy→y′

(∫ t∧T

0

∫

R|Xf |
λy→y′ (Zs(s), w) dπZs(s)(w)ds

)

+
∑

y→y′∈R
βy→y′>0

ps(ξ
∗
y→y′)

∫ t

0

∫

R|Xf |
λy→y′ (Zs(s), w) dπZs(s)(w)ds.

By using the same idea, we can approximate three-scale systems, four-scale systems
and so on. See Kang & Kurtz (2013) and Pfaffelhuber & Popovic (2013) for further
details.

Consider now the mass-action system given by

S1 + S2 S3 S1 + S4

κ0

κ1N
η1

κ2N
η2

(3.4)

where κ0, κ1, κ2, η1 and η1 are positive real numbers, while N is a large natural
number. The system is a Michaelis-Menten mechanism where the substrate S2 is
transformed into the protein S4 by means of the enzyme S2 and proceeding through
the formation of an intermediate species, which is fast degraded. If we let α1 = α3 = 0
and α2 = α4 = 1, then (3.2) does not hold for S1 and S2. If we assume η2 > 1, then
(3.2) does not hold for S4 either. Therefore, by using the techniques introduced
in Kang & Kurtz (2013); Pfaffelhuber & Popovic (2013) we can only approximate
the evolution of the species S2, and we lose track of all the other species. On the
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other hand, in this case it is clear what happens for large values of N : whenever a
molecule of S3 is produced, it is fast degraded in such a way that most of the time
no molecules of S3 will be present, and with high probability at most one molecule
of S3 can be observed at any time. This gives an indication on the evolution of S1,
whose count is more or less constant, and we can also imagine to approximate the
dynamics of S4 by contracting the reaction paths in (3.4) to obtain

S1 + S2 S1 + S4

with some kinetics. Paper I focuses on this type of reduction, which can not be
performed in the settings of Kang & Kurtz (2013) and Pfaffelhuber & Popovic (2013)
(see also Kang & Kurtz, 2013, Section 6.5). The reduction is motivated by the fact
that intermediate species appear often in biochemical reaction networks (for example
in the enzymatic processes), frequently they are not detectable and fast consumed.
Indeed, modelers in biochemistry sometimes ignore intermediate species, but so far
no formal result supporting this choice was available, or stating which properties
are preserved under the simplification. We study different kind of convergence of
the original process to the simplified one, both in the case where some boundedness
properties hold and in the case where the simplified process has a weak limit (up
to a certain fixed time T ). Specifically, weak convergence holds if α > 0, but not in
general (see Theorem 4.4, Theorem 4.6 and Example 5.3 in Paper I). However, in
general a uniform punctual weak convergence holds, as well as a weak convergence
of the integrals of the two processes, in a sense that is made clear by Theorems 4.2
and 4.6.

Some previous work on intermediate species has been carried on by Feliu & Wiuf
(2013), though the study was focused on steady states of deterministic reaction net-
works. Specifically, in the paper a system with intermediate species and a reduced
system with no intermediate species are considered. The reactions and the kinetics
of the reduced system are deduced by the full system following certain rules, and
the main result states that the maximum number of steady states on a same sto-
ichiometric compatibility class for the full system is greater than or equal to that
of the reduced system. When inquiring for the possibility of multistationarity in a
reaction system with intermediates species, this results is useful because allows to
reduce the study to a simplified model. Although the areas of interest are different,
we are able to prove in Paper I that the procedure we introduce to reduce a system
with intermediates coincides with that utilized in Feliu & Wiuf (2013), implying
that the same reduced model is able to provide information in different settings.

In Appendix IA, it is further shown that in the deterministic setting, intermedi-
ate species can be eliminated from the reaction system following the same procedure
described in Paper I. The reduced system obtained is capable of uniformly approx-
imate the trajectories of the original model, up to finite time T . Since the reduced
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model coincides with that introduced by Feliu & Wiuf (2013), we have that the
same reduced model can approximate both trajectories and steady states of the full
system with intermediate species.

3.2 Overview of Paper II

In Section 2.5, we have seen a collection of results for deterministic reaction systems.
These results link the deficiency of a network with dynamical properties of the
system. No such theory have been developed for stochastic reaction systems, and
the concept of complex balanced equilibrium does not have a stochastic counterpart.
In Paper II we build such a theory and we introduce the concept of complex balanced
stationary distribution. The theory we develop focuses on links between structural
properties of a reaction network and features of the stationary distribution of an
associated stochastic reaction system. The goal is indeed to state results for the
stochastic systems that are parallel to those in Section 2.5, and in this process it
seems natural to consider the stationary distributions as the “translation” in the
stochastic setting of the concept of steady states, due to the similarities discussed in
Section 2.4.4. The definition of a complex balanced stationary distribution closely
relates to that of a complex balanced equilibrium:

Definition 3. Let (G, K) be a stochastic reaction system. A stationary distribution
on an irreducible component Γ is said to be complex balanced if

∑

y∈CΓ
πΓ(x− y′ + y)λy→y′(x− y′ + y) =

∑

y∈CΓ
πΓ(x)λy′→y(x) ∀y′ ∈ CΓ, x ∈ Γ. (3.5)

There is something missing in this definition, and it is the positivity that is
required for complex balanced equilibria (see Definition 2). We then call a irreducible
component positive if any reaction in R is active on at least one state of Γ. We then
give the following definition:

Definition 4. A stochastic reaction system (G, κ) is said to be stochastically com-
plex balanced if there exists a complex balanced stationary distribution on a positive
irreducible component.

The link between complex balanced equilibria and the newly introduced complex
balanced stationary distribution is strong, and we can prove that a deterministic
mass-action system is complex balanced if and only if, when stochastically modelled,
it is stochastically complex balanced (see Paper II, Corollary 19). Moreover, we build
a theory that is parallel to that presented in Section 2.5. We briefly present it here:
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Theorem 6. If a stochastic reaction system (G, K) is stochastically complex balanced
then G is weakly reversible. If K is mass-action kinetics, then on every irreducible
component Γ there exists a unique stationary distribution πΓ, which is a complex
balanced stationary distribution.

Theorem 6 (see Paper II, Corollary 19) might be considered a stochastic version of
Theorem 1, especially if (2.7) is taken to be equivalent to the concept of “asymptotic
stability” for a deterministic equilibrium.

Theorem 7. The mass-action system (G, κ) is stochastically complex balanced for
any choice of κ if and only if G is weakly reversible and its deficiency is zero.

Theorem 8. Consider a stochastic reaction system (G, K), and assume that the
deficiency of G is zero. Then the following statements hold:

i) if G is not weakly reversible, then there exist no positive irreducible components;

ii) if G is weakly reversible, then G is essential, and if K is mass-action kinetics
there exists a unique stationary distribution on every irreducible component.

Theorem 9. Consider a stochastic reaction system (G, K), and assume the defi-
ciency of G is zero. Let x be a state in an irreducible component Γ and let y ∈ C.
Then, y ≤ x only if y is terminal.

Theorems 6-9 are the stochastic correspondences of Theorems 1-4. In Paper II
the theory is stated in a slightly different and richer way, and in particular stronger
versions of Theorems 4 and 9 are proved.

Complex balanced stationary distributions for stochastic mass-action systems
are always rescaled product-form Poisson distributions (see Paper II, Theorem 18),
namely the unique stationary distribution on a irreducible component Γ has the
form

πΓ(x) = M c
Γ

cx

x!
for x ∈ Γ, (3.6)

where c is a complex balanced equilibrium of a system related to (G, κ) and M c
Γ is

a normalising constant depending on c. This is in accordance with the main result
of Anderson et al. (2010):

Theorem 10. Let (G, κ) be a complex balanced mass-action system. Then, there
exists a unique stationary distribution on every irreducible component Γ, and it is
of the form (3.6), where c is a complex balanced equilibrium of (G, κ) and M c

Γ is a
normalising constant.
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In Paper II, we study under which assumptions the converse of Theorem 10 holds,
namely under what hypotheses the existence of stationary distributions of the form
(3.6) for a certain c implies the existence of a complex balanced equilibrium for the
related deterministic model. We prove the following:

Theorem 11. Let G be an almost essential reaction network, κ ∈ Rm
+ a vector of

rate constants and c ∈ Rn
+ a vector with positive entries. The probability distribution

πΓ : Γ→ (0, 1], defined by (3.6) is a stationary distribution for the stochastic mass-
action system (G, κ) for all irreducible components Γ ⊆ Nn of G if and only if c is a
complex balanced equilibrium for (G, κ).

Some of the assumptions can be relaxed, and in the paper we discuss it. We also
investigate whether some of the properties of complex balanced stationary distribu-
tions hold for the larger family of stationary distributions of the form 3.6. In general
the answer is negative: in particular, the existence of a stationary distribution of
the form 3.6 on a positive irreducible component does not imply the same form for
stationary distributions on other irreducible components, as it is shown by examples
in the paper.

3.3 Overview of Paper III

Even though the dynamics of the stochastic and the deterministic reaction systems
are linked by the Classical Scaling and by the more general results of Ball et al.
(2006), Kang & Kurtz (2013) and Pfaffelhuber & Popovic (2013) introduced in
Section 3.1, a connection only exists for the evolution of the two models up to
a finite time T . Very few results are available on the link between the behaviour
of the two models when time goes to infinity. One of such results is Theorem 10:
for complex balanced systems, the limit distribution of the stochastic model is a
rescaled product-form Poisson distribution centred in the deterministic limit point
of the deterministic model. Therefore, a concordance between the limit behaviours
of the deterministic and stochastic reaction systems exists in the complex balanced
case. However, such a close relation does not always exist, as discussed in Chapter
1 with reference to the reaction system

S1 + S2 2S2 S2 S1

κ1 κ2 (3.7)

where for consistency with the introduced notation, we substituted A with S1 and B
with S2. When stochastically modelled, the mass-action system hits with probability
one the state (‖X(0)‖1, 0), while the solution of the deterministic mass-action system
tends to (κ2/κ1, ‖z(0)‖1−κ2/κ1), provided that z(0) is positive and ‖z(0)‖1 > κ2/κ1.
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If the initial conditions are very large, then the behaviour of the two models is very
different when the time goes to infinity. In this regards, in Anderson et al. (2014b)
it is proven a result stating that this is a common feature for a class of reaction
systems with absolute concentration robust species (referred to as ACR species in
the rest of this manuscript). We first give the necessary definitions:

Definition 5. Let (G, K) be a deterministic reaction system. We say that a species Si
possesses absolute concentration robustness (ACR) if for any two positive equilibria
q, q′ of the system, we have qi = q′i. In this case, the species Si is called an ACR
species and, if a positive equilibrium q exists, qi is called an ACR value. If (G, K)
possess a non empty set of ACR species, we call it an ACR system.

Consider a deterministic reaction system that has no steady states, or only one.
According to Definition 5, all the species are ACR species, however in these cases
the ACR property is not particularly meaningful. ACR species are important in
biochemistry because at equilibrium they always provide the same kind of response,
independently of the changing of the environment and of eventual biological switches
of the system. They have been observed in different biochemical cellular mechanisms
including signal transduction cascades and gene regulatory networks, further details
can be found for example in Shinar & Feinberg (2010), Blanchini & Franco (2011)
and Karp et al. (2012).

Structural properties implying absolute concentration robustness have been in-
vestigated by Shinar & Feinberg (2010). To state the result, we first need the fol-
lowing definition:

Definition 6. We say that two complexes y, y′ ∈ C differ only in species S if their
difference is a non-zero multiple of the species S

As an example, the complexes S1 + S2 and S1 in (3.7) differ only in species S2.
We can now state the main result of Shinar & Feinberg (2010):

Theorem 12. Let G be a reaction network which has a deficiency of one, and
suppose that in the network there are two non-terminal complexes that differ only in
species S. Then, S is an ACR species for any mass-action system (G, κ).

It is not guaranteed that a positive steady state exists, and in order to state it
we need to add it to the assumptions. In Anderson et al. (2014b) the following result
is stated:

Theorem 13. Let G be a reaction network which is conservative, has a deficiency of
one, and for which the deterministically modelled mass-action system (G, κ) admits
a positive equilibrium for some choice of κ. Suppose that there are two non-terminal
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complexes y and y′ for which y < y′ . Then, the stationary distribution of any
stochastic reaction system of the form (G, K) is concentrated on a set of states where
all the non-terminal reactions are not active.

In the case of (3.7), both the above Theorems can be applied, and an indication
of the discrepancy in the limit behaviour of the deterministic and stochastic models
can be derived. In this case, the states where the non-terminal reactions are not
active are the states where S2 → S1 is not active, therefore their second entry is
equal to zero.

What are in general the implications of Theorems 12 and 13 in terms of limit
behaviour of the stochastic and deterministic systems? In order to understand it,
we now restrict ourselves to systems satisfying the hypotheses of Theorem 13, with
mass-action kinetics and with the complexes y and y′ differing only in species S. By
Theorem 12, such systems are ACR systems, when deterministically modelled. In
particular, the value of S at any positive equilibrium is constant. On the other hand,
by Theorem 13, the processes of the stochastically modelled systems are absorbed
by a set of states near the boundaries of R|X | (the states where the non-terminal
reactions are not active) with probability one. Depending on the considered network,
the counts of S may be large in the absorbing set because their size may not affect
the fact that the terminal reactions are not active, as it happens for example in
(3.7). This alone does not imply a discrepancy between the deterministic and the
stochastic systems as observed in (3.7), but if we further assume that the positive
steady states of the deterministically modelled systems are asymptotically stable, on
one hand we will have an ODE soultion tending to a positive state, and on the other
hand we have a stochastic process being absorbed by the boundaries, exactly as in
(3.7). Stability of the steady states is not implied by the assumptions of Theorem
13, as shown by

S1 + S2 2S2 2S1 + S2 3S1

κ1 κ2

whose positive steady states are unstable. In this case the deterministically modelled
system is attracted by the boundaries, as the stochastically modelled one. However,
stability of the steady states is expected for a large class of the systems of interest.

Hence, it is a fact that sometimes there is a discrepancy between the limit be-
haviour of the deterministically and stochastically modelled ACR systems. However,
we do not know how long we have to wait for this discrepancy to arise. This is the
setting where Paper III was conceived: in the paper the disparity between the two
deterministic and stochastic models is composed by considering their behaviour up
to a fixed finite time T . We consider an ACR system with at least two positive
steady state, and assume that the initial condition of the stochastic reaction system
is near to one steady state: in particular the values of the ACR species will be near
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to their ACR values. We then let the amount of the non-ACR species increase with
a parameter N , such that the initial condition is still near to a positive steady state,
and study the evolution of the ACR species up to finite time T . The setting is that
of the multiscale reaction systems of Ball et al. (2006), Kang & Kurtz (2013) and
Pfaffelhuber & Popovic (2013), but in this case we are mostly interested in the be-
haviour of the so-called fast species, for N going to infinity. Under some additional
technical assumptions, we are able to prove that, up to time T , the ACR species
stay on average near to their ACR value, as it happens for the deterministic model.
As an example, consider again 3.7 and consider a sequence of stochastic processes
associated with the system such that XN(0) = (κ2/κ1, N − κ2/κ1). The main result
in Paper III implies that in this case, for any continuous function ĝ : R≥0 → R with
at most polynomial growth rate we have

∫ ·∧T

0

(
ĝ(XN

1 (s))− E[ĝ(J)]
)
ds ===⇒

N→∞
0,

where J is a Poisson random variable with parameter κ2/κ1 and⇒ denotes the weak
convergence. In particular, we have

∫ ·∧T

0

(
XN

1 (s)− κ2

κ1

)
ds ===⇒

N→∞
0.
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4
Perspective

In this chapter we discuss the perspectives suggested by the work done in Papers
I-III, and possible future works.

4.1 Future work on intermediate species

Some questions are left open by Paper I, some of which are proposed in the Discussion
Section of the paper itself. The first question concerns the generalization of the
concept of intermediate species: they are defined as single species that in the reaction
graph are located in a directed path connecting two non-intermediate complexes.
One question is whether we could define intermediate complexes as more general
linear combination of species (for example 2S1 or S1 + S2) still sitting in a path
connecting two non-intermediate complexes, and which kind of reduction can be
performed in this case. Some reductions in this more general case are shown in
Examples 5.1 and 5.2 in Paper I.

The convergence results of Paper I rely on the assumptions that some key sets of
intermediate species are fast consumed. For example, consider the reaction system

S1

S2

S3

S4

κ1 N

1N

with α = 0. Here, if N is large we can expect that for most of the time no molecules
of intermediate species are present, since whenever a molecule of S2 is produced,
it is most likely fast converted in a molecule of S4. Under this assumption, we can
approximate the original model by

S1 S4

κ1

39
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in the sense specified by Theorem 4.6 in Paper I. Now consider the same reaction
network with the following different choice of rate constants:

S1

S2

S3

S4

κ1 N

N2N (4.1)

Here, the time we have to wait between the production of a molecule of S2 and the
eventual production of S4 does not tend to zero for N going to infinity: on average,
the molecule of S2 will undergo the sequence of transformations S2 → S3 → S2 N
times before producing a molecule of S4, and each of this cycles of transformations
will take an average time of 1/N to be completed. As a consequence, the results of
Paper I cannot be applied (nor can be applied the results from Kang & Kurtz (2013)
and Pfaffelhuber & Popovic (2013) if we want to keep track of the evolution of the
species S4). However, the waiting time from the production of a molecule of S4 to
the eventual production of a molecule of S4 is distributed as

τN =
GN∑

j=1

(E1,N
j + E2,N

j ),

where GN is a geometric random variable with parameter 1/N expressing the num-
ber of cycles S2 → S3 → S2 we observe before the production of S4, E1,N

j is an
exponential random variable with parameter N2 + N which is the waiting time for
the reaction S2 → S3 to occur (given that it will happen before S2 → S4), and fi-
nally E2,N

j is an exponential random variable with parameter N which is the waiting

time for the reaction S3 → S2 to occur. All the random variables GN , (E1,N
j )j and

(E2,N
j )j are independent. At this point, it is not hard to argue that the increment

given to τN by the random variables (E1,N
i )i tends to zero almost surely for N going

to infinity. Moreover, by considering the characteristic functions we have

E

[
eit

∑GN

j=1 E
2,N
j

]
= E



GN∏

j=1

eitE
2,N
j


 =

∞∑

q=1

q∏

j=1

E
[
eitE

2,N
j

]
P
(
GN = q

)

=
1

N − 1

∞∑

q=1

(
N − 1

N − it

)q
=

1

1− it .

Since the last term is the characteristic function of an exponential random variable
with parameter 1, we have that τN converges in distribution to it. Therefore, the
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dynamics of S1 and S2 can be approximated by means of the simplified reaction
system

S1 D S4

κ1 1

where D is a fictitious species. A proper computational and analytical analysis of
the simplified system can be easily performed since the large constant rates have
been eliminated. Studying this kind of approximation technique under general as-
sumptions could be an interesting line of research for future works.

Another interesting research direction concerns identifiability of the intermediate
structure. This is better understood with an example: consider the two mass-action
systems

S1

S2

S3

S4 S1

S2

S3

S4

κ1 κ2

11

θκ1

(1− θ)κ1

κ3

κ4

(4.2)

where κ1, κ2, κ3 and κ4 are positive real numbers and θ is a real number in (0, 1).
Suppose that the initial conditions coincide for the two systems, and that the initial
amount of the intermediate species S2 and S3 is zero. Then, for any positive κ1

and κ2 there exists a choice of parameters κ3, κ4 and θ such that the evolutions of
the species S1 and S4 in the two stochastic mass-action systems have exactly the
same distribution. Moreover, for the same choice of parameters the trajectories of
the species S1 and S4 coincide in the two systems when deterministically modelled,
as well. The choice of parameters is given by

κ3 =
2 + κ2 +

√
4 + κ2

2

2

κ4 =
2 + κ2 −

√
4 + κ2

2

2

θ =
κ2

2 + κ2

√
4 + κ2

2

4 + κ2
2 + (2 + κ2)

√
4 + κ2

2

.

In the deterministic case, this choice generates in the two systems the same delay,
as defined in Appendix IA (see equation (IA.6)). Moreover, the consumption rate of
S1 in the two models does not change.

The example shows that if we can only observe the evolution of non-intermediate
species, then we may not be able to distinguish between two different models, both
in the stochastic and in the deterministic settings. The questions we would like
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to address concern general conditions under which the unidentifiability of the in-
termediate structure holds, and more specifically whether, given the dynamics of
non-intermediate species, we can always choose a canonical minimal intermediate
structure without cycles. This work could be theoretical relevant, since often in-
termediate species are impossible to detect in controlled experiments. Moreover, it
could provide more means to simplify reaction systems with intermediate species.
Indeed, we could be able to transform a system with fast consumed intermediate
species into a system with no high rates, therefore easier to analyse. Moreover, it
could provide us with a tool to easily find approximated models as the one discussed
for (4.1). Finally, we might be able to transform intermediate structures with cycles
into more tractable intermediate structures without cycles, as it happens for (4.2).

Another interesting perspective suggested by Paper I concerns a possible link
between the limit behaviour of the original model with intermediate species and
that of the reduced model. This is better explained in the next section.

4.2 Future work on stationary distribution

Except for complex balanced reaction systems (Jahnke & Huisinga, 2007; Anderson
et al., 2010) and for system whose process can be identified as a birth-death process,
there are no means to explicitly calculate the stationary distribution of a reaction
system. In fact, it may often be a hard task to simply postulate the existence of a
stationary distribution, when the cardinality of the states that can be visited by the
process is infinite. Any new result in this direction can be helpful, we list here some
open question:

i) In the context of Paper I, does the existence of a stationary distribution for the
original model imply the existence of a stationary distribution for the reduced
system? Moreover, we have shown in Example 5.4 in Paper I that the stationary
distribution of the original model may differ greatly from that of the reduced
system. Under which additional assumptions do we have convergence of the
stationary distributions?

ii) Is the conjecture stated at the end of Paper II true? Namely, if a mass-action
system has a rescaled product-form Poisson stationary distribution on one ir-
reducible component Γ for any choice of rate constants, is there a complex
balanced mass-action system whose evolution on Γ has the same distribution
as for the original process?

iii) Is it possible to generalize the results in Paper II and find broader sufficient
conditions implying product-form stationary distributions? Are there necessary
conditions?
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iv) Is it possible to generalize Theorem 21 in Paper II and prove general results on
the form of the irreducible components of a network?

v) Under which assumptions are the stationary distribution of a stochastic reaction
system and the limit behaviour of a corresponding deterministic system related?

Answering the questin of point i may help in finding the stationary distribution of
a reaction system by studying that of a reduced one. Note that a similar question
may be interesting also in the deterministic case (see Section “Limit Behaviour”
in Appendix IA): under which additional assumptions the limit behaviour of the
reduced deterministic reaction system approximates that of the original deterministic
reaction system?
The question of point (ii) is in the spirit of Thereom 2: we want to know whether the
fact that a certain property holds for any choice of rate constants implies something
on the reaction network.
In general, answering any of the above questions may provide important information
on the stationary distribution of a stochastic reaction system, at least for a class of
them.

Another perspective, suggested by Paper III, concerns the case when the station-
ary distribution of a stochastic mass-action system and the limit behaviour of the
corresponding deterministic system differ greatly. In such a case, what is the typical
time at which we can observe the discrepancy? In Paper III we proved that, if we let
the amount of the non-ACR molecules tend to infinity in the initial condition, then
up to a fixed finite time T there is a substantial concordance between the behaviours
of the stochastic and the deterministic models. Does the same hold if we let T go to
infinity as a function of the initial conditions? If so, does it hold for a more general
class of reaction systems than that introduced in Paper III?

A study on quasi-stationary distributions, or more in general quasi-stationary
phases of the stochastic systems would be also of interest. In particular, it could
be interesting to understand when a quasi-stationary regime exists in a stochastic
reaction system, when it appears and for how long it can be observed. A related
question that still has not received much interest in the CRNT literature concerns
the mixing times of stochastic reaction networks, and whether their expected value
is linked to structural properties of the reaction network.

4.3 Future work on ACR species

In Shinar & Feinberg (2010), sufficient conditions for a species to be ACR have been
found. However, these conditions are far from including all the ACR systems, so
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further work in this direction might be of interest, as well as providing necessary
conditions for a species to be ACR. Moreover, the result in Anderson et al. (2014b)
is stated for ACR systems that fall in the assumptions of Shinar & Feinberg (2010),
hence we might wonder whether it holds for a broader class of ACR systems.
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Abstract

We study networks of biochemical reactions modelled by continuous-time Markov processes. Such
networks typically contain many molecular species and reactions and are hard to study analytically
as well as by simulation. Particularly, we are interested in reaction networks with intermediate
species such as the substrate-enzyme complex in the Michaelis-Menten mechanism. Such species are
virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard
to observe experimentally.

We provide conditions under which the Markov process of a multiscale reaction network with
intermediate species is approximated by the Markov process of a simpler reduced reaction network
without intermediate species. We do so by embedding the Markov processes into a one-parameter
family of processes, where reaction rates and species abundances are scaled in the parameter. Further,
we show that there are close links between these stochastic models and deterministic ODE models
of the same networks.

1 Introduction

Reliable mathematical models of biochemical reaction networks are of great interest for the analysis
of experimental data and theoretical biochemistry. Such models can provide qualitative information on
biochemical systems as well as provide means to simulate networks and to estimate unknown parameters.
The classical stochastic model of a reaction network is a continuous-time Markov process, where the states
are configurations of species numbers and the transitions are changes caused by reactions. We refer to
this Markov process as a stochastic reaction network (SRN). Unfortunately the set of reactions and
chemical species is often very large, and the related Markov process is too complicated to be studied
analytically or by modern computers. Thus, the necessity of simplifying the full model arises. Perhaps
the first result in this direction is due to Kurtz [1972], where a deterministic weak limit for stochastic
reaction networks is obtained [see also Kurtz, 1977/78]. More recently, in Ball et al. [2006], Kang and
Kurtz [2013], Pfaffelhuber and Popovic [2013], similar asymptotic results have been obtained under
more general scaling conditions than those applied in Kurtz [1972, 1977/78]. Here the limit might have
stochastic as well as deterministic components, and the limit network might consist of simplified reactions
with fewer species. In this context the concept of model reduction arises naturally.

A famous and well studied example of a biochemical system is the Michaelis-Menten mechanism for
enzyme kinetics [Cornish-Bowden, 2004, Kang and Kurtz, 2013, Härdin et al., 2009, Thomas et al., 2012,
Rao and Arkin, 2003]. It is described by the reactions

E +R H E + P

where E denotes an enzyme, R a reacting substrate and P a product. H is an intermediate, or transient,
species formed by E and R, and it is usually unstable. Whenever a reaction occurs, say E + R → H,
then the number of molecules changes accordingly, that is, the numbers of E and R molecules are each
reduced by one, while the number of H molecules is increased by one.

If we assume that at least one of the reactions H → E+R and H → E+P is so fast that a produced
molecule of H is quickly degraded before any other reaction takes place (that is, at any time at most

∗Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark. The authors are supported
by funding from the Carlsberg Foundation, the Lundbeck Foundation, the Danish Cancer Society the Danish Research
Councils.
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one molecule of H is present), then it seems reasonable that the Markov process could be approximated
by a simpler Markov process, corresponding to the reduced reaction network

E +R E + P

where the reaction rate is determined from the original reaction rates. Intuitively, the rate is the rate of
E +R→ H multiplied by the probability that the reaction H → E + P occurs instead of H → E +R.
Under this reduction the number of enzyme molecules E becomes constant. In essence, we are here
dealing with time-scale separation, in addition to species elimination and dimensionality reduction (both
in terms of the number of reactions as well as the number of species).

Another, perhaps more interesting example, is the following reaction network:

E +R

H1

H2

H3

E + P1

E + P2

(1.1)

It describes the catalytic transformation of a species R into the species P1 or P2, through a chain of
intermediate steps, denoted by the species H1, H2 and H3. Whenever the reaction E+R→ H1 occurs, a
sequence of reactions between intermediate species will take place (for example, H1 → H3 → H1) before
a final complex is produced, such as E + P1. If the time spent in intermediate states is small, we might
approximate the reaction paths proceeding through the formation and quick degradation of intermediate
species by direct reactions. In other words, it is reasonable to contract reaction paths passing through
any intermediate species to obtain

E +R

E + P1

E + P2

for a suitable choice of reaction rates. Note that there is an infinite number of such reaction paths.
We will provide conditions that guarantee that the original SRN can be well approximated, in a certain
sense, by the reduced SRN, or more accurately, that the Markov process describing the original system
is well approximated by the Markov process of the reduced system.

For this aim, we introduce a family of kinetics (reaction rates) indexed by a parameterN and study the
relationship between the original and the reduced SRNs as N →∞. The analysis builds on the previous
work Feliu and Wiuf [2013a] [see also Feliu and Wiuf, 2012, 2013b], as well as on Ball et al. [2006], Kang
and Kurtz [2013], Pfaffelhuber and Popovic [2013]. In Feliu and Wiuf [2013a], a mathematical framework
is developed for the elimination of intermediate species in deterministically modelled reaction networks,
using ODEs. Properties of the steady states in the original ODE system are related to similar properties
of the steady states in the reduced ODE system by means of a formal relationship between the original
and the reduced network. Here we are not concerned about the steady states nor about the equilibrium
distributions of SRNs, but about the trajectories of SRNs up to a finite fixed time T > 0. Our aim is to
approximate the dynamics of the original system with intermediate species by means of the dynamics of
a simplified model, where intermediate species are eliminated. Though we arrive at our reduced model
through a different route than Feliu and Wiuf [2013a], we will show that there are close links to ODE
models and that our reduced network in fact is that of Feliu and Wiuf [2013a].

We will study different types of convergence of stochastic processes associated with SRNs as N →∞.
The limit is taken assuming that the consumption rates (at least some of them) of the intermediate
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species approach infinity according to N . Also the molecular abundances might be scaled in powers
of N in the spirit of the multiscale analysis performed in Ball et al. [2006], Kang and Kurtz [2013],
Pfaffelhuber and Popovic [2013]. These papers deal with various forms of model reduction. However,
the elimination of intermediate species we aim to achieve is not possible in these settings. On the other
hand, our approximating model might in some cases be further reduced by techniques developed in these
papers, hence our approach might be considered complementary to theirs.

2 Preliminaries and definitions

The space of real (natural) vectors with entries indexed by a finite set A is denoted by RA (NA), and
for any vector v ∈ RA (NA), we denote the entry corresponding to a ∈ A by v(a). Moreover, for any
two vectors v, w ∈ RA (NA) we write v > w if the inequality holds component-wise. Furthermore, |v|
denotes the usual Euclidean norm of v. Finally, if A is a finite set, we let #A denote the cardinality of
A. Given two real numbers x, y, we will often use the notation x ∨ y or x ∧ y to denote the maximum
and the minimum of x and y, respectively.

A reaction network consists of a set of species X , a set of complexes C, and a set of reactions R.
Formally, X is a finite non-empty set {S1, S2, . . . , Sn}, C = {y1, y2, . . . , ym} is a non-empty set of non-
negative linear combinations of elements of X and R is a finite non-empty subset of C × C, such that
(yi, yi) 6∈ R for all i. We identify X and C with finite subsets of NX . If (yi, yj) ∈ R we write yi → yj
and we say that yi is the reactant and yj is the product. Throughout the paper we will denote an object
O associated with a reaction r : yi → yj by Or or Oij indifferently. Furthermore, for each reaction
r : yi → yj ∈ R, we define the reaction vector

ξr = yj − yi.

For further background on reaction networks, see Érdi and Tóth [1989], Anderson and Kurtz [2011].
A complex y ∈ C is given as y = (y(S1), . . . , y(Sn)) and y(S) is called the stoichiometric coefficient

of the species S in y. Furthermore, we define the support of y as the set of species S such that y(S) > 0,
in which case we write S ∈ y. Moreover, define CS as the complexes whose support contains S and RS
as the reactions in R that change the counts of S:

CS = {y ∈ C : S ∈ y} , (2.1)

RS = {r ∈ R : ξr(S) 6= 0} . (2.2)

Finally, we define a kinetics K as a set of functions indexed by R of the form

λr : NX≥0 → R≥0

x 7→ λr(x).

Intuitively, λr is the rate by which reaction r occurs and it will be referred to as the reaction rate. We
allow reaction rates to be constantly 0, in which case the corresponding reaction could be removed from
the network.

A reaction network equipped with a kinetics can be modelled as a continuous-time Markov process
X· on NX , where Xt(S) is the number of molecules of the species S at time t. Taken together with K and
X·, a reaction network is called a stochastic reaction network (SRN ). The state of X· changes whenever
a reaction takes place, for example, if the reaction r occurs at time t∗ the new state is

Xt∗ = Xt∗− + ξr.

The kinetics K represents the transition rates for the process X·, such that

Xt = X0 +
∑

r∈R
ξrYr

(∫ t

0

λr(Xs)ds

)
, (2.3)

with Yr(·) independent and identically distributed unit-rate Poisson processes [Kurtz, 1977/78]. The

random variable Yr

(∫ t
0
λr(Xs)ds

)
counts how many times the reaction r has occurred up to time t. This
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stochastic model is typically chosen if the number of reactant molecules is low, so that the behaviour of
the system is similar to the evolution of a jump process. Changes occur only in a discrete set of time
points and it is uncertain which reaction will take place next.

A typical choice of kinetics is mass-action kinetics, where the reaction rate of r : yi → yj is given by

λr(x) = kr
∏

S∈yi

x(S)!

(x(S)− yi(S))!
1{x(S)≥yi(S)},

and kr are non-negative real numbers, called rate constants. We usually express this as yi
kr−→ yj . Note

that the reaction rates are proportional to the number of ordered subsets of molecules that can give rise
to an occurrence of the reaction. This choice of kinetics is natural if we assume the system is well stirred.

To define a reduced reaction network we introduce the concept of an intermediate species [Feliu and
Wiuf, 2013a].

Definition 2.1. Let (X , C,R) be a reaction network and V ⊂ X . We say that the species in V are
intermediate species (or simply intermediates) if the following conditions hold:

• for each H ∈ V and y ∈ C, if H is in the support of y, then y = H. This implies that V ⊂ C.

• for each H ∈ V, there is a directed path of complexes such that

yi → H`1 → · · · → H → · · · → H`k → yj

for some complexes yi, yj ∈ C \ V and H`i ∈ V for all 1 ≤ i ≤ k. The path

H`1 → · · · → H → · · · → H`k

is called a chain of intermediates.

According to the definition, intermediate species always appear alone and with stoichiometric coeffi-
cient one. For example, the species H in the Michaelis-Menten mechanism and the species H1, H2 and
H3 in (1.1) meet Definition 2.1. We denote by U , W the subsets of C such that

• for all y ∈ U , there exists H ∈ V, such that y → H ∈ R

• for all y ∈ W, there exists H ∈ V, such that H → y ∈ R

We refer to U and to W, respectively, as the initial reactants and the final products. In general the two
sets can have non-empty intersection (as in Example 3.1). For any initial reactant yi we introduce the
set Vi of intermediate species H such that yi → H ∈ R. We index the set V using the ordering of the set
C, such that H` = y` for any intermediate H` ∈ V. Further, we introduce the index sets U , V , Vi and
W of U , V, Vi and W, respectively, such that

U = {yi}i∈U , V = {H`}`∈V , Vi = {H`}`∈Vi , W = {yj}j∈W .

3 The Reduced Stochastic Reaction Network

Let (X , C,R) be a reaction network equipped with a kinetics K and let V ⊂ X be a set of intermediate
species.

The reduced reaction network obtained from (X , C,R) is the triple

(X \ V , C \ V , R∗), (3.1)

where R∗ consists of the reactions in R not involving intermediates and the reactions yi → yj , where yj
is obtainable from yi through a chain of intermediate species of (X , C,R), as in Definition 2.1. Thus, the
intermediate species have been eliminated from the original network by contraction of reaction paths.

If (X , C,R) is equipped with a kinetics K, then (X \V, C \V,R∗) inherits a kinetics K∗ from (X , C,R)
if certain additional conditions are fulfilled. To define K∗ we first make the following assumption:
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Assumption 1 (Rate functions and intermediates). The consumption of the intermediate species is
governed by mass-action kinetics, that is for any `, `′ ∈ V and j ∈W ,

λ`j(x) = k`jx(H`), and λ``′(x) = k``′x(H`),

for some non-negative constants k`j , k``′ . This condition implies that any molecule of an intermediate
species will be consumed at a constant rate. Further, we assume that all other reaction rates do not
depend on H`.

Let X· be the process associated with (X , C,R). We enlarge the filtration of X· by the σ-algebras σt,
such that σt contains the information on the evolution up to time t of every occurrence of a molecule of
an intermediate species in the experiment. In particular, we introduce a Markov process, that describes
the dynamics, or fate, of a molecule of an intermediate species. Consider the n-th reaction occurring in
X· that turns a non-intermediate complex into an intermediate species. Let this reaction be yi → H`

and assume it takes place at time tn. The intermediate molecule H` will eventually be transformed into
a final product yj . The chain of transformations leading to yj can be described by a continuous-time
Markov chain Cn(·), starting at time tn, with state space V ∪W and Cn(tn) ∈ V. The final products are
treated as absorbing states for the Markov process. The transition rate matrix, which is independent on
n, has the following block structure:

Q =




QV,V QV,W

0 0


 , (3.2)

where

q``′ = k``′ for all `, `′ ∈ V with ` 6= `′

q`j = k`j for all ` ∈ V and j ∈W
q`` = −

∑

`′∈V
k``′ −

∑

j∈W
k`j for all ` ∈ V.

We define by τn the time until the production of the final product, i.e.

τn = inf {t ≥ tn : Cn(t) ∈ W} − tn,

and for all ` ∈ Vi, we define by π`j the probability that the final product produced is yj , given that the
intermediate chain started in H`. Namely,

π`j = P (Cn(tn + τn) = yj |Cn(tn) = H` ) , (3.3)

with π`j = 0 if j /∈ W . Since Cn(·) is a finite state Markov process with absorbing states, τn is almost
surely finite. Moreover note that π`j does not depend on n, since Q does not depend on n. In this
context, we have

σt = σ (Xs, Cn(s) : s ∈ [0, t], n ∈ N) . (3.4)

Let K be a kinetics fulfilling Assumption 1. If we let λi` = 0 whenever yi → H` /∈ R, then the kinetics
K∗ of the reduced reaction network is defined by

λ∗ij(x) = λij(x) +
∑

`∈Vi
π`jλi`(x), (3.5)

for any yi → yj ∈ R∗. Thus, the rate of a reaction originating from a chain of intermediates is the sum
of the rates λi`(·) by which the first intermediate is produced from yi multiplied by the probability π`j
that the chain ends in yj . To this we add λij(·) if the reaction yi → yj is already in R.

Our main goal is to prove that the behaviour of X·, under certain conditions, is captured by the
behaviour of the process associated with the reduced SRN. In the broader setting of multiscale models
[Ball et al., 2006, Kang and Kurtz, 2013, Pfaffelhuber and Popovic, 2013], we prove that a suitable
rescaled version of X· can be approximated by a similarly rescaled version of the process of the reduced
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SRN. We will show this by constructing a particular process Z· on the same probability space as X·,
which is distributed as the process associated with the reduced SRN, and by further proving convergence
in probability of the difference between the rescaled versions of X· and Z· in various senses. Specifically,
we are able to prove uniform punctual convergence in probability to zero as well as convergence in
occupation measure (cf. Theorems 4.3 and 4.7). Under additional assumptions, we prove convergence in
probability to zero of the difference of the rescaled processes in the Skorohod topology (cf. Theorems 4.5
and 4.7).

The reduced reaction network defined here is the same as the reduced reaction network introduced in
Feliu and Wiuf [2013a]. Moreover, the procedure to obtain the kinetics of the reduced model coincides
with that in Feliu and Wiuf [2013a]. We prove this in Theorem 3.1. It is worth noting, however, that the
aims of Feliu and Wiuf [2013a] and this paper are very different. Indeed, we study various convergences of
the stochastic processes associated with (X , C,R), while in Feliu and Wiuf [2013a] the reaction networks
are deterministically modelled through a system of ODEs, and a relation between the steady states of
the original and the reduced models is investigated.

In Feliu and Wiuf [2013a], the kinetics of the reduced reaction network is given by

λ̃ij(x) = λij(x) +
∑

`∈Vi
k`jµi`(x), (3.6)

where µi` is defined as follows: consider the labelled directed graph Gxi with node set V∪{?} and labelled
edge set given by:

• H`
k``′−−−−−−→ H`′ if k``′ 6= 0 and ` 6= `′

• H`

∑
j∈W k`j−−−−−−→ ? if

∑

j∈W
k`j 6= 0

• ?
λi`(x)−−−−−−→ H` if λi`(x) 6= 0

(3.7)

We recall some notion from graph theory: let G be a labelled directed graph. A labelled spanning tree
of G rooted at some node g is a labelled directed graph ζ satisfying the following conditions:

i) the set of nodes of ζ coincides with the set of nodes of G;

ii) any directed edge of ζ is a directed edge of G, and the labels are conserved;

iii) ζ contains no cycle;

iv) for any node g′ 6= g, in ζ there exists a directed path from g′ to g.

Let Θx
i (·) be the set of labelled spanning trees of Gxi rooted at the argument, and let w(·) be the product

of the edge labels of the tree in the argument. Then, µi`(x) is defined as

µi`(x) =

∑
ζ∈Θxi (H`)

w(ζ)
∑
ζ∈Θxi (?) w(ζ)

. (3.8)

There might be no spanning tree rooted at a given intermediate species for some x ∈ NX . In that case,
µi`(x) is 0. The denominator is always strictly positive as any intermediate is eventually turned into a
non-intermediate (Definition 2.1). The proof of the following result is given in Section 6.

Theorem 3.1. For all x ∈ NX , i ∈ U , j ∈W , we have λ∗ij(x) = λ̃ij(x), hence (3.5) and (3.6) coincide.

Below we give an example of a reduced SRN.

Example 3.1. Consider the reaction network with intermediate species H1, H2, taken with mass-action
kinetics
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E +R

H1

H2

E + P1

E + P2

k1

k2

k3

k4

k5

k6

k7

k8

In this case there is only one initial reactant, namely E+R, while the final products are E+R, E+P1 and
E + P2. Therefore the set of initial reactants and the set of final products have non-empty intersection.
If we let E+P1 = y3 and E+P2 = y4, then, by summing the probabilities of all possible paths from H1

to E + P1, we find that

π13 =
k4

k3 + k4 + k5

∑

n∈N

(
k5

k3 + k4 + k5
· k7

k6 + k7

)n
=

k4(k6 + k7)

(k3 + k4)(k6 + k7) + k5k6
.

Similarly, we calculate π14, π23 and π24 and obtain

π14 =
k5k6

(k3 + k4)(k6 + k7) + k5k6
,

π23 =
k4k7

(k3 + k4)(k6 + k7) + k5k6
,

π24 =
(k3 + k4 + k5)k6

(k3 + k4)(k6 + k7) + k5k6
.

The reduced reaction network with mass-action kinetics is therefore

E +R

E + P1

E + P2

k1π13 + k2π23

k1π14 + k2π24

k3

(3.9)

4 Results

Before formalising the setting and the assumptions, we provide some examples to motivate it. Recall
Example 3.1. Intuitively, the reduced SRN behaves similarly to the original SRN if the time spent
in intermediate states (states with at least one intermediate molecule being present) is insignificant
compared to the time spent in other states. Thus, it is natural to consider situations for which the
reaction rates out of intermediate states are all high, though this is not what is required for our results
to hold (Example 4.6).

Consider a reaction network (X , C,R) and a sequence of kinetics KN indexed by N ∈ N. Let XN
· be

the process (2.3) associated with the kinetics KN . Generally, we will have in mind that the consumption
rates of the intermediates species increase in N . We will consider a multiscale setting, where the species
abundances also are scaled according to N . Hence, we consider the asymptotic behaviour of the process
XN
· as N → ∞, when both species abundances and rate constants depend on N , similarly to what is

done in Ball et al. [2006], Kang and Kurtz [2013], Pfaffelhuber and Popovic [2013].
To increase readability, in the examples the reaction rates depending on N are simple powers of N

with no prefactors (e.g. N2 rather than kN2). In the results these restrictions are not assumed and more
general forms of reaction rates are allowed.
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Example 4.1. Consider the SRN from Example 3.1 with rate constants

E +R

H1

H2

E + P1

E + P2

k1

k2

N

N3

N3

N2

N2

k3

(4.1)

The reduced SRN has reaction rates given by (3.9) with

πN13 =
2N3

3N3 + 2N
, πN14 =

N3

3N3 + 2N
, πN23 =

N3

3N3 + 2N
, πN24 =

2N3 +N

3N3 + 2N
.

We assume that the molecular abundances of R,P1, P2 are of order O(N), while XN
t (E) = O(1). We

further assume that at time 0 there are no intermediates present, that is, X0(H1) = X0(H2) = 0.
The expression O(N) will be made precise later, but it indicates that at a typical time t > 0, the
molecular abundances of R,P1, P2 are of the same order of magnitude as N . With the assumption on the
abundances, the rates of the reactions E+R→ H1, E+R→ H2 and E+P2 → E+R are of order O(N),
while the intermediate species are consumed considerably faster. Therefore it seems reasonable that the
intermediates might be eliminated from the description of the system and the dynamics described by the
simpler reduced SRN in (3.9). We will show that the dynamics of the reduced SRN approximates the
dynamics of (4.1) for N large. Specifically, we will show that the difference between the two stochastic
processes associated with the two networks converges to 0 in the sense of Theorems 4.3 and 4.7 for
N →∞.

Example 4.2 (trapped in the intermediate chain). Consider the same reaction network as in Example
4.1, but with slightly changed reaction rates. The reaction H2 → E +P2 is slowed down and has rate N
(before N2). The reaction H1 → H2 is accelerated and has rate N4 (before N3). All other rates are left
unchanged. We assume as before that the molecular abundances of R,P1, P2 are of order O(N), while
XN
t (E) = O(1). Although the intermediate species are consumed faster than the other species (the life

time of a molecule of H1 and of H2 are of order O(1/N4) and O(1/N2), respectively), it is not possible
to approximate the above SRN with one of the form (3.9), for any choice of kinetics. Indeed, it is more
likely that an intermediate molecule is transformed into another intermediate molecule than into one of
the two final products, E+P1 and E+P2. On average, an intermediate molecule will undergo the cycle
of transformations H1 → H2 → H1 N times before producing a non-intermediate complex. Since the
life time of a molecule of H2 is of order O(1/N2), the expected time until consumption of such a cycle of
intermediates is of the order O(1/N), while the rate of production of intermediate molecules is of order
O(N) when molecules of E are present, according to the hypothesis XN

t (R) = O(N). This will result in
a positive number of intermediate species being present at any fixed time t. Therefore, in this case, the
intermediate species cannot be eliminated in the sense of this paper.

Example 4.3 (rescaling of time). Consider the following SRN, which is a modified version of (4.1). The
enzyme E is removed from the product complexes E+P1 and E+P2, and the reaction E+P2 → E+R
is deleted:

E +R

H1

H2

P1

P2

k1

k2

N

N3

N3

N2

N2
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Assume that the molecular abundance of R is of order O(N) and that the molecular abundance of E is
of order O(1). The small amount of enzyme molecules will be consumed fast and none will be produced.
Therefore, after a while, there will be no enzyme molecules present. Each intermediate molecule will
fast produce P1 or P2 and, after that, no other reaction can possibly take place. That is, after a time of
order O(1/N), no reaction will take place. Thus, in order to observe the dynamics of the system, time
should be rescaled by a factor N . That is, the time t̃ = t/N should be considered. This is the same as
studying the SRN with all reaction rates rescaled by a factor of 1/N .

Despite some reaction rates tend to zero with N , our results can be applied to approximate the
dynamics of the SRN. In particular the reduced SRN is given by

E +R

P1

P2

(2k1+k2)N
3N2+2

N2k1+(2N2+1)k2
3N3+2N

where the magnitudes of the molecular abundances of E, R, P1, P2 are the same as in the full reaction
network.

4.1 Assumptions

Let (X , C,R) be a SRN with a set of intermediate species V ⊂ X , let KN be a sequence of kinetics
indexed by N ∈ N, and let XN

· be the corresponding stochastic process (2.3). Define

R0 = {yi → yj ∈ R : yi /∈ V} , (4.2)

R1 = {yi → yj ∈ R : yi, yj /∈ V} ⊂ R0. (4.3)

Specifically, R0 is the set of reactions whose reactant is not an intermediate, while R1 is the set of
reactions not involving intermediates at all.

Fix a non-negative vector of scaling coefficients, α = (α(S))S∈X\V ∈ RX\V≥0 , and define the rescaled
process,

X̂N
t = N−αp(XN

t ), (4.4)

where p : RX → RX\V is the projection onto the non-intermediate species space and the multiplication
N−αp(XN

t ) is intended component-wise. The process X̂N
· is the rescaled process in the sense of Ball

et al. [2006], Kang and Kurtz [2013], Pfaffelhuber and Popovic [2013] for the non-intermediate species.

Since α(S) might differ from species to species, X̂N
· is a multiscale process.

Assumption 2. Let α be given as in (4.4).

(i) (Rate functions and intermediates) We assume that (X , C,R) equipped with KN satisfies Assump-
tion 1 for all N ∈ N.

(ii) (Rescaling of abundances) We assume that for any non-intermediate species S ∈ X \ V,

X̂N
t (S) = O(1), (4.5)

that is, the scaled abundances do not blow up before time t. To make (4.5) precise, we require that
there exists T > 0 such that for any S ∈ X \ V,





∀ ν > 0 ∃Υν : lim sup
N→∞

P

(
sup
[0,T ]

X̂N
t (S) > Υν

)
< ν (4.6a)

L
{
t ∈ [0, T ] : lim

N→∞
X̂N
t (S) = 0 a.s.

}
= 0, (4.6b)

where L denotes the usual Lebesgue measure on R.
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(iii) (Convergence of rate functions) We assume that there exist a set of locally Lipschitz functions

{λr(·)}r∈R0 defined on RX\V≥0 , fulfilling

x ∈ RX\V>0 ⇒ λr(x) > 0,

and a set of non-negative real numbers {βr}r∈R0 such that, for all r ∈ R0,

N−βrλNr (Nαx) −−−−→
N→∞

λr(x) (4.7)

uniformly on compact sets, where the rate functions λNr are extended to the real vectors by con-
sidering the floor function of the argument.

(iv) (Degradation of intermediates) Let CNn , τNn , tNn and πN`j be as defined after Assumption 1. Let

β∗` = max
i∈U

βi`, α∗j = min
S∈yj

α(S),

where βi` is as in (iii) for r = yi → H`. Moreover, define

pε`j(N) = P

(
τN1 >

Nα∗j ε

Nβ∗` πN`j

∣∣∣∣∣C
N
1 (tN1 ) = H`, C

N
1 (tN1 + τN1 ) = yj

)
. (4.8)

By definition of the continuous-time Markov chains CNn (·), for any n

P

(
τNn >

Nα∗j ε

Nβ∗` πN`j

∣∣∣∣∣C
N
n (tNn ) = H`, C

N
n (tNn + τNn ) = yj

)
= pε`j(N).

We assume that the size of τNn is controlled, that is, for all ε > 0, ` ∈ ⋃i∈U Vi and j ∈W , we have

πN`jN
β∗`−α∗j pε`j(N) −−−−→

N→∞
0. (4.9)

Sufficient conditions for (4.9) are given in Propositions 4.1 and 4.2.

(v) (Single scale system) For any non-intermediate species S ∈ X \ V, let

R1
S = RS ∩R1 and RS =

{
r ∈ R∗ \ R1 : ξr(S) 6= 0

}
.

Moreover, for all ` ∈ Vi and j in the set of complexes indices, let πN`j be as in (3.3). We assume
that 




∃ γ`j = lim
N→∞

logN π
N
`j ∈ [−∞, 0]

∃ lim
N→∞

πN`jN
−γ`j if γ`j > −∞.

(4.10)

and
max

(
{βr}r∈R1

S
∪ {βi` + γ`j}`∈Vi,yi→yj∈RS

)
≤ α(S), (4.11)

where βr with r ∈ R0 is as in (iii), and max ∅ = −∞.

Remark 4.1. ‘Single scale system’ in Assumption 2(v) refers to the time scale of the reduced SRN, as
defined in Pfaffelhuber and Popovic [2013].

Remark 4.2. Time rescaling in the sense of Example 4.3 might be considered. It is equivalent to a
rescaling of all the rate functions by a common factor, and therefore equivalent to adding a common
term to all the β’s . Thus, time rescaling is implicitly considered in our framework of model reduction.
We will ignore it in the development of the theory.
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Remark 4.3. Assume mass-action kinetics and assume that for any reaction r : yi → yj ∈ R0, the
constant kNr is of the form Nηrkr with kr > 0 and ηr ∈ R. Thus,

λNr (Nαx) = Nηrkr
∏

S∈yi

(Nα(S)x(S))!

(Nα(S)x(S)− yi(S))!
1{Nα(S)x(S)≥yi(S)} .

This means that the right scaling for the rate function λNr is

βr = ηr +
∑

S∈yi
α(S) · yi(S) .

Indeed,
N−βrλNr (Nαx) −−−−→

N→∞
λr(x)

uniformly on compact sets, where

λr(x) = kr
∏

S∈yi
α(S)=0

x(S)!

(x(S)− yi(S))!
1{x(S)≥yi(S)}

∏

S∈yi
α(S)>0

x(S)yi(S)
1{x(S)>0} .

Remark 4.4. Theorems 4.3 and 4.5 below hold even if (4.10) and (4.11) in Assumption 2(v) are replaced
by the weaker conditions

∃c`j > 0 s.t. lim sup
N→∞

πN`jN
β∗`−α∗j ≤ c`j (4.12)

max

(
{βr}r∈R1

S
∪
{

lim sup
N→∞

(
βi` + logN π

N
`j

)}

`∈Vi,yi→yj∈RS

)
≤ α(S). (4.13)

We will use these in the proof of Theorems 4.3 and 4.5.

Under the assumption that X̂N
0 is bounded uniformely on N , condition (4.6a) is fulfilled for a special

class of reaction networks called conservative reaction networks (cf. Remark 4.6). In order to state
suffiecient conditions for (4.9) to hold, for any ` ∈ Vi we define

a` = min
yj∈W`

α∗j ,

where W` ⊆ W denotes the set of final products which are obtainable from H` through a path of
intermediates. In other words, W` is the set of final products yj such that there exists a path of the form

H` → H`1 → · · · → H`k → yj .

The following holds:

Proposition 4.1. Equation (4.9) holds if for all ` ∈ ⋃i∈U Vi and ε > 0, we have

Nβ∗`−a`P
(
τN1 > Na`−β∗` ε

∣∣∣CN1 (tN1 ) = H`

)
−−−−→
N→∞

0. (4.14)

Moreover, (4.9) holds if for all ` ∈ ⋃i∈U Vi and ε > 0, we have (4.12) and

Nβ∗`−a`E
[
τN1
∣∣CN1 (tN1 ) = H`

]
−−−−→
N→∞

0. (4.15)

Proof. The first part of the proposition is proven by

∑

j∈W
πN`jN

β∗`−α∗j pε`j(N) ≤ Nβ∗`−a`
∑

j∈W
πN`jP

(
τN1 > Na`−β∗` ε

∣∣∣CN1 (tN1 ) = H`, C
N
1 (tN1 + τN1 ) = yj

)

= Nβ∗`−a`P
(
τN1 > Na`−β∗` ε

∣∣∣CN1 (tN1 ) = H`

)
.
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The second part of the proposition follows from

∑

j∈W
πN`jN

β∗`−α∗jE
[
τN1
∣∣CN1 (tN1 ) = H`, C

N
1 (tN1 + τN1 ) = yj

]

≤ Nβ∗`−a`
∑

j∈W
πN`jE

[
τN1
∣∣CN1 (tN1 ) = H`, C

N
1 (tN1 + τN1 ) = yj

]

= Nβ∗`−a`E
[
τN1
∣∣CN1 (tN1 ) = H`

]
.

Therefore, (4.15) implies that for any j ∈W

πN`jN
β∗`−α∗jE

[
τN1
∣∣CN1 (tN1 ) = H`, C

N
1 (tN1 + τN1 ) = yj

]
−−−−→
N→∞

0.

By Markov inequality, this implies that pε`j(N) tends to zero as N goes to infinity. By (4.12), the latter
leads to (4.9), and the proof is complete.

Since τNn is a phase-type distributed random variable, we can express (4.14) in terms of the exponential
of the transition rate matrix (3.2). Specifically, (4.14) is equivalent to

Nβ∗`−a`(e`)
> exp

(
Na`−β∗` εQNV,V

)
e −−−−→
N→∞

0 ∀` ∈
⋃

i∈U
Vi,

where (e`)
> denotes the transpose of the canonical base vector with a one in the `-th entry and e is the

vector with all entries equal to one. A sufficient condition for (4.15) to hold is given in the proposition
below:

Proposition 4.2. Assume Assumptions 2(i,iii) are fulfilled for some α ∈ RX\V . For all i ∈ U and
` ∈ V , let µNi` (x) be as in (3.8) and define

α∗ = min
j∈W

α∗j .

We have that, if
N−α

∗
µNi` (N

αx) −−−−→
N→∞

0 (4.16)

for all x ∈ RX\V≥0 and for all i ∈ U , ` ∈ V , then (4.15) in Assumption 2(iv) holds. Moreover, if α∗j = α∗j′
for all j, j′ ∈W , then (4.16) is also a necessary condition for (4.15) to hold.

We prove Proposition 4.2 in Section 6. The condition (4.15) is sufficient for (4.9) to hold, but it is
not necessary, as shown in Example 4.6. Before moving on, we make a number of remarks.

4.2 The Process ZN
·

In order to show that the reduced SRN provides a good approximation, under the given assumptions,
of different features of the original SRN, we define a sequence of processes ZN· ad hoc. We choose them
such that for any fixed t the (rescaled) difference

∣∣XN
t − ZNt

∣∣ tends to zero in probability, and such
that the process ZN· is distributed as the process associated with the reduced SRN. We will prove other
convergence statements in Theorems 4.3, 4.5 and 4.7.

Recall that p : RX → RX\V is the projection onto the non-intermediate species space. By Assumption
2(i), the reaction rates λNr (·) with r ∈ R0 do not depend on the counts of intermediates. That is, for
any x ∈ NX ,

λNr (x) = λ̄Nr (p(x)),

for some function λ̄Nr : NX\V → R≥0. For the sake of convenience, we will abuse notation and let
λ̄Nr (x) = λNr (x) for all x ∈ RX\V .

Given the n-th chain of intermediates CNn (·) appearing in relation to the process XN
· , we denote

by {CNn (·) ∈ Ci`j} the event that CNn (·) originates from the reaction yi → H` and eventually produces
the final complex yj . Such an event is measurable with respect to the σ-algebra σN∞ as introduced in
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(3.4). Furthermore, let MN
i`j(t) denote the number of the chains originated before time t and such that

{CNn (·) ∈ Ci`j}:

MN
i`j(t) = #

{
n : CNn (·) ∈ Ci`j , tNn ≤ t

}
=

Yi`(
∫ t
0
λNi`(X

N
s )ds)∑

n=1

1{CNn (·)∈Ci`j}.

The processes MN
i`j(·) are therefore arrival processes, and we might represent them in terms of indepen-

dent and identically distributed unit-rate Poisson processes Yi`j(·) such that

MN
i`j(t) = Yi`j

(∫ t

0

πN`jλ
N
i` (X

N
s )ds

)
. (4.17)

In this context, Yi`(t) =
∑
j∈W Yi`j(t). Moreover, let tNi`j,n be the time of the n-th jump of the pro-

cess MN
i`j(·), and let τNi`j,n be a collection of independent random variables distributed as τN1 given

(CN1 ∈ Ci`j). We now consider the process counting the number of chains of intermediates CNn (·)
consumed before time t and such that {CNn (·) ∈ Ci`j}. Such a process is distributed as

M
N

i`j(t) =

MN
i`j(t)∑

n=1

1{tNi`j,n+τNi`j,n≤t}.

For any time t, we have MN
i`j(t) ≥M

N

i`j(t). The process X̂N
· can be equivalently expressed as

X̂N
t = X̂N

0 +N−α


∑

r∈R1

ξrYr

(∫ t

0

λNr (XN
s )ds

)
+
∑

i∈U

∑

j∈W

(
yj
∑

`∈Vi
M

N

i`j(t)− yi
∑

`∈Vi
MN
i`j(t)

)
 , (4.18)

where the Poisson processes Yr(·) are the same as those appearing in (2.3). We will use this representation
in the remaining part of the paper.

We define the process ẐN· on N−αNX\V as

ẐNt = ẐN0 +N−α


∑

r∈R1

ξrYr

(∫ t

0

λNr (ZNs )ds

)
+
∑

i∈U

∑

j∈W
(yj − yi)

∑

`∈Vi
Yi`j

(∫ t

0

πN`jλ
N
i` (Z

N
s )ds

)
 .

(4.19)

For any fixed t ≥ 0, the random variables X̂N
t and ẐNt are measurable with respect to

σ
(
Yr(s), Yi`j(s), τ

N
i`j,n : r ∈ R1, i ∈ U, ` ∈ Vi, j ∈W,n,N ∈ N and 0 ≤ s <∞

)
.

The above σ-algebra contains information about the Poisson processes Yr(·) for reactions not involving
intermediates, about the Poisson processes Yi`j(·) that drive MN

i`j(·) and about the delays τNi`j,n of
the reactions proceeding through intermediates species. It does not contain full information on the
intermediate chains CNn (·), but that is not required in the description of the processes X̂N

· and ẐN· . The
random variables we are interested in will all be measurable with respect to the above σ-algebra, and
therefore are defined on the same probability space. Since ẐNt is, up to rescaling, expressed in the form
(2.3), it is distributed as the rescaled stochastic process associated with (3.1).

There is a precise intuition behind the choice of ẐNt as approximating process for the original system.
Consider (4.18): if (4.9) holds, then we expect the lifetime of the intermediate species to decrease with

N . Thus, we could imagine that, for any fixed time t, MN
i`j(t) = M

N

i`j(t) with high probability and, thus,

that X̂N
t is approximated by

ŴN
t = X̂N

0 +N−α


∑

r∈R1

ξrYr

(∫ t

0

λNr (XN
s )ds

)
+
∑

i∈U

∑

j∈W
(yj − yi)

∑

`∈Vi
MN
i`j(t)


 . (4.20)

The process ẐN· in (4.19) is defined analogously to (4.20).
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Unfortunately, we cannot hope for X̂N
· to converge weakly to ẐN· in the Skorohod topology in

general (cf. Example 5.3). However, we will show a uniform punctual convergence in probability as well

as convergence in occupation measure for the difference of the stopped processes X̂N
·∧T and ẐN·∧T , for any

fixed T > 0. Furthermore, we will give additional hypothesis under which the convergence in probability
in the Skorohod space holds.

4.3 Bounded Reaction Rates

Recall thatR0 in (4.2) is the set of reactions whose reactant is not an intermediate. Here we are concerned
with the case when all reaction rates of reactions in R0 are bounded by a power of N , specifically for
any r ∈ R0,

N−βrλNr (x) ≤ Br ∀N ∈ N, ∀x ∈ RX\V≥0 , (4.21)

where βr is as in Assumption 2(iii) and Br is a positive constant (later the constant will also be referred
to as Bi` if in relation to the reaction yi → H`). It is worth mentioning that in this case, (4.6a) in

Assumption 2(ii) is always fulfilled if X̂N
0 is stochastically bounded (cf. Remark 4.5). This is desirable

because it suffices to control stochastic boundeness of a real random variable rather than of an entire
stochastic process. Moreover, (4.21) can be assume to hold if the network is conservative and X̂N

0 is
bounded independently of N (cf. Remark 4.6).

The proofs of Theorems 4.3 and 4.5 can be found in Section 7, using the relaxed version of Assumption
2(v) as given in Remark 4.4. The weaker condition is sufficient to prove Corollary 4.4 as well.

Theorem 4.3. Assume Assumption 2 is fulfilled for some α ∈ RX\V . Further, assume that

E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]
−−−−→
N→∞

0,

and that the initial amounts of the intermediate species are 0. Finally, assume that for any r ∈ R0,
(4.21) holds and λr is Lipschitz. Then, if T is as in Assumption 2(ii), we have that

sup
t∈[0,T ]

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
−−−−→
N→∞

0, (4.22)

In particular, (4.22) implies that for all ε > 0,

sup
t∈[0,T ]

P
(∣∣∣X̂N

t − ẐNt
∣∣∣ > ε

)
−−−−→
N→∞

0. (4.23)

Finally, for any continuous function f : RX\V → R we have

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε

)
−−−−→
N→∞

0. (4.24)

Remark 4.5. Assume that (4.21), (4.12), and (4.13) hold. Assume further that X̂N
0 is stochastically

bounded, meaning that for every ν > 0 there exists Υν such that for every S ∈ X \ V

lim sup
N→∞

P
(
X̂N

0 (S) > Υν

)
< ν.

Our aim is to prove (4.6a). By (4.18)

sup
t∈[0,T ]

X̂N
t (S) ≤ XN

0 (S) +N−α(S)
∑

r∈R1
S

|ξr(S)|Yr(NβrBrT )+

+N−α(S)
∑

i∈U

∑

j∈W
2 (yj(S) + yi(S))

∑

`∈Vi
Yi`j(π

N
`jN

βi`Bi`T ),

where R1
S is defined according to (2.2). Using assumptions (4.12), (4.13) and the Law of Large Numbers

for Poisson processes to control the above expression for α(S) > 0, we obtain that, for any ν > 0, there
exists Υ′ν > 0, such that

lim sup
N→∞

P

(
sup
t∈[0,T ]

X̂N
t (S) > Υ′ν

)
< ν.
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Remark 4.6. Conservative reaction networks are a special class of reaction networks [Horn and Jackson,
1972]. In a conservative reaction network, a positive linear combination of the species abundances is
preserved throughout time and, hence, the total abundances are bounded from above given any initial
condition. In such class of reaction networks, if X̂N

0 is bounded uniformly on N then condition (4.21)
is fulfilled. Indeed, if the original reaction network is conservative, then the reduced reaction network is
conservative as well [Feliu and Wiuf, 2013a]. Let S1 and S2 denote the spaces spanned by the reaction
vectors of the original and of the reduced network, respectively. Moreover let S = p(S1) ∪ S2 ⊂ RX\V .

It can be shown that S2 ⊆ p(S1), but this lies outside our concerns. The initial condition X̂N
0 varies in

a compact set K0. Therefore, for any r ∈ R0, we might consider a modified version of the rate functions
λNr , such that

N−βrλNr (Nαx) = 1 ∀x /∈ (S +K1) ∩ RX\V≥0 ,

and K1 ⊃ K0 is a compact set. Thus, the limit functions λr in Assumption 2(iii) are 1 outside a compact
set and therefore bounded. Due to (4.7), condition (4.21) is met. In particular, it follows from Remark
4.5 that in this case (4.6a) always holds.

Corollary 4.4. Assume that the assumptions of Theorem 4.3 hold. Then, the difference between the
processes X̂N

·∧T and ẐN·∧T converges in finite dimensional distribution to 0.

Proof. From Theorem 4.3 we have that (4.23) holds for any ε > 0. Thus, for any finite set of time points
{tm}pm=0 ⊆ [0, T ] we have that

P

(
max

0≤m≤p

∣∣∣X̂N
tm − ẐNtm

∣∣∣ > ε

)
= P

(
p⋃

m=0

{∣∣∣X̂N
tm − ẐNtm

∣∣∣ > ε
})

≤
p∑

m=0

P
(∣∣∣X̂N

tm − ẐNtm
∣∣∣ > ε

)
−−−−→
N→∞

0,

hence the corollary holds.

We discuss here some applications of Theorem 4.3 and Corollary 4.4.

Example 4.4. Consider the reaction network in Example 4.1. Assumption 2(i) holds. Further, if we let
α(E) = 0 and 0 < α(R) = α(P1) = α(P2) < 2, then Assumption 2(ii-v) are satisfied if we choose the
initial value XN

0 proportional to the scaling Nα and βr according to Remark 4.3. Note that the reaction
network is conservative in the sense of Remark 4.6. Thus, (4.21) holds and by Theorem 4.3 and Corollary
4.4, the probability distribution of the process associated with the reduced SRN approximates, in the
sense of Theorem 4.3 and Corollary 4.4, the probability distribution of the process (4.1).

Example 4.5. Consider the Michaelis-Menten mechanism taken with mass-action kinetics:

E +R H E + P

k0

k1N
η1

k2N
η2

Assumption 2(i) is satisfied, as well as (4.21) since the network is conservative. The probability that a
molecule of H is transformed into the complex E +R is k1N

η1/ (k1N
η1 + k2N

η2), while the probability
that it is transformed into the complex E+P is k2N

η2/ (k1N
η1 + k2N

η2). The reduced SRN is given by

E +R E + P

k0k2N
η2

k1Nη1+k2Nη2

If we let that α(E) = 0, α(R) < η1∨η2 and α(P ) = α(R)∧(α(R) + η2 − η1), then Assumption 2(ii-v) are
satisfied if we choose the initial value XN

0 proportional to the scaling Nα and βr according to Remark
4.3. In this case, Theorem 4.3 and Corollary 4.4 state in which sense the original process is approximated
by the one associated with the reduced SRN. The magnitudes of the molecular abundances are the same
as in the original system.

In the reduced SRN the amount of enzyme E is conserved. Hence, the model can further be reduced
to
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R P

E0k0k2N
η2

k1Nη1+k2Nη2

where the amount of E molecules constantly equals E0.
Let δ = α(R) + min {0, η2 − η1}. If δ < 0, we wait a time of order O(N−δ) for the first reaction to

occur in the reduced SRN. Thus, we might rescale time in the original SRN by t̃ = Nδt. As shown in
example 4.3, this is equivalent to rescale the rate functions. After rescaling, reduction can be performed
again to obtain an approximation of the system’s dynamics.

The following example concerns a network where not all the rates out of intermediate states are high.
Moreover, it shows that condition (4.15) is sufficient for (4.9) in Assumption 2(iv) to hold, but it is not
necessary.

Example 4.6. Consider the SRN taken with mass-action kinetics,

A H1

H2

B
λ(x) N2

NN−2

with α(A) = α(B) = 0. Assumption 2 is fulfilled if we choose the initial value XN
0 proportional to the

scaling Nα and βr according to Remark 4.3. This is true even though the consumption rate of H2 tends
to zero. Moreover, the reaction network is conservative, thus by Theorem 4.3, the reduced SRN

A B
λ(x)

provides a good approximation of the dynamics of the original SRN, for N large.
Further, (4.14) holds since for any fixed ε > 0, the probability that a chain of intermediates survives

for a time bigger than ε goes to zero with N →∞. Hence by Proposition 4.1 (4.9) holds as well. However,
in this case (4.15) does not hold. If we denote A = y3 and B = y4, this can be shown by making use of
Proposition 4.2 and

µN32(x) =
Nkλ(x)

N2 ·N−2
= Nkλ(x) −−−−→

N→∞
∞ for any x ∈ RX\V≥0 .

For the particular case α > 0, a stronger convergence result than those stated in Theorem 4.3 holds.
The result does not hold generally for all α, as shown in Example 5.3.

Theorem 4.5. Assume the assumptions of Theorem 4.3 are fulfilled and that α > 0. Then, for any
ε > 0,

P

(
sup
t∈[0,T ]

∣∣∣X̂N
t − ẐNt

∣∣∣ > ε

)
−−−−→
N→∞

0. (4.25)

In particular, this implies that the difference between the processes X̂N
·∧T and ẐN·∧T converges weakly to 0

in the Skorohod topology.

4.4 Unbounded Reaction Rates

In this section, we will relax the hypothesis of boundedness in Theorem 4.3. To begin with, we introduce
some new notation. Assume Assumption 2 is fulfilled and let R∗ be defined as in (3.1). Define

β∗ij = max
`∈Vi
{βij , βi` + γ`j} ,

where βij , βi` is as in Assumption 2(iii). We have that for any reaction r ∈ R∗,

N−β
∗
rλN,∗r (ZNt ) −−−−→

N→∞
λ∗r(Ẑt), (4.26)
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where λN,∗r (·) is defined in (3.5) and {λ∗r}r∈R∗ (·) is a set of locally Lipschitz functions such that

v ∈ RX>0 ⇒ λ∗r (v) > 0

(Assumption 2(iii)). As in Pfaffelhuber and Popovic [2013], we distinguish between fast and slow reac-
tions. Let

Rf =
⋃

S : α(S)>0

{
yi → yj ∈ R∗S : α(S) = β∗ij

}

Rs =
⋃

S : α(S)=0

{
yi → yj ∈ R∗S : α(S) = β∗ij

}
.

Moreover, let the vector ξ∗r ∈ RX be defined by its entries

ξ∗r (S) = lim
N→∞

Nβ∗r−α(S)ξr(S).

Specifically, ξ∗r (S) = ξr(S), if α(S) = β∗r , and ξ∗r (S) = 0, otherwise.

Lemma 4.6. Assume Assumption 2 is fulfilled for some α ∈ RX\V and let T be as in Assumption 2(i).
Assume that up to time T , there exists a unique and almost surely well-defined solution to the equation

Z∗t = Z∗0 +
∑

r∈Rs
ξ∗rYr

(∫ t

0

λ∗r(Z
∗
s )ds

)
+
∑

r∈Rf
ξ∗r

∫ t

0

λ∗r(Z
∗
s )ds, (4.27)

where the functions λ∗r are the limit functions (4.26). Then, if ẐN0 converges in probability to Z∗0 , the

process ẐN·∧T converges in probability to Z∗·∧T with respect to the Skorohod distance.

Proof. Just note that, in our setting, ZN· is the process associated to a single-scale system satisfying the
condition of Lemma 2.8 in Pfaffelhuber and Popovic [2013], and the result follows.

Example 4.7. Consider again Example 4.1. In Example 4.4, we saw that the reduced SRN approximate
the behaviour of (4.1) for N large, in the sense of Theorem 4.3 and Corollary 4.4. Here we present a
weak limit for the process of the reduced reaction network, given by Lemma 4.6. It is easy to check that
the probabilities πN13, πN14, πN23 and πN24 tend to 2/3, 1/3, 1/3 and 2/3, respectively, for N → ∞. The
weak limit is given by the deterministic system





xt(E) = x0(E)

xt(R) = x0(R) + x0(E)

∫ t

0

(
k3xs(P2)− (k1 + k2)xs(R)

)
ds

xt(P1) = x0(P1) + x0(E)

∫ t

0

2k1 + k2

3
xs(R)ds

xt(P2) = x0(P2) + x0(E)

∫ t

0

(
k1 + 2k2

3
xs(R)− k3xs(P2)

)
ds,

where, according to the choice of α, the counts of the species E and the (scaled) concentrations of the
species R,P1, P2 are considered.

Theorem 4.7. Assume that the hypotheses of Lemma 4.6 are satisfied. Moreover, assume that both X̂N
0

and ẐN0 converge in probability to Z∗0 . Then, for any ε > 0,

sup
t∈[0,T ]

P
(∣∣∣X̂N

t − Z∗t
∣∣∣ > ε

)
−−−−→
N→∞

0. (4.28)

Moreover, for any continuous function f : RX\V → R we have

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(Z∗s )
)
ds

∣∣∣∣ > ε

)
−−−−→
N→∞

0. (4.29)
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Finally, if α > 0 then

P

(
sup
t∈[0,T ]

∣∣∣X̂N
t − Z∗t

∣∣∣ > ε

)
−−−−→
N→∞

0. (4.30)

The latter gives weak convergence of X̂N
·∧T to Z∗·∧T in the Skorohod topology.

Proof. Since Z∗ is almost surely unique and well defined, we have that for any ν > 0, there exists a
constant Ψν > 0 such that

P

(
sup
t∈[0,T ]

|Z∗t | > Ψν

)
< ν.

Since the number of species is finite, due to (4.6a) there exists some constant Υ∗ν > 0 such that for N
large enough

P

(
sup
t∈[0,T ]

∣∣∣X̂N
t

∣∣∣ > Υ∗ν

)
< ν.

Let
Ψ∗ν = max {Ψν ,Υ

∗
ν} .

Moreover, let D(h) denote the disc of radius h in RX\V≥0 centred in the origin, with respect to the euclidean

norm. For any r ∈ R0, we define λNb,r(·) such that

λNb,r(x) =





λNr (x) if x ∈ D(Ψ∗ν)

(1− |x| −Ψ∗ν)λNr

(
Ψ∗ν
|x| x

)
+ (|x| −Ψ∗ν)Nβr if x ∈ D(Ψ∗ν + 1) \D(Ψ∗ν)

Nβr otherwise.

These functions are Lipschitz and define a new kinetics KNb . Let XN
b,·, Z

N
b,· and Z∗b,· be the corresponding

processes, with

XN
b,0 = XN

0 1D(Ψ∗ν)(X̂
N
0 ), ZNb,0 = ZN0 1D(Ψ∗ν)(Ẑ

N
0 ) and Z∗b,0 = Z∗01D(Ψ∗ν)(Z

∗
0 ).

With this choice, we have

P
(
XN
b,0 = XN

0

)
≥ 1− ν, P

(
ZNb,0 = ZN0

)
≥ 1− ν and P

(
Z∗b,0 = Z∗0

)
≥ 1− ν,

at least for N large enough (by hypothesis ẐN0 converges in probability to Z∗0 ). Therefore

P

(
sup
t∈[0,T ]

∣∣Z∗b,t
∣∣ > Ψ∗ν

)
≤ P

(
sup
t∈[0,T ]

|Z∗t | > Ψ∗ν

)
+ ν < 2ν,

P

(
sup
t∈[0,T ]

∣∣∣ẐNt
∣∣∣ > Ψ∗ν

)
≤ P

(
sup
t∈[0,T ]

∣∣∣ẐNb,t
∣∣∣ > Ψ∗ν

)
+ ν.

The rates λNb,r(·) satisfy the condition in Theorem 4.3 and

E
[∣∣∣X̂N

b,0 − ẐNb,0
∣∣∣
]
−−−−→
N→∞

0.

From Theorem 4.3, we have

sup
t∈[0,T ]

P
(∣∣∣X̂N

b,t − ẐNb,t
∣∣∣ > ε

)
−−−−→
N→∞

0,

and by Lemma 4.6,

P

(
sup
t∈[0,T ]

∣∣∣ẐNt
∣∣∣ > Ψ∗ν

)
≤ P

(
sup
t∈[0,T ]

∣∣∣ẐNb,t
∣∣∣ > Ψ∗ν

)
+ ν −−−−→

N→∞
P

(
sup
t∈[0,T ]

∣∣Z∗b,t
∣∣ > Ψ∗ν

)
+ ν < 3ν.
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Putting it all together, we have

lim sup
N→∞

sup
t∈[0,T ]

P
(∣∣∣X̂N

t − ẐNt
∣∣∣ > ε

)

≤ lim sup
N→∞

sup
t∈[0,T ]

P

(∣∣∣X̂N
t − ẐNt

∣∣∣ > ε, sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
> Ψ∗ν

)
+

+ lim sup
N→∞

sup
t∈[0,T ]

P

(∣∣∣X̂N
t − ẐNt

∣∣∣ > ε, sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
≤ Ψ∗ν

)

≤ lim sup
N→∞

P

(
sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
> Ψ∗ν

)
+ lim sup

N→∞
sup
t∈[0,T ]

P
(∣∣∣X̂N

b,t − ẐNb,t
∣∣∣ > ε

)
< 4ν.

Since ν > 0 is arbitrary, we have (4.23). Similarly,

lim sup
N→∞

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε

)

≤ lim sup
N→∞

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε, sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
> Ψ∗ν

)
+

+ lim sup
N→∞

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε, sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
≤ Ψ∗ν

)

≤ lim sup
N→∞

P

(
sup
t∈[0,T ]

(∣∣∣X̂N
t

∣∣∣ ∨
∣∣∣ẐNt

∣∣∣
)
> Ψ∗ν

)
+lim sup

N→∞
P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

b,s)− f(ẐNb,s)
)
ds

∣∣∣∣ > ε

)
< 4ν,

which implies that (4.24) holds. Since ẐN· converges in probability to Z∗· in the Skorohod space, by a
version of the continuous mapping theorem [Hoffmann-Jørgensen, 1994, Section 5.4] it follows that

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(ẐNs )− f(Z∗s )

)
ds

∣∣∣∣ > ε

)
−−−−→
N→∞

0,

where we used that the Skorohod distance for continuous functions is equivalent to the uniform distance.
Hence, (4.29) is a consequence of triangular inequality. By similar arguments and by Theorem 4.5, if
α > 0 we have

P

(
sup
t∈[0,T ]

∣∣∣X̂N
t − ẐNt

∣∣∣ > ε

)
≤ 4ν + P

(
sup
t∈[0,T ]

∣∣∣X̂N
b,t − ẐNb,t

∣∣∣ > ε

)
−−−−→
N→∞

4ν.

If α > 0 then Z∗· is continuous, therefore by Lemma 4.6 we have

P

(
sup
t∈[0,T ]

∣∣∣ẐNt − Z∗t
∣∣∣ > ε

)
−−−−→
N→∞

0.

The proof is then concluded by the arbitrariness of ν, and the triangular inequality.

Remark 4.7. Convergence of the processes X̂N
·∧T to the process Z∗·∧T in occupation measure is implied

by (4.29) [Kallenberg, 1974, Theorem 4.5].

Corollary 4.8. Assume that the hypotheses of Lemma 4.6 are satisfied. Then, the difference between
the processes X̂N

·∧T and Z∗·∧T converges in finite dimensional distribution to 0.

Proof. The proof is identical to the proof of Corollary 4.4. Indeed, from Theorem 4.7, we have that
(4.28) holds for any ε > 0. Thus, for any finite set of time points {tm}pm=0 ⊆ [0, T ], we have that

P

(
max

0≤m≤p

∣∣∣X̂N
tm − Z∗tm

∣∣∣ > ε

)
= P

(
p⋃

m=0

{∣∣∣X̂N
tm − Z∗tm

∣∣∣ > ε
})

≤
p∑

m=0

P
(∣∣∣X̂N

tm − Z∗tm
∣∣∣ > ε

)
−−−−→
N→∞

0,

19



and the result follows.

5 Discussion

We close by presenting a collection of examples and remarks. A particular strength of our approach
is that the reduced reaction network is easily found from the original reaction network and that the
reaction rates of the reduced SRN can be found through a simple algebraic procedure. If the definition
of intermediate species is relaxed, it might still be possible to find an approximating reduced SRN in
concrete cases. However, a general technique does not seem to present itself easily.

We assume mass-action kinetics unless otherwise specified. If the stoichiometric coefficient of the
intermediates were allowed to be different from one, or if different intermediate species were allowed to
interact, our results would not be true in general:

Example 5.1 (Relaxing the definition of intermediates, I). Consider the SRN

A

3H B

2H C

k1

N

k2

N

with α = 0. A single molecule of H could be trapped as the two reactions 3H → B and 2H → A compete
against each other. Thus, there does not exist an approximation without intermediates as in Theorem
4.3 or Theorem 4.7. An approximation with no fast species, however, still exists. Since the dynamics
of the system changes depending on whether a molecule of H is present or not, we might introduce two
dummy variables D1 and D2 with D1 +D2 = 1, and D1 = 1 if and only if no molecules of H are present.
Let p̂ denote the projection onto the space of non-dummy variables. The finite dimensional distributions
of p(XN

· ) are approximated by the finite dimensional distributions of p̂(ZN· ), where ZN· is the process
associated with

A+D1

B +D1

C +D1

C +D2

A+D2

B +D2

2C +D1

for a suitable choice of kinetics and with initial conditions X0(D1) = 1 and X0(D2) = 0. A general
reduction technique that can deal with examples of this kind is subject of further investigation. Similar
arguments can be made if intermediate species are interacting, for example, if 3H and 2H are replaced
by H1 +H2 and H1, respectively.

Example 5.2 (Relaxing the definition of intermediates, II). Consider the SRN below with α(C) = α(F ) = 1
and α(A) = α(B) = α(D) = α(E) = 0:

A H1 +H2

B H1

H2C

D

E

F

k1 N7

k2 N

k3 N2

Here, a reaction of type C → H2 can occur before a present molecule of H1 is consumed, leading to the
production of D from H1 +H2 → D. It can be shown that the right limit is given by the rescaled process
associated with
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A

B

C

D

E

F

k1

k3

where

λNB→E(x) = k2x(B)
N

N + k3x(C)
, λNB→D(x) = k2x(B)

k3x(C)

N + k3x(C)
.

If we change the rate constant of H1 → E to N2 and let α(B) = α(E) = 1, a different reduced SRN is
obtained in which a new complex appears:

A B + C B CD E F
k1 k2 k3

k2k3
N2

It would be desirable to state Theorem 4.7 in terms of the stronger notion of convergence in probability
in the Skorohod space, or at least in terms of the weak convergence in the Skorohod topology. This is
done for α > 0 (cf. Theorems 4.3 and 4.7), however it cannot be done in general as shown in the next
example.

Example 5.3 (Weak convergence). Consider

A H B
k N

with α(A) = α(B) = 0, and the limit process ẐN· associated with the SRN

A B
k

Since the reduced SRN does not depend on N , we omit N in the notation. The possible states of Ẑ·
satisfy the conservation law Ẑt(A) + Ẑt(B) = M for some fixed M . In contrast, whenever the reaction

A → H occurs in XN
· , for a short amount of time at least, X̂N

t (A) + X̂N
t (B) ≤ M − 1. The latter

situation happens with positive probability, such that

E

[
inf
[0,T ]

(
X̂N
t (A) + X̂N

t (B)
)]
− E

[
inf
[0,T ]

(
Ẑt(A) + Ẑt(B)

)]
−−−−→
N→∞

c 6= 0.

Hence, Ẑ·∧T does not provide a weak limit in the Skorohod topology for X̂N
·∧T . In fact, in this particular

case the sequence of processes X̂N
·∧T cannot have a weak limit in the Skorohod topology, since the sequence

of the corresponding distributions PN is not tight.

A natural question arising from the results of this paper is whether the reduced reaction network
could be used to approximate the limit behaviour of the full model as t → ∞. Specifically, we want to
investigate whether for all Borel sets A ⊂ RX\V , it holds that

lim
t→∞

P
(
X̂N
t ∈ A

)
− lim
t→∞

P
(
ẐNt ∈ A

)
−−−−→
N→∞

0, (5.1)

under the hypothesis that the limits exist. The answer is negative, as it is shown with the next example.

Example 5.4 (Limit behaviour in the stochastic setting). Consider the following SRN.

A

H

B 0

k1 N

k2

λ(x)

Let α(A) = α(B) = 0, assume that XN
0 (A) +XN

0 (B) = M and XN
0 (H) = 0, and let

λ(x) = (M − x(A)− x(B))1(0,∞)(x(B)).
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The first occurrence of the reaction B → 0 can only take place when H is present. Though it is unlikely
for big N , there is still a positive probability that this happens, i.e. that B → 0 occurs before the reaction
H → B takes place. With probability one, all molecules of B will eventually be consumed, and the limit
distribution of the above SRN is therefore concentrated on the state 0.

The SRN satisfies the assumptions of Theorem 4.3 and those of Theorem 4.7. The reduced reaction
network is given by

A B 0

k1

k2

λ(x)

where the initial conditions are the same as in the bigger model. Since in the reduced SRN λ(ZNt ) = 0
whenever ZNt (A) + ZNt (B) = M , then the reaction B → 0 never occurs. This implies that the reduced
SRN is equivalent to

A B

k1

k2

The limit distribution of the above SRN is concentrated on the set {x : x(A) + x(B) = M}. Therefore it is
clear that (5.1) does not hold in this case. However, the limit distribution of the latter SRN approximates
the quasi-stationary distribution of the original SRN when N tends to infinity, if we condition on the
event that the reaction B → 0 has not taken place; see for example Anderson et al. [2010, 2014] for a
discussion on stationary and quasi-stationary distributions in reaction network theory.

6 Proof of Theorem 3.1 and Proposition 4.2

This section is devoted to prove Theorem 3.1 and Proposition 4.2. First, recall the transition rate matrix
(3.2). Consider the continuous time Markov chain Cx with state space U t V tW (disjoint union) and
transition rate matrix given by

Q(x) =




QxU,U QxU,V 0

0 QV,V QV,W

0 0 0



,

where QxU,V is defined by
qxi` = λi`(x)

for i ∈ U , ` ∈ V , and
QxU,U = diag(−QxU,V e),

where e denotes a vector of suitable length with all entries 1. Given a matrix M , we denote by Mi its
i-th row. Note that the matrix

Lxi =




−QV,V −QV,W e

−(QxU,V )i (QxU,V )ie




is the transposed Laplacian matrix of the graph Gxi defined in (3.7) (row sums are zero). Let Dx(·)
denote the discrete time Markov chain embedded in Cx(·) and let P(x) be the corresponding transition
probability matrix of Dx. For any i ∈ U , let

P xi (·) = P (·|Dx(0) = yi) , and Exi [·] = E [·|Dx(0) = yi] .
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Moreover, let

dxi =
∑

`∈Vi
λi`(x) = (QxU,V )ie,

d` =
∑

`′∈V
k``′ +

∑

j∈W
k`j = [QV,V |QV,W ]` e.

We have the following result:

Lemma 6.1. For all ` ∈ V , i ∈ U and x ∈ RX\V≥0 ,

µi`(x) =
dxi
d`

∑

n≥1

(P(x)n)i` <∞. (6.1)

In particular, we have

µi`(x) =
dxi
d`
Exi [#visits of Dx(·) to H`] .

Proof. We have

Exi [#visits of Dx(·) to H`] = Exi


∑

n≥1

1{H`}D
x(n)


 =

∑

n≥1

P xi (Dx(n) = H`) =
∑

n≥1

(P(x)n)i`.

Therefore, since every intermediate species is a transient state in Dx,

∑

n≥1

(P(x)n)i` = Exi [#visits of Dx(·) to H`] <∞.

Thus, we only need to prove (6.1). The matrix P(x) has the following block structure:

P(x) =




0 PxU,V 0

0 PV,V PV,U

0 0 I



.

Thus, we have

P(x)n =




0 PxU,V P
n−1
V,V ∗

0 PnV,V ∗

0 0 ∗



.

Since for any `, `′ ∈ V ,


∑

n≥0

PnV,V



``′

= E [#visits of Dx(·) to H`′ |Dx(1) = H` ] <∞,

we have that
∑
n≥0 PnV,V is well defined and

∑

n≥0

PnV,V = (I − PV,V )−1.

Therefore ∑

n≥1

(P(x)n)i` =
∑

n≥0

(PxU,V PnV,V )i` =
(
PxU,V (I − PV,V )−1

)
i`
. (6.2)
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Assume dxi 6= 0. Consider the graph G̃xi with the same nodes and edges as Gxi and normalized labels

H`

k``′

d`−−−→ H`′ , H`

∑
j∈W k`j

d`−−−−−−−−→ ? , ?

λi`(x)

dxi−−−−−→ H`.

The transpose of the Laplacian matrix of the graph G̃xi is given by

L̃xi =



I − PV,V −PV,W e

−(PxU,V )i 1


 .

Given a matrix M , denote by M(i,j) the matrix obtained by M eliminating the i-th row and the j-th
column. We have that

(
PxU,V (I − PV,V )−1

)
i`

=
∑

`′∈V
(PxU,V )i`′(I − PV,V )−1

`′` =
∑

`′∈V
(PxU,V )i`′

(−1)`+`
′
det(I − PV,V )(`,`′)

det(I − PV,V )

= (−1)`+#V+1 det(L̃xi )(`,#V+1)

det(L̃xi )(#V+1,#V+1)

=
det(L̃xi )(`,`)

det(L̃xi )(#V+1,#V+1)

=
d`
dxi

det(Lxi )(`,`)

det(Lxi )(#V+1,#V+1)
=
d`
dxi

∑
ζ∈Θi,x(H`)

w(ζ)
∑
ζ∈Θi,x(?) w(ζ)

=
d`
dxi
µi`(x),

where the second equality follows from the co-factor expansion of the determinant, the third from the
Laplace expansion and the fourth equality follows from the fact that the last column of the Laplacian
matrix is equal to minus the sum of the other columns. The second-last equality follows from the Matrix-
Tree theorem [Tutte, 1948]. Thus, from (6.2) it follows that (6.1) holds. If dxi = 0, then µi` = 0 for all
` ∈ V . Thus, (6.1) still holds and the proof is concluded.

The proof of Theorem 3.1 follows from Lemma 6.1.

Proof of Theorem 3.1. We have to prove that for any fixed x ∈ RX\V≥0 ,

∑

`∈V
π`jλi`(x) =

∑

`∈V
k`jµi`(x). (6.3)

Note that

∑

`∈V
π`jλi`(x) = dxi

∑

`∈V
P xi

(
lim
n→∞

Dx(n) = yj |Dx(1) = H`

)
P xi (Dx(1) = H`)

= dxi P
x
i

(
lim
n→∞

Dx(n) = yj

)
= dxi

∑

n≥1

∑

`∈V
P xi (Dx(n) = H` , D

x(n+ 1) = yj)

= dxi
∑

`∈V

k`j
d`

∑

n≥1

(P(x)n)i`.

Therefore, (6.3) follows from Lemma 6.1.

To prove Proposition 4.2, we make the dependence on N explicit.

Proof of Proposition 4.2. From Lemma 6.1 we have that

µNi` (x) =
dN,xi

dN`
EN,xi

[
#visits of DN,x(·) to H`

]

for x ∈ RX\V≥0 . Denote by TN` the random variable distributed as the time until consumption of a

molecule of H`. Its distribution is exponential with parameter dN` . Note that the Markov chain DN,x(·)
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is distributed as the discrete time Markov chain embedded in CN1 (·), and DN,x(0) denotes the initial
reactant setting off the chain CN1 (·). For any j ∈W , we have

dN,N
αx

i E
[
τN1

∣∣∣DN,Nαx(0) = yi

]
= dN,N

αx
i

∑

`∈V
EN,N

αx
i

[
#visits of DN,Nαx(·) to H`

]
E
[
TN`
]

=
∑

`∈V
µNi` (N

αx).

Furthermore,

dN,N
αx

i E
[
τN1

∣∣∣DN,Nαx(0) = yi

]
=

=
∑

`∈V
E
[
τN1

∣∣∣DN,Nαx(1) = H`

]
P
(
DN,Nαx(1) = H`

∣∣∣DN,Nαx(0) = yi

)
dN,N

αx
i

=
∑

`∈V
E
[
τN1

∣∣∣DN,Nαx(1) = H`

]
λNi` (N

αx)

=
∑

`∈V
E
[
Nβi`τN1

∣∣∣DN,Nαx(1) = H`

]
N−βi`λNi` (N

αx).

In particular,

∑

`∈V
N−α

∗
µNi` (N

αx) =
∑

`∈V
Nβi`−α∗E

[
τN1

∣∣∣DN,Nαx(1) = H`

]
N−βi`λNi` (N

αx). (6.4)

Therefore, (4.16) holds if and only if the right-hand side of (6.4) tends to zero as N →∞. By Assumption
2(iii) we have

N−βi`λNi` (N
αx) −−−−→

N→∞
λi`(x),

where λi` is a non-null function. It follows that the right-hand side of (6.4) tends to zero as N → ∞ if
and only if, for any i ∈ U, ` ∈ V , such that yi → H` ∈ R, and for any j ∈W

Nβi`−α∗E
[
τN1

∣∣∣DN,Nαx(1) = H`

]
−−−−→
N→∞

0.

The latter is equivalent to
Nβi`−α∗E

[
τN1
∣∣CN1 (tN1 ) = H`

]
−−−−→
N→∞

0. (6.5)

By the definition of β∗` and a`, the latter implies

Nβ∗`−a`E
[
τN1
∣∣CN1 (tN1 ) = H`

]
−−−−→
N→∞

0

for any ` ∈ ⋃i∈U Vi, which is what we wanted to prove. If α∗j = α∗j′ for any j, j′ ∈ W , then a` = α∗ for
any ` ∈ V . Therefore, (6.5) for any j ∈W is equivalent to (4.15). The proof is thus concluded.

7 Proof of Theorems 4.3 and 4.5

In this section Theorems 4.3 and 4.5 are proven. To this aim, instead of assuming (4.10) and (4.11)
in Assumption 2(v), we make use of the weaker conditions (4.12) and (4.13). Throughout this section,
whenever t is written it is implicitly assume that t ∈ [0, T ]. We also use the notation

‖x‖∞ = max
S∈X
|x(S)| for x ∈ RX .

By the equivalence of norms in RX , we have that there exists θ > 0, such that

|x| ≤ θ ‖x‖∞ ∀x ∈ RX .

Let D∞(h) be the disc of radius h in RX\V≥0 centred in the origin, with respect to the measure ‖·‖∞, and

let DC
∞(r) be its complementary.

We start by stating a lemma.
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Lemma 7.1. Assume the assumptions of Theorem 4.3 hold. Then,

sup
t∈[0,T ]

N−α
∗
jE
[
MN
i`j(t)−M

N

i`j(t)
]
−−−−→
N→∞

0

Proof. Remember that tNi`j,n is the time of the n-th jump of MN
i`j(t), and τNi`j,n the life time of the

corresponding chain of intermediates. Note that by (4.12) we have

0 ≤ sup
t∈[0,T ]

N−α
∗
jE
[
MN
i`j(t)−M

N

i`j(t)
]
≤ sup
t∈[0,T ]

N−α
∗
jE
[
MN
i`j(t)

]
≤ πN`jNβ∗`−α∗jBi`t ≤ c`jBi`t.

This implies that the sequence supt∈[0,T ]N
−α∗jE

[
MN
i`j(t)−M

N

i`j(t)
]

is contained in a compact set, and

it follows that to prove the lemma it is sufficient to show that all the accumulation points of the sequence
are 0. To this aim, fix an accumulation point l and consider a subsequence Nh such that

sup
t∈[0,T ]

N
−α∗j
h E

[
MNh
i`j (t)−MNh

i`j (t)
]
−−−−→
h→∞

l.

First, assume that

lim inf
h→∞

πNh`j N
β∗`−α∗j
h = 0,

and let Nhm a subsequence such that

lim
m→∞

π
Nhm
`j N

β∗`−α∗j
hm

= 0.

In this case,

0 ≤ l = lim
m→∞

sup
t∈[0,T ]

N
−α∗j
hm

E
[
M

Nhm
i`j (t)−MNhm

i`j (t)
]
≤ lim
m→∞

π
Nhm
`j N

β∗`−α∗j
hm

Bi`t = 0,

which proves l = 0. Now, assume that

lim inf
h→∞

πNh`j N
β∗`−α∗j
h = δ > 0,

and fix 0 < ε < δt. For convenience, denote

σεhj` =
εN

α∗j−β∗`
h

πNh`j
.

We have

E
[
MNh
i`j (t)−MNh

i`j (t)
]

=E



M
Nh
i`j (t)∑

n=1

1[
t−tNhi`j,n,∞

)(τNhi`j,n)




≤E



M
Nh
i`j (t−σεhj` )∑

n=1

1[σεhj` ,∞)(τNhi`j,n)


+ E




M
Nh
i`j (t)∑

n=M
Nh
i`j (t−σεhj` )+1

1




≤E



M
Nh
i`j (t)∑

n=1

1[σεhj` ,∞)(τNhi`j,n)


+ E

[
MNh
i`j (t)−MNh

i`j

(
t− σεhj`

)]
.

Thus, using (4.17) and (4.21) we obtain

E
[
MNh
i`j (t)−MNh

i`j (t)
]
≤ E



Yi`j(tBi`π

Nh
`j N

βi`
h )∑

n=1

1[σεhj` ,∞)(τNi`j,n)


+ εNα∗j−β∗`Nβ∗`Bi`

≤ tpε`j(Nh)N
β∗`
h Bi`π

Nh
`j + εN

α∗j
h Bi` ≤ Bi`N

α∗j
h (tπNh`j N

β∗`−α∗j
h pε`j(Nh) + ε),
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where pε`j(N) is as defined in (4.8). By (4.9) and the arbitrariness of ε > 0, the latter implies that

sup
t∈[0,T ]

N
−α∗j
h E

[
MNh
i`j (t)−MNh

i`j (t)
]
−−−−→
h→∞

0,

which implies that l = 0 and concludes the proof.

Proof of Theorem 4.3. Let the process ŴN
· be defined as in (4.20) and, for any fixed t, let ∆N

t =
∥∥∥X̂N

t − ŴN
t

∥∥∥
∞

.

Then, we have

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
≤ E

[∣∣∣ŴN
t − ẐNt

∣∣∣+
∣∣∣X̂N

t − ŴN
t

∣∣∣
]

≤
∑

r∈R1

∣∣N−αξr
∣∣E
[∣∣∣∣Yr

(∫ t

0

λNr (XN
s )ds

)
− Yr

(∫ t

0

λNr (ZNs )ds

)∣∣∣∣
]

+

+
∑

i∈U

∑

j∈W

∣∣N−α (yj − yi)
∣∣ ∑

`∈Vi
E

[∣∣∣∣Yi`j
(∫ t

0

πN`jλ
N
i` (X

N
s )ds

)
− Yi`j

(∫ t

0

πN`jλ
N
i` (Z

N
s )ds

)∣∣∣∣
]

+

+ E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]

+ θE
[
∆N
t

]

=
∑

r∈R1

∣∣N−α+βrξr
∣∣E
[
N−βr

∣∣∣∣Yr
(∫ t

0

λNr (XN
s )ds

)
− Yr

(∫ t

0

λNr (ZNs )ds

)∣∣∣∣
]

+

+
∑

i,j,`

∣∣N−α+βi` (yj − yi)
∣∣E
[
N−βi`

∣∣∣∣Yi`j
(∫ t

0

πN`jλ
N
i` (X

N
s )ds

)
− Yi`j

(∫ t

0

πN`jλ
N
i` (Z

N
s )ds

)∣∣∣∣
]

+

+ E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]

+ θE
[
∆N
t

]
.

For any reaction r : yi → yj ∈ R∗, let

α∗ij = α∗r = min
S : ξr(S)6=0

α(S).

Then,

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
≤
∑

r∈R1

N−α
∗
r+βr |ξr|E

[∫ t

0

N−βr
∣∣∣λNr (NαX̂N

s )− λNr (NαẐNs )
∣∣∣ ds
]

+

+
∑

i,j,`

πN`jN
−α∗ij+βi` |yj − yi|E

[∫ t

0

N−βi`
∣∣∣λNi` (NαX̂N

s )− λNi` (NαẐNs )
∣∣∣ ds
]

+

+ E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]

+ θE
[
∆N
t

]
.

To control the left side, we aim to substitute the functions λNr (·) with their limits λr(·) (Assumption

2(iii)). To meet our goal, we first argue that the processes X̂N
· and ẐN· are bounded with high probability.

Let S ∈ X \ V. By substituting the rate functions λNr (·) with their upper bounds NβrBr in (4.19),

and using t < T , we obtain that ẐNt (S) is bounded from above by

ẐN0 (S) +
∑

r∈R1
S

|ξr(S)|N−α(S)Yr(N
βrBrT ) +

∑

i∈U

∑

j∈W
|yj(S)− yi(S)|

∑

`∈Vi
N−α(S)Yi`j

(
πN`jN

βi`Bi`T
)
,

where R1
S is defined according to (2.2). Using the assumptions (4.12), (4.13) and the Law of Large

Numbers for Poisson processes to control the above expression for α(S) > 0, we obtain that, for any
ν > 0, there exists Υ′ν > 0, such that

lim sup
N→∞

P

(
sup
t∈[0,T ]

∥∥∥ẐNt
∥∥∥
∞
> Υ′ν

)
< ν.
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Let Υν be as in (4.6a) and let Υ′′ν = Υν ∨Υ′ν . Then, if N is large enough,

P

(
sup
t∈[0,T ]

(∥∥∥X̂N
t

∥∥∥
∞
∨
∥∥∥ẐNt

∥∥∥
∞

)
> Υ′′ν

)
< 3ν. (7.1)

By Assumption 2(iii) we have that

N−βrλNr (Nαx) −−−−→
N→∞

λr(x) ∀r ∈ R0

uniformly on compact sets. In particular, for any ν > 0,

oν(N) = sup
x∈D∞(Υ′′ν )

∣∣N−βrλNr (Nαx)− λr(x)
∣∣ −−−−→
N→∞

0.

Note that for any ν > 0 and x ∈ RX\V≥0 ,
∣∣N−βrλNr (Nαx)− λr(x)

∣∣ ≤ oν(N)1D∞(Υ′′ν )(x) + 2Br1DC∞(Υ′′ν )(x). (7.2)

Using (7.1) and (7.2) we have

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
≤
∑

r∈R1

N−α
∗
r+βr |ξr|

(
E

[∫ t

0

∣∣∣λr(X̂N
s )− λr(ẐNs )

∣∣∣ ds
]

+ 2oν(N)t+ 12Brνt

)
+

+
∑

i,j,`

πN`jN
−α∗ij+βi` |yj − yi|

(
E

[∫ t

0

∣∣∣λi`(X̂N
s )− λi`(ẐNs )

∣∣∣ ds
]

+ 2oν(N)t+ 12Bi`νt

)
+

+ E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]

+ θE
[
∆N
t

]

≤Ψ1

∫ t

0

E
[∣∣∣X̂N

s − ẐNs
∣∣∣
]
ds+ Ψ2oν(N)t+ Ψ3νt+ E

[∣∣∣X̂N
0 − ẐN0

∣∣∣
]

+ θE
[
∆N
t

]

for some positive constants Ψ1, Ψ2, Ψ3 > 0, independent of ν. In the last inequality we made use of
(4.12) and (4.13), as well as the hypothesis that λr is Lipschitz for any r ∈ R0.

To prove (4.22), we only need to show that supt∈[0,T ]E
[
∆N
t

]
→ 0 for N →∞. Indeed if this holds,

then by the Gronwall inequality applied to the function supt∈[0,T ]E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]

we have

sup
t∈[0,T ]

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
≤
(

Ψ2oν(N)T + Ψ3νT + E
[∣∣∣X̂N

0 − ẐN0
∣∣∣
]

+ θ sup
t∈[0,T ]

E
[
∆N
t

]
)
eΨ1T ,

which for N →∞ tends to Ψ3νTe
Ψ1T . By the arbitrariness of ν this leads to

sup
t∈[0,T ]

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
−−−−→
N→∞

0,

and we are done. To prove that supt∈[0,T ]E
[
∆N
t

]
→ 0 for N →∞, it first follows from (4.18) and (4.20)

that

∆N
t =

∥∥∥∥∥∥
N−α

∑

j∈W
yj
∑

i∈U

∑

`∈Vi

(
MN
i`j(t)−M

N

i`j(t)
)
∥∥∥∥∥∥
∞

≤
∑

i,`,j

‖yj‖∞N−α
∗
j

(
MN
i`j(t)−M

N

i`j(t)
)
. (7.3)

Therefore, by Lemma 7.1 and (7.3), we have that supt∈[0,T ]E
[
∆N
t

]
→ 0 for N →∞, which concludes the

proof of the first part of the statement. Equation (4.23) is implied by (4.22) and the Markov inequality.
Finally, to prove (4.24), first consider a continuously differentiable function g : RX\V → R with

compact domain, and let cg be the maximum of the absolute value of its derivative. We have

sup
t∈[0,T ]

E

[∫ t

0

∣∣∣g(X̂N
s )− g(ẐNs )

∣∣∣ ds
]

=

∫ T

0

E
[∣∣∣g(X̂N

s )− g(ẐNs )
∣∣∣
]
ds

≤
∫ T

0

cgE
[∣∣∣X̂N

s − ẐNs
∣∣∣
]
ds

≤ Tcg sup
t∈[0,T ]

E
[∣∣∣X̂N

t − ẐNt
∣∣∣
]
ds −−−−→

N→∞
0.
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Let f : RX\V → R be a continuous function with compact domain. By uniformly approximating f by
continuously differentiable functions with compact domain, we have

sup
t∈[0,T ]

E

[∫ t

0

∣∣∣f(X̂N
s )− f(ẐNs )

∣∣∣ ds
]
−−−−→
N→∞

0.

By Markov inequality, it follows that for any ε > 0

sup
t∈[0,T ]

P

(∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε

)
−−−−→
N→∞

0. (7.4)

Consider the occupation measures on [0, T ]× RX\V given by

ΓN1 ([t1, t2]×A) =

∫ t2

t1

1A(X̂N
s )ds and ΓN2 ([t1, t2]×A) =

∫ t2

t1

1A(ẐNs )ds

for any 0 ≤ t1 < t2 ≤ T and any Borel set A of RX\V . By (7.1) and Kurtz [1992, Lemma 1.3], we
have that the sequences of random measures (ΓN1 ) and (ΓN2 ) are relatively compact with respect to the
Prohorov metric. By the continuous mapping theorem [Hoffmann-Jørgensen, 1994, Section 5.4], this in
turn implies that the sequence of continuous processes

(∫ ·

0

f(X̂N
s )ds,

∫ ·

0

f(ẐNs )ds

)
=

(∫ ·

0

∫

RX\V
f(x)dΓN1 (s, x),

∫ ·

0

∫

RX\V
f(x)dΓN2 (s, x)

)

is relatively compact with respect to the weak convergence in the product space D[0, T ]×D[0, T ], where
D[0, T ] denotes the usual Skorohod space. In this case it coincides with weak convergence in the uniform
topology since the processes are continuous. The following is inspired by a proof of Donnelly and Kurtz
[1996, Lemma A2.1]. Consider a weak limit (X̂·, Ẑ·), which will be a continuous process. By (7.4), we

have X̂t = Ẑt for any t, therefore dSk(X̂·, Ẑ·) = 0, where dSk denotes the Skorohod distance. By the

continuous mapping theorem, we have that for any subsequence converging to (X̂·, Ẑ·),

dSk

(∫ ·

0

f(X̂Nm
s )ds,

∫ ·

0

f(ẐNms )ds

)

converges weakly to zero. In particular, this implies that for every ε > 0

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂Nm

s )− f(ẐNms )
)
ds

∣∣∣∣ > ε

)
−−−−→
m→∞

0.

Since the same holds for any convergent subsequence and by relative compactness, (4.24) follows for any
continuous f with compact support. Indeed, if it were not the case we would have a subsequence such
that for some constant c > 0

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂Nm

s )− f(ẐNms )
)
ds

∣∣∣∣ > ε

)
> c.

However, the subsequence would not contain any convergent subsequence.
Now, let the support of f be not compact, and consider ν > 0. There exists a continuous function

fν with compact support such that fν(x) = f(x) if ‖x‖∞ ≤ Υ′′ν , where Υ′′ν is as in (7.1). Therefore, if N
is large enough

P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
f(X̂N

s )− f(ẐNs )
)
ds

∣∣∣∣ > ε

)

≤ P
(

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
fν(X̂N

s )− fν(ẐNs )
)
ds

∣∣∣∣ > ε

)
+ 3ν −−−−→

N→∞
3ν.

The proof is concluded by the arbitrariness of ν.
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Proof of Theorem 4.5. Fix ε > 0. Let δ > 0 be such

∑

r∈R1
S

‖ξr‖∞Br +
∑

i∈U

∑

j∈W
‖yj + yi‖∞

∑

`∈Vi
c`jBi`


 δ <

ε

3θ
, (7.5)

where c`j is as in (4.12). Now consider a sequence of real numbers t0 < t1 < t2 < · · · < tq such that
tm+1 − tm < δ for any 0 ≤ m < q, t0 = 0 and tq = T . For any 0 ≤ m < q and any species S ∈ X \ V we
have

sup
t∈[tm,tm+1]

∣∣∣ẐNt (S)− ẐNtm(S)
∣∣∣ ≤ N−α(S)

∑

r∈R1
S

|ξr(S)|
∣∣Yr(NβrBrtm+1)− Yr(NβrBrtm)

∣∣+

+N−α(S)
∑

i∈U

∑

j∈W
|yj(S)− yi(S)|

∑

`∈Vi

∣∣Yi`j
(
πN`jN

βi`Bi`tm+1

)
− Yi`j

(
πN`jN

βi`Bi`tm
)∣∣ .

The latter is distributed as

N−α(S)
∑

r∈R1
S

|ξr(S)|Yr
(
NβrBr(tm+1 − tm)

)
+

+N−α(S)
∑

i∈U

∑

j∈W
|yj(S)− yi(S)|

∑

`∈Vi
Yi`j

(
πN`jN

βi`Bi`(tm+1 − tm)
)
,

which, due to α(S) > 0, (4.12), (4.13), the Law of Large Numbers for Poisson processes and (7.5), is
asymptotically bounded in probability by a constant strictly smaller than ε/(3θ). In particular,

P

(
sup

t∈[tm,tm+1]

∣∣∣ẐNt − ẐNtm
∣∣∣ > ε

3

)
−−−−→
N→∞

0.

Similarly, by (4.18)

sup
t∈[tm,tm+1]

∣∣∣X̂N
t (S)− X̂N

tm(S)
∣∣∣ ≤ N−α(S)

∑

r∈R1
S

|ξr(S)|
∣∣Yr(NβrBrtm+1)− Yr(NβrBrtm)

∣∣+

+N−α(S)
∑

i∈U

∑

j∈W

(
yj(S)

∑

`∈Vi

∣∣∣MN

i`j(tm+1)−MN

i`j(tm)
∣∣∣ + yi

∑

`∈Vi

∣∣MN
i`j(tm+1)−MN

i`j(tm)
∣∣
)

≤ N−α(S)
∑

r∈R1
S

|ξr(S)|
∣∣Yr(NβrBrtm+1)− Yr(NβrBrtm)

∣∣+

+N−α(S)
∑

i∈U

∑

j∈W
(yj(S) + yi(S))

∑

`∈Vi

∣∣Yi`j
(
πN`jN

βi`Bi`tm+1

)
− Yi`j

(
πN`jN

βi`Bi`tm
)∣∣+

+ yj(S)
∑

`∈Vi

(∣∣∣MN

i`j(tm+1)−MN
i`j(tm+1)

∣∣∣+
∣∣∣MN

i`j(tm)−MN
i`j(tm)

∣∣∣
)
.

Again, due to α(S) > 0, (4.12), (4.13), the Law of Large Numbers for Poisson processes, (7.5) and
Lemma 7.1, the latter is asymptotically bounded in probability by a constant strictly smaller than
ε/(3θ). Specifically,

P

(
sup

t∈[tm,tm+1]

∣∣∣X̂N
t − X̂N

tm

∣∣∣ > ε

3

)
−−−−→
N→∞

0.

We have

P

(
sup
t∈[0,T ]

∣∣∣X̂N
t − ẐNt

∣∣∣ > ε

)

≤ P
(

max
0≤m<q

(
X̂N
tm − ẐNtm , sup

t∈[tm,tm+1]

∣∣∣ẐNt − ẐNtm
∣∣∣ , sup
t∈[tm,tm+1]

∣∣∣X̂N
t − X̂N

tm

∣∣∣
)
>
ε

3

)
. (7.6)

Hence, the proof is concluded by Corollary 4.4, which is direct consequence of Theorem 4.3.
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IA
Elimination of Intermediate

Species in Deterministic Reaction
Networks

A non-submitted result that connects Paper I to the deterministic setting is shown in this appendix.
Specifically, in Paper I a reduced model is introduced in the setting of stochastic reaction systems by
means of elimination of intermediate species. Various kinds of convergences are then studied. In this
appendix, we show that a reduced model can be similarly introduced in the setting of deterministic
reaction systems, and we study the convergence of the solutions of the full and reduced systems
up to a fixed time T .

In this appendix we consider all the concentrations of the different species as properly rescaled
counts, such that all the concentrations are of order O(1). Hence, the multiscale framework of Paper
I is abandoned. In particular, here we allow only the consumption rates of intermediate species to
tend to infinity. In order to relate the results presented here with those of Paper I, we consider the
latter in the particular case of α = 0.

The notation of Paper I is mantained. However, here the deterministic reaction systems are
taken into account, therefore a kinetics K will be a set of functions indexed by R of the form

λr : RX≥0 → R≥0

x 7→ λr(x).

We allow reaction rates to be constantly 0, in which case the corresponding reaction could be
removed from the network. Moreover, the entries of the vector Xt ∈ RX are in this case the
concentrations of the various species at time t, and the evolution of Xt is modelled by the system
of ordinary differential equations

dXt

dt
=
∑

r∈R
ξrλr (Xt) , (IA.1)

subject to the initial condition X0 = x0. We repeat here the definition of deterministic mass-action
kinetics, which is given by

λyi→yj (x) = kij
∏

S∈yi
x(S)

yi(S)
1{x(S)>0},

where the constants kij are non-negative real numbers called rate constants. We denote this by

yi
kij−−→ yj .
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Intermediate Species in the deterministic setting

We use the definition of intermediates given in Paper I, specifically we refer to Definition 2.1.
Roughly speaking, the presence of intermediate species “slows down” any reaction path that pro-
ceeds through the formation of intermediates. This is intuitive, since the production and degra-
dation of a sequence of intermediate species delays the synthesis of the final product. In a model
without intermediates, this would happen instantaneously. Let (X , C,R) a reaction network with
a set of intermediate species V ⊂ X , and consider a kinetics K. To investigate the effects of the
presence of intermediate species in detail, we first make the following assumption, also assumed in
Paper I:

Assumption IA.1 (Reaction rates and intermediates). The consumption of the intermediates is
governed by mass-action kinetics, namely for any `, `′ ∈ V and j ∈W ,

λ`j(x) = k`jx(H`) and λ``′(x) = k``′x(H`),

for some non-negative constants k`j, k``′ . Further, we assume that all other reaction rates do not
depend on H`.

As in Paper I, consider the labelled directed graph Gxi with node set V ∪{?} and labelled edge
set given by:

• H`
k``′−−−−−−→ H`′ if k``′ 6= 0 and ` 6= `′

• H`

∑
j∈W k`j−−−−−−→ ? if

∑

j∈W
k`j 6= 0

• ?
λi`(x)−−−−−−→ H` if λi`(x) 6= 0

(IA.2)

If we order the nodes of the graph such that ? is the last one and we maintain the notation of
Section 6 of Paper I, the Laplacian matrix of (IA.2) has the form

Lxi = (Lxi )T =



−M −(QxU,V )Ti

eTM (QxU,V )ie


 , (IA.3)

where, for convenience, we introduced
M = QTV,V .

Specifically, for any `, `′ ∈ V ,

M``′ =

{
k`′` if ` 6= `′

−∑h∈V ∪W k`h if ` = `′
, (QxU,V )i(`) = λi`(x).

Let Xt be as in (IA.1), denote by X̂t the projection of Xt onto the non-intermediates species space,
and let X̊t the projection onto the intermediate species space. Moreover, define the vector Λt of
length #V, with entries

ΛNt (`) =
∑

i∈U
λNi`

(
X̂N
t

)
.

(IA.87)
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With this definition, the vector of intermediate species concentrations X̊t is solution to

d

dt
X̊t = MX̊t + Λt,

which implies that the general solution for the intermediate species concentrations is given by

X̊t = exp (Mt) X̊0 +

∫ t

0

exp (M(t− s)) Λsds. (IA.4)

The non-intermediate species evolve according to

d

dt
X̂t =

∑

`∈V
j∈W

yjk`jXt(H`) +
∑

y∈C\V
y′∈C

p (ξy→y′)λy→y′(X̂t)

=
∑

j∈W
yjκjX̊t +

∑

y∈C\V
y′∈C

p (ξy→y′)λy→y′(X̂t). (IA.5)

where p is the projection onto the non-intermediate species space and κj are row vectors of length

#V defined by κj(`) = k`j for any j ∈W . Under the assumption X̊0 = 0, we have from (IA.4),

d

dt
X̂t =

∑

j∈W
yjκj

∫ t

0

exp (M(t− s)) Λsds+
∑

y∈C\V
y′∈C

p (ξy→y′)λy→y′(X̂t). (IA.6)

The above is a system of delayed differential equations with a distributed delay, in the sense of
Kuang (1993). In particular, (IA.6) does not depend explicitly on the intermediate species counts.

The Reduced Reaction System

Consider a reaction network (X , C,R) with a set of intermediate species V ⊂ X . We define the
reduced reaction network exactly as in Paper I, i.e. as

(X \ V, C \ V,R∗), (IA.7)

where R∗ consists of all the reactions r : yi → yj involving no intermediates, such that r was
already an element of R, or the complex yj is obtainable from yi through a chain of intermediates.
When the original reaction network is equipped with a kinetics K, we introduce a kinetics K∗ for
(IA.7) following the definition appearing in Feliu & Wiuf (2013). To introduce K∗, we first need
some other definitions. These are already given in Paper I, but we repeat them here for convenience.

Let the labelled directed graph Gxi be as in (IA.2). Let Θx
i (·) be the set of labelled spanning

trees of Gxi rooted at the argument, and let w(·) be the product of the edge labels of the tree in
the argument. Then, define µi`(x) as

µi`(x) =

∑
σ∈Θx

i (H`) w(σ)
∑
σ∈Θx

i (?) w(σ)
. (IA.8)

(IA.88)
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If λi`(x) = 0 for some x ∈ NX , then there might be no spanning tree rooted at a given intermediate
species. In that case, µi`(x) is 0. The denominator is always strictly positive as any intermediate is
eventually turned into a non-intermediate. The kinetics K∗ is therefore defined by the rate functions

λ∗ij(x) = λij(x) +
∑

`∈V
k`jµi`(x) for yi → yj ∈ R∗. (IA.9)

The definition of the reduced system coincides with the one given in Feliu & Wiuf (2013) and is
equivalent to that of Paper I (see Paper I, Theorem 3.1). It is worth noting that the aim of Feliu &
Wiuf (2013) is studying the number and type of steady states in the original model in comparison
with those of the reduced one, while here we investigate the approximation of the dynamics of the
original system up to a finite time T , by means of the reduced one.

The convergence result

Consider a reaction network (X , C,R) with a set of intermediate species V ⊂ X . Let KN a sequence
of kinetics, indexed by N ∈ N. Let XN

t denote the solution of the deterministic reaction system

associated with the kinetics KN , and assume Assumption IA.1 holds. Moreover, denote by X̂N
t

the projection of XN
t onto the non-intermediate species, that is p(XN

t ), and let ZNt denote the

solution of the reduced model, with X̂N
0 = ZN0 . In order to approximate X̂N

t by ZNt , we make two
key hypotheses: the first states that for a fixed finite time T > 0, there exists a finite constant
Υ > 0, such that

∀N sup
[0,T ]

(∣∣∣X̂N
t

∣∣∣+
∣∣ZNt

∣∣
)
< Υ. (IA.10)

Uniform boundedness of X̂N
t corresponds to equation (4.6a) of Assumption 2(ii) in Paper I. Suffi-

cient conditions for (IA.10) are given in the following Proposition:

Proposition IA.1. Assume that Assumption IA.1 holds and that the kinetics KN are Lipschitz.

If X̊N
0 = 0 and there exists a finite constant Υ > 0 such that

∣∣∣X̂N
0

∣∣∣ ,
∣∣ZN0

∣∣ ≤ Υ for any N , then

(IA.10) holds.

The proof is given in Section “Proofs”.

The second hypothesis relates to Assumption 2(iv): the variable τN1 is a phase-type distribution
with subgenerator matrix QNV,V , therefore equation (4.14) for α = 0, that is

P
(
τN1 > ε

∣∣CN1 (tN1 ) = H`

)
−−−−→
N→∞

0 ∀` ∈
⋃

i∈U
Vi,

is equivalent to

(e`)
T

exp
(
εQNV,V

)
e −−−−→
N→∞

0 ∀` ∈
⋃

i∈U
Vi.

Here we assume something slightly stronger, that is

eT exp
(
εQNV,V

)
e −−−−→
N→∞

0. (IA.11)

We are now ready to enunciate the following convergence result, which states uniform conver-
gence of the solution of the reduced model to that of the full model, up to a fixed time T :

(IA.89)
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Theorem IA.2. Let {X , C,R} be a reaction network and let KN be a family of locally Lipschitz

kinetics. Assume that Assumption IA.1 holds. Furthermore, assume that X̂N
0 = ZN0 for any N and

that the initial concentrations of intermediate species are 0. Then, if (IA.10) and (IA.11) hold, we
have that

sup
t∈[0,T ]

∣∣∣X̂N
t − ZNt

∣∣∣ −−−−→
N→∞

0.

The proof of the result is given in Section “Proofs”.

Limit behaviour

A natural question arising from Theorem IA.2 is whether the reduced reaction network could be
used to approximate the limit behaviour of the full model as t→∞. Specifically, we inquire whether
it holds that

lim
t→∞

X̂N
t − lim

t→∞
ZNt −−−−→

N→∞
0, (IA.12)

under the hypothesis that the above limits exist. The answer is that (IA.12) may not hold. Consider
for example the case when ZN0 is an unstable equilibrium point for the reduced model. Then
limt→∞ ZNt = ZN0 , while in the full reaction network with intermediates, a small perturbation given

by the presence of intermediate species may push X̂N
t away from the repulsive point XN

0 = ZN0 .

Consider the following deterministic mass-action system:

∅ A

2A 3A

H

11

6 N

6

1

The assumptions of Theorem IA.2 are fulfilled and the reduced network is given by

∅ A

2A 3A

11

6

6

1

The ODE governing the dynamics of the reduced network, which does not depend on N , is given
by

dZt(A)

dt
= −Zt(A)3 + 6Zt(A)2 − 11Zt(A) + 6

= − (Zt(A)− 1) (Zt(A)− 2) (Zt(A)− 3) + f (Zt(A)) .

(IA.90)
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Note that 2 is an unstable equilibrium point of the above dynamical system. We will show that if
we assume X̂N

0 (A) = Z0(A) = 2 and XN
0 (H) = 0, then (IA.12) does not hold.

The ODE system governing the dynamics of the full model is





dXN
t (H)

dt
= 6−NXN

t (H)

dXN
t (A)

dt
= −XN

t (A)3 + 6XN
t (A)2 − 11XN

t (A) +NXN
t (H)

.

This means that XN
t (H) = 6(1− e−Nt)/N and

dX̂N
t (A)

dt
= −X̂N

t (A)3 + 6X̂N
t (A)2 − 11X̂N

t (A) + 6
(
1− e−Nt

)
+ gNt

(
X̂N
t (A)

)

Since for any N ≥ 1 and any t > 0 we have that gNt (x) < f(x), and since f(x) < 0 for any
x ∈ (1, 2), then

lim
t→∞

X̂N
t (A) ≤ 1.

It is possible to prove a more precise result, namely that limt→∞ X̂N
t (A) = 1, and it is worth noting

that 1 is a stable steady state of the reduced model. Since

lim
t→∞

Zt(A) = Z0(A) = 2,

we have that (IA.12) does not hold.

Proofs

This section is devoted to the proofs of Proposition IA.1 and Theorem IA.2. Before proving the
statements, we need some preliminary results. The first lemma is concerned with some properties
of the matrix exp

(
QNV,V t

)
.

Lemma IA.3. For any t > 0, any entry of the matrix exp
(
QNV,V t

)
is non-negative. Moreover for

0 ≤ s ≤ t, we have that
exp

(
QNV,V s

)
e ≥ exp

(
QNV,V t

)
e.

In particular, for s = 0 and any t > 0, exp
(
QNV,V t

)
e ≤ e.

Proof. If we put ΛNt ≡ 0, then from (IA.4) we have

X̊N
t = exp

(
MN t

)
X̊N

0 .

This implies that each row of exp
(
QNV,V t

)
represents the concentrations of the intermediate species

at time t given the initial condition X̊N
0 = e`. In turn this implies that the row entries of exp

(
QNV,V t

)

must be non-negative for any t > 0. Furthermore, the condition ΛNs ≡ 0 implies that the inter-
mediates are not produced, thus the sum of their concentrations can only decrease. Indeed, the
stoichiometric coefficients of the intermediate species are one, hence the net flow among interme-
diates is 0, while they can degrade to produce a non-intermediate complex. These considerations
prove the second part of the lemma.

(IA.91)
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Here the proof of Proposition IA.1is given.

Proof of Proposition IA.1. The Lipschitz condition implies that that there exists a constant Γ1

such that for any y ∈ C \ V and any y′ ∈ C
λy→y′(x) ≤ Γ1 |x| .

Since by Theorem 3.1 in Paper I the rates for the reduced network given by (IA.9) can be written
as

λ∗ij(x) = λij(x) +
∑

`∈Vi

π`jλi`(x),

where π`j are probabilities, it follows that there exists a positive constant Γ2, such that, for ZNt 6= 0,

d
∣∣ZNt

∣∣
dt

≤
∣∣∣∣
dZNt
dt

∣∣∣∣ ≤ Γ2

∣∣ZNt
∣∣ .

This implies ∣∣ZNt
∣∣ ≤

∣∣ZN0
∣∣ eΓ2t. (IA.13)

Moreover, for any N ∈ N and any ` ∈ V

ΛNt (`) ≤ #U · Γ1

∣∣∣X̂N
t

∣∣∣ .

By (IA.4) we have

∫ t

0

κNj X̊
N
v dv = κNj

∫ t

0

∫ v

0

exp
(
MN (v − s)

)
ΛNs dsdv.

Due to Lemma IA.3, all matrix and vector entries on the right-hand side are non-negative, thus
we can use first the Fubini Theorem and then (IA.16) to obtain

∫ t

0

κNj X̊
N
v dv = κNj

∫ t

0

∫ t

s

exp
(
MN (v − s)

)
dvΛNs ds

≤ −eTMN

∫ t

0

∫ t

s

exp
(
MN (v − s)

)
dvΛNs ds

= −eT
∫ t

0

(
exp

(
MN (t− s)

)
− I
)

ΛNs ds,

and by Lemma IA.3,

≤ eT
∫ t

0

ΛNs ds ≤ #U ·#V · Γ1

∫ t

0

∣∣∣X̂N
s

∣∣∣ ds.

Thus, by integrating (IA.5) we have that there exist some positive finite constants Γ3,Γ4,Γ5, such

that, for X̂N
t 6= 0,

∣∣∣X̂N
t

∣∣∣ ≤ Γ3

∑

j∈W

∫ t

0

κNj X̊
N
v dv + Γ4

∫ t

0

∣∣∣X̂N
v

∣∣∣ dv ≤ Γ5

∫ t

0

∣∣∣X̂N
v

∣∣∣ dv,

which implies ∣∣∣X̂N
t

∣∣∣ ≤
∣∣∣X̂N

0

∣∣∣ eΓ5t. (IA.14)

The conclusion of the proof now follows from (IA.13) and (IA.14), and from the hypothesis that
there exists a finite constant Υ > 0 bounding the initial conditions.

(IA.92)
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Now we focus on the proof of Theorem IA.2. Without loss of generality we can assume that
the kinetics KN are Lipschitz: indeed, they are locally Lipschitz by hypothesis and their arguments
are uniformly bounded by (IA.10). Using (IA.5), it is not hard to show that

d

dt

(
X̂N
t − ZNt

)
=
∑

j∈W
yjκ

N
j X̊

N
t −

∑

i∈U
j∈W

yj
∑

`∈V
kN`jµ

N
i`

(
ZNt
)

+
∑

y∈C\V
y′∈C

p (ξy→y′)
(
λy→y′

(
X̂N
t

)
− λy→y′

(
ZNt
))
.

In particular, using Cauchy-Schwartz and the Lipschitz condition, we have that for
∣∣∣X̂N

t − ZNt
∣∣∣ 6= 0,

d

dt

∣∣∣X̂N
t − ZNt

∣∣∣ ≤
∣∣∣∣
d

dt

(
X̂N
t − ZNt

)∣∣∣∣

≤

∣∣∣∣∣∣∣

∑

j∈W
yjκ

N
j X̊

N
t −

∑

i∈U
j∈W

yj
∑

`∈V
kN`jµ

N
i`

(
ZNt
)
∣∣∣∣∣∣∣

+ Γ0

∣∣∣X̂N
t − ZNt

∣∣∣ (IA.15)

for some positive constant Γ0.

We will make use of the following lemma.

Lemma IA.4. Assume that Assumption IA.1 and (IA.10) hold, and that X̊N
0 = 0 for any N ∈ N.

Then there exist two positive constants Υ′ and ρ, such that for any N ∈ N and for any t ∈ [0, T ],

∣∣∣X̂N
t − ZNt

∣∣∣ < Υ′
(
eρt − 1

)
.

Moreover, there exists a positive constant Υ′′, such that for any s, t ∈ [0, T ],

∣∣ΛNt − ΛNs
∣∣ ≤ Υ′′ |t− s| .

Proof. By hypothesis, the functions λi` are continuous and their arguments are uniformly bounded
since (IA.10) holds. Thus, there exists a positive constant B, such that for any N ∈ N and ` ∈ V ,
we have

sup
t∈[0,T ]

∣∣ΛN` (t)
∣∣ ≤ B.

Moreover, we will show that for any j ∈W , κNj X̊
N
t is uniformly bounded in [0, T ]. For any j ∈W ,

−QNV,V e =


∑

j∈W
kN`j



`∈V

≥
(
κNj
)T
. (IA.16)

Lemma IA.3 gives that for any t > 0, the matrix exp
(
QNV,V t

)
is non-negative. Using that exp

(
MN t

)

(IA.93)
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and X̊N
t have non-negative entries, and using (IA.4) with X̊N

0 = 0, we obtain

κNj X̊
N
t ≤ −eTMN X̊N

t

= −eTMN

∫ t

0

exp
(
MN (t− s)

)
ΛNs ds

≤ −eTMN

∫ t

0

exp
(
MN (t− s)

)
e ds

= BeTMN
(
MN

)−1 (
I − exp

(
MN t

))
e

= B
(
#V − eT exp

(
MN t

)
e
)
≤ #V ·B,

where we have used Lemma IA.3 and the definition of MN in the last inequality. Thus, by (IA.15)

we have that, for
∣∣∣X̂N

t − ZNt
∣∣∣ 6= 0,

d

dt

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ Γ1#V ·B + Γ2B + Γ0

∣∣∣X̂N
t − ZNt

∣∣∣

for some positive constants Γ1,Γ2. It follows that
∣∣∣X̂N

t − ZNt
∣∣∣ is bounded by the solution to the

differential equation corresponding to the right-hand side of the above inequality, with initial
condition equal to 0, that is,

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ B (#V · Γ1 + Γ2)

Γ0

(
eΓ0t − 1

)
.

This concludes the first part of the proof.

For any t ∈ [0, T ],

∣∣∣∣
d

dt
X̂N
t

∣∣∣∣ ≤ Γ1

∑

j∈W
κNj X̊

N
t + Γ0

∣∣∣X̂N
t

∣∣∣ ≤ Γ1#W ·#V ·B + Γ0Υ + B.

Thus, if the kinetics are Lipschitz, which we can assume without loss of generality, then for some
positive constant Γ4, ∣∣ΛNt − ΛNs

∣∣ ≤ Γ4

∣∣∣X̂N
t − X̂N

s

∣∣∣ ≤ Γ4B |t− s| ,

which concludes the proof.

To proceed we need another lemma. A similar result appears in Feliu & Wiuf (2013), and we
give the proof here for completeness.

Lemma IA.5. Let µNi` (x) be defined as in (IA.8). We have that the l-th entry

−
((
MN

)−1
ΛNt

)
`

=
∑

i∈U
µNi`

(
X̂N
t

)
.

Proof. The result does not depend on N, thus N is ignored in the notation. As discussed in the
proof of Theorem 3.1 in Paper I, from the Matrix Tree Theorem we have that

µi`

(
X̂t

)
=

∑
σ∈θ

i,X̂t
(H`) w(σ)

∑
σ∈θ

i,X̂t
(?) w(σ)

=

det
(
LX̂t
i

)
(`,`)

det
(
LX̂t
i

)
(#V+1,#V+1)

,

(IA.94)
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where Lxi is the transpose of the Laplacian matrix of the graph Gxi . Since the last column of Lxi is
the opposite of the sum of the other columns, we have

det
(
LX̂t
i

)
(`,`)

= (−1)`+#V+1 det
(
LX̂t
i

)
(`,#V+1)

= (−1)`+#V+1 det
(
LX̂t
i

)T
(#V+1,`)

= −det
(
LX̂t
i

)T
(#V+1,̂̀)

,

where (Lxi )
T

(#V+1,̂̀) denotes the transpose of the matrix Lxi with the (#V + 1)-th row and column

eliminated and the `-th column replaced by the (#V+1)-th column. The last equality follows from
changing the order of the columns in the transpose matrix. Moreover,

Lxi =




−QV,V −QV,W e

−
(
QxU,V

)
i

(
QxU,V

)
i
e


 .

Therefore, recalling that by definition M = QTV,V , by Cramer’s Rule we have

µi`

(
X̂t

)
=

−det
(
LX̂t
i

)T
(#V+1,̂̀)

det
(
LX̂t
i

)T
(#V+1,#V+1)

= −
(
M−1

(
QX̂t

U,V

)
i

)
`
.

It follows that
∑

i∈U
µi`

(
X̂t

)
= −

(
M−1

∑

i∈U

(
QX̂t

U,V

)
i

)

`

= −
(
M−1ΛNt

)
`
,

which concludes the proof.

We are now ready to prove Theorem IA.2.

Proof of Theorem IA.2. Let Υ′,Υ′′, ρ > 0 be as in Lemma IA.4. Fix ε > 0 and let δε > 0, such
that

sup
t∈[0,δε]

∣∣∣X̂N
t − ZNt

∣∣∣ < Υ′
(
eρδε − 1

)
< ε. (IA.17)

By (IA.15), it holds that, for any t ∈ [0, T ],

d

dt

∣∣∣X̂N
t − ZNt

∣∣∣ ≤

∣∣∣∣∣∣∣

∑

`∈V
j∈W

yjk
N
`jX

N
t (H`)−

∑

i∈U
j∈W

yj
∑

`∈V
kN`jµ

N
i`

(
ZNt
)
∣∣∣∣∣∣∣

+ Γ0

∣∣∣X̂N
t − ZNt

∣∣∣

≤

∣∣∣∣∣∣∣

∑

`∈V
j∈W

yjk
N
`jX

N
t (H`)−

∑

i∈U
j∈W

yj
∑

`∈V
kN`jµ

N
i`

(
X̂N
t

)
∣∣∣∣∣∣∣

+ Γ′0

∣∣∣X̂N
t − ZNt

∣∣∣

=

∣∣∣∣∣∣∣

∑

`∈V
j∈W

yjk
N
`jX

N
t (H`) +

∑

`∈V
j∈W

yjk
N
`j

((
MN

)−1
ΛNt

)
`

∣∣∣∣∣∣∣
+ Γ′0

∣∣∣X̂N
t − ZNt

∣∣∣ ,
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To obtain the second inequality we add and subtract
∑

i∈U
j∈W

yj
∑
`∈V k

N
`jµ

N
i`

(
X̂N
t

)
in the norm of

the first term and use the Lipschitz condition again. Finally, the last equality comes from Lemma
IA.5. For the sake of simplicity, we let

βN (t) =

∣∣∣∣∣∣∣

∑

`∈V
j∈W

yjk
N
`jX

N
t (H`) +

∑

`∈V
j∈W

yjk
N
`j

((
MN

)−1
ΛNt

)
`

∣∣∣∣∣∣∣
.

From the above inequality, we have that for any t ∈ [δε, T ]

d

dt

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ sup
s∈[δε,T ]

βN (s) + Γ′0

∣∣∣X̂N
t − ZNt

∣∣∣ .

Thus, if we let ϕ : [δε, T ]→ R be the solution to the ODE system





dϕ(t)

dt
= sup
s∈[δε,T ]

βN (s) + Γ′0ϕ(t)

ϕ(δε) =
∣∣∣X̂N

δε
− ZNδε

∣∣∣ ,

then, for any t ∈ [δε, T ], we have that
∣∣∣X̂N

t − ZNt
∣∣∣ ≤ ϕ(t). We solve the ODE above and obtain

that for any t ∈ [δε, T ],

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ eΓ′
0(t−δε)

(∣∣∣X̂N (δε)− ZN (δε)
∣∣∣+

sups∈[δε,T ] β
N (s)

Γ′0

(
1− e−Γ′

0(t−δε)
))

.

In particular, from (IA.17) we have

sup
t∈[0,T ]

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ eΓ′
0T

(
ε+

sups∈[δε,T ] β
N (s)

Γ′0

)
. (IA.18)

If we can show that sups∈[δε,T ] β
N (s) goes to zero with N → ∞, then the theorem is proved. By

definition of βN (t), this is equivalent to showing that for any j ∈W ,

sup
t∈[δε,T ]

κNj

(
X̊N
t +

(
MN

)−1
ΛNt

)
−−−−→
N→∞

0.

Using Lemma IA.4 we have

X̊N
t =

∫ t

0

exp
(
MN (t− s)

)
ΛNs ds

=

∫ t

0

exp
(
MN (t− s)

)
ΛNt ds+

∫ t

0

exp
(
MN (t− s)

) (
ΛNs − ΛNt

)
ds

≤
(
MN

)−1 (
exp

(
MN t

)
− I
)

ΛNt +

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds. (IA.19)
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Then, using the non-negativity of exp
(
MN (t− s)

)
, for any δ′ ∈ (0, t), we have

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds

≤
∫ t−δ′

0

exp
(
MN (t− s)

)
eΥ′′Tds+

∫ t

t−δ′
exp

(
MN (t− s)

)
eΥ′′δ′ds

≤ −
(
MN

)−1
{ [

exp
(
MNδ′

)
− exp

(
MN t

)]
eΥ′′T +

[
I − exp

(
MNδ′

)]
eΥ′′δ′

}
.

From (IA.16) it follows that, for any j ∈W ,

κNj ≤ −eTMN .

Therefore, using Lemma IA.3 and the definition of MN for the second inequality , we have for any
δ′ ∈ (0, δε),

sup
t∈[δε,T ]

κNj

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds ≤

≤ sup
t∈[δε,T ]

(
eT
[
exp

(
MNδ′

)
− exp

(
MN t

)]
eΥ′′T + eT

[
I − exp

(
MNδ′

)]
eΥ′′δ′

)

≤ eT
[
exp

(
MNδ′

)
− exp

(
MNδε

)]
eΥ′′T + eT

[
I − exp

(
MNδ′

)]
eΥ′′δ′.

By (IA.11), when N tends to infinity the latter tends to

eT eΥ′′δ′ = #V ·Υ′′δ′.

Since δ′ ∈ (0, δε) is arbitrary, it follows that

sup
t∈[δε,T ]

κNj

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds −−−−→

N→∞
0. (IA.20)

Combining (IA.19) and (IA.20) and by making use of (IA.16), we have that for any j ∈W ,

sup
t∈[δε,T ]

κNj

(
X̊N
t +

(
MN

)−1
ΛNt

)
≤

≤ sup
t∈[δε,T ]

κNj

[(
MN

)−1
exp

(
MN t

)
ΛNt +

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds

]

≤ sup
t∈[δε,T ]

exp
(
MN t

)
ΛNt + sup

t∈[δε,T ]

κNj

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds

≤ sup
t∈[δε,T ]

exp
(
MN t

)
eB + sup

t∈[δε,T ]

κNj

∫ t

0

exp
(
MN (t− s)

)
eΥ′′(t− s)ds −−−−→

N→∞
0.

Thus, we have proved that sups∈[δε,T ] β
N (s) goes to zero with N → ∞. From (IA.18) it follows

that
lim
N→∞

sup
t∈[0,T ]

∣∣∣X̂N
t − ZNt

∣∣∣ ≤ eΓ′
0T ε,

and since ε > 0 is arbitrary, the proof is concluded.
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Abstract

Stochastic reaction networks are dynamical models of biochemical reaction systems and form a
particular class of continuous-time Markov chains on Nn. Here we provide a fundamental character-
isation that connects structural properties of a network to its dynamical features. Specifically, we
define the notion of ‘stochastically complex balanced systems’ in terms of the network’s stationary
distribution and provide a characterisation of stochastically complex balanced systems, parallel to
that established in the 70-80ies for deterministic reaction networks. Additionally, we establish that
a network is stochastically complex balanced if and only if an associated deterministic network is
complex balanced (in the deterministic sense), thereby proving a strong link between the theory of
stochastic and deterministic networks. Further, we prove a stochastic version of the ‘deficiency zero
theorem’ and show that any (not only complex balanced) deficiency zero reaction network has a
product-form Poisson-like stationary distribution on all irreducible components. Finally, we provide
sufficient conditions for when a product-form Poisson-like distribution on a single (or all) compo-
nent(s) implies the network is complex balanced, and explore the possibility to characterise complex
balanced systems in terms of product-form Poisson-like stationary distributions.

1 Introduction

Improved experimental techniques have made it possible to measure molecular fluctuations at a small
scale, creating a need for stochastic description of molecular data [23, 12]. Traditionally, biochemical
reaction networks are modelled as deterministic systems of ordinary differential equations (ODEs), but
these models assume the individual species are in high concentrations and do not allow for stochastic
fluctuation. An alternative is stochastic models based on continuous-time Markov chains [14, 4, 12]. As
an example of a stochastic reaction system, consider

A+B
κ1−−⇀↽−−
κ2

2C, (1.1)

where κ1, κ2 are positive reaction constants. The network consists of three chemical species A, B and
C and two reactions. Each occurrence of a reaction modifies the species counts, for example, when the
reaction A + B → 2C takes places, the amount of A and B molecules are each decreased by one, while
two molecules of C are created. The species counts are modelled as a continuous-time Markov chain,
where the transitions are single occurrences of reactions with transition rates

λ1(x) = κ1xAxB , λ2(x) = κ2xC(xC − 1),

and x = (xA, xB , xC) are the species counts [4]. When modelled deterministically, the concentrations
(rather than the counts) of the species change according to an ODE system.

In a classical paper [18], Kurtz explored the relationship between deterministic and stochastic reaction
systems, using a scaling argument – large volume limit – to link the dynamical behaviour of the two
types of systems to each other. Other, mainly recent work, also points to close connections between the
two types of systems [22, 2, 3, 1, 5, 16]. In this paper we explore this relationship further.

∗Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark. The authors are supported
by the Danish Research Councils.
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A fundamental link between structural network properties and dynamical features of deterministic
reaction networks has been known since the 70-80ies with the work of Horn, Jackson and Feinberg [13, 9].
Specifically, their theory concerns the existence and uniqueness of equilibria in complex balanced systems,
with the ‘deficiency zero theorem’ playing a central role in this context. Complex balanced systems were
called cyclic balanced systems by Boltzmann. They have attractable analytical and physical properties;
for example a (pseudo-)entropy might be defined which increases along all trajectories (Boltzmann’s
H-theorem) [6, 13].

A parallel theory for the stochastic regime is not available, and the very concept of “complex balanced”
does not currently have a stochastic counterpart. In this paper we develop a theory to fill this gap. We
define stochastically complex balanced systems through properties of the stationary distribution, and
we prove results for stochastic reaction networks that are in direct correspondence with the results for
deterministic models. In particular, we prove a parallel statement of the deficiency zero theorem and
show that all deficiency zero reaction network have product-form Poisson-like stationary distributions,
irrespectively whether they are complexed balanced or not. In fact, in the non-complexed balanced case,
the network is complex balanced on the boundary.

A second target of our study concerns product-form stationary distributions. Such distributions
are computationally and analytically tractable and appear in many areas of applied probability, such
as, queueing theory [15, 17], Petri Net theory [20], and stochastic reaction network theory [22, 19,
2]. Specifically, a complex balanced mass-action network has a product-form Poisson-like stationary
distribution on every irreducible component [19, 2]. As an example, the stationary distribution of (1.1),
which is complex balanced, is

πΓ(x) = MΓ
κxA1 κxB2 κxC1

xA!xB !xC !
for x ∈ Γ,

where Γ = {x ∈ N3 : xA + xB + 2xC = θ} is an irreducible component of the state space N3 and MΓ is a
normalising constant.

We expand the above result on mass-action systems and give general conditions under which the
converse statement is true. In particular, we are interested in providing a structural characterisation of
the networks with product-form Poisson-like stationary distributions. However, this class of networks is
strictly larger than that of complex balanced networks, and a full characterisation seems hard to achieve.
We illustrate this with examples.

2 Background

We first introduce the necessary notation and background material; see [4, 9, 8] for general references.
We assume standard knowledge about continuous-time Markov chains.

2.1 Notation

We let R, R0 and R+ be the real, the non-negative real and the positive real numbers, respectively. Also
let N be the natural numbers including 0.

For any real number a ∈ R, |a| denotes the absolute value of a. Moreover, for any vector v ∈ Rp,
we let vi be the ith component of v, ‖v‖ the Euclidean norm, and ‖v‖∞ the infinity norm, that is,
‖v‖∞ = maxi |vi|. For two vectors v, w ∈ Rp, we write v < w (resp. v > w) and v ≤ w (resp. v ≥ w), if
the inequality holds component-wise. Further, we define 1{v≤w} to be one if v ≤ w, and zero otherwise,
and similarly for the other inequalities. If v > 0 then v is said to be positive. Finally, supp v denotes the
index set of the non-zero components. For example, if v = (0, 1, 1) then supp v = {2, 3}.

If x ∈ Rq0 and v ∈ Nq, we define

xv =

q∏

i=1

xvii , and v! =

q∏

i=1

vi!,

with the conventions that 0! = 1 and 00 = 1.
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2.2 Reaction networks

A reaction network is a triple G = (X , C,R), where X = {S1, S2, . . . , Sn} is a set of n species, C is a set
of m complexes, and R ⊆ C ×C is a set of k reactions, such that (y, y) /∈ R for all y ∈ C. The complexes
are linear combinations of species on N, identified as vectors in Rn. A reaction (y, y′) ∈ R is denoted
by y → y′. We require that every species is part of at least one complex, and that every complex is
part of at least one reaction, such that there are no “redundant” species or complexes. In that case, G
is determined by R (which we allow to be empty). In (1.1), there are n = 3 species (A,B,C), m = 2
complexes (A+B, 2B), and k = 2 reactions.

Given a reaction network G, the reaction graph of G is the directed graph with node set C and edge set
R. We let ` be the number of linkage classes (connected components) of the reaction graph. A reaction
y → y′ ∈ R is terminal if any directed path that starts with y → y′ is contained in a closed directed
path. We let R∗ be the set of terminal reactions.

A reaction network G is weakly reversible, if every reaction is terminal. The network in (1.1) is weakly
reversible, since both reactions are terminal.

The stoichiometric subspace of G is the linear subspace of Rn given by

S = span(y′ − y|y → y′ ∈ R).

For v ∈ Rn, the sets (v + S) ∩ Rn0 are called the stoichiometric compatibility classes of G (Fig. 1A). For
the network in (1.1), S = span((−1, 1, 0), (0, 1,−1)) ⊂ R3, which is 2-dimensional.

2.3 Dynamical systems

We will consider a reaction network G either as a deterministic dynamical system on the continuous
space Rn0 , or as a stochastic dynamical system on the discrete space Nn.

In the deterministic case, the evolution of the species concentrations z = z(t) ∈ Rn0 at time t is
modelled as the solution to the ODE

dz

dt
=

∑

y→y′∈R
(y′ − y)λy→y′(z), (2.1)

for some functions λy→y′ : Rn0 → R0 and an initial condition z(0) ∈ Rn0 . We require that the functions
λy→y′ are continuously differentiable, and that λy→y′(z) > 0 if and only if supp y ⊆ supp z. Such
functions are called rate functions, they constitute a deterministic kinetics K for G, and the pair (G,K)
is called a deterministic reaction system. If λy→y′(z) = κy→y′zy for all reactions, then the constants
κy→y′ are referred to as rate constants and the modelling regime is referred to as deterministic mass-
action kinetics. In this case, the pair (G, κ) is called a deterministic mass-action system, where κ ∈ Rk+
is the vector of rate constants.

In the stochastic setting, the evolution of the species counts X(t) ∈ Nn at time t is modelled as a
continuous-time Markov chain with state space Nn. At any state x ∈ Nn, the states that can be reached
in one step are x+y′−y for y → y′ ∈ R, with transition rates λy→y′(x). The functions λy→y′ : Nn → R0

are called rate functions, and we require that λy→y′(x) > 0 if and only if x ≥ y. A choice of these
functions constitute a stochastic kinetics K for G and the pair (G,K) is called a stochastic reaction
system. If the reaction y → y′ occurs at time t, then the new state is

X(t) = X(t−) + y′ − y,

where X(t−) denotes the previous state. If for any reaction y → y′ ∈ R

λy→y′(x) = κy→y′
x!

(x− y)!
1{x≥y}.

then the constants κy→y′ are known as rate constants, as in the deterministic case, and the modelling
regime is referred to as stochastic mass-action kinetics. The pair (G, κ) is, in this case, called a stochastic
mass-action system.

The evolution of the stochastic as well as the deterministic reaction system is confined to the stoi-
chiometric compatibility classes,

z(t) ∈ (z(0) + S) ∩ Rn0 and X(t) ∈ (X(0) + S) ∩ Rn0 .
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In fact, X(t) ∈ (X(0) + S) ∩ Nn, as X(t) takes values in Nn.

Definition 1. Let G = (X , C,R) be a reaction network.

a) A reaction network G′ = (X ′, C′,R′) is a subnetwork of G if R′ ⊆ R.

b) A system (G′,K ′), deterministic or stochastic, is a subsystem of a system (G,K) if G′ is a subnetwork
of G and the rate functions agree on the reactions in R′.

c) The subnetwork G∗ = (X ∗, C∗,R∗) is the terminal network of G. Furthermore, the subsystem (G∗,K∗)
of (G,K) is called the terminal system of (G,K).

Definition 2. The connected components of the reaction graph of the terminal network of G are called
terminal strongly connected component of G. For any complex y in C∗, we denote by (Gy,Ky) the
subsystem of G whose reaction graph is the terminal strongly connected component containing y as node.

As an example, consider the mass-action system

2A
κ1−−⇀↽−−
κ2

2B
κ3←− A κ4−→ 0

κ5−−⇀↽−−
κ6

C.

Here, there are two terminal strongly connected components, which are 2A 
 2B and 0 
 C. In
particular, (G2A,K2A) is equal to (G2B ,K2B) and is given by

2A
κ1−−⇀↽−−
κ2

2B.

Finally, if (G, κ) is a mass-action system, any subsystems (G′,K ′) is a mass-action systems as well and
can be denoted by (G′, κ′).

3 Deterministic reaction systems

In this section we will recapitulate the known characterisation of existence and uniqueness of positive
equilibria in complex balanced systems and the connection between complex balanced systems and
deficiency zero reaction networks. As we will show in the subsequent section, this characterisation can
be fully translated into a similar characterisation for stochastic reaction networks.

3.1 Complex balanced systems

We start with a definition.

Definition 3. A deterministic reaction system (G,K) is said to be complex balanced if there exists a
complex balanced equilibrium, that is, a positive equilibrium point c ∈ Rn+ for the system (2.1), such that

∑

y′∈C
λy→y′(c) =

∑

y′∈C
λy′→y(c) for all y ∈ C. (3.1)

The name ‘complex balanced’ refers to the fact that the flow, at equilibrium, entering into the complex
y equals the flow exiting from the complex. As an example, the mass-action system in (1.1) is complex
balanced and c = (κ2, κ1, κ1) is a complex balanced equilibrium. The class of complex balanced systems
is an extension of the class of detailed balanced mass-action systems [13, 9].

For mass-action systems, (3.1) becomes
∑

y′∈C
κy→y′c

y =
∑

y′∈C
κy′→yc

y′ for all y ∈ C, (3.2)

with the convention that ky→y′ = 0 if y → y′ 6∈ R.
In the case of mass-action kinetics, we extend Definition 3 to the stochastic case, by saying that a

stochastic mass-action system (G, κ) is complex balanced if the deterministic mass-action system (G, κ) is
complex balanced. We might therefore refer to complex balanced mass-action systems without specifying
whether they are stochastically or deterministically modelled.

The next theorem is a classical result [13], which provides the backbone for the further characterisa-
tion:
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Theorem 3.1. If a deterministic reaction system (G,K) is complex balanced, then G is weakly reversible.
Moreover, if K is mass-action kinetics, all positive equilibria are complex balanced, that is, fulfil (3.2).
Moreover, there exists exactly one complex balanced equilibrium in each stoichiometric compatibility class,
which is locally asymptotically stable.

3.2 Deficiency zero statements

The deficiency plays an important role in the study of complex balanced systems. The deficiency of G
is defined as

δ = m− `− s,
where s is the dimension of the stoichiometric subspace S [13]. The definition hides the geometrical
interpretation of the deficiency, which we now will explore.

Let {ey}y∈C be a basis of Rm. Further, define

dy→y′ = ey′ − ey and ξy→y′ = y′ − y
for y → y′ ∈ R. Let D = span(dy→y′ |y → y′ ∈ R). Then dimD = m− ` [13].

The space D is linearly isomorphic to the stoichiometric subspace S if and only if δ = 0. Specifically,
consider the homomorphism

ϕ : R|C| → Rn
ey 7→ y.

(3.3)

For y → y′ ∈ R, we have ϕ(dy→y′) = ξy→y′ and ϕ|D : D → S is thus a surjective homomorfism.
Therefore,

δ = dimD − s = dim Kerϕ|D, (3.4)

which implies that ϕ|D is an isomorphism if and only if δ = 0. It further follows that the deficiency is a
non-negative number.

We state here a useful Lemma on the deficiency of subnetworks.

Lemma 3.2. Let G be a reaction network with deficiency δ. Then, the deficiency of any subnetwork of
G is smaller than or equal to δ.

Proof. Let R′ ⊆ R and let G′ be the corresponding subnetwork with deficiency δ′. Further, let D′ and
S′ be the equivalent of D and S for G′, respectively. By (3.4) and since D′ is a subspace of D, we have
δ′ = dim Kerϕ|D′ ≤ dim Kerϕ|D = δ, which concludes the proof.

We next state two classical results which elucidate the connection between complex balanced systems
and deficiency zero systems [13, 9]. In particular, the second draws a connection between graphical and
dynamical properties of a network. It is given here in a wider formulation than in [9] (see Appendix B
for a proof).

Theorem 3.3. The mass-action system (G, κ) is complex balanced for any choice of κ if and only if G
is weakly reversible and its deficiency is zero.

Theorem 3.4. Consider a deterministic reaction system (G,K), and assume that the deficiency of G is
zero. If x ∈ Rn0 is an equilibrium point and y → y′ ∈ R, then supp y ⊆ suppx only if y → y′ is terminal.
Moreover, if K is mass-action kinetics with rate constants κ and supp y ⊆ suppx, then the projection of
x onto the species space of Gy is a complex balanced equilibrium of (Gy, κy).

It follows from Theorem 3.4 that an equilibrium point satisfies (3.2) for the terminal system, though it
is not necessarily a positive equilibrium of (G∗, κ∗) and cannot therefore be considered complex balanced.
The deficiency zero theorem, in the following formulation, is a consequence of the three previous theorems:

Theorem 3.5 (Deficiency zero theorem). Consider a deterministic reaction system (G,K) for which the
deficiency is zero. Then the following statements hold:

i) if G is not weakly reversible, then there exists no positive equilibria;

ii) if G is weakly reversible and K is mass-action kinetics, then there exists within each stoichiometric
compatibility class a unique positive equilibrium, which is asymptotically stable.

The original formulation is richer than the one presented here [9].
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Figure 1: The figure shows some features of the reaction network 2A → 2B, and A + 3B → 3A + B.
(A) The stoichiometric compatibility classes are of the form {(zA, zB) : zA + zB = const.}. (B) The
two irreducible components on {(xA, xB) : xA + xB = 6} are shown (black circles and square), together
with the possible transitions between the states. All states within a component are accessible from each
other. The “square” component has no active reactions, both reactions are active on the “black circles”
component. The grey states are transient states which are not in any irreducible component.

4 Stochastic reaction systems

4.1 Classification of states and sets

To characterise the stochastic dynamics we introduce the following terminology.

Definition 4. Let G = (X , C,R) be a reaction network.

a) A reaction y → y′ ∈ R is active on x ∈ Nn if x ≥ y.

b) A state u ∈ Nn is accessible from a state x ∈ Nn if there is a sequence of q ≥ 0 reactions (yj →
y′j)j=1,...,q such that

(i) u = x+
∑q
j=1(y′j − yj),

(ii) yj → y′j is active on x+
∑h−1
j=1 (y′j − yj) for all 1 < h ≤ q.

Definition 5. Let G be a reaction network. A non-empty set Γ ⊆ Nn is an irreducible component of G
if for all x ∈ Γ and all u ∈ Nn, u is accessible from x if and only if u ∈ Γ.

Definition 6. A reaction network G is essential if the state space is a union of irreducible components.
A reaction network G is almost essential if the state space is a union of irreducible components except
for a finite number of states.

‘Irreducible’ and ‘essential’ are standard terms in Markov chain theory. An essential network is also
almost essential. A reaction network is essential if and only if every state of the associated Markov chain
is ‘essential’ [11].

A weakly reversible reaction network is essential [21]. Conditions for being essential can be found
in [21, 10]. Any irreducible component is contained in some stoichiometric compatibility class, and a
stoichiometric compatibility class may contain several irreducible components (Fig. 1B).
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4.2 Stationary distribution

The stationary distribution πΓ on an irreducible component Γ is unique, if it exists. It is characterised
by the master equation [4]:

∑

y→y′∈R
πΓ(x+ y − y′)λy→y′(x+ y − y′) = πΓ(x)

∑

y→y′∈R
λy→y′(x), (4.1)

for all x ∈ Γ. Let X(t) denote the stochastic process associated with the system. If X(t0) follows the
law of πΓ at time t0, then the distribution of X(t) is πΓ for all future times t ≥ t0. In this sense, the
stationary distribution describes a state of equilibrium of the system. Moreover, if πΓ exists, then

lim
t→∞

P (X(t) ∈ A) = πΓ(A) for any A ⊆ Γ, (4.2)

provided that X(0) ∈ Γ with probability one. As discussed in Section 1, a connection between mass-
action complex balanced systems and their stationary distribution has been made in [2]:

Theorem 4.1. Let (G, κ) be a complex balanced mass-action system. Then, there exists a unique sta-
tionary distribution on every irreducible component Γ, and it is of the form

πΓ(x) = M c
Γ

n∏

i=1

cxii
xi!

for x ∈ Γ, (4.3)

where c is a complex balanced equilibrium of (G, κ) and M c
Γ is a normalising constant.

The result in [2] assumes deficiency zero, but the proof only uses the fact that c is a complex balanced
equilibrium, and therefore it holds in the broader setting of complex balanced systems. Our results will
expand Theorem 4.1.

4.3 Parallel theorems for stochastic mass-action systems

In this section we derive stochastic statements corresponding to Theorem 3.1-3.5. Some of the proofs
are deferred to Appendix B. We begin with a definition.

Definition 7. For an irreducible component Γ, the set RΓ of active reactions on Γ consists of the
reactions y → y′ ∈ R that are active on some x ∈ Γ. The subnetwork GΓ = (XΓ, CΓ,RΓ) is called the
Γ-network of G and the subsystem (GΓ,KΓ) of (G,K) is called the Γ-system of (G,K).

The reactions that are active on Γ determine the dynamics of the stochastic system on Γ. To study
the stationary distributions, it is therefore convenient to analyse the Γ-systems. Note that RΓ is empty
if and only if Γ consists of a single state.

As an example, consider the deficiency zero network,

C 
 D, 2A
 2B, A→ 0.

All molecules of A and B are irreversibly consumed through A→ 0 and 2B → 2A, thus the only active
reactions on an irreducible component Γ 6= {0} are C 
 D. The Γ-network is therefore C 
 D, which
differs from the terminal system C 
 D, 2A
 2B. The next proposition states that for a deficiency zero
reaction network RΓ ⊆ R∗ for any irreducible component Γ. It does not hold in general, for example,

A→ B, 2B → 2A

has RΓ = R for any Γ 6= {0}, {(0, 1)}, while R∗ = ∅.

Proposition 4.2. Let G be a reaction network and Γ an irreducible component such that GΓ has deficiency
zero. Then, GΓ is a subnetwork of G∗. In particular, this is true if the deficiency of G is zero.

See Appendix B for a proof. Proposition 4.2 can be useful because RΓ might be difficult to find,
especially if there are many complexes. On the other hand, terminal reactions are easily identified by
means of the reaction graph. The next definitions are inspired by Definition 3.

7



Definition 8. Let (G,K) be a stochastic reaction system. A stationary distribution on an irreducible
component Γ is said to be complex balanced if

∑

y∈CΓ
πΓ(x− y′ + y)λy→y′(x− y′ + y) =

∑

y∈CΓ
πΓ(x)λy′→y(x) ∀y′ ∈ CΓ, x ∈ Γ. (4.4)

For a mass-action system, (4.4) becomes

∑

y∈CΓ
πΓ(x− y′ + y)κy→y′

(x− y′ + y)!

(x− y′)! 1{x≥y′} =
∑

y∈CΓ
πΓ(x)κy′→y

x!

(x− y′)!1{x≥y′}

for any y′ ∈ CΓ and x ∈ Γ, with the convention that ky→y′ = 0 if y → y′ 6∈ RΓ. In developing the theory
for complex balanced equilibria in the deterministic setting, an important role is played by the fact that
a complex balanced equilibrium is positive by definition. Our aim is to introduce a similar concept for
the stochastic systems. In the deterministic setting, if a state z ∈ Rn is positive then every rate function
calculated on z is positive. We find inspiration from this to give the next definition:

Definition 9. An irreducible component Γ is positive if GΓ = G.

Equivalently, an irreducible component Γ is positive if all reactions are active on Γ. The next definition
follows naturally by analogy with the deterministic setting.

Definition 10. A stochastic reaction system (G, κ) is said to be stochastically complex balanced if there
exists a complex balanced stationary distribution on a positive irreducible component.

If Γ is positive, then CΓ = C and a complex balanced stationary distribution on Γ satisfies (4.4) with
CΓ replaced by C. Note the similarity between Definition 10 and the definition of a complex balance
equilibrium (Definition 3): the positivity of Γ plays the role of the positivity in Definition 3. Also note
the close similarity between (3.1) and (4.4).

Theorem 4.3. Let (G,K) be a stochastic reaction system, and let Γ be an irreducible component. If
there exists a complex balanced stationary distribution πΓ on Γ then GΓ is weakly reversible. Moreover, if
K is mass-action kinetics with rate constants κ, there exists a complex balanced stationary distribution
πΓ on Γ if and only if the Γ-system of (G, κ) is complex balanced. If this is case, then πΓ has the form

πΓ(x) = M c
Γ

∏

i : Si∈XΓ

cxii
xi!

for x ∈ Γ, (4.5)

where c is a complex balanced equilibrium of (GΓ, κΓ) and M c
Γ is a normalising constant.

The proof is in Appendix B. It is shown in [2] that the stationary distribution πΓ(x) is independent
of the choice of complex balanced equilibrium c of the Γ-system. We are now ready to derive stochastic
versions of Theorem 3.1-3.5. In addition, we will show that a stochastically complexed balanced mass-
action system is complex balanced and vice versa. Hence, we will show that the deterministic and
stochastic systems are intimately connected. The next corollary is an equivalent of Theorem 3.1.

Corollary 4.4. If a stochastic reaction system (G,K) is stochastically complex balanced then G is weakly
reversible. Moreover, a mass-action system (G, κ) is stochastically complex balanced if and only if it is
complex balanced. If this is case, then on every irreducible component Γ there exists a unique stationary
distribution πΓ. Such πΓ is a complex balanced stationary distribution and it has the form (4.3), where
c is a complex balanced equilibrium of (G, κ).

Proof. If Γ is positive, then (GΓ,KΓ) = (G,K). Therefore, by Theorem 4.3 if (G,K) is stochastically
complex balanced then G is weakly reversible. Moreover, if K is mass-action kinetics with rate constants
κ, it follows from Theorem 4.3 that there exists a complex balanced stationary distribution on Γ if and
only if (G, κ) is complex balanced. In this case, by Theorem 4.1, a stationary distribution exists on every
irreducible component and it is of the form (4.3). By Theorem 4.3, it is a complex balanced stationary
distribution.
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Corollary 4.4 might be considered a stochastic version of Theorem 3.1, especially if (4.2) is taken to
be equivalent to “asymptotic stability” for a deterministic equilibrium. Part of the corollary is known
[2] (see also Theorem 4.1), and the whole corollary might therefore be considered as an extension of the
result in [2] on mass-action systems. In this sense, Theorem 4.3 provides an even more general version,
which deals with complex balanced subsystems of (G, κ).

We now state the parallel versions of Theorem 3.3-3.5 for the stochastic setting.

Corollary 4.5. The mass-action system (G, κ) is stochastically complex balanced for any choice of κ if
and only if G is weakly reversible and its deficiency is zero.

Proof. The result is an immediate consequence of Corollary 4.4 and Theorem 3.3.

Theorem 4.6. Consider a stochastic reaction system (G,K), and assume the deficiency of G is zero.
Let x be a state in an irreducible component Γ and let y → y′ in R. Then, y ≤ x only if y → y′ is
terminal. Moreover, if K is mass-action kinetics, then on Γ the stationary distribution has the form

πΓ(x) = M c
Γ

∏

i : Si∈X∗

cxii
xi!

for x ∈ Γ, (4.6)

where c is a complex balanced equilibrium for the terminal system, and M c
Γ is a normalising constant.

The proof is in Appendix B.

Theorem 4.7. Consider a stochastic reaction system (G,K), and assume that the deficiency of G is
zero. Then the following statements hold:

i) if G is not weakly reversible, then there exist no positive irreducible components;

ii) if G is weakly reversible, then G is essential, and if K is mass-action kinetics there exists a unique
stationary distribution on every irreducible component.

The proof of the theorem is in Appendix B. In case (i), Theorem 4.6 provides the form of the
stationary distribution. Hence we have characterised the stationary distribution for any deficiency zero
reaction system, irrespectively whether it is complex balanced or not.

Example 1. Consider the two stochastic mass-action systems

A
κ1−−⇀↽−−
κ2

B, 10A
κ3−−⇀↽−−
κ4

10B and A
κ1−−⇀↽−−
κ2

B, 10A
κ3−→ 0.

The behaviours of the two corresponding deterministic systems differ substantially, while the behaviours
of the stochastic systems are equivalent on the irreducible components Γθ = {x ∈ N2 : x1 + x2 = θ} with
0 ≤ θ < 10 an integer. Indeed, in both cases the Γθ-system is

A
κ1−−⇀↽−−
κ2

B,

which is complex balanced (Theorem 3.3). It follows from Theorem 4.3 that the stationary distribution
on Γθ is

πθ(x1, x2) = Mθ
κx1

2

x1!

κx2
1

x2!
for (x1, x2) ∈ Γθ,

for a suitable normalizing constant Mθ. The stationary distributions is complex balanced, but since Γθ
is not positive in either of the two networks, we cannot conclude that the systems are stochastically
complex balanced. Indeed, they are not for some choice of rate constants (Corollary 4.5).
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5 Product-form Poisson-like stationary distributions

The above results draw parallels between stochastic and deterministic reaction networks. If a mass-
action system is (stochastically) complex balanced, then the stationary distribution on every irreducible
component is a product-form Poisson-like distribution. Does the reverse statement hold true too? If the
stationary distribution is a product-form Poisson-like distribution on some, or all irreducible components,
does it follow that the system is complex balanced? In the spirit of the first part of the paper we would
like to achieve a full characterisation of stochastic systems with product-form Poisson-like stationary
distributions. However, even though the hypothesis of Theorem 5.1 below is rather general, a full
characterisation seems hard to achieve.

Theorem 5.1. Let G be an almost essential reaction network, κ ∈ Rm+ a vector of rate constants and
c ∈ Rn+ a vector with positive entries. The probability distribution πΓ : Γ → (0, 1], defined by (4.3) is a
stationary distribution for the stochastic mass-action system (G, κ) for all irreducible components Γ ⊆ Nn
of G if and only if c is a complex balanced equilibrium for (G, κ).

Proof. By Theorem 4.1, if c is a complex balanced equilibrium for (G, κ), then the stationary distribution
on all irreducible components Γ ⊆ Nn is of the form (4.3).

Oppositely, assume that (4.3) is the stationary distribution on Γ for the stochastic mass-action system
(G, κ), for all irreducible components Γ. Since G is almost essential, there exists a constant K such that
any states x with ‖x‖ > K belongs to an irreducible component Γ. For any x ∈ Nn, such that

min
Si∈X

xi > max
y→y′∈R

(‖y‖∞ + ‖y′‖∞) +K, (5.1)

we have that x ≥ y and x− y′ + y ≥ y for all y → y′ ∈ R. Then, since (4.3) is a stationary distribution
and since x and x+ y− y′ are in the same irreducible component for all y → y′ ∈ R, we have from (4.1)

∑

y→y′∈R
πΓ(x+ y − y′)κy→y′

(x+ y − y′)!
(x− y′)! = πΓ(x)

∑

y→y′∈R
κy→y′

x!

(x− y)!
, (5.2)

for all x ∈ Γ satisfying (5.1). Further, using (4.3), equation (5.2) becomes

∑

y→y′∈R

x!

(x− y′)!κy→y′c
y−y′ =

∑

y→y′∈R
κy→y′

x!

(x− y)!
,

which, by rearranging terms, leads to

∑

y′∈C

x!

(x− y′)!
∑

y→y′∈R
κy→y′c

y−y′ =
∑

y′∈C

x!

(x− y′)!
∑

y′→y∈R
κy′→y. (5.3)

The equality holds for all x ∈ Nn satisfying (5.1), therefore the polynomials on the two sides of (5.3) are
equal.

For any y′ ∈ C, let py′(x) be the polynomial

py′(x) =
x!

(x− y′)! .

The monomial with maximal degree in py′ is xy
′
, and these differ for all complexes y′ ∈ C. This implies

that py′ , y
′ ∈ C, are linearly independent on R, and thus, the polynomials on the two sides of (5.3) are

equal if and only if ∑

y∈C
κy→y′c

y−y′ =
∑

y∈C
κy′→y for all y′ ∈ C.

Hence, c is a complex balanced equilibrium for (G, κ) and the proof is completed.
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5.1 Relaxation of Assumptions in Theorem 5.1

To infer the existence of complex balanced equilibria in Theorem 5.1, the assumptions of the theorem
could be weakened. Specifically, it is only required that (5.3) holds for a set of states whose geometry
and cardinality allow us to conclude that the polynomials on the two sides of (5.3) are the same. For
(5.3) to hold, we need x to be in a irreducible component and we require x ≥ y and x − y′ + y ≥ y for
all reactions y → y′ ∈ R, as well as the stationary distribution evaluated in x and x− y′+ y to be of the
form (4.3). If a state x satisfies this, we call it a good state.

A more general condition than being almost essential could be chosen case by case and depends on
the monomials appearing in (5.3). For example, if the set of complexes coincides with the set of species,
then the polynomials in (5.3) are linear and the existence of n+ 1 good states in general position implies
the existence of a complex balanced equilibrium. In general, let d be the total degree of the polynomials
in (5.3). Then it is sufficient to have an n-dimensional cube with more than d + 1 good states on all
edges. Therefore, to conclude that a system is complex balanced it is sufficient to check the behaviour of
a finite number of states, lying on a finite number of irreducible components. However, it follows from
Examples 2 and 4 that the existence of arbitrarily many good states on a few irreducible components
does not imply the existence of a complex balanced equilibrium in general. Finally, in order to postulate
that the mass-action system is complex balanced, it is necessary that the vector c appearing in Theorem
5.1 is the same for every irreducible component, as shown in Example 5.

The following examples are also meant to give an idea of why it is hard to obtain a full characteriza-
tion of stochastic mass-action systems with a product-form Poisson-like stationary distribution on some
irreducible component.

Example 2. Let ρ ∈ R+ and let θ ≥ 2 be an integer. Consider the stochastic mass-action system

A
ρ(θ−1)−−−−→ B 2B

ρ−−−−→ 2A, (5.4)

where κ1 = ρ(θ − 1) and κ2 = ρ are the rate constants. The reaction network is almost essential. By
the master eaquation, it can be shown that the stationary distribution on the irreducible component
Γθ = {x ∈ N2 : x1 + x2 = θ} has the form (4.3) with c = (1, 1), namely

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ, (5.5)

where Mθ is a normalising constant. However, the mass-action system is not complex balanced as the
reaction network is not weakly reversible (Theorem 3.1). In particular, by Theorem 5.1, not all irreducible
components can have a stationary distribution of the form (4.3) with c = (1, 1). Trivially, the absorbing
states (0, 0) and (0, 1) have it.

Additionally, we should point out that there is not an equivalent system on Γ (that is, a stochastic
mass-action system with the same transition rate matrix on the states of Γ as (5.4)) which is complex
balanced. Consider the case θ = 1. Since the transition from (0, 2) to (2, 0) is possible according to (5.4),
any equivalent mass-action system must contain the reaction 2B → 2A, with rate constant ρ. It can
be further shown that any equivalent weakly reversible mass-action system must contain the connected
component

A+B

2B

2A .

ρ

ρ
2

ρ

This prevents the system from being complex balanced, since there is not a c ∈ R2
+ fulfilling (3.2) for

the three complexes 2B, 2A and A+B.

Example 3. Let ρ1, ρ2, ρ3 ∈ R+ and let θ ≥ 2 be an integer. Consider the modification of Example 2
given by

A
ρ1(θ−1)+ρ2−−−−−−−−⇀↽−−−−−−−−

ρ2

B 2B
ρ1+ρ3−−−−−−−−⇀↽−−−−−−−−
ρ3

2A,

which is weakly reversible. If we let ρ2 = 0 and ρ3 = 0, then the system reduces to that of Example 2
by removing the two reversible reactions. It can be shown that for any parameter choice, (5.5) is still
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a stationary distribution on the irreducible component Γθ = {x ∈ N2 : x1 + x2 = θ}. However, the
mass-action system is not complex balanced for any choice of the parameters. It can be further shown
that irreducible components different from Γ do not possess a product-form Poisson-like stationary
distribution.

Example 4. Consider the stochastic mass-action system with ρ ∈ R+ and θ1, θ2 two positive integers,

A
ρθ1θ2−−−−−−−→ B 2B

ρ(θ1+θ2−1)−−−−−−−→ 2A

3A
ρ−−−−−−−→ A+ 2B 2A+B

ρ−−−−−−−→ 3B.

The reaction network is almost essential. For any θ ∈ N, consider the irreducible component Γθ = {x ∈
N2 : x1 + x2 = θ+ 1}. Then πθ1 and πθ2 , defined as in (5.5), are the (unique) stationary distributions on
the irreducible components Γθ1 and Γθ2 , respectively. However, the mass-action system is not complex
balanced, since the reaction network is not weakly reversible (Theorem 3.1).

Example 5. Theorem 5.1 can be also used to compute the stationary distribution of a stochastic mass-
action system which behaves as a complex balanced system on the irreducible components. Consider the
weakly reversible (and therefore essential) stochastic mass-action system

A
κ1−−⇀↽−−
κ2

2A A+B
κ3−−⇀↽−−
κ4

2A+B.

On every irreducible component Γθ = {x ∈ N2 : x2 = θ}, θ ∈ N, the associated continuous time
Markov chain, which describes the evolution of the counts of A, has the same distribution as the process
associated with

A
κ1+κ3θ−−−−−⇀↽−−−−−
κ2+κ4θ

2A,

because the transition rates coincide. The latter system is complex balanced for any choice of rate
constants. The stationary distribution has the form (Theorem 5.1)

πθ(x) = Mθ
1

x!

(
κ2 + κ4θ

κ1 + κ3θ

)x

for some positive constant Mθ. The latter gives the stationary distribution of the original system as well.
However, the rate of the Poisson distribution does depend on θ, in which case the original system cannot
be complex balanced (Corollary 4.4). For the same reason the example does not contradict Theorem 5.1.

6 Applications

There are not many means to explicitly calculate the stationary distribution of a stochastic mass-action
system. As an example, Theorem 4.3 can be used to determine the stationary distributions of mass-action
systems like

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B, A
κ5−→ 0.

Indeed, for any irreducible component Γ different from {0}, the Γ-system is given by

C
κ1−−⇀↽−−
κ2

D,

which is weakly reversible and has deficiency zero, therefore it is complex balanced. Hence, the stationary
distribution on Γ has the form

πΓ(x) = MΓ
κx3

2

x3!

κx4
1

x4!
for x ∈ Γ,

where x3 and x4 denote the entries relative to C and D, respectively. Alternatively, since the terminal
system is given by

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B,

12



Theorem 4.6 can be used to compute the stationary distribution. On every irreducible component Γ, it
is given by

πΓ(x) = M̃Γ
(
√
κ4)x1

x1!

(
√
κ3)x2

x2!

κx3
2

x3!

κx4
1

x4!
for x ∈ Γ,

which is equivalent to the previous formula since x1 and x2 are constantly 0 on all irreducible components.
If the system does not fulfil the conditions of Theorem 4.3 and neither can be cast as a birth-death

process, Theorem 5.1 might be useful. The following mass-action system is considered in [1]:

A
κ1−→ 0 0

κ2−→ 2A.

By Theorem 5.1, the stationary distribution cannot be Poisson. Indeed, it is given by the distribution
of Y = Y1 + 2Y2, where Y1 and Y2 are two independent Poisson random variables with rates κ2

κ1
and κ2

2κ1
,

respectively. Hence,

π(x) = e−
3κ2
2κ1

∑

i,j∈N
x=i+2j

1

i!j!

(
κ2

κ1

)i(
κ2

2κ1

)j
.

In [1], the following system is also considered:

0
κ1−−⇀↽−−
κ2

A 2A
κ3−−⇀↽−−
κ4

3A.

It has the stationary distribution

π(x) = M
x∏

i=1

θ1[(i− 1)(i− 2) + θ2]

i(i− 1)(i− 2) + θ3i
for x ∈ N,

where θ1 = κ3/κ4, θ2 = κ1/κ3, θ3 = κ2/κ4 and M = π(0) is a normalising constant. It is interesting
that π(x) is a Poisson distribution if and only if θ2 = θ3. In fact, and in accordance with our results, the
mass-action system is complex balanced if and only if θ2 = θ3.

7 Discussion

Corollary 4.5 provides a characterisation of reaction networks that are stochastically complex balanced
for any choice of rate constants. It is natural to wonder whether a stationary distribution of the form
(4.3) on some irreducible component Γ for all choices of rate constants implies something specific about
the Γ-system. If for specific form we intend deficiency zero and weakly reversible, this is not the case,
as this is violated in Example 5. However, in Example 5 the system might be described equivalently
by means of a weakly reversible deficiency zero system for any irreducible component. The question of
whether this is always true remains open. We provide here two more examples.

Example 6. Consider the stochastic mass-action system

2A
κ1−→ 2B A+ 3B

κ2−→ 3A+B.

The underlying reaction network is the one considered in Figure 1. On the irreducible component
Γ = {(1, 5), (3, 3), (5, 1)}, the Markov chain associated with the system has the same distribution as the
Markov chain associated with

2A
κ1−−⇀↽−−
3κ2

2B,

since the transition rates coincide. It is interesting to note that the dynamics of the two systems are
different when they are deterministically modelled [7]. Due to Theorem 3.3, the latter system is complex
balanced for any choice of rate constants. Therefore, by Theorem 5.1, the stationary distribution on Γ
has the form (4.3) on both systems for any choice of rate constants. The same argument does not hold,
in this case, for the other irreducible components.

13



Example 7. The same phenomenon as in Example 6 is observed in the stochastic mass-action system

2A
κ1−→ 3A+B A+ 3B

κ2−→ 2B.

On the irreducible component Γ = {(x1, x2) ∈ N2 : x1 ≥ 2, x1 = x2}, the Markov chain associated with
the system has the same distribution as the Markov chain associated with

2A
κ1−−⇀↽−−
κ2

3A+B,

since the transition rates coincide, and the latter network is weakly reversible and has deficiency zero.

Acknowledgments: We thank Elisenda Feliu for valuable comments and fruitful discussions.

A Preliminary results

Here we state some preliminary results that will be needed in Appendix B.

Lemma A.1. Let G be a reaction network. If y1 → y2 → · · · → yq is a directed path in the reaction
graph of G, and x ≥ y1, then x+ yq − y1 is accessible from x.

Proof. First, note that

x+

q−1∑

i=1

(yi+1 − yi) = x+ yq − y1.

It is sufficient to note that if x ≥ y1, then for any 1 ≤ j ≤ q − 1, we have

x+

j−1∑

i=1

(yi+1 − yi) = x+ yj − y1 ≥ yj .

This concludes the proof.

Lemma A.2. Let Γ be an irreducible component such that GΓ has deficiency zero. Then, GΓ is weakly
reversible. In particular, if G has deficiency zero, GΓ has deficiency zero and is weakly reversible for
every irreducible component Γ.

Proof. If RΓ is empty then GΓ is weakly reversible and there is nothing to prove. Otherwise, if RΓ is
non-empty, let y1 → y′1 ∈ RΓ. By hypothesis, there exists a state x in Γ with x ≥ y1. This means that
x+ ξy1→y′1 is accessible from x. Moreover, since x belongs to an irreducible component Γ, we have that
x is accessible from x+ ξy1→y′1 as well, which implies that

x = x+

q∑

j=1

ξyj→y′j ,

for a certain choice of ξyj→y′j . In particular,
∑q
j=1 ξyj→y′j = 0. This implies that

∑q
j=1 dyj→y′j = 0,

because ϕ, defined in (3.3), is an isomorphism between the spaces D and S associated with GΓ. Therefore,

q∑

j=1

(ey′j − eyj ) =
∑

y∈CΓ
αyey = 0,

for some integers αy. Since the vectors ey are linearly independent, αy = 0 for all y ∈ CΓ. Hence, each ey
that appears in the sum, must appear at least twice, once with coefficient 1, once with −1. Consequently,
by iteratively reordering the terms dyj→y′j , the reactions (yj → y′j)

q
j=1 form a union of directed closed

paths in the reaction graph of G. In particular, the reaction y1 → y′1 is contained in a closed directed
path of the reaction graph of GΓ, and since this is true for every reaction in RΓ, GΓ is weakly reversible.
We conclude the proof by Lemma 3.2, since if G has deficiency zero, so does every subnetwork of G.

14



Lemma A.3. Let G be a weakly reversible reaction network, and let Γ be an irreducible component.
Then, for any complex y′ ∈ CΓ we have

{y ∈ C : y → y′ ∈ R} = {y ∈ CΓ : y → y′ ∈ RΓ},
{y ∈ C : y′ → y ∈ R} = {y ∈ CΓ : y′ → y ∈ RΓ}.

Proof. One inclusion is trivial, since RΓ ⊆ R. For the other inclusion, fix y′ ∈ CΓ. Suppose that there
exists x ∈ Γ with x ≥ y′. It follows that any reaction y′ → y ∈ R is active on Γ, and therefore is
contained in RΓ. Moreover, since G is weakly reversible, for any reaction in R of the form y → y′, there
exists a directed path in the reaction graph of G from y′ to y. Hence, by Lemma A.1, x + y − y′ is
accessible from x, which implies that x + y − y′ is in Γ and that y → y′ is in RΓ, since x + y − y′ ≥ y.
Therefore, to conclude the proof it suffices to prove that there exists x ∈ Γ with x ≥ y′.

If it were no x ∈ Γ with x ≥ y′, then no reaction of the form y′ → y would be in RΓ. Since y′ ∈ CΓ,
there exists a reaction of the form y → y′. This means that there is x̃ ∈ Γ, such that x̃ ≥ y. Hence,
x̃+ y′ − y is in Γ with x̃+ y′ − y ≥ y′, which concludes the proof.

B Proofs

B.1 Proof of Theorem 3.4

By [9, Theorem 6.1.2], if x ∈ Rn0 is an equilibrium point and y → y′ ∈ R, then supp y ⊆ suppx only
if y → y′ is terminal. Moreover, if supp y ⊆ suppx, then supp ỹ ⊆ suppx for every complex ỹ of
Gy = (Xy, Cy,Ry).

Now, suppose that K is mass-action kinetics with rate constants κ, and that supp y ⊆ suppx with
y → y′ ∈ R (and therefore y → y′ ∈ R∗). Consider

R̃ = {ỹ → ỹ′ ∈ R : supp ỹ ⊆ suppx}.

By the first part of the statement, the reaction graph of the subnetwork G̃ = (X̃ , C̃, R̃) is a union of

terminal strongly connected components of G, and therefore G̃ is weakly reversible. Moreover, by Lemma
3.2, the deficiency of G̃ is 0. It is not hard to see that the canonical projection of x onto the space of
the species X̃ is a positive equilibrium point of (G̃, κ̃), and therefore complex balanced by Theorem 3.3.
The proof is concluded by (3.2) and by noting that, for any complex ỹ ∈ Cy,

{ỹ′ ∈ C̃ : ỹ → ỹ′ ∈ R̃} = {ỹ′ ∈ Cy : ỹ → ỹ′ ∈ Ry},
{ỹ′ ∈ C̃ : ỹ′ → ỹ ∈ R̃} = {ỹ′ ∈ Cy : ỹ′ → ỹ ∈ Ry}.

B.2 Proof of Proposition 4.2

If RΓ is empty there is nothing to prove. Suppose that this is not the case. Since GΓ has deficiency zero,
by Lemma A.2, it is weakly reversible. For any y → y′ ∈ RΓ, by definition there exists x ∈ Γ such that
x ≥ y, which in turn implies x+ y′ − y ≥ y′. Therefore, for any directed path in the reaction graph of G
that starts with y → y′ ∈ RΓ, all the reactions in the path belong to RΓ, by definition of RΓ. Since GΓ

is weakly reversible, this can only happen if RΓ ⊆ R∗, and this proves the first part of the statement.
To conclude the proof, note that if the deficiency of G is zero, then by Lemma 3.2 the deficiency of GΓ

is zero as well.

B.3 Proof of Theorem 4.3

For the first part of the statement, consider a continuous-time Markov chain CΓ(t) with state space Γ×C
and transition rate from (x, y) to (x+ y′ − y, y′) given by λy→y′(x) if y → y′ ∈ RΓ, and zero otherwise.
The master equation for CΓ(t) is

∑

y∈CΓ
π̃(x− y′ + y, y)λy→y′(x− y′ + y) =

∑

y∈CΓ
π̃(x, y′)λy′→y(x) ∀y′ ∈ C, x ∈ Γ,
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with the convention that λy→y′(x) = 0 if y → y′ /∈ RΓ. By Definition 8, a stationary distribution for
CΓ(t) exists and it is of the form π̃(x, y) = Mπ(x), for a suitable normalising constant M . Since π(x)
is positive for any x ∈ Γ (because it is a stationary distribution on an irreducible component), then by
standard Markov chain theory, we have that for any two states (x1, y1), (x2, y2) ∈ Γ × C, if (x2, y2) is
accessible from (x1, y1), then (x1, y1) is accessible from (x2, y2). Fix y → y′ ∈ RΓ and x ∈ Γ with x ≥ y.
Then, a directed path from (x+y′−y, y′) to (x, y) exists in the graph associated with CΓ(t). The second
components of the form y of the states in the path, by construction, determine a directed path in the
reaction graph of GΓ from y′ to y. Hence, any reaction y → y′ ∈ RΓ is contained in a closed directed
path, which means that GΓ is weakly reversible.

Assume now that K is mass-action kinetics with rate constants κ and that c is a complex balanced
equilibrium of (G, κ). Then, by Theorem 4.1, there exists a (unique) stationary distribution on Γ of the
form (4.3). If a species Sj is not in XΓ, then the value of xj is constant for any x ∈ Γ, and (4.5) can be
obtained from (4.3) by modifying the normalising constant.

By Theorem 3.1 and Lemma A.3, we have that
∑

y∈CΓ
cy−y

′
κy→y′ =

∑

y∈CΓ
κy′→y ∀y′ ∈ CΓ,

with κy→y′ = 0 if y → y′ /∈ RΓ. Therefore, for any y′ ∈ CΓ and x ∈ Γ,

1

(x− y′)!
∑

y∈CΓ
cx+y−y′κy→y′1{x≥y′} =

1

(x− y′)!
∑

y∈CΓ
cxκy′→y1{x≥y′},

which leads to (4.4), since π is of the form (4.3).
To prove the converse we first introduce a new stochastic mass-action system (ĜΓ, κ̂Γ), which is given

by the reactions of the form

y + Sy → y′ + Sy′ with y → y′ ∈ RΓ,

where Sy are fictitious species in one to one correspondence with the complexes CΓ. The rate constant
of the reaction y+Sy → y′+Sy′ is given by κy→y′ . It is not difficult to see that the sum of the fictitious
species is conserved for any possible trajectory. Moreover, since any directed path y1 → y2 → . . . yq in
the reaction graph of G corresponds to a directed path y1 +Sy1

→ y2 +Sy2
→ . . . yq +Syq in the reaction

graph of ĜΓ, we have that ĜΓ is weakly reversible by the first part of the proof.
Consider the set

Υ = {(x, x̂) ∈ Nn × Nm : x ∈ Γ, ‖x̂‖1 = 1}.
Every state in Υ is of the form (x, Sy) ∈ Nn+m, where x ∈ Γ and Sy is considered as the vector in Nm
with entry 1 in the position corresponding to the species Sy and 0 otherwise. Since Γ is an irreducible
component of G and the sum of the fictitious species is conserved, no state outside Υ is accessible from
any state in Υ, according to ĜΓ. Moreover, the master equation on Υ can be written as

∑

y∈CΓ
π̂(x− y′ + y, Sy)κy→y′

(x− y′ + y)!

(x− y′)! 1{x≥y′}

=
∑

y∈CΓ
π̂(x, Sy′)κy′→y

x!

(x− y′)!1{x≥y′} ∀y′ ∈ C, x ∈ Γ. (B.1)

If we choose π̂(x, x̂) = Mπ(x) for some positive constant M , then the master equation (B.1) is satisfied
due to Definition 8. Therefore, if M is chosen as a suitable normalising constant, π̂(x, z) = Mπ(x) is a
stationary distribution on Υ.

Consider the linear homomorphism ϕ as defined in (3.3), for the reaction network ĜΓ. Note that
|ĈΓ| = |CΓ| = mΓ. For any vector ey of the basis of RmΓ , we have ϕ(ey) = (y, Sy). Since the vectors

(y, Sy) with y ∈ CΓ are linear independent, ϕ is an isomorphism and the deficiency of ĜΓ is 0.

Since ĜΓ is a deficiency zero weakly reversible reaction network, it follows from Theorem 3.3 that
the mass-action system (ĜΓ, κ) is complex balanced. Therefore, by Theorem 4.1, we have that π̂ has the
form

π̂(x, x̂) = M
(c,ĉ)

Γ̂

cx

x!

ĉx̂

x̂!
,
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for a complex balanced equilibrium (c, ĉ), on any irreducible component Γ̂ contained in Υ. Since π̂(x, x̂) =
Mπ(x) does not depend on x̂, we have

π̂(x, x̂) = M c
Γ

cx

x!
,

for any (x, x̂) ∈ Υ.
Fix a complex y′ ∈ CΓ. Since GΓ is weakly reversible, there exists a reaction y′ → y that is active on

Γ. Fix x ∈ Γ such that x ≥ y′. Then for any y → y′ ∈ RΓ we have x− y′+ y ≥ y. If we plug the formula
for π̂(x, x̂) in (B.1) for our choice of x and y′, we obtain

∑

y∈CΓ
M c

Γ

cx−y
′+y

(x− y′ + y)!
κy→y′

(x− y′ + y)!

(x− y′)! =
∑

y∈CΓ
M c

Γ

cx

x!
κy′→y

x!

(x− y′)! ,

which leads to ∑

y∈CΓ
cy−y

′
κy→y′ =

∑

y∈CΓ
κy′→y.

The proof is concluded by the fact that the above holds for any fixed y′ ∈ CΓ, which means that c is a
complex balanced equilibrium of (GΓ, κΓ).

B.4 Proof of Theorem 4.6

By Lemma A.2, GΓ is weakly reversible. Moreover, for y → y′ ∈ RΓ, if x ≥ y then x + y′ − y ≥ y′.
This implies that for any directed path in the reaction graph of G that starts with y → y′ ∈ RΓ, all the
reactions in the path belong to RΓ, by definition of RΓ. Since GΓ is weakly reversible, every directed
path in the reaction graph of G that starts with y → y′ ∈ RΓ is contained in a closed directed path. This
implies that RΓ ⊆ R∗, and proves the first part of the statement.

Now assume that K is mass-action kinetics with rate constants κ. If the deficiency of G is zero, then
by Lemma 3.2 the deficiency of the terminal network is zero as well. Moreover, G∗ is weakly reversible
by definition, thus by Theorem 3.3 (G∗, κ∗) is complex balanced for any choice of rate constants κ∗.

Let X(t) be the stochastic process associated with (G, κ). By the first part of the statement, on Γ only
terminal reactions take place and these involve a subset of the species only. Without loss of generality, we
can assume that X ∗ is constituted by the first n∗ species of X . Therefore, Γ is of the form Γ∗×{v}, with
Γ∗ ⊆ Rn∗ and v ∈ Rn−n∗ . Moreover, we have that on Γ∗, the projection X∗(t) = (X1(t), . . . , Xn∗(t))
is distributed as the process associated with (G∗, κ∗), for which Γ∗ is an irreducible component. Let c
be a complex balanced equilibrium for (G∗, κ∗). Hence, by Theorem 4.1 or Corollary 4.4, the stationary
distribution of the process X(t) = (X∗(t), v) on Γ is of the form (4.6).

B.5 Proof of Theorem 4.7

For the first part, we prove that if an irreducible component Γ is positive, then G is weakly reversible.
This simply follows from Lemma A.2: indeed, by the lemma, GΓ is weakly reversible and since Γ is
positive, GΓ = G.

To prove the second part, we have to show that a weakly reversible reaction network is essential,
and this is done in [21]. Moreover, a deficiency zero weakly reversible mass-action system is complex
balanced, and the proof is concluded by Theorem 4.1 or Corollary 4.4.
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Abstract

Recent work pertaining to both deterministic and stochastic models of chemical reaction systems
satisfying an “absolute concentration robustness” (ACR) property has focused on the limiting behaviours
of the models as time goes to infinity. In particular, it is known that in the stochastic setting an ACR
system will undergo an extinction event with a probability of one so long as the system is conservative.
Here we consider a general class of stochastic chemical models that intersects with the class of ACR
systems. We consider a specific system scaling over compact time intervals and prove that in a limit of
this scaling the distribution of the time-averaged abundances of the ACR species converges weakly to a
certain time-average of an identified product-form Poisson distribution. This result is in agreement with
recent conjectures pertaining to the behaviour of stochastically modeled ACR systems on compact time
intervals.

1 Introduction

Biochemical reaction networks are often quite complex and computationally intractable. It is therefore
important to develop mathematical techniques that relate simple graphical features of the reaction network,
which are easy to check, to the qualitative dynamics of the underlying mathematical model. This approach
dates back to at least [9, 10, 11], where graphical characteristics of the networks ensure uniqueness and local
asymptotic stability of the steady states for deterministically modeled complex-balanced systems.

In this context, Shinar and Feinberg provided graphical conditions that imply certain species satisfy
an absolute concentration robustness (ACR) property for the associated deterministically modeled system
[20]. A species is said to posses ACR if for a fixed choice of system parameters its concentration is the
same at any positive equilibrium point of the deterministically modeled system. Such a feature has been
observed in several important biochemical reaction networks, including signal transduction cascades and
gene regulatory networks [6, 20]. The ACR property provides useful information on the system dynamics
since it indicates a predictable fixed response regardless of changes in the environment. Followup research
pertaining to deterministically modeled systems with ACR species can be found in [14].

Stochastically modeled systems satisfying essentially the same graphical conditions as those detailed in
[20] were considered by Anderson, Enciso, and Johnston in [3]. There it was shown that stochastically
modeled ACR systems undergo an extinction event with a probability of one, so long as the system is
conservative. Moreover, in the examples shown in [3] the total mass is acquired by the species possessing
ACR. Such a result can be considered an example of a discrepancy between the limiting behaviour of a
deterministic system and the limiting behaviour of the corresponding stochastic system, with one modeling
choice predicting a form of long-term stability and the other predicting long-term instability. However,
in [3] it is pointed out that the extinction event is typically a rare event on reasonable timeframes and
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‡kurtz@math.wisc.edu
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that useful information pertaining to the behaviour of stochastically modeled ACR systems could be had
by better understanding the dynamics of the system on compact time intervals or via the quasi-stationary
distribution. It is conjectured in [3] that the distribution of the ACR species will be approximately Poisson
in either case. Both a simple example pertaining to a model of protein interactions and a numerical analysis
of the two-component EnvZ/OmpR signaling system in Escherichia coli provide evidence in favor of the
conjecture [3].

In this paper we provide an asymptotic result for a class of stochastically modeled systems that overlaps
with ACR reaction systems. In particular, we consider a multiscale setting in which the abundances of the
ACR species are of order O(1), while the abundances of the other species are all of order O(N). We then
scale the rate constants in a particular way and let N going to infinity. Under this limit, we prove that
on compact time intervals the ACR species behave in the way conjectured in [3]. Namely, the distribution
of the ACR species is approximated on average by a product-form Poisson distribution whose parameter is
given by the ACR equilibrium value of an associated deterministically modeled system. Thus, the results
presented here link the qualitative behaviours of the deterministic and stochastic models. Furthermore, the
result fully explains the outcome of the numerical analysis of the EnvZ/OmpR signaling system performed
in [3].

We end this section with two instructive examples that demonstrate our main results.

Example 1.1. Consider the deterministically modeled system with reaction network

A+B
κ1−→ 2B

B
κ2−→ A

(1)

and mass action kinetics (see (6) and (7)). The species A exhibits ACR since the equilibrium amount of A
is always κ2/κ1, regardless of the concentration of species B [3, 20].

Now consider a sequence {XN}N∈N of continuous time Markov chain models for (1), in which the counts
of species A and B at time t are given by XN

1 (t) and XN
2 (t), respectively. We suppose the Nth model has

initial condition
(XN

1 (0), XN
2 (0)) = (aN , N(b+ εN )) ∈ Z2

≥0,

where (aN )N∈N is a bounded sequence of natural numbers, b is a positive real number and (εN )N∈N is a
sequence of real numbers tending to zero. This choice corresponds to an experiment where the abundance
of the molecules of B is increased, while the magnitude of the count of A is maintened. Our goal will be to
understand the limiting behaviour of XN

1 for N going to infinity.
Let J be a random variable having a Poisson distribution with parameter κ2/κ1. Corollary 4.1 will

allow us to conclude that for any continuous function g : N → R with at most polynomial growth rate, the
distribution of g(XN

1 (t)) converges on average to the distribution of g(J) for N going to infinity. Specifically,
for any real positive T , we have

∫ ·∧T

0

(
g(XN

1 (s))− E[g(J)]
)
ds ====⇒

N→∞
0.

We refer to Example 4.1 for more details. �
Example 1.2. Our results are also applicable to models that do not utilize mass action kinetics. Consider
the stochastic reaction system

A+ 2B −→ 3B

B
κ1−−⇀↽−−
κ2

C
κ3−→ A,

(2)

where the rate of the reaction A+ 2B → 3B is given by

λ(x) = κ0
x1x2(x2 − 1)

1 + x2
, (3)
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and where κ0 ∈ R>0. The rate (3) corresponds to an inhibitory effect of the molecules of B on the production
of B itself. If we consider a sequence of such models in which the counts of B and C go to infinity, then the
limiting behaviour of the model (2)-(3) coincides with the limiting behaviour of the process associated with
the reaction network

A+B
κ0−→ 2B

B
κ1−−⇀↽−−
κ2

C
κ3−→ A.

(4)

Due to [20], the reaction system (4) exhibits ACR in the species A, when deterministically modeled. Let
q ∈ R>0 be the ACR value for species A. Due to the connection between the models (2)-(3) and (4), we
anticipate the value q will play a role in the limiting behaviour of species A of (2)-(3).

We therefore denote by {XN}N∈N a sequence of stochastic processes modeled according to (2)-(3), with
XN

1 (t), XN
2 (t), and XN

3 (t) being the counts at time t for the species A, B, and C, respectively. We suppose
the Nth model satisfies

XN (0) = (aN , N(b+ ε1,N ), N(c+ ε2,N )) ∈ Z3
≥0,

where (aN )N∈N is a bounded sequence of natural numbers, b, c are positive real numbers, and (ε1,N )N∈N and
(ε2,N )N∈N are sequences of real numbers tending to zero. Our aim is to understand the limiting behaviour
of XN

1 as N goes to infinity.
Let J be a Poisson distribution with parameter q, the ACR value of for species A when (4) is modeled

deterministically. By Corollary 4.2, we have that for any continuous function g with at most polynomial
growth rate, after a certain time and for N large enough, the distribution of g(XN

1 (t)) can be approximated
on average by the distribution of g(J). Specifically, for any ε > 0 there exists Hε > 0 such that, for any
t2 > t1 > Hε

lim
N→∞

P

(
sup

t∈[t1,t2]

∣∣∣∣
∫ t

t1

(
g(XN

1 (s))− E[g(J)]
)
ds

∣∣∣∣ > ε(1 + t2 − t1)

)
= 0.

See Example 4.2 for more details. �

2 Necessary Background and Notation

For any real vector v, we denote its ith entry by vi. We will write v > 0 if every entry of v is strictly positive.
We denote by [v] the vector of the floor functions of the entries of v; that is, [v]i = bvic. For any real vector
α of the same size as v, and for N > 0, we denote by Nαv the vector satisfying

(Nαv)i = Nαivi.

We will denote by ‖v‖ the euclidean norm of the vector, by ‖v‖1 its L1-norm and by ‖v‖∞ its L∞-norm,
that is

‖v‖ =

√∑

i

v2
i , ‖v‖1 =

∑

i

|vi|, and ‖v‖∞ = max
i
|vi|.

For two vectors v and w of the same dimension, we write v < w, v ≤ w, v > w or v ≥ w if the inequality
holds component-wise. Furthermore, for any set A we will indicate by |A| its cardinality and by 1A its
indicator function. Finally, for any a, b ∈ R, a∧ b and a∨ b will denote min{a, b} and max{a, b}, respectively.

We say that a function g : Rn → R has at most polynomial growth rate if there exists a multivariate
polynomial p : Rn → R such that

lim sup
‖x‖→∞

g(x)

p(x)
= 0

Here we give some basic definitions from chemical reaction network theory, see for example [7, 9] for a
more detailed introduction.
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A reaction network is a triple G = (X , C,R). X is a finite non-empty ordered set of symbols, referred
to as species, and C is a finite non-empty ordered set of linear combinations of species on N, referred to as
complexes. Any species Si ∈ X can be identified with the vector ei ∈ R|X |, whose ith entry is 1 and whose
other entries are zero. Therefore, any complex y ∈ C will be identified with a vector in R|X | that is linear
combination of the vectors ei. Finally, R is a non-empty ordered subset of C × C, whose elements are called
reactions, such that for any y ∈ C, (y, y) /∈ R. Following the common notation, we will denote any element
(yr, y

′
r) ∈ R by yr → y′r ∈ R, in which case we then call yr the source complex and y′r the product complex

of that reaction. It is possible that a complex y ∈ C is the source (product) complex of different reactions,
and that it is both the source complex of one reaction and the product complex of another reaction. It is
commonly required that every species S ∈ X appears in at least one complex, and that every complex y ∈ C
appears as an element in at least one reaction. It is possible to associate a directed graph to G, where the
set of nodes is the set of complexes C and the arrows are given by the reactions yr → y′r ∈ R. If the graph
is such that for any directed path from y to y′ there exists a directed path from y′ to y, then G is weakly
reversible. For the rth reaction, yr → y′r, we denote by ξr = y′r − yr the corresponding reaction vector. We
write Si ∈ ξr (Si ∈ yr) if ξri 6= 0 (yri 6= 0). For any species S ∈ X , let

RS := {yr → y′r ∈ R : S ∈ ξr}, (5)

the set of reactions that change the amount of species S.

To each reaction yr → y′r ∈ R, we can associate a function λr : R|X |≥0 → R≥0. The set consisting of
these function K = {λr}yr→y′r∈R is referred to as the kinetics, and the functions λr are called rate functions,
or intensity functions, or propensity functions. The pair S = (G,K) is a reaction system, which can be
stochastically or deterministically modeled, as explained below.

In a stochastically modeled reaction system S = (G,K), the counts of molecules of the different chemical
species are considered, and the counts at time t form a vector X(t) ∈ N|X |. The evolution in time of the
vector X(t) follows a continuous time Markov chain, where in each state x ∈ N|X | the obtainable states are
{x + ξr} and transition rates are given by {λr(x)}, with yr → y′r varying in R. If at time t∗ the reaction
yr → y′r occurs, then we have

X(t∗) = X(t∗−) + ξr,

where X(t∗−) denotes the previous state. To stick with the physical meaning of the reactions, we require
that the kinetics is such that for any reaction yr → y′r ∈ R we have λyr→y′r (x) > 0 only if x ≥ yr. This
condition prevents the number of molecules present from becoming negative. Moreover, in this setting, we
are only interested in the values of λyr→y′r (x), when x ∈ N|X |, therefore the domain of the rate function can

be restricted to N|X |. Following the terminology utilized in [4, 8, 15], we can write

X(t) = X(0) +
∑

yr→y′r∈R
Yr

(∫ t

0

λr(X(s))ds

)
ξr,

where the Yr are i.i.d. unit rate Poisson processes. For any two states x, z ∈ N|X |, we say that a state z is
obtainable from x if there exists a sequence of reactions (yri → y′ri)

m
i=1 such that

z = x+
m∑

i=1

ξri ,

and for which

λy→y′


x+

i∑

j=1

ξrj


 > 0,

for all i ∈ {0, . . . ,m − 1}. We further say that G is irreducible if for any two states x, z ∈ N|X |, z is
obtainable from x and x is obtainable from z. See [18] for more on irreducible reaction networks and for
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sufficient conditions implying irreducibility. A popular choice of kinetics for stochastic reaction systems is
given by stochastic mass action kinetics, defined by

λr(x) = κr
x!

(x− yr)!
1{x≥yr},

where κr ∈ R>0 are called rate constants and for any vector v ∈ Nm, v! is defined by

v! =
m∏

i=1

vi!,

with the convention 0! = 1. This kinetics is related to the assumption that the system is well-stirred, so
the propensity of each reaction is proportional to the possible sets of present molecules that can give rise to
an occurrence of the reaction. A stochastic reaction system endowed with stochastic mass action kinetics is
referred to as stochastic mass action system, and will be denoted S = (G, κ).

In a deterministically modeled reaction system S = (G,K), the concentrations of the different chemical

species are considered, and the concentrations at time t form a vector z(t) ∈ R|X |≥0 . The evolution in time of
the vector z(t) obeys the ODE

z′(t) =
∑

yr→y′r∈R
ξrλr(z(t)), (6)

or in integral form

z(t) = z(0) +
∑

yr→y′r∈R
ξr

∫ t

0

λr(z(s))ds.

As in the stochastic case, we put some restriction on the kinetics and require that for any yr → y′r ∈ R we
have λyr→y′r (x) > 0 only if xi > 0 whenever Si ∈ yr. This condition means that a reaction cannot take place
if some necessary chemical species is missing, and it guarantees that the vector z(t) will remain non-negative.
Deterministic mass action kinetics is given by

λr(x) = κrx
yr , (7)

where κr ∈ R>0 are called rate constants and for any two vectors v, w ∈ Nm, vw is defined by

vw =
m∏

i=1

vwi
i ,

with the convention 00 = 1. Thus, the rate of each reaction is proportional to the products of the concentra-
tions of the species appearing in the source complex, according to multiplicity. As in the stochastic case, this
kinetics is chosen for well-stirred systems. A deterministic reaction system with deterministic mass action
kinetics is termed a deterministic mass action system, and will be denoted by S = (G, κ).

A fruitful notion in chemical reaction network theory, and one that will play a role in the present work, is
that of a complex balanced equilibrium, which is a positive equilibrium point c of a deterministic mass action
system satisfying ∑

yr→y′r∈R
yr=y

κrc
yr =

∑

yr→y′r∈R
y′r=y

κrc
yr for each y ∈ C,

where the sum on the left, respectively right, is over those reactions for which y is the source, respectively
product, complex. We say that a deterministic mass action system is complex balanced if there exists at least
one positive equilibrium point, and if every positive equilibrium point is a complex balanced equilibrium.

We extend the definition of complex balanced to the stochastic setting by saying that a stochastic mass
action system (G, κ) is complex balanced if the deterministic mass action system (G, κ) is complex balanced.
We may therefore refer to complex balanced mass action systems without specifying whether they are
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stochastically or deterministically modeled. In the same fashion, whenever we refer to an equilibrium point
of a reaction system, we implicitly assume it is an equilibrium point for the deterministically modeled system.

It is worth noting that under the assumptions detailed above for both deterministic and stochastic reaction
systems, the evolution of the amounts of species present is restricted to

X(t) ∈
(
X(0) + span{ξr}yr→y′r∈R

)
∩ Z|X |≥0 and z(t) ∈

(
z(0) + span{ξr}yr→y′r∈R

)
∩ R|X |≥0 ,

regardless of the choice of kinetics K. The sets
(
v + span{ξr}yr→y′r∈R

)
with v ∈ R|X | are called the stoichio-

metric compatibility classes of G, and the sets
(
v + span{ξr}yr→y′r∈R

)
∩R|X |≥0 and

(
v + span{ξr}yr→y′r∈R

)
∩R|X |>0

are called the non-negative stoichiometric compatibility classes and positive stoichiometric compatibility
classes of G. Any vector T ∈ R|X | that is orthogonal to the stoichiometric compatibility classes of G is
a conservation law for G, and if there exists a positive conservation law for G, then G is called conservative.

Let
s := dim

(
span{ξr}yr→y′r∈R

)
.

We define the deficiency of G as
δ := |C| − `− s,

where ` is the number of connected components of the directed graph associated with G. We end this section
by stating some classical results that can be found in [9, 10, 11], which connect graphical and dynamical
features of the deterministic mass action systems and will be of use to us.

Theorem 2.1. If a deterministic mass action system S = (G, κ) possesses a complex balanced equilibrium,
then S is complex balanced and G is weakly reversible. Moreover, there exists exactly one complex balanced
equilibrium in every positive stoichiometric compatibility class, and it is locally asymptotically stable relative
to its positive stoichiometric compatibility class.

Theorem 2.2. If G is weakly reversible and has deficiency 0, then for any choice of rate constants the
deterministic mass action system S = (G, κ) is complex balanced.

3 The multiscale setting and main results

Denote by KN a sequence of stochastic kinetics for G, with N ∈ N>0, and let XN (t) be the sequence of
stochastic processes associated with the system (G,KN ). Assume that there exists a vector α ∈ {0, 1}|X |
such that

lim
N→∞

N−αXN (0) = X0 > 0. (8)

The condition (8) implies a partition of the set of species X in two sets, the discrete species (denoted by Xd)
and the continuous species (denoted by Xc),
• Si ∈ Xd if αi = 0, in which case XN

i (0) = O(1);

• Si ∈ Xc if αi = 1, in which case XN
i (0) = O(N).

Let
πd : R|X | → R|Xd| and πc : R|X | → R|Xc|

be the projections onto the discrete and continuous species, respectively, and define

XN
disc(t) := πd(X

N (t)) and XN
cont(t) := πc(X

N (t)).

For convenience, we will sometimes consider the rate functions as functions from N|Xd| × N|Xc|, and write
λr(v, w), where v and w denote the amounts of the discrete and continuous species, respectively. For any
reaction yr → y′r ∈ R, define

βr = max
Si∈yr

αi.
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We assume that
lim
N→∞

N−βrλNr (v, [Nw]) = λr(v, w) (9)

uniformly on the compact sets of N|Xd| × R|Xc|
≥0 , where the functions λr are non-zero and locally Lipschitz,

with domain N|Xd| × R|Xc|
≥0 . We denote by K the kinetics given by the limiting functions λr. We define

νNr (v, w) := N−βrλNr (v, [Nw])− λr(v, w). (10)

The above setting is a particular case of the one studied in [5, 12, 19].

Remark 3.1. If the kinetics KN are stochastic mass action kinetics for all N ∈ N>0, then by (9) the sequence

N−βrλNr (v, [Nw]) = N−βrκNr
v!

(v − πd(yr))!
[Nw]!

([Nw]− πc(yr))!

converges to a positive number for some (v, w) ∈ N|Xd| × R|Xc|
≥0 . Since the sequence

N−‖πc(yr)‖1 [Nw]!

([Nw]− πc(yr))!
converges to wyr , we have

lim
N→∞

N−βr+‖πc(yr)‖1κNr = κr, (11)

for some positive constant κr.

Here we make some key assumptions.

Assumption 1. For any S ∈ Xd, there exists at least one reaction yr → y′r ∈ RS such that βr = 1 (i.e. the
species S is fast consumed or produced, recall RS defined in (5)).

Assumption 2. The discrete species only appear with stoichiometric coefficient 1.

In order to motivate and explain the above scaling and assumptions we consider sequences of processes
satisfying the network structures of Examples 1.1 and 1.2.

Consider first the network of Example 1.1 with rate constants κ1 and κ2, and suppose that the total
initial abundance of the system (i.e. the sum of the abundances of species A and B) is large, and that
the system is near the known ACR equilibrium, in which case X1(0) ≈ q = κ2/κ1. Specifically, we sup-
pose that XN

1 (0) + XN
2 (0) = N for some large N ∈ N and that XN

1 (0) = O(1) in N , in which case
XN

2 (0) = N − XN
1 (0) = O(N). We will be interested in letting N → ∞. In this setting, A is a discrete

species, α1 = 0, and B is a continuous one, α2 = 1. Moreover, for any reaction yr → y′r we have βr = 1, and
Assumptions 1 and 2 are fulfilled. Furthermore, the limiting rate functions defined in (9) are given by

λA+B→2B(x) := lim
N→∞

N−1λNA+B→2B([Nαx]) = lim
N→∞

N−1κ1x1bNx2c = κ1x1x2

λB→A(x) := lim
N→∞

N−1λNB→A([Nαx]) = lim
N→∞

N−1κ2bNx2c = κ2x2.

Turning to Example 1.2 we suppose the conserved quantity satisfies

XN
1 (0) +XN

2 (0) +XN
3 (0) = N,

where N is large, and that XN (0) is not far from the equilibrium qN , which satisfies

qN1 =
κ0κ1κ3

κ2 + κ3
· q

N
2 + 1

qN2 − 1
, qN3 =

κ1

κ2 + κ3
qN2 and qN1 + qN2 + qN3 = N.

Therefore, for N large XN
1 (0) will be near the value q := κ0κ1κ3

κ2+κ3
, while XN

2 (0) and XN
3 (0) go to infinity as

N →∞. In this context, A is a discrete species, α1 = 0, and B and C are continuous species, α2 = α3 = 1.
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Furthermore, βr = 1 for each r, and Assumptions 1 and 2 hold. In this case, the limiting rate functions
defined in (9) are given by

λA+2B→3B(x) := lim
N→∞

N−1κ0
x1Nx2(Nx2 − 1)

1 +Nx2
= κ0x1x2,

and similarly,

λB→C(x) := κ1x2, λC→B(x) := κ2x3, and λC→A(x) = κ3x3.

Returning to the general setting, let R̃ be the set of reactions whose source complex contain a continuous
species, i.e.

R̃ := {y → y′ ∈ R : πc(y) 6= 0}. (12)

Due to (9), the reactions in R̃ have much higher rates than the other reactions, when N is large. Therefore,
they give the major contribution to the dynamics of the stochastic system, and we focus on them.

We define two reduced systems, one being a projection onto the discrete species space and the other
being the projection onto the continuous species space of the dynamics induced by the reactions in R̃. We
begin by considering the projection onto the discrete species. Define

πd(C) := {πd(y) : y ∈ C},
R̃d := {πd(y)→ πd(y

′) : y → y′ ∈ R̃ and πd(y) 6= πd(y
′)},

and let Gd := (Xd, πd(C), R̃d) be the reaction network associated with the discrete species. For example, for
both Example 1.1 and Example 1.2, the network associated with the discrete species is

A −−⇀↽−− 0.

Let zk → z′k ∈ R̃d. For any vector w ∈ R|Xc|
≥0 we define the function λwd,k : R|Xd| → R≥0 via

λwd,k(v) :=
∑

yr→y′r∈R̃d,k

λr(v, w), (13)

where R̃d,k := {yr → y′r ∈ R̃ : πd(yr) = zk and πd(y
′
r) = z′k}. Let Kwd be the kinetics defined by (13), and

define S w
d = (Gd,Kwd ). Note that the functions λr in (13) are the limit rate functions in (9). The sum in (13)

is needed, as the cardinality of R̃d,k is not necessarily 1. Consider for example the following modification of
Example 1.1:

A+B
κ1−→ 2B

κ3−−⇀↽−−
κ4

A+ 2B

B
κ2−→ A.

The reactions 2B → A + B and B → A collapse to the same reaction in R̃d, and the same happens to
A + 2B → 2B and A + B → 2B. In this case, if w denotes the concentration of the species B, the system
S w
d is given by

A
κ1w+κ4w

2

−−−−−−−⇀↽−−−−−−−
κ2w+κ3w2

0.

We make another assumption on our models.

Assumption 3. The system S w
d is endowed with stochastic mass action kinetics and it is complex balanced

for any w > 0. We further require that Gd is irreducible.

Remark 3.2. If Assumption 2 is fulfilled, then each species of S w
d appears with stoichiometric coefficient 1,

which implies that for any choice of rate constants, the stochastic and the deterministic mass action kinetics
coincide, due to their definition.
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For the systems in Example 1.1 and in Example 1.2, S w
d is given, respectively, by the stochastic mass

action systems

A
κ1w−−−⇀↽−−−
κ2w

0 and A
κ0w1−−−⇀↽−−−
κ3w2

0, (14)

where in the first system w represents the amount of species B and in the second system w1 and w2 represent
the amounts of species B and C, respectively. In both cases, Assumption 3 holds, due to Theorem 2.2.

Thanks to Assumption 3 and Theorem 2.1, we know that for any positive w there is precisely one complex
balanced equilibrium of the system S w

d , which we denote by qwd . For example, for the first system in (14)
associated with Example 1.1 we have qwd = κ2/κ1, whereas for the second system in (14) associated with
Example 1.2 we have qwd = κ3w2/κ0w1.

Assumption 3 is the last structural assumption we require for our main results. Now we impose some
conditions ensuring that the systems are “well-behaved.” Specifically, we want that the magnitude of the
counts of each species is maintened constant in a compact interval of time. In particular, we want to rule
out the possibility of a blow up or of a zeroing of the concentrations of the continuous species, and we want
the counts of the discrete species to be bounded, in some sense.

We start by considering the projection onto the continuous species. Let

πc(C) = {πc(y) : y ∈ C},
R̃c = {πc(y)→ πc(y

′) : y → y′ ∈ R̃ and πc(y) 6= πc(y
′)},

and define Gc := (Xc, πc(C), R̃c). Consider the kth reaction zk → z′k ∈ R̃c, and define the function
λc,k : R|Xd| → R≥0 via

λc,k(w) =
∑

yr→y′r∈R̃c,k

1{w>0}λr(q
w
d , w), (15)

where R̃c,k := {yr → y′r ∈ R̃ : πc(yr) = zk and πc(y
′
r) = z′k}. Let Kc denote the kinetics defined by the

above rate functions, and define Sc = (Gc,Kc). Finally, fix a finite time T > 0 and a point X0 ∈ R|X |>0 .

Assumption 4. Assume that the deterministic solution z(t) of the system Sc, with initial condition πc(X0),
exists for any t ∈ [0, T ]. Moreover, assume that for all t ∈ [0, T ] we have z(t) > 0.

Consider Example 1.1. In this case, for any w ∈ R>0 we have qwd = κ2/κ1, and the system Sc is given by

0
κ2←− B κ2−→ 2B. (16)

Hence, in this case the deterministic solution z(t) is constantly equal to πc(X0).
Consider now Example 1.2. Here, for any w ∈ R2

>0, qwd is given by κ3w2/κ0w1. Therefore, the system
Sc is

2B −→ 3B

B
κ1−−⇀↽−−
κ2

C
κ3−→ 0,

with
λ2B→3B(w) = κ3w2.

When deterministically modeled, the dynamics of the system is equivalent to that of the deterministic mass
action system

B
κ1−−−−⇀↽−−−−

κ2+κ3

C (17)

and it can be easily shown that Assumption 4 holds, since πc(X0) > 0.
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Assumption 5. There exists a locally bounded function ψ : R|Xd|
≥0 → R≥1 satisfying

(i) lim
‖v‖→∞

ψ(v) =∞ and (ii) sup
N∈N>0

E

[∫ T

0

ψ(XN
disc(s))ds

]
<∞,

such that for any reaction yr → y′r ∈ R and any compact set Γ ⊂ R|Xc|
≥0

(iii) sup
w∈Γ

lim sup
‖v‖→∞

λr(v, w)

ψ(v)
= 0 and (iv) sup

w∈Γ
N∈N>0

lim sup
‖v‖→∞

νNr (v, w)

ψ(v)
= 0,.

where νNr is defined as in (10).

Remark 3.3. Assume that λr and νNr have at most polynomial growth rate in v, for any reaction yr → y′r ∈ R
and any N ∈ N. Let p : R|Xd| → R be a polynomial satisfying

max
yr→y′r∈R

lim sup
‖v‖→∞

νNr (v, w)

p(v)
= 0 and max

yr→y′r∈R
lim sup
‖v‖→∞

λr(v, w)

p(v)
= 0 for any w ∈ R|Xc|

≥0 ,

and let d be the degree of p. Then, a candidate for ψ is

ψ(v) = 1 +
∑

Si∈Xd

vdi .

With this choice, ψ automatically satisfies (i), (iii) and (iv).

We now state and prove our main result.

Theorem 3.1. If Assumptions 1-5 hold, then

N−1XN
cont(· ∧ T ) ====⇒

N→∞
z(· ∧ T ),

where z is defined as in Assumption 4 and ⇒ denotes weak convergence in the Skorokhod topology, which
in this case coincides with the uniform topology as the limit z is continuous. Moreover, if Pois(q) denotes a

product-form Poisson distribution with parameter q, then for any continuous function g : R|Xd|
≥0 → R satisfying

lim sup
‖v‖→∞

|g(v)|
ψ(v)

= 0 (18)

we have ∫ ·∧T

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds ====⇒

N→∞
0,

where Jz(s) ∼ Pois(q
z(s)
d ).

Proof. For the sake of simplicity, throughout the proof we will write t instead of t ∧ T , but it is always
implicitly assumed that t ∈ [0, T ].

We follow the arguments of [12, 19], which rely on the techniques developed in [16]. We will first prove
the theorem under the assumption that

sup
N
P

(
sup
t∈[0,T ]

N−1‖XN
cont(t)‖∞ > M

)
= 0, (19)

for a certain constant M satisfying
sup
t∈[0,T ]

‖z(t)‖∞ < M.

10



This could happen if some conservation laws are present, or if we study the process up to the time when the
concentration of a continuous species exceeds a given threshold. We will then drop the assumption (19).

Define the occupation measures ΓN on R|Xd| × [0, T ] by

ΓN (D × [a, b]) =

∫ b

a

1D(XN
disc(s))ds.

Note that
dΓN (v, s) = dγNs (v)ds, (20)

where γNs = δXN
disc(s), with δx denoting the usual Dirac measure on R|Xd|. Part (ii) and (iv) in Assumption 5

together with Lemma 1.3 in [16] imply that the sequence of random measures ΓN is tight. Let Γ be a weak
limit point.

Consider the generator LN for the process N−αXN (t), defined by

LNf(x) =
∑

yr→y′r∈R
λNr (Nαx)

(
f
(
x+N−α(y′ − y)

)
− f(x)

)
, for Nαx ∈ N|X |.

From the generator LN we can obtain two generators, one related to the limiting behaviour of the concen-
trations of the continuous species (whose changes take place at the time scale t) and the other one related
to the discrete species (whose changes take place at the time scale N−1t). For any function h ∈ C2

c (R|Xc|)
and x ∈ N|Xd| × R|Xc|, define

Lch(x) := lim
N→∞

LN (h ◦ πc)(N−α[Nαx])

=
∑

yr→y′r∈R
lim
N→∞

λNr ([Nαx])
(
h
(
πc(N

−α[Nαx]) +N−1πc(y
′ − y)

)
− h
(
πc(N

−α[Nαx])
))

=
∑

yr→y′r∈R̃

λr(x)πc(y
′ − y) · ∇h(πc(x)),

where we made use of Assumption 1 to compute the limit, and · denotes the scalar product. Note that
Lch ∈ C1

c (R|X |) and that LN (h ◦πc)(N−α[Nαx]) converges uniformly to Lch(x) on x. Lc can be interpreted
as the generator of the limiting behaviour of the concentrations of the continuous species.

On the other hand, for any function g ∈ Cc(N|Xd|) and x ∈ N|Xd| × R|Xc|, define

Ldg(x) := lim
N→∞

N−1LN (g ◦ πd)(N−α[Nαx])

=
∑

yr→y′r∈R
lim
N→∞

N−1λNr ([Nαx])
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))

=
∑

yr→y′r∈R̃

λr(x)
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))
.

The convergence is uniform in x. Ld can be interpreted as the generator of the limiting behaviour of the

discrete species. For any w ∈ R|Xc|
≥0 we can define the operator Lwd by

Lwd g(v) := Ldg(v, w) ∀v ∈ N|Xd|,

which corresponds to the generator of the system S w
d .

For any h ∈ C2
c (R|Xc|), the process

MN
h (t) := h(N−1XN

cont(t))− h(N−1XN
cont(0))−

∫ t

0

LN (h ◦ πc)(N−αXN (s))ds (21)

11



is a martingale. Let

δNh (t) :=

∫ t

0

(
Lch− LN (h ◦ πc)

)
(N−αXN (s))ds.

By the uniform convergence of LN (h ◦ πc)(N−α[Nαx]) to Lch(x) with respect to x, we have that

lim
N→∞

E

[
sup
t∈[0,T ]

|δNh (t)|
]

= 0. (22)

Moreover, (ii) and (iii) in Assumption 5, together with (19), imply that

sup
N
E

[∫ T

0

|Lch(N−αXN (s))|ds
]
<∞. (23)

Since (21) is a martingale, tightness of the processes XN
cont follows from (19), (22) and (23) by Theorems

3.9.1 and 3.9.4 in [8]. Let (W,Γ) be a weak limit of (XN
cont,Γ

N ). By the same arguments as in the proof of
Theorem 2.1 in [16], we have that

Mh(t) := h(W (t))− h(W (0))−
∫

R|Xd|×[0,t]

Lch(v,W (s))dΓ(v, s)

is a martingale. On the other hand, for any g ∈ C2
c (R|Xd|), the process

M̂N
g (t) := N−1

[
g(XN

disc(t))− g(XN
disc(0))−

∫ t

0

LN (g ◦ πd)(N−αXN (s))ds

]

is also a martingale. Since the function g is bounded and by using uniform convergence of N−1LN (g ◦ πd)
to Ldg, we have that a weak limit point for M̂N

g is given by

M̂g(t) := −
∫

R|Xd|×[0,t]

Ldg(v,W (s))dΓ(v, s),

which is therefore a martingale. By (20) we have

dΓ(v, s) = dγs(v)ds, (24)

for a family of measures γs. Therefore, M̂g(t) is continuous and for any t1 < t2
∫

R|Xd|×[t1,t2]

|Ldg(v,W (s))| dΓ(v, s) ≤ (t2 − t1) sup
x∈RX

|Ldg(x)| ,

which implies that M̂g(t) has finite variation paths. This in turn implies that M̂g(t) is constantly equal to

M̂g(0) = 0 for any t ∈ [0, T ] with probability one. Therefore, almost surely, for almost every s ∈ [0, T ]
∫

R|Xd|
L
W (s)
d g(v)dγs(v) = 0,

where γs is as in (24). Since C2
c (R|X |) is separable, we have that, for almost every s ∈ [0, T ],
∫

R|Xd|
L
W (s)
d g(v)dγs(v) = 0, ∀g ∈ C2

c (R|Xd|).

Thus, for almost every s such that W (s) > 0 with probability one, the measure γs is equal to the unique

stationary distribution of the system S
W (s)
d . Due to Assumption 3 and by [2], it corresponds to the product

form Poisson distribution Pois(q
W (s)
d ). Therefore we can write

γs = 1{W (s)>0}Pois(q
W (s)
d ) + (1− 1{W (s)>0})γs.

12



The weak limit process W (t) is a solution to the martingale problem

Mh(t) =h(W (t))− h(W (0))−
∫ t

0

∫

R|Xd|
Lch(v,W (s))dγs(v)ds

=h(W (t))− h(W (0))−
∑

yr→y′r∈R̃

∫ t

0

1{W (s)>0}λr(q
W (s)
d ,W (s))πc(y

′ − y) · ∇h(W (s))ds

−
∫ t

0

(1− 1{W (s)>0})
∫

R|Xd|
Lch(v,W (s))dγs(v)ds,

where we used Assumption 2 in the last equality. By Assumption 4, W (t) is uniquely determined by the
unique solution to

W (0) =πc(X0)

W (t) =W (0) +
∑

yr→y′r∈R̃

∫ t

0

1{W (s)>0}λr(q
W (s)
d ,W (s))πc(y

′ − y)ds+

+

∫ t

0

(1− 1{W (s)>0})
∫

R|Xd|
Lcid(v,W (s))dγs(v)ds

=W (0) +
∑

yr→y′r∈R̃

∫ t

0

λr(q
W (s)
d ,W (s))πc(y

′ − y)ds,

which is given by z(t) (see [23, 17]). The first part of the Proposition is therefore proved. The second part
follows from Lemma 2.9 in [13].

To prove the Theorem holds without assuming (19), fix a constant M with the property

M − sup
t∈[0,T ]

‖z(t)‖∞ > δ,

for some δ > 0, and consider the stopping time

τN := inf{t ∈ [0, T ] : N−1‖XN
cont‖∞ > M}.

Note that N−1Xcont(τ
N ) is also uniformly bounded in N , as

N−1‖XN
cont(τ

N )‖∞ ≤M + max
r
{‖ξr‖∞} := M ′.

Therefore, (19) holds up to time τN with the constant M ′, which means that for any ε there exists Nε such
that for any N > Nε

P

(
sup

t∈[0,τN ]

‖XN
cont(t)− z(t)‖ > δ

)
< ε.

It follows that for N large enough P (τN < T ) < ε. The proof is concluded by the arbitrariness of ε, since
for N large enough

P

(
sup
t∈[0,T ]

‖XN
cont(t)− z(t)‖ > η

)
≤ P

(
sup

t∈[0,τN ]

‖XN
cont(t)− z(t)‖ > η

)
+ ε,

P

(
sup
t∈[0,T ]

∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds > η

)
≤ P

(
sup

t∈[0,τN ]

∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds > η

)
+ ε.
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Remark 3.4. If Assumption 2 is not fulfilled, Theorem 3.1 still holds if (15) is substituted with

λc,r(w) =
∑

yr→y′r∈Rc,k

πc(y)6=0

1{w>0}E[λr(J
w, w)],

where Jw ∼ Pois(qwd ). The proof of Theorem 3.1 also covers this more general case, provided that every
occurence of λr(q

w
d , w) is substituted with E[λr(J

w, w)].

Remark 3.5. If Assumptions 2 and 3 are not satisfied, but we know that for any w ∈ R|Xc|
>0 the stochastic

system S w
d possesses a unique stationary distribution µw with

λr(w) :=
∑

v∈NXd

λr(v, w)µw(v) <∞ for every yr → y′r ∈ R,

then Theorem 3.1 still holds, provided that every occurrence of λr(q
w
d , w) is substituted with λr(w). The

proof of Theorem 3.1, with small changes, also covers this generalization. In regard to this broader setting,
see also the results in [12, 19].

In some cases Assumption 5 can be difficult to check, even if it seems natural for the analysed system.
For this reason, we state here a corollary of Theorem 3.1 concerning a particular case for which Assumption
5 is automatically satisfied.

Corollary 3.2. Assume Assumptions 1-4 hold. Assume also that

N−βrλNr (v, [Nw]) ≤ ĥr(w)vπd(yr) for any yr → y′r ∈ R, (25)

for some continuous positive functions ĥr : R|Xc| → R, and that

N−βrλNr (v, [Nw]) ≥ hr(w)wπc(yr)vπd(yr) for any yr → y′r ∈ R̃, (26)

for some continuous positive functions hr : R|Xc| → R. Furthermore, assume that in the support of any

complex y ∈ C at most one discrete species appears. Then, for any continuous function g : R|Xd|
≥0 → R with

at most polynomial growth rate we have

∫ ·∧T

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds ====⇒

N→∞
0,

where Jw ∼ Pois(qwd ) and z(t) is as in Assumption 4.

Proof. By Assumption 4, we can choose two positive constants m < M such that

inf
Si∈Xc,t∈[0,T ]

Zi(t) > m and sup
Si∈Xc,t∈[0,T ]

Zi(t) < M. (27)

For any N ∈ N>0, consider the function πN : R|X | → R|X | defined by

(πN (x))i :=

{
(Nm ∨ xi) ∧NM if Si ∈ Xc
xi otherwise.

Consider the modified family of kinetics KN defined by

λ
N

r (x) := λNr
(
πN (x)

)
for x ∈ N|X |.

We have
lim
N→∞

N−βrλ
N

r ([Nαx]) = λr(x) := λr
(
π1(x)

)
,
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where the limit is uniform on compact sets. Furthermore, λr is locally Lipschitz. Let K be the kinetics
defined by the functions λr. Our first aim is to prove that for a suitable choice of ψ, Assumption 5 holds for

the modified kinetics. We then apply Theorem 3.1 to the reaction systems (G,KN ). Let X
N

(t) denote the

stochastic process associated with (G,KN ). Define

σN (t) :=
∑

Si∈Xd

X
N

i (t) =
∑

Si∈Xd

XN
i (t) and ∆r :=

∑

Si∈Xd

ξri.

Since the complexes y are non-negative vectors, we have

∆r =
∑

Si∈Xd

(y′ri − yri) = ‖πd(y′r)‖1 − ‖πd(yr)‖1.

By hypothesis and by Assumption 2, for any complex y ∈ C we have ‖πd(y)‖1 ≤ 1, which implies that
−1 ≤ ∆r ≤ 1 for any yr → y′r ∈ R. Moreover, we have

∆r = 1 =⇒ ‖πd(yr)‖1 = 0
∆r = −1 =⇒ ‖πd(yr)‖1 = 1.

(28)

Furthermore,

σN (t) = σN (0) +
∑

yr→y′r∈R
∆rYr

(∫ t

0

λ
N

r

(
X
N

(s)
)
ds

)

= σN (0) +
∑

yr→y′r∈R
∆r=1

Yr

(∫ t

0

λ
N

r

(
X
N

(s)
)
ds

)
−

∑

yr→y′r∈R
∆r=−1

Yr

(∫ t

0

λ
N

r

(
X
N

(s)
)
ds

)
(29)

Define
M∗ := max

yr→y′r∈R
max

m≤w≤M
ĥr(w) and m∗ := min

yr→y′r∈R
min

m≤w≤M
hr(w)wπc(yr),

which are both positive constants. By (28) and (25), whenever ∆r = 1 we have

λ
N

r (v,Nw) ≤ NM∗

On the other hand, by (26), if yr → y′r ∈ R̃ and ∆r = −1 then

λ
N

r (v,Nw) ≥ Nβrm∗vi for some Si ∈ Xd.

By Assumption 3 the system S w
d is complex balanced, which implies that it is weakly reversible by Theorem

2.1. In particular, for any Si ∈ Xc we can choose a reaction yr(i) → y′r(i) ∈ R̃ such that ξr(i)i = −1. We have
that ∑

yr→y′r∈R
∆r=−1

Yr

(∫ t

0

λ
N

r

(
X
N

(s)
)
ds

)
≥
∑

Si∈Xd

Yr(i)

(∫ t

0

Nm∗X
N

i (s)ds

)
.

Then, from (29) it follows that

σN (t) ≤ σN (0) +
∑

yr→y′r∈R
Yr

(∫ t

0

NM∗ds

)
−
∑

Si∈Xd

Yr(i)

(∫ t

0

Nm∗X
N

i (s)ds

)

∼ σN (0) + Y ′
(
|R| ·NM∗t

)
− Y ′′

(∫ t

0

Nm∗σN (s)ds

)
,
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for two i.i.d. unit-rate Poisson processes Y ′ and Y ′′. This means that if we define the birth-death process

B(t) := σN (0) + Y ′
(
|R| ·M∗t

)
− Y ′′

(∫ t

0

m∗B(s)ds

)
,

we have that
E[σN (t)n] ≤ E[B(Nt)n].

Moreover, for any n ∈ N
sup
t∈[0,T ]
N∈N>0

E[σN (t)n] ≤ sup
t∈[0,∞)

E[B(t)n] <∞. (30)

For any n > 1, we define ψn : R|Xd|
≥0 → R≥1 via

ψn(v) = 1 +
∑

Si∈Xd

vni .

Due to 25, λNr has at most polynomial growth rate in v, for any reaction yr → y′r ∈ R and any N ∈ N. By
(9), 25 also implies that the rate functions λr have at most polynomial growth rate. This, due to (10), in
turn implies that νNr has at most polynomial growth rate in v, for any reaction yr → y′r ∈ R and any N ∈ N.
By Remark 3.3, if n is large enough, ψn satisfies (i), (iii) and (iv) in Assumption 5. Moreover,

E

[∫ T

0

ψn(X
N

disc(s))ds

]
≤ E

[∫ T

0

σN (s)nds

]
,

hence, due to Fubini’s Theorem and (30), part (ii) in Assumption 5 is verified, too. Assumptions 1-3 also
hold for the systems with modified rates. Moreover, due to (27), the solution of the deterministic system
(Gc,Kc) coincide with Z, the solution of the deterministic system Sc. Therefore, Assumption 4 is satisfied

as well and we can apply Theorem 3.1 to the modified reaction systems (Gc,K
N

). We have

N−1X
N

cont(· ∧ T ) ====⇒
N→∞

z(· ∧ T ), (31)

and, since by definition any function g : R|Xd|
≥0 → R with at most polynomial growth rate satisfies

lim sup
‖v‖→∞

|g(v)|
ψn(v)

= 0

for n large enough, we have

∫ ·∧T

0

(
g(X

N

disc(s))− E[g(Jz(s))]
)
ds ====⇒

N→∞
0.

The proof is completed by noting that if the path of X
N

disc is different from the path of XN
disc, then we have

inf
Si∈Xc,t∈[0,T ]

X
N

i (t) ≤ m or sup
Si∈Xc,t∈[0,T ]

Xi(t) ≥M.

However, by (27) and (31), we have

P

(
inf

Si∈Xc,t∈[0,T ]
X
N

i (t) ≤ m or sup
Si∈Xc,t∈[0,T ]

Xi(t) ≥M
)
−−−−→
N→∞

0.
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Remark 3.6. If KN is mass action and the rate constants are rescaled according to (11), then (25) and (26)
are automatically satisfied. Indeed, if Assumption 2 holds, then

N−βrλNr (v, [Nw]) = (κr + ε1
N )(wπc(yr) + ε2

N (w))vπd(yr),

for some sequence ε1
N converging to zero, and some function ε2

N (w) converging to zero uniformly on w. In
this regard, see Remark 3.1.

4 ACR setting

We turn to the ACR setting and start with the formal definition of absolute concentration robustness (ACR).

Definition 4.1. Let S = (G,K) be a reaction system. We say that a species Si possesses absolute concen-
tration robustness (ACR) in S if for any two positive equilibria q, q′ of the system S , we have qi = q′i. In
this case, the species Si is called an ACR species and, if a positive equilibrium q exists, qi is called an ACR
value. If a system S possess a non empty set of ACR species, we call it an ACR system.

Consider a reaction system S that has no equilibria or a unique equilibrium. According to Definition
4.1, all the species of S are ACR species, however in these cases the ACR property is not particularly
meaningful.

Definition 4.2. We say that a system S is a non-degenerate ACR system if it is an ACR system and
possesses at least two positive equilibria. If an ACR system exhibits less than two positive equilibria, we call
it a degenerate ACR system.

We will focus on non-degenerate ACR systems. Note that in such systems not all species can be ACR
species.

In non-degenerate ACR systems, the ACR species maintain their equilibrium concentration regardless
the total amount of molecules present in the system. Our goal is to study the behaviour of the system when
the abundance of species that do not exhibit ACR tends to infinity. It seems therefore natural to use the
setting developed in the Section 3 and let the ACR species coincide with the discrete species. We further
assume that the rate functions are rescaled consistently with the hypotheses of Section 3, such that (9) holds
uniformly on compact sets.

In order to study the limit behaviour of ACR systems, we state some corollaries of Theorem 3.1, assuming
the next assumption is satisfied.

Assumption 6. Consider the limit rate functions λr fulfilling (9), and the subset of reactions R̃ defined

in (12). Let S̃ := (X , C, R̃, K̃), where the kinetics K̃ ⊆ K is the set of functions λr with yr → y′r ∈ R̃.
We assume that S is a non-degenerate ACR system, and that at least one of the ACR species is a discrete
species.

Consider Example 1.1. The system S̃ coincides with the system introduced in the example itself, namely

(1), and it is a non-degenerate ACR system. On the other hand, in Example 1.2 the system S̃ is given by

A+ 2B −→ 3B

B
κ1−−⇀↽−−
κ2

C
κ3−→ A,

with
λA+2B→3B(x) = κ0x1x2.

Therefore, the dynamics of S̃ , if deterministically modeled, coincide with that of the mass action system

A+B
κ0−→ 2B

B
κ1−−⇀↽−−
κ2

C
κ3−→ A,

(32)
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which is a non-degenerate ACR system with equilibria determined by the equations

x1 =
κ1κ3

κ0(κ2 + κ3)
and x2 =

κ2 + κ3

κ1
x3.

When Assumption 6 is fulfilled, denote by XACR the set of discrete ACR species. Let πACR : R|Xd| → R|XACR|

be the projection onto the species of XACR, and let XACR(t) = πACR(Xd(t)). Finally, let q be the vector of
the ACR values for the species in XACR, and let

J ∼ Pois(q). (33)

Corollary 4.1. Suppose that Assumptions 1-4 and 6 hold. Moreover, assume that (25) and (26) hold, and
that in the support of any complex y ∈ C at most one discrete species appears. Let πc(X0) be a positive

equilibrium point for Sc, and let J be as in (33). Then, for any continuous function ĝ : R|XACR|
≥0 → R with

at most polynomial growth rate we have

∫ ·∧T

0

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds ====⇒

N→∞
0. (34)

In particular, ∫ ·∧T

0

(
XN

ACR(s)− q
)
ds ====⇒

N→∞
0. (35)

Proof. Since πc(X0) is an equilibrium point for Sc, we have z(t) = πc(X0) for any t ∈ [0, T ]. Moreover, by
definition qwd is the complex balancing equilibrium point of the system S w

d . By Assumption 2 and Remark

3.2, (q
πc(X0)
d , πc(X0)) is a positive equilibrium point for S̃ . Hence, πACR

(
q
πc(X0)
d

)
= q and (34) follows

from Corollary 3.2, applied to the function g = ĝ ◦ πACR. Therefore, for any Si ∈ XACR we can apply the
result to the function xi − qi to obtain

∫ ·∧T

0

(
XN
i (s)− qi

)
ds ====⇒

N→∞
0,

which concludes the proof.

Example 4.1. Consider the reaction network in Example 1. Sc is given by (16), for which any non-negative
real point is an equilibrium point. We choose the sequence of starting points XN (0) = (aN , N(b + εN )),
where (aN )N∈N is a bounded sequence of natural numbers, b is a positive real number and (εN )N∈N is a
sequence of real numbers tending to zero. Therefore, the hypotheses of Corollary 4.1 are fulfilled for any
positive T . In this case there is only one ACR species, namely A, and it is the only discrete species. Hence,
for any continuous function ĝ : R≥0 → R with at most polynomial growth rate we have

∫ ·∧T

0

(
ĝ(XN

1 (s))− E[ĝ(J)]
)
ds ====⇒

N→∞
0,

where XN
1 (s) is the counts for the species A at time s, for the starting point XN (0). This means that on

average, the counts of the species A tend to follow a Poisson distribution with mean given by the ACR value
q = κ2/κ1. �
Corollary 4.2. Suppose that Assumptions 1-4 hold for any T > 0, and that Assumption 6 is verified.
Moreover, assume that (25) and (26) hold, and that in the support of any complex y ∈ C at most one discrete
species appears. Assume that πc(X0) is in the basin of attraction of an equilibrium point of Sc, and let J be

as in (33). Then, for any continuous function ĝ : R|XACR|
≥0 → R with at most polynomial growth rate and for

any ε > 0, there exists Hε > 0 such that, for any t1, t2 ∈ R with t2 > t1 > Hε,

lim
N→∞

P

(
sup

t∈[t1,t2]

∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds

∣∣∣∣ > ε(1 + t2 − t1)

)
= 0. (36)
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In particular,

lim
N→∞

P

(
sup

t∈[t1,t2]

∣∣∣∣
∫ t

t1

(
XN

ACR(s)− q
)
ds

∣∣∣∣ > ε(1 + t2 − t1)

)
= 0 (37)

Proof. For the sake of simplicity, throughout this proof w will denote a vector varying in R|Xc|
>0 , even if not

explicitly stated.
First, recall that, regardless the value w > 0, the complex balanced equilibrium qwd is the unique solution

of a system of multivariate polynomials, and as such, it is continuous in the coefficients of the polynomials
[22, Chapter 8]. In particular, it is a continuous function of w > 0.

Consider a sequence of vectors (wn)n∈N ⊂ R|Xc|
>0 converging to w∗ > 0. Therefore, the sequence (qwn

d )n∈N
converges to qw

∗
d and by Lebesgue’s Dominated Convergence Theorem we have that

E[ĝ(πACR(Jwn))] −−−−→
n→∞

E[ĝ(πACR(Jw
∗
))],

where Jw ∼ Pois(qwd ). This implies that E[ĝ(πACR(Jw))] is a continuous function of w.
Let w∗ be the equilibrium point of Sc whose basin of attraction πc(X0) belongs. Since (qw

∗
d , w∗) is an

equilibrium point of the system S̃ considered in Assumption 6, we have that πACR(qw
∗

d ) = q. In particular,
πACR(Jw

∗
) ∼ J . Let δε be a positive real number such that

∣∣∣E[ĝ(πACR(Jw))]− E[ĝ(J)]
∣∣∣ < ε for any ‖w − w∗‖ < δε.

Finally, let Hε > 0 be such that
‖z(t)− w∗‖ < δε for any t > Hε.

Fix t1, t2 ∈ R with t2 > t1 > Hε. Since by hypothesis Assumptions 1-4 hold for any fixed T > 0, due to
Corollary 3.2 and by choosing g = ĝ ◦ πACR we have that

lim
N→∞

P

(
sup

t∈[t1,t2]

∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(πACR(Jz(s)))]
)
ds

∣∣∣∣ > ε

)
= 0.

Since t2 > t1 > Hε, we have
∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(πACR(Jz(s)))]
)
ds

∣∣∣∣

=

∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds+

∫ t

t1

(
E[ĝ(J)]− E[ĝ(πACR(Jz(s)))]

)
ds

∣∣∣∣

≥
∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds

∣∣∣∣−
∣∣∣∣
∫ t

t1

(
E[ĝ(J)]− E[ĝ(πACR(Jz(s)))]

)
ds

∣∣∣∣

≥
∣∣∣∣
∫ t

t1

(
ĝ(XN

ACR(s))− E[ĝ(J)]
)
ds

∣∣∣∣− ε(t2 − t1),

and (36) follows. By applying the result to the functions xi − qi for any Si ∈ Xd, we also obtain (37).

Example 4.2. Consider Example 1.2. Let XN (0) = (aN , N(b+ε1
N ), N(c+ε2

N )), where (aN )N∈N is a bounded
sequence of natural numbers, b, c are positive real numbers and (ε1

N )N∈N and (ε2
N )N∈N are two sequences

of real numbers tending to zero. The continuous system Sc, when deterministically modeled, is equivalent
to (17). Therefore the hypotheses of Corollary 4.2 are fulfilled, since any (b, c) ∈ N2

>0 is in the basin of
attraction of

w∗ =

(
(κ2 + κ3)(b+ c)

κ1 + κ2 + κ3
,

κ1(b+ c)

κ1 + κ2 + κ3

)
.

Let q be the ACR value for A in the system (32). Therefore, after some time the counts of A are approximately
distributed, on average, as a Poisson random variable with mean q, in the sense of (36). �
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We conclude this section by an example that does not fit in our theory, but it is still tractable.

Example 4.3. Consider the stochastic mass action system

2A+B
κ1−→ 3B

B
κ2−→ A

Due to [20], we know that A possesses ACR and the system is a non-degenerate ACR system. The discrete
system S w

d is given by

2A
κ1w−−→ 0

κ2w−−→ A.

Therefore, Assumption 3 does not hold, and by [paper coming soon!] we know that the S w
d , stochastically

modeled, cannot exhibit a Poisson stationary distribution. However, it can be proven that a stationary
distribution µw exists (for example by using Tweedie Recurrence Criterion [citation]). By following the
proofs of the results in this paper, we can still argue that, if XN (0) = (a, bN) and Jw ∼ µw, for any
continuous function g : R≥0 → R with at most polynomial growth rate we have

∫ ·∧T

0

(
g(XN

1 (s))− E[g(Jz(s))]
)
ds ====⇒

N→∞
0. (38)

In this regard, see Remark 3.5. Unfortunately, there are not many methods available that explicitly calculate
stationary distributions for non-complex balanced systems. Thus, most examples not fulfilling Assumption
3 are analytically intractable. However, for some calculations of stationary distributions for non-complex
balanced systems, see [1]. �

5 EnvZ/OmpR signaling system

As another application of our results, we consider the two-component EnvZ/OmpR osmoregulatory signaling
system in Escherichia coli, using the model proposed in [21] and considered in [3, 20]. The model corresponds
to the following mass action system:

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]−−−−⇀↽−−−−
κ4

XT
κ5−→ Xp

Xp + Y
κ6−−⇀↽−−
κ7

XpY
κ8−→ X + Yp

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y ,

where X = EnvZ, Y = OmpR, Xp = EnvZ-P, Yp = OmpR-P, D = ADP, and T = ATP. ADP and ATP
are assumed to be in large enough quantity so that their consumption in the first chain of reactions only
negligibly changes their concentration. The first chain of reactions describes the phosphorylization of EnvZ,
the second chain corresponds to the transfer of the phosphate group from EnvZ to OmpR, and finally the
third chain describes the dephosphorylization of OmpR.

Due to [3, 20], it is known that the species Yp exhibits ACR. Moreover, Yp is the only ACR species.
For simplicity, instead of ordering the species, here we will write the species as subscripts to refer to the
corresponding entry. At equilibrium

zYp
=
κ1κ3κ5(κ10 + κ11)[T ]

κ2(κ4 + κ5)κ9κ11[D]
:= q

zXT =
κ3[T ]

κ4 + κ5
zX =

κ1

κ4 + κ5
zXD =

κ8

κ5
zXpY =

κ11

κ5
zXDYp

zXpzY =
κ7

κ6
zXpY +

κ11

κ6
zXDYp ,
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where zS denotes the concentration of the species S. There are two quantities that are conserved at any
time point, namely

c1 = zY (t) + zYp
(t) + zXpY (t) + zXDYp

(t)

c2 = zXp
(t) + zXT (t) + zX(t) + zXD(t) + zXpY (t) + zXDYp

(t),

for some positive constants c1, c2 depending on the initial conditions. If the amounts c1 and c2 are increased,
then the equilibrium concentrations of all the species not exhibiting ACR are increased as well, except for
Xp and Y , the equilibrium concentration of one of which could remain small.

Consider now the above reaction system in the stochastic setting. We want to know what happens if we
increase the initial counts of the species such that the conserved amounts are equally increased and the initial
condition is in a neighbourhood of an equilibrium point of the system. Therefore, we uniformly increase the
counts of the species not exhibiting ACR, and we choose to keep Xp or Y small. We consider a sequence
of processes XN indexed by N ∈ N, which are associated with the above reaction system. We assume that
XN (0) is such that the entries relative to Yp and Y , denoted by XN

Yp
(0) and XN

Y (0) respectively, are bounded
by a constant B, and that all the other entries, if rescaled by N , converge to some positive number. In this
setting, the discrete species are Y and Yp, we have βr = 1 for any reaction yr → y′r of the system and
Assumptions 1 and 2 are fulfilled. For any positive vector w of continuous species concentrations, the system
S w
d is given by

0
κ7wXpY +κ11wXDYp−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

κ6wXp

Y 0
κ8wXpY +κ10wXDYp−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

κ9wXD

Yp,

and Assumption 3 holds thanks to Theorem 2.2. It is not difficult to check that the reaction network is
irreducible, since every state of possible counts of Y and Yp is accessible from any other state. The complex
balanced equilibrium qwd is given by

qwd =

(
κ7wXpY + κ11wXDYp

κ6wXp

,
κ8wXpY + κ10wXDYp

κ9wXD

)
,

where the first entry refers to Y and the second one to Yp.
The system Sc is given by

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]−−−−⇀↽−−−−
κ4

XT
κ5−→ Xp

Xp −−⇀↽−−
κ7

XpY
κ8−→ X

XD −−⇀↽−−
κ10

XDYp
κ11−−→ XD ,

with

λXp→XpY (w) = κ7wXpY + κ11wXDYp

λXD→XDYp(w) = κ8wXpY + κ10wXDYp .

The equilibria of the system are the positive vectors w∗ that satisfy

w∗XT =
κ3[T ]

κ4 + κ5
w∗X =

κ1

κ4 + κ5
w∗XD =

κ8

κ5
w∗XpY =

κ11

κ5
w∗XDYp

.

If πc(X
N (0)) is such a vector w∗, or belongs to its basin of attraction, then Assumption 4 holds. Assumption

6 also holds, since the system S̃ corresponds to the original EnvZ/OmpR signaling system, and the unique
ACR species Yp is discrete. By making use of the fact that the original system is mass action kinetics and by
Remark 3.6, it is easy to see that the remaining assumptions of Corollary 4.1 (if πc(X

N (0)) is an equilibrium
w∗) or of Corollary 4.2 (if πc(X

N (0)) is in the basin of attraction of an equilibrium w∗) are fulfilled, and the
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results can be applied. Therefore, XN
Yp

(t) can be approximated on average by a Poisson random variable J

with mean q, in the sense of (34) or (36). The results are in accordance with the simulations in [3].
Alternatively, we could have applied the results of this paper to the signaling network by considering Yp

as the only discrete species, therefore increasing the initial counts of all other species, and by letting XN be
the process associated with

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]−−−−⇀↽−−−−
κ4

XT
κ5−→ Xp

Xp + Y
κ6/N−−−−⇀↽−−−−
κ7

XpY
κ8−→ X + Yp

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y ,

where κ6 has been rescaled. With this choice of rescaling, due to Remark ??, we have that βr = 1 for any
reaction yr → y′r of the system. Our results can be used to draw the same conclusion as before in this
different setting.
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[7] Péter Érdi and János Tóth, Mathematical models of chemical reactions: theory and applications of
deterministic and stochastic models, Manchester University Press, 1989.

[8] Stewart N. Ethier and Thomas G. Kurtz, Markov processes: characterization and convergence, John
Wiley & Sons Inc, 1986.

[9] Martin Feinberg, Lectures on chemical reaction networks, Delivered at Math. Res. Cent., U. Wisc.-Mad.
Available for download at http://crnt.engineering.osu.edu/LecturesOnReactionNetworks, 1979.

[10] Martin Feinberg and Fritz Horn, Chemical mechanism structure and the coincidence of the stoichiometric
and kinetic subspaces, Archive for Rational Mechanics and Analysis 66 (1977), no. 1, 83–97.

[11] Fritz Horn and Roy Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis
47 (1972), no. 2, 81–116.

22



[12] Hye-Won Kang and Thomas G. Kurtz, Separation of time-scales and model reduction for stochastic
reaction networks, The Annals of Applied Probability 23 (2013), no. 2, 529–583.

[13] Hye-Won Kang, Thomas G. Kurtz, and Lea Popovic, Central limit theorems and diffusion approxima-
tions for multiscale markov chain models, The Annals of Applied Probability 24 (2014), no. 2, 721–759.
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