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Abstract—Uncontrolled wildfires are dangerous events capable
of harming people safety. To contrast their increasing impact
in recent years, a key task is an accurate detection of the
affected areas and their damage assessment from satellite images.
Current state-of-the-art solutions address such problem through
a double convolutional neural network able to automatically
detect wildfires in satellite acquisitions and associate a damage
index from a defined scale. However, such deep-learning model
performance is strongly dependent on many factors. In this work,
we specifically focus on a key parameter, i.e., the loss function,
exploited in the underlying neural networks. Besides the state-
of-the-art solutions based on the Dice-MSE, among the many
loss functions proposed in literature, we focus on the Binary
Cross-Entropy (BCE) and the Intersection over Union (IoU), as
two representatives of the distribution-based and region-based
categories, respectively. Experiments show that the BCE loss
function coupled with a double-step U-Net architecture provides
better results than current state-of-the-art solutions on a public
labeled dataset of European wildfires.

Index Terms—Burned Area delineation, Convolutional Neural
Network, Deep learning, Supervised Learning, Semantic segmen-
tation

I. INTRODUCTION

European countries have been recently involved in an in-
creasing number of wildfires. These events are causing large
losses to people and the environment. The detection of the
perimeter and the estimation of the severity level of the
affected areas are fundamental for estimating the economical
damage and planning the environment restoration.

Satellite images acquired by Sentinel2 can be used to
automatically identify burned areas [1] and assess the damage
severity without requiring human efforts. We can identify
two different approaches to address this task: (i) assigning to
each pixel of the satellite image a class label (i.e., burned or
unharmed regions), or (ii) a numerical severity level measuring
the damage. The former can be modeled with the well-known
computer vision task called semantic segmentation, while the
latter requires a regression methodology.

The current state-of-the-art approach proposes a convolu-
tional neural network (CNN), called Double-Step U-Net [2],
which involves both binary semantic segmentation and regres-
sion to obtain a damage-severity map. Specifically, each pixel
is labeled with a numerical value representing the damage
level (i.e., 0 - No damage, 1 - Negligible to slight damage, 2 -
Moderately damaged, 3 - Highly Damaged, and 4 - Completely
destroyed). The network is trained on manually labeled data

gathered from the publicly available Copernicus Emergency
Management Service dataset (Copernicus EMS) [3]

Previous works on semantic segmentation showed that the
appropriate configuration of the CNN structure and the choice
of loss functions have significant impacts on the final results
[4], [5]. In this paper we focus on the inspection of different
loss functions applied to the Double-Step U-Net. This neural
network is composed of two different CNN blocks, each of
them trained separately.

Our contribution consists of an in-depth analysis on the
effects of different loss-functions applied to both modules,
compared with the baseline results in [2]. We show that one
of the analyzed loss-functions, the BCE-MSE, is capable of
improving the state-of-the-art results in terms of RMSE.

Our paper is organized as follows. Section II presents the
related works, while Section III discusses the neural network
model and the proposed loss-functions. Finally, Section IV
shows the experimental results and Section V draws conclu-
sions.

II. RELATED WORK

In this section we firstly review previous works on wild-
fire prediction, then focus on state-of-the-art architectures
for semantic segmentation and the adopted loss functions,
highlighting the differences with the proposed technique.

Previous works typically monitor the evolution of wildfires
during the event to support domain experts. Some of these
techniques are implemented by means of deep learning mod-
els [6], [7]. Differently, in this paper we are more focused
on automatic damage estimation after the event, by only
exploiting post-event satellite images.

Most of the works in literature address damage severity
estimation by means of specifically designed indexes, derived
from remote sensors (UAV/satellites) or in-situ analyses. The
Composite Burned Index (CBI) [8], the Normalized Burn
Ratio (NBR) [9] and the delta Normalized Burnt Ratio
(dNBR) [10] are some examples of these metrics. The estima-
tion is made by analyzing such indexes, which are computed
either on post-fire data or by comparing pre- and post-fire
collected data. The weak point of these methodologies is that
they significantly suffer from the different weather conditions
at which satellite images are taken. Moreover, the usage of
indexes to estimate the damage severity level typically requires
the manual or semi-manual definition of predefined thresholds
that are usually soil-dependent and cannot be easily set.
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The solution adopted in this work solves the previously
mentioned issues by only requiring post-fire images and apply-
ing an automatic supervised prediction approach. Specifically,
we apply a semantic segmentation model, combined with
a regression one, to derive the final damage-severity maps.
Many different semantic segmentation architectures have been
proposed in literature [11]–[13], but the work in [2] shows
that U-Net [14] is a valuable choice for addressing the wildfire
damage-severity estimation task.

The Double-Step U-Net architecture [2] relies on the Dice
loss function to learn predicting the boundaries of wildfires,
and on the Mean Squared Error (MSE) function for estimating
the final severity level. Many other different loss functions
have been proposed in literature [15], and several works
showed that a correct choice typically makes a real difference
in the results [4]. In this work we focus on Binary Cross
Entropy (BCE) and Intersection over Union (IoU) [15] aiming
to obtain a more effective choice of the loss function for the
Double-Step U-Net model.

III. EXPERIMENTAL FRAMEWORK

In this section, we first describe the state-of-the-art neural
network adopted in this work, then focus on the description
of the proposed loss functions.

Damage severity prediction is modeled as a regression task,
where each pixel in the satellite image must be associated
with a real number in the severity range [0-4]. To this aim,
the Double-Step U-Net architecture exploits the state-of-the-art
U-Net model [14] as backbone, and combines two modules:
(i) a Binary Classification U-Net, and (ii) a Regression U-Net.
The Binary Classification U-Net distinguishes between burned
and unburned areas, by assigning a binary label to each image
pixel. Its output probability map is discretized with a step
activation function, then provided to the Regression U-Net,
which finally predicts the damage severity levels.

The two modules described so far are trained separately
with different loss functions. In [2] the authors propose the
usage of Dice for the Binary Classification U-Net and MSE
(Mean Square Error) for the Regression U-Net. We denote
this configuration with Dice-MSE.

In this work, we improve the performance of the deep learn-
ing model by analyzing the crucial loss-function choice [5].
Specifically, we intend to test the overall efficacy of the
network both privileging either a per-pixel agreement with the
ground-truth, or a higher-order correlation between pixels.

These two constraints can be enforced by means of the BCE
and IoU loss functions, respectively. Indeed, BCE requires
a per-pixel agreement by considering each pixel separately,
and comparing its predicted likelihood of burned areas with
respect to ground-truth. Instead, IoU, similarly to Dice, aims at
obtaining a correct superposition of the predicted burned areas
with respect to ground-truth (i.e., higher-order correlation),
hence enforcing the CNN to be more accurate in recognizing
the correct regions.

We inspect these two loss-functions by means of two
representative configurations: (i) BCE-MSE, and (ii) IoU-

SoftIoU. BCE-MSE applies the Binary cross-entropy for the
Binary Classification U-Net, while MSE for the Regression
one. Instead, IoU-SoftIoU exploits Intersection over Union for
training both modules.

Since IoU is defined for classification tasks, we use a Soft-
IoU definition for the Regression neural network. Specifically,
we generalize the IoU metric as follows.

Let YGT , YPR be the ground-truth severity map and the net-
work estimation, respectively. Their values are first normalized
in range [0, 1] by means of the sigmoid activation function. We
denote the resulting matrices with ỸGT and ỸPR. Afterwards,
the SoftIoU can be computed with:

SoftIoU =
|ỸGT ◦ ỸPR|

|ỸGT + ỸPR − ỸGT ◦ ỸPR|
, (1)

where the symbol ◦ represents the element-wise product of
the two matrices, and | · | is the sum of the matrix values.
The numerator of Equation 1 represents the soft-intersection
between predictions and ground truth, while the denominator
represents the soft-union. The latter is computed by performing
the sum of the two matrices and subtracting the value of
the soft-intersection. The final loss function associated to this
metric is then calculated as LSoftIoU = 1− SoftIoU .

IV. EXPERIMENTAL RESULTS

This section provides first the details of the dataset used
to assess the proposed solution, then describes the evaluation
process and the obtained results.

Dataset. Experiments have been conducted on the publicly
available Copernicus Emergency Management Service dataset
(Copernicus EMS) [3], which provides labeled satellite images
with the areas hit by wildfires and the corresponding damage
intensity, i.e. a severity level from 0 (no damage) to 4
(completely destroyed).

Satellite images acquired by Sentinel2 (L2A products) with
12 spectral bands can be used to identify burned areas [1]
and classify the severity without requiring human efforts by
means of an encoder-decoder convolutional neural network
(Double-Step U-Net [2]). EMS data are collected from dif-
ferent European countries and separated into 7 folds, each
of them containing elements that are geographically close to
each other, hence possibly sharing similar morphology. These
acquisitions have a size up to 5000× 5000 pixels. To ease the
application of the neural network, images are split into smaller
tiles of 480×480 pixels, maintaining the spectral information
along the 12 channels. Among these tiles, only the ones with
at least one pixel with severity level greater than 0 are selected
for cross-validation.

Evaluation methodology. In order to evaluate the per-
formance of the different loss-function configurations, we
performed a 7-fold cross validation among the previously
defined dataset partitions. At each iteration, five folds are used
as training set, one as validation set, and the remaining one
as the test set. During the training phase, data augmentation
techniques are performed on the training set by applying



TABLE I
PERFORMANCE FOR EACH WILDFIRE SEVERITY CLASS

Overall Per-Class RMSE
Severity Dice-MSE BCE-MSE IoU-SoftIoU

0 0.34 0.28 1.22
1 1.05 1.01 1.32
2 1.07 0.84 0.82
3 1.01 0.75 0.49
4 1.28 1.25 1.72

tot 0.65 0.54 1.30

random transformations to the elements, in order to improve
model generalization. The validation set is used to assess
the model’s performance at each training epoch for the early
stopping regularization criteria.

Results. Results were obtained using CPUs on Big-
Data@PoliTO Cluster [16] to perform the computation. Table I
provides a comparison of the cross-validation results for
the three configurations described in Section III. Each line
corresponds to a specific severity level ([0-4]) and its scores
are computed by considering only the pixels with that level
as ground truth value. The Root Mean Square Error (RMSE)
is then computed by comparing the ground-truth pixels with
the predictions, averaging the results for each cross-validation
fold.

The results show that BCE-MSE achieves higher perfor-
mances w.r.t. the state of the art for all the severity levels.
For class 2 and 3, the IoU-SoftIoU configuration achieves the
best results. However, it also shows the worst scores for all
the other three classes. On average (last line of Table I), the
configuration with best scores is BCE-MSE (0.54), followed
by DICE-MSE (0.65).

These results show that the metrics involving higher-order
relationships between pixels (see Section III) are less capable
of reducing the final RMSE.

V. CONCLUSION AND FUTURE WORKS

In this paper we addressed the task of predicting damage
severity levels after wildfire events. We adopted a deep learn-
ing state-of-the-art technique to obtain the predictions and
fine-tuned the choice of the loss functions. We learned from
the results that the proposed configuration with BCE-MSE
achieves better results with respect to the state-of-the-art.

Other loss-functions, together with the ones presented in this
paper, will be considered in the future to inspect the efficacy
of compound loss functions and reach higher performances.
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R. Caldeira, “Evaluation of forest fire on madeira island using sentinel-
2a msi imagery,” International Journal of Applied Earth Observation
and Geoinformation, vol. 58, pp. 97–106, 2017.

[10] J. D. Miller and A. E. Thode, “Quantifying burn severity in a hetero-
geneous landscape with a relative version of the delta normalized burn
ratio (dnbr),” Remote Sensing of Environment, vol. 109, no. 1, pp. 66–80,
2007.

[11] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[12] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[13] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2881–2890, 2017.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, pp. 234–241, Springer,
2015.

[15] S. Jadon, “A survey of loss functions for semantic segmentation,” arXiv
preprint arXiv:2006.14822, 2020.

[16] SmartData@PoliTO, “Bigdata cluster: Computing facilities.” Available
at ”https://smartdata.polito.it/computing-facilities/”.


