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Subspace Identification of a Glucose-Insulin model Using Meal Tracer
Protocol Measurements

Ali Al-Matouq1; Mohammed AlShahrani2; Carlo Novara3

Abstract— In this study, the problem of identifying a low
complexity state space model describing glucose and insulin
dynamics from low sample meal tracer experiments is investi-
gated. Triple tracer meal protocol measurements (sampled as
low as 15 samples per meal) together with continuous glucose
monitoring measurements, measured concurrently at a rate
of 5 minutes per sample, are used. A new formulation to
estimate the missing input and output measurements at such
low sample rates is developed. Nuclear norm minimization is
used to exploit low rankness of the stacked input and output
matrix, while the `1 norm is used to exploit an available sparse
basis for the glucose flux profiles. Simulation results, using the
UVa Padova simulator, show that the technique outperforms
previous methods and also demonstrate the possibility of
identifying state space models from triple tracer measurements
with good prediction performance under non-ideal conditions.

I. INTRODUCTION
Glucose metabolism during meals is influenced by many

factors, including meal composition, rate of gastric emp-
tying, insulin/glucagon secretion, insulin sensitivity, health
condition, activity level and other factors as discussed for
example in [2] and [3]. Sophisticated clinical measurements
are used to study the contribution of these different factors on
glucose dynamics. Two commonly used techniques are the
dual tracer meal protocol developed by Steele et. al. in [4]
and the triple tracer meal protocol developed by Basu et.al in
[5] for measuring glucose fluxes which use tracers consumed
with a certain meal and/or administered to the patient.

In the dual tracer technique, for example, the patient
consumes glucose that is labeled with one tracer while
another tracer is infused intravenously at a constant rate.
Three glucose fluxes are then reconstructed from concentra-
tion measurements of both the traced and untraced glucose
assuming a certain model structure. The glucose fluxes are
1- Glucose rate of appearance from the intestine (GRA), its
signal denoted by ura(t), which measures the rate of glucose
appearing from the intestine due to consumed meals; 2-
Endogenous glucose production (EGP), denoted by uegp(t),
which measures the rate of glucose produced by the liver
and 3- Glucose disappearance due to insulin (U), denoted
by uins(t), which measures the rate of glucose absorption
by muscles and adipose tissue due to insulin activation. A
similar approach is used in the triple tracer meal protocol
developed in [5] that uses two tracers infused intravenously
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and a the third tracer consumed orally with the meal.
Both techniques require frequent blood sampling to measure
the traced and untraced glucose and to sufficiently infer
postprandial glucose dynamics. However, the frequency of
blood sampling need to be limited to avoid taking large
blood volumes from the patient. As a result, dual tracer and
triple tracer meal protocol measurements contain valuable
information about the patient that could be exploited in
control and estimation but are characterized by low, and
possibly irregular, sample rate measurements.

Methods to identify a dynamic model using meal tracer
protocol measurements use a two stage approach that seeks
to first estimate the missing measurements followed by
parameter identification techniques on both the measured and
estimated signals. In [6], the triple tracer data set obtained
in [7] was used to identify a first principle transport model
known as the UVa Padova model. Each patient data set
contained 24 sample measurements for each flux type and
additional measurements for plasma glucose and plasma
insulin concentration measurements spanning 7 hours. The
missing measurements for glucose fluxes were reconstructed
using deconvolution as described in [8] while the forcing
function strategy was used on a subsystem level to iden-
tify model parameters [6]. These approaches, however, are
subject to both structural and parameter uncertainties since
they presume a certain model structure and estimate the
missing measurements and model parameters in two isolated
steps. Not mentioning the non-convex formulations used for
estimating model parameters which introduces non-unique
and sub-optimal solutions. Other techniques for identifying
the UVa Padova model use continuous plasma glucose and
plasma insulin concentration measurements, as studied in [9],
but also suffer from the same issues and require considerable
number of measurements.

In the case of tracer meal protocol measurements, more
than 80% of measurements are missing. To overcome this
problem, additional a priori information relevant to the shape
and pattern of glucose fluxes is introduced in this study.
Particularly, sparse encoding of a large set of plausible
glucose flux profiles, as explained in [10], is used in order to
obtain sparse basis vectors that for representing the space of
plausible glucose flux profiles during meals. The approach
then uses a rank heuristic, as in [1], and an additional `1
norm penalty. The nuclear norm penalty is used to exploit
low rankness of the stacked input and output matrix for
estimating the missing measurements while the `1 norm
penalty exploits the constructed sparse basis for reconstruct-
ing the glucose flux profiles that follow certain patterns. The
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estimated measurements are then used within the numerical
algorithm for subspace identification N4SID [11] to identify
model parameters. The identified models are then validated in
simulation using the FDA approved UVA Padova simulator.

Comparing with previous techniques in the literature for
identifying dynamic models from tracer experiments we
mention the following: First, the method yields a computa-
tionally tractable solution since a convex formulation is used
for estimating the missing input and output measurements
followed by the N4SID algorithm that uses standard linear
algebra operations. Second, the method does not assume a
certain model structure rather a general linear state space
model structure is used which helps to reduce structural
uncertainties. Third, the missing triple tracer measurements
are estimated with the objective of obtaining a low di-
mensional range space of the observability matrix as com-
pared to the previous two stage techniques that estimate
the missing measurements without any account for the final
identification step. The available sparse basis also helps
to improve the technique developed in [1] for estimating
missing measurements using the nuclear norm by reducing
the requirement of having at least 50% of the measurements
available. Our simulation results show that the technique
outperforms the method in [1] and also demonstrate the
possibility of identifying state space models from triple tracer
measurements with good prediction performance under non-
ideal conditions.

The following is the outline of this study. Section 2 will
give the problem formulation used to identify the glucose
fluxes and subspace model along with the necessary assump-
tions. Section 3 will present the simulation results for the
identification problem. The following notation is used in this
study: R represents the set of real numbers; A 2 Rn⇥m is an
n⇥m matrix with real values; kzkli

is the `i norm of vector z

while |z| is the number of non-zero elements in z. For matrix
A, kAk2 represents the spectral norm of the matrix; kAkF

represents the Frobenius norm and kAk⇤ = Âmin{n,m}
i=1 si(A)

the sum of singular values of A.

II. PROBLEM FORMULATION

The objective of this study is to identify a linear state space
model describing glucose/insulin dynamics using low sam-
pled triple tracer meal protocol measurements; regularly sam-
pled continuous glucose monitoring measurements; insulin
infusion recordings and meal carbohydrates. The method
also seeks to estimate the missing triple tracer measurements
simultaneously. We first give the required assumptions.

Assumption 2.1: The availability of subcutaneous glucose
concentration measurements, measured possibly using a con-
tinuous glucose monitor, denoted by gsc(k) (mg/dL) where
k = 0, · · · ,N � 1 is a time index and N is total number of
samples taken by the measurement device for the entire ex-
periment. Furthermore, we assume that gsc(k) measurements
are perturbed by zero mean finite variance white noise and
that the sample rate for these measurements is given by tsamp.

Assumption 2.2: The availability of glucose flux measure-
ments measured possibly using the dual tracer meal protocol

[4] or triple tracer meal protocol [5] in mg/kgmin i.e. mg

per kg of patient body weight per minute. The glucose flux
measurements include samples of glucose rate of appearance
from the intestine ura(k), samples of endogenous glucose
production uegp(k) and samples of insulin dependent glucose
utilization uins(k) for k 2T ⇢ {0,1, · · · ,N}. Furthermore, we
assume that these measurements are perturbed by zero mean
iid white noise and can be either regularly or irregularly
sampled.

Assumption 2.3: The availability of samples of plasma
glucose and insulin concentration measurements denoted by
g(k) (mg/dL) and i (pmol/L), respectively for k 2 T . Fur-
thermore, we assume that these measurements are perturbed
by zero mean finite variance white noise.

Assumption 2.4: The glucose and insulin dynamics for the
patient can be described by a discrete-time multi-input multi-
output (MIMO) state space model given by:

xk+1 = Axk +Buk

yk =Cxk +Duk + ek, k = 0, · · · ,N �1 (1)

where, xk 2 Rnx is the state sequence, yk = [yp

k
, y

sc

k
]T is

the system output vector sequence that contains the out-
put measurements y

p

k
= [g(k) i(k)]T and y

sc

k
= gsc(k). The

sequence uk = [ura(kts) uegp(kts) uins(kts)]T is the system
input sequence that contains the glucose flux sequences and
ek 2 R3 is an iid zero mean white random noise sequence
vector that is uncorrelated with uk and xk.

Assumption 2.5: The availability of (1) an estimate of the
time and amount of meal carbohydrates consumed by the
patient denoted by ccarbs(k) (mg) and (2) recordings of the
amount and time of bolus and basal insulin administrated to
the patient denoted by uiir(k) (IU/hr); i.e. insulin units per
hour for k = 0, · · · ,N �1.

Assumption 2.6: The matrix pair (A,C) is observable and
the matrix pair (A,B) is reachable.

For subspace identification with missing inputs and out-
puts, the identification problem is posed as follows: given the
subset of the noisy input and output sequences; i.e. uk and yk

for k 2T ⇢ {0,1, · · · ,N�1} and assuming the system to be
retrieved is a linear time invariant system of the form given
in (1), we desire to find (a) an estimate of the state dimension
of the system nx; (b) a filtered estimate of the given input
and output sequences ûk and ŷk and state sequence x̂k for all
k = 0,1, · · · ,N�1 and (c) an estimate of the system matrices,
A,B,C and D.

Towards that goal, we first write (1) as a matrix equation
as in [12] as follows:

Ys,N = QsX1,N +Ts,NUs,N +Es,N (2)

where, Ys,N and X1,N are constructed from the vector se-
quence yk and xk for k = 0, · · · ,N �1 as follows:

Ys,N =

2

6664

y0 y1 · · · yN�s+1
y1 y2 · · · yN�s+2
...

...
. . .

...
ys�1 ys · · · yN�1

3

7775

X1,N =
⇥

x0 x1 · · · xN�s+1
⇤
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where, s is the row-block size of the Hankel matrix Ys,N .
Similarly, Hankel matrices Us,N and Es,N are defined using
the sequences uk and ek for k = 0, · · · ,N � 1, respectively.
On the other hand, matrices Qs and Ts,N are defined as:

Qs =

2

6664

C

CA

...
CA

s�1

3

7775
,Ts,N =

2

6664

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CA
s�2

B CA
s�3

B · · · D

3

7775

To introduce the technique, we first rewrite (2) in terms of
QsX1,N as follows:

QsX1,N =
⇥
�Ts,N Isny

⇤ Us,N

Ys,N �Es,N

�
(3)

where, Isny
is an identity matrix of dimension sny⇥sny. From

the above equation, we note the following:
1) If s > nx, then rank of QsX1,N is nx since Qs is full

column by assumption 2.4 and rank(X1,N) = nx.
2) Since the matrix

⇥
�Ts,N Isny

⇤
is full row rank, then

from Sylvester’s inequality we can show that:

nx  rank(F) nx + snu (4)

where,

F(Us,N ,Y
⇤
s,N) =


Us,N

Y
⇤
s,N

�

and Y
⇤
s,N = Ys,N �Es,N is the noise-free output.

Hence, assuming that rank(Us,N) = snu is fixed and the
state dimension nx is small then the minimization of
rank(F(Us,N ,Y ⇤

s,N)) can be exploited for finding nx. This was
proposed in [1] through the solution of the following robust
matrix completion problem:

min
Ũs,N ,Ỹs,N2Hs

kF(Ũs,N ,Ỹs,N)k⇤

+lL (Ũs,N ,Ỹs,N ,{uk}k2T ,{yk}k2T ) (5)

where the matrices Ũs,N and Ỹs,N are Hankel matrices
formed using the decision variable vectors ũ0, · · · , ũN�1
and ỹ0, · · · , ỹN�1, respectively and Hs is the set of Hankel
matrices of block size s. The first term is the nuclear
norm defined as kFk⇤ = Âs(nu+ny)

i=1 si(F) which is the sum
of the singular values of the matrix F. This penalty is a
convex relaxation of the rank function as discussed in [13]
and its minimization can result into finding the minimum
rank solution if certain conditions are satisfied [14]. The
additional penalty L (·) is a least squares objective that
minimizes the sum of square residual errors between the
available measurements and decision variables. The above
convex program is commonly referred to as a robust matrix
completion problem that can be used to estimate the missing
elements of the matrix F from available noisy measurements
of the matrix.

The study in [1], however, showed that the above mini-
mization problem can estimate the missing elements of the
matrix F for cases when the percentage of missing input
and output measurements is less than 50%. In the case of

tracer meal protocol measurements, more than 80% of mea-
surements are missing and hence the above technique will
not work unless additional a priori information is available.
To overcome this problem, additional a priori information
will be included in this study, which is the subject of the
following assumption.

Assumption 2.7: The glucose flux profiles defined as:

Ura :=[ura(0), · · · ,ura((N �1)tsamp)]
T

Uegp :=[uegp(0), · · · ,uegp((N �1)tsamp)]
T

Uins :=[uins(0), · · · ,uins((N �1)tsamp)]
T

live inside a low dimensional subspace of the space spanned
by the positive linear combination of the column vectors of
Dra 2 RN⇥pra , Degp 2 RN⇥pegp and Dins 2 RN⇥pins respec-
tively; i.e:

Ura = Draara, Uegp = Degpaegp, Uins = Dinsains (6)

where, ara 2Rpra

+ ; aegp 2Rpegp

+ and ains 2Rpins

+ are positive
sparse vectors. Here, pra, pegp and pins are the column
dimensions of the matrices Dra, Degp and Dins, respectively.

Assumption 2.7 assumes the availability of a sparse basis
for the glucose flux profiles. This assumption was made
based on the observation that typical glucose flux profiles
during meals follow certain patterns. In [10], sparse basis
was constructed using extensive random simulations of the
FDA approved UVa Padova simulator together with sparse
encoding of these glucose fluxes. Consequently, we may
express the Hankel matrix Us,N as follows:

Us,N =Ds,N ⌦a (7)
where,

Ds,N =

2

6664

D0 D1 · · · DN�s+1
D1 D2 · · · DN�s

...
...

. . .
...

Ds�1 Ds · · · DN�1

3

7775

Di :=

2

4
d

T

ra,i 0 0
0 d

T

egp,i 0
0 0 d

T

ins,i

3

5 , for i = 0,1, · · · ,N �1

a :=
⇥

ara, aegp, ains

⇤T

where, d
T

ra,i is the i+1 row of Dra. Similarly, the row vectors
d

T

egp,i and d
T

ins,i for i = 0, · · · ,N � 1 correspond to the i+ 1
row of Degp and Dins, respectively.

As discussed in [10], the area under the curve of ura(t)
represents the amount of glucose absorbed from meal carbo-
hydrates according to the following [15]:

f

N

Â
k=1

ccarbs(k)⇡ cbw

N

Â
k=0

ura(kTs)Ts (8)

where f is the fraction of meal carbohydrates absorbed
as glucose in plasma (glucose bioavailability), cbw(kg) the
patient body weight.

We describe the measurement equation as:

y = Sv⇤+ e (9)
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where, vector y 2RNT , NT = 2Ns +N, is a vector containing
all available measurements which is defined as follows:

y =
h
uk1 ,uk2 , · · ·ukNs

,yp

k1
,yp

k2
, · · ·yp

kNs

,ysc

0 ,y
sc

2 , · · · ,ysc

N�1

i
T

Here we used subscripts k1,k2, · · · ,kNs
2 T to represent the

time indicies of the available tracer measurements. The vec-
tor v⇤ 2RN(nu+ny) represents the non-repeated true elements
of the matrix true matrix F⇤ defined as follows:

F⇤
i, j = v⇤

i+ j�1 for i = 1,2, · · · ,s, j = 1,2, · · · ,N � s+1,
F⇤

i, j = v⇤
i+ j+N�s�1 for i = s+1, · · · ,2s, j = 1,2, · · ·N � s+1

Finally, S is a selection matrix for connecting the decision
variables to the available measurements in y.

Consequently, we propose the following minimization
problem that incorporates the above additional a priori in-
formation for estimating the missing input and output:

min
a⌫0,v

ky�Svk2
2 +l (kFk⇤+kak1)

subject to
[Isnu

0]F = Ds,N ⌦a,

cbw

N

Â
k=0

d
T

ra,karaTs  f

N

Â
k=0

ccarbs(k) (10)

The above two constraints incorporate the additional a priori
knowledge about Us,N and meal carbohydrates, where dra,k

represents the kth row of Dra.
The tuning parameter l can be used to set the level of

trade-off between fitness with measurements and both low
rankness of F and sparsity level of a . Here, one tuning
parameter l is used since the two penalties can be described
as one nuclear norm penalty.

After solving (10), the MOESP algorithm (Multivariable
Output-Error State space) identification technique, described
for example in [16], can be used to estimate the system order
and system matrices Â, B̂,Ĉ and D̂ using RQ factorization of
the estimated matrix F̂. The above is a convex semi-definite
minimization problem that can be solved using standard
convex programming algorithms [17].

The value of s, the block size of the Hankel matrices,
should be selected such that s > ñx, where ñx is an estimate
of the order of the system. A suitable value for the tuning
parameter l can be found by repeated solution of (10)
over a logarithmically spaced set of values for l until an
appropriate model is found in terms of feasibility of the
estimated missing measurements and minimum validation fit,
which is defined as:

f it =100
✓

1� kypred �yk2

ky�mean(y)k2

◆
(11)

where, ypred is the predicted output of the model obtained
from the two step method (solving (10) and then implement-
ing MOESP algorithm on the estimated input/output signals)
and mean(y) is the average value of the measurement vector.

III. SIMULATION STUDY

In the following we will demonstrate the potential of the
new technique through two simulation experiments using the
FDA approved UVa Padova model developed in [6].

To generate the required measurements for testing, we
simulated the average adolescent, average adult and average
child in-silico patients using the UVa Padova simulator
(version 3.2) with the meal scenario explained in [10] (not
shown here for brevity). For the sake of testing the robustness
of the technique we first subjected the simulated glucose
flux profiles to random nonlinear distortions. The nonlinear
distortion was made by raising each element ura(k), uegp(k)
and uins(k) generated in simulation by a random exponent
that is uniformally distributed between 0.5 and 1.0. We then
repeated the simulations using the deformed flux profiles
as inputs in order to generate the required measurements
for testing. We then perturbed the generated signals by zero
mean white noise with variance of 0.01. The noise in gsc(k)
was modeled as an SU Johnson distributed signal with an
autoregressive component as explained in [18] and [19].

A. Experiment I: Comparison with the method in [1]

In this experiment, the measurements included 97 sam-
ples for noisy continuous glucose monitoring measurements
gsc(k), 15 linearly spaced samples for the distorted glucose
flux signals ura(k), uegp(k) and uins(k) and 15 linearly spaced
samples for plasma insulin i(k) and plasma glucose g(k)
signals. We then used the method developed in [1] by
solving (5) for the purpose of estimating the remaining
82 measurements for ura(k), uegp(k), uins(k), i(k) and g(k)
and to filter the available measurements. The term L was
set as the least squares objective (`2 norm error) and with
l = 0.03. This minimization was done using CVX in Matlab
(version 2.0) [20]. The noisy measurements vs. the estimated
measurements for the average child patient are shown in
Figure 1 top view. The relative root mean square error
values RRMSE, as defined in [10], for this experiment are
shown in Table I. Clearly the results indicate poor estimation
performance for the glucose fluxes.

We then repeated the same experiment but using the
technique developed in this study. The other parameters in
(10) were set as follows: s = 12 and l = 0.03. The sparse
dictionaries Dra, Degp, Dgu were developed as explained
in [10] and were used. The results are shown in Figure 1
lower row for the average child patient and the corresponding
relative root mean square errors are shown in Table I. Clearly,
the results demonstrate the potential of the technique in
estimating the missing input and output measurements even
for the measurements that do not have a sparse basis for
them (i.e. gsc, g(k) and i(k)).

B. Experiment II: Subspace Identification using two meals

For the purpose of identifying a state space model from
triple tracer experiments we first obtained the missing input
and output measurements as explained in experiment 1
and then used the N4SID algorithm developed in [11] to
identify a state space model. The measurements were first
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Fig. 1. Top row: (from left) the true signals g
⇤, i

⇤
u
⇤
ra, u

⇤
egp, u

⇤
ins

for the average adolescent patient vs. the noisy signals g, i ura, uegp, uins and estimated
signals ĝ, î, ûra, ûegp and ûins obtained using the method in [1] by solving (5). Bottom row, the same but with signals obtained by using the method in
this study by solving (10).

Patient/ RRMSE ûra(old) ûra(new) ûegp(old) ûegp(new) ûins(old) ûins(new)
average adolescent 0.0907 0.0329 0.0973 0.0223 0.3851 0.2150

average adult 0.1130 0.0300 0.1049 0.0279 0.4281 0.2513
average child 0.0908 0.0386 0.0741 0.0685 0.3602 0.1800

TABLE I
RELATIVE ROOT MEAN SQUARE ERROR FOR ESTIMATED VALUES FOR GLUCOSE FLUXES USING THE METHOD IN [1] DENOTED BY ûra(old), ûegp(old),

ûins(old) AND THE CORRESPONDING VALUES USING THE PROPOSED METHOD IN THIS STUDY DENOTED BY ûra(new), ûegp(new), ûins(new)

Patient/RRMSE ûra(new) ûegp(new) ûins(new) ĝ(new)
average adolescent 0.0465 0.0501 0.2393 0.0546

average adult 0.0262 0.0169 0.3017 0.0573
average child 0.0417 0.0540 0.1848 0.0597

TABLE II
RELATIVE ROOT MEAN SQUARE ERROR PERFORMANCE FOR ESTIMATED

VALUES FOR EXPERIMENT II

obtained using simulation similar to the approach discussed
in experiment 1 above but extended for two consecutive
meals with random carbohydrate content.

Shifted versions of the sparse dictionaries Dra, Degp, Dgu

were used (one for each meal) using the technique discussed
in [10]. Figure 2 shows the measurements used for this
experiment and the estimated input and output measurements
from the solution of (10) for the average adolescent patient.
Table II shows the corresponding relative root mean square
error values for the estimated fluxes and plasma glucose
signals for the average patients.

The Matlab function (’N4SID’) was then used on the
estimated input and output measurements with the option
of finding a state space model with input disturbance and
no feed through. Table III gives the Akaike finite prediction
error and the mean square error for the identified models
for the average adolescent, average adult and average child
patient, respectively.

Pat. FPE MSE n̂x f itval

avg. adol. 13.52 13.91 8 (82.3 86.1,66.9)
avg. adult 3.894 7.3 8 (83.0,85.6,47.5)
avg. child 26.9 20.1 8 (67.6, 58.5, 43.0)

TABLE III
IDENTIFICATION PERFORMANCE

Validation was conducted by testing the identified models
using new simulation data generated using the UVa Padova
model for 3 consecutive different meal scenarios for the same
3 in-silico average patients. The matlab function ”compare”
was used to generate the plots in Fig. 3 for the average ado-
lescent patient. The fitness parameter in (11) was calculated
using the true simulated values for the three outputs. The
results are tabulated in Table III also under f itval for the three
output signals ĝsc(k), ĝ, î, respectively. The results indicate
overall good performance and fitness with estimated data
except for the prediction of plasma insulin for the child and
adult patient. This could be improved by introducing more
input excitation or using more experimental data.

IV. DISCUSSION AND CONCLUSION

A new technique for the reconstruction of missing input
and output measurements in triple tracer experiments for
subsequent subspace identification is proposed. The approach
uses a machine learning prior in the form of a sparse
basis for the glucose fluxes constructed using dictionary
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Fig. 2. The true signals g
⇤, i

⇤
u
⇤
ra, u

⇤
egp, u

⇤
ins

for the average adolescent patient vs. the noisy signals g, i ura, uegp, uins and estimated signals ĝ, î, ûra,
ûegp and ûins obtained from solving (10)

Fig. 3. Results obtained from Experiment II for the average adolescent patient using N4SID algorithm [11]

learning techniques on a large database of simulated fluxes.
The nuclear norm is then used to exploit low rankness of
the stacked input and output matrix, while the `1 norm
is used to exploit the available sparse basis for typical
glucose flux profiles during meals. Simulation results show
that the technique outperforms the method in [1] and also
demonstrate the possibility of identifying state space models
from triple tracer measurements with good performance.
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