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(Received 26 May 2020; revised 4 September 2020; accepted 8 September 2020; published 24 September 2020)

The Hubbard model and its strong-coupling version, the Heisenberg one, have been widely studied on the
triangular lattice to capture the essential low-temperature properties of different materials. One example is given
by transition metal dichalcogenides, as 1T-TaS2, where a large unit cell with 13 Ta atoms forms weakly coupled
layers with an isotropic triangular lattice. By using accurate variational Monte Carlo calculations, we report
the phase diagram of the t-t ′ Hubbard model on the triangular lattice, highlighting the differences between
positive and negative values of t ′/t ; this result can be captured only by including the charge fluctuations that are
always present for a finite electron-electron repulsion. Two spin-liquid regions are detected: one for t ′/t < 0,
which persists down to intermediate values of the electron-electron repulsion, and a narrower one for t ′/t > 0.
The spin-liquid phase appears to be gapless, though the variational wave function has a nematic character, in
contrast to the Heisenberg limit. We do not find any evidence for nonmagnetic Mott phases in the proximity of
the metal-insulator transition, at variance with the predictions (mainly based upon strong-coupling expansions
in t/U ) that suggest the existence of a weak-Mott phase that intrudes between the metal and the magnetically
ordered insulator.

DOI: 10.1103/PhysRevB.102.115150

I. INTRODUCTION

Searching and understanding quantum spin-liquid phases
is one of the key topics in contemporary condensed-matter
physics [1]. Such states are favored by the presence of frus-
tration, being realized in lattices with competing magnetic
interactions. In particular, strong evidences that support the
presence of a spin liquid are reported in herbertsmithite, well
described by the Heisenberg model on the kagome lattice
[2], and for organic compounds like κ(ET)2Cu2(CN)3 and
Me3EtSb[Pd(dmit)2]2, whose low-temperature behavior could
be captured by the Hubbard model on the anisotropic triangu-
lar lattice [3,4]. Recently, a transition metal dichalcogenide,
1T-TaS2, came to the attention of the community working
on spin liquids [5]. Indeed, this compound was observed to
undergo a low-temperature transition into a cluster of stars of
David, where the unit cell contains 13 Ta atoms and forms
an isotropic triangular lattice. The low-temperature behavior
is compatible with a pure Mott insulator, with no long-range
magnetic order [6–8]. Still, charge fluctuations are present
and the material is expected to be not too far from a metal-
insulator transition. In the past, the issue of magnetism has not
been discussed much in the literature, while recent NMR and
μSR experiments highlighted the absence of static magnetic
moments [9,10]. This information, together with indications
from NMR of a weak interlayer coupling, suggests that the
system may be a good candidate for hosting a spin-liquid
phase.

The theoretical investigation of spin-liquid phases on
isotropic triangular lattices has been mostly confined to spin
S = 1/2 models, where spin liquids can be systematically
classified, according to the projective symmetry group theory
[11,12], also including the effect of gauge fluctuations [13,14].

Starting from the Heisenberg model with nearest-neighbor
(NN) superexchange J , spin-liquid phases can be stabilized
by including either a next-nearest-neighbor (NNN) coupling
J ′ or a four-spin ring-exchange term K . The latter one can be
justified within the fourth-order strong-coupling expansion in
t/U and is usually considered for an effective description of
density fluctuations close to the Mott transition [15]. The case
with J ′ has been widely investigated: In the classical limit
there is a three-sublattice order for J ′/J < 1/8, where each
spin is oriented with a 120◦ angle with respect to its near-
est neighbors; for 1/8 < J ′/J < 1, the lowest-energy state is
highly degenerate, with configurations having spins summing
to zero on each four-site rhomboidal plaquette; for larger
values of J ′/J , spiral states are obtained. When quantum
fluctuations are included (e.g., within the spin-wave approx-
imation), a paramagnetic phase emerges in the proximity of
the classical transition J ′/J = 1/8; in addition, quantum cor-
rections give rise to an order-by-disorder selection for 1/8 �
J ′/J � 1, leading to a stripe collinear order with four out of
six nearest-neighbor correlations being antiferromagnetic and
the remaining two being ferromagnetic [16–18]. Recently, this
model has been analyzed by using variational Monte Carlo
(VMC) and density-matrix renormalization group (DMRG)
approaches. In the former case, a gapless spin liquid has been
first proposed in Ref. [19] and later confirmed [20]. Within
this scenario, the ground state could be well approximated
by a fermionic Gutzwiller-projected wave function, having
Dirac points in the spinon band and emergent U (1) gauge
fields. Within the DMRG approach, some initial calculations
suggested the presence of a gapped spin liquid [21,22], while
more recent ones also pointed towards the possibility of a
gapless spin liquid [23]. Furthermore, in the presence of ring-
exchange terms K , a gapless spin liquid with a Fermi surface
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has been proposed by earlier VMC studies [24], as well by
recent DMRG ones [25], for large enough values of the ratio
K/J . Another VMC study proposed instead two possible spin
liquids, as a function of K/J: a gapless nodal d-wave one and
another one with a quadratic band touching, both without a
spinon Fermi surface [26].

The hunt for spin liquids in the presence of change fluc-
tuations, i.e., within the Hubbard model, is instead more
limited. Indeed, early Hartree-Fock calculations [27,28] con-
centrated the attention on the structure of the magnetic order
across the Mott transition. Since then, different approaches
have been applied to understand whether a spin-liquid phase
can be stabilized close to the Mott transition (the so-called
weak-Mott insulator), between the metal-insulator transition
and the insurgence of magnetic order. The outcomes are
not conclusive: calculations based upon variational cluster
approximation (VCA) [29–31], path-integral renormalization
group [32], strong-coupling expansion [33], dual-fermion ap-
proach [34], and DMRG [35,36] suggested the existence of an
intermediate spin-liquid phase; by contrast, a direct transition
between a metal and a magnetic insulator has been found
by using dynamical cluster approximation [37] and VMC
[38,39]. This analysis is complicated by the significant differ-
ence in locating the Mott transition observed with the different
methods. Recently, a calculation of magnetic and charge sus-
ceptibilities has been attempted, which, however, could not
reach sufficiently low temperatures to assess the existence of
a spin-liquid phase [40]. The effect of next-nearest-neighbor
hopping has been addressed in Ref. [41], using the VCA
method with few (12) sites, leading to a large spin-liquid
region for t ′/t > 0.

In this paper, we consider the Hubbard model on a tri-
angular lattice with both NN and NNN hoppings, in order
to increase the role of magnetic frustration, thus favoring
spin-liquid phases. We employ variational wave functions
and Monte Carlo sampling to evaluate ground-state properties
and draw the phase diagram in the (t ′/t,U/t ) plane. The
main outcome is that the stability of the spin-liquid phase
depends both on the degree of frustration, i.e., (t ′/t )2 = J ′/J ,
and on the Fermi surface topology at small values of U/t .
This combination of strong- and weak-coupling physics is
crucial in understanding how stable a spin-liquid phase is
when charge fluctuations are taken into account. In particular,
when the ratio t ′/t falls within the spin-liquid regime of the
Heisenberg model, the case with t ′/t < 0 hosts a spin liquid
down to intermediate values of U/t , where the stripe collinear
order becomes competitive, while the case with t ′/t > 0 is
dominated by the coplanar 120◦ order. The spin liquid in
the Hubbard model appears to be nematic and presumably
gapless. We remark that we do not find any evidence for a
weak-Mott insulator, thus posing doubts on the validity of
strong-coupling expansions down to the Mott transition.

II. MODEL AND METHOD

We consider the single-band Hubbard model on the trian-
gular lattice:

H=−t
∑

〈i, j〉,σ
c†

i,σ c j,σ − t ′ ∑

〈〈i, j〉〉,σ
c†

i,σ c j,σ + H.c. + U
∑

i

ni,↑ni,↓,

(1)

where c†
i,σ (ci,σ ) creates (destroys) an electron with spin σ

on site i and ni,σ = c†
i,σ ci,σ is the electronic density per spin

σ on site i. The NN and NNN hoppings are denoted as t
and t ′, respectively; U is the on-site Coulomb interaction. We
define three vectors connecting NN sites, a1 = (1, 0), a2 =
(1/2,

√
3/2), and a3 = (−1/2,

√
3/2); in addition, we also

define three vectors for NNN sites, b1 = a1 + a2, b2 = a2 +
a3, and b3 = a3 + a1. In the following we consider clusters
with periodic boundary conditions defined by T1 = la1 and
T2 = la2, in order to have l×l lattices with L = l2 sites. The
half-filled case, which is relevant for the spin-liquid physics,
is considered here. In this case, only the sign of the ratio t ′/t
is relevant and not the individual signs of t and t ′.

Our numerical results are obtained by means of the VMC
method, which is based on the definition of suitable wave
functions to approximate the ground-state properties beyond
perturbative approaches [42]. In particular, we consider the so-
called Jastrow-Slater wave functions that include long-range
electron-electron correlations via the Jastrow factor [43,44],
on top of an uncorrelated Slater determinant (possibly in-
cluding electron pairing). In addition, the so-called backflow
correlations will be applied to the Slater determinant, in order
to sizably improve the quality of the variational state [45,46].
Thanks to Jastrow and backflow terms, these wave functions
can reach a very high degree of accuracy in Hubbard-like
models, for different regimes of parameters, including frus-
trated cases [47]. Therefore, they represent a valid tool to
investigate strongly correlated systems, competing with state-
of-the-art numerical methods, as DMRG or tensor networks.

Our variational wave function for describing the spin-
liquid phase is defined as

|�BCS〉 = Jd |�BCS〉, (2)

where Jd is the density-density Jastrow factor and |�BCS〉
is a state where the orbitals of an auxiliary Hamiltonian are
redefined on the basis of the many-body electronic configura-
tion, incorporating virtual hopping processes, via the backflow
correlations [45,46]. The auxiliary Hamiltonian for the spin-
liquid wave function is defined as follows:

HBCS =
∑

k,σ

ξkc†
k,σ

ck,σ
+

∑

k

�kc†
k,↑c†

−k,↓ + H.c., (3)

where ξk = ε̃k − μ defines the free-band dispersion (includ-
ing the chemical potential μ) and �k is the singlet pairing
amplitude. By performing a particle-hole transformation on
spin-down electrons, the Hamiltonian commutes with the par-
ticle number and, therefore, “orbitals” may be defined (with
both spin-up and spin-down components). In the Heisenberg
model, different choices for ξk and �k lead to distinct spin
liquids, which have been systematically classified [12]. This
classification is not any more rigorous in the Hubbard model;
indeed, most of them cannot be stabilized for finite values of
U/t . Instead, we find that the best spin liquid is characterized
by anisotropic parameters in the auxiliary Hamiltonian. The
hopping terms are given by

ε̃k = −2t[cos(k · a2) + cos(k · a3)]

− 2t̃ ′[cos(k · b1) + cos(k · b2) + cos(k · b3)]. (4)
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Instead, the pairing amplitudes are

�k = 2�BCS[cos(k · a2) − cos(k · a3)], (5)

which possess a d-wave symmetry on the two bonds with
finite variational hoppings. The broken rotational symmetry
in ε̃k and �k will naturally lead to nematicity (e.g., different
spin-spin correlations along NN bonds). Since the variational
state has no magnetic order, it describes a nematic d-wave
spin liquid. This ansatz has been compared with the U (1)
Dirac spin liquid that has been suggested by the VMC study
of the Heisenberg model with NN and NNN couplings of
Ref. [20]. However, such state has a poor energy for finite
values of U/t (at least, up to U/t ∼ 25). We have also tested
the following two states with the symmetries of the triangular
lattice: (i) A Z2 state with uniform hoppings and pairings at
NN and NNN amplitudes and (ii) a complex-pairing state,
with uniform hopping along NN and NNN bonds and a pairing
�k = 2�BCS[cos(k · a1) + ω cos(k · a2) + ω2 cos(k · a3)],
where ω = e2iπ/3. While state (i) is not stable upon opti-
mization, state (ii) can be stabilized, but with an energy
higher than the nematic state. Finally, we have checked
that chiral states can be also stabilized, but with an en-
ergy higher than the d-wave optimal state. In this respect,
we have considered both complex hoppings in the auxiliary
Hamiltonian of Eq. (3), as discussed in Ref. [48] for the
Heisenberg model, and the so-called d + id pairing symmetry
with �k = 2�1[cos(k · a2) − cos(k · a3)] + 2i�2 cos(k · a1).

The density-density Jastrow factor is Jd =
exp (−1/2

∑
i, j vi, jnin j ), where ni = ∑

σ ni,σ is the electron
density on site i and vi, j are pseudopotentials that are
optimized for every independent distance |Ri − R j |. The
density-density Jastrow factor allows us to describe a
nonmagnetic Mott insulator for a sufficiently singular Jastrow
factor vq ∼ 1/q2 (vq being the Fourier transform of vi, j)
[43,44].

Our variational wave function for the magnetic phases is
defined as

|�AF〉 = JsJd |�AF〉, (6)

where Js is the spin-spin Jastrow factor and |�AF〉 is obtained,
after taking into account the backflow corrections, from the
following auxiliary Hamiltonian:

HAF =
∑

k,σ

εkc†
k,σ

ck,σ
+ �AF

∑

i

Mi · Si, (7)

where εk is the free dispersion of Eq. (1), Si is the spin oper-
ator at site i, and Mi is defined as Mi = [cos(Q · Ri ), sin(Q ·
Ri ), 0], where Q is the pitch vector. The three-sublattice 120◦
order has Q = ( 4π

3 , 0) or ( 2π
3 , 2π√

3
), while the stripe collinear

order with a two-sublattice periodicity has Q = (0, 2π√
3

). Sim-
ilarly to the case of density-density correlations, the spin-spin
Jastrow factor is written in terms of a pseudopotential ui, j

that couples the z component of the spin operators on differ-
ent sites. The spin-spin Jastrow factor describes the relevant
quantum fluctuations around the classical spin state, which is
defined in the x-y plane [49].

All the pseudopotentials in the Jastrow factors, the parame-
ters �BCS, �AF, t̃ ′, and μ, as well as the backflow corrections,

are simultaneously optimized, while t is kept fixed to 1 to set
the energy scale.

In order to assess the metallic or insulating nature of the
ground state, we can compute the static density-density struc-
ture factor:

N (q) = 1

L

∑

i, j

〈nin j〉iq·(Ri−R j ), (8)

where 〈· · · 〉 indicates the expectation value over the varia-
tional wave function. Indeed, charge excitations are gapless
when N (q) ∝ |q| for |q| → 0, while a charge gap is present
whenever N (q) ∝ |q|2 for |q| → 0 [46,50]. Analogously, the
presence of a spin gap can be checked by looking at the
small-q behavior of the static spin-spin correlations [51]:

S(q) = 1

L

∑

i, j

〈Sz
i Sz

j〉iq·(Ri−R j ). (9)

III. RESULTS

We first compare the variational energies of different
spin-liquid and magnetic phases for t ′/t = +0.3 and −0.3
(corresponding to a spin-liquid phase in the Heisenberg model
[20–22]). Despite the same large-U limit, the two cases
behave in a very different way, as shown in Fig. 1. For

-1.3

-1.25

-1.2

-1.15

-1.1

1/24 1/20 1/16 1/14 1/12 1/10

t’/t=-0.3

E
/J

t/U

AF 120
SL d-wave

SL complex
AF Collinear

-1.3

-1.2

-1.1

-1

-0.9

1/24 1/16 1/10 1/8 1/6 1/5

t’/t=+0.3

E
/J

FIG. 1. Energy (per site) in units of J = 4t2/U , as a function of
t/U for t ′/t = +0.3 (upper panel) and t ′/t = −0.3 (lower panel).
Data are shown for four different trial wave functions: The spin
liquids “SL d-wave” (red empty squares) and “SL complex” (red
empty circles), the magnetic state with the three-sublattice 120◦ order
(blue circles), and the magnetic state with the stripe collinear order
(blue squares). Black arrows denote the metal-insulator transitions.
Data are shown for a L = 18×18 lattice size. Error bars are smaller
than the symbol size.
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N
(q

)/
|q

|
U/t=5
U/t=6
U/t=7
U/t=8

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0  0.5  1  1.5  2  2.5  3  3.5

t’/t=-0.3N
(q

)/
|q

|

qx

U/t=9
U/t=10
U/t=11
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FIG. 2. Static density-density structure factor N (q), divided by
|q|, over the optimal wave function at different values of U/t , for
t ′/t = +0.3 (upper panel) and t ′/t = −0.3 (lower panel). Data are
shown for the L = 18×18 lattice size, along the line connecting
� = (0, 0) to M = (π, π√

3
). Error bars are smaller than the symbol

size.

t ′/t = +0.3, the spin-liquid regime is confined to the range
U/t � 24, while the 120◦ magnetic order is favored for
smaller values of U/t , down to the Mott transition that occurs
at Uc/t = 6.5 ± 0.5. The location of the Mott transition is de-
termined by looking at the density-density structure factor of
Eq. (8), see Fig. 2. For small values of U/t , N (q)/|q| extrap-
olates to a finite value for |q| → 0, indicating that the system
is metallic; instead, for large values of U/t , N (q)/|q| → 0
for |q| → 0, indicating that the system is insulating [43]. By
contrast, for t ′/t = −0.3, the spin-liquid phase extends down
to U/t ≈ 16. Then, for 11 � U/t � 16, the best state is the
magnetic one with collinear order down to the Mott transition,
see Fig. 2. In both cases, the optimal spin-liquid wave function
is the one with a nematic d-wave symmetry in �k (see above);
instead, the state with a complex pairing has always a higher
variational energy. Furthermore, in both cases, the magnetic
state with collinear order has a lower energy than the spin-
liquid one close to the Mott transition. This feature resembles
the spin-wave result of Ref. [52], where by increasing either
J ′/J or K/J , the collinear order is favored with respect to the
coplanar 120◦ one.

In Fig. 3, we report the ground-state phase diagram in the
(t ′/t,U/t ) plane, as obtained by comparing different varia-
tional wave functions. All the phase transitions are first order,
since both phases can be stabilized on both sides of the transi-
tion. The only exception is the one between the metal and the
magnetic insulator with 120◦ order that is more compatible
with a continuous phase transition. In the phase diagram,
there is a remarkable asymmetry between the case with posi-
tive and negative t ′/t , which can be summarized in these three

 0

 4

 8

 12

 16

 20

 24

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

U
/t

t’/t

 0
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 16

 20

 24

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

SL

AF 120
AF

Collinear

Metal

FIG. 3. Ground-state phase diagram of the t-t ′ Hubbard model
on the triangular lattice at half-filling. The magnetic phases are
denoted by blue (for 120◦ order) and green (for stripe collinear order)
regions; the spin-liquid phase (with d-wave symmetry) is denoted
by the red region; finally, the white part denotes the metallic phase.
Points (with error bars) indicate the places where phase transitions
have been located by our calculations.

points: (i) the Mott transition is located at smaller values of
U/t for t ′/t > 0, (ii) the coplanar 120◦ order is favored (over
the stripe collinear one) for t ′/t > 0, and (iii) the spin-liquid
phase (with d-wave nematic symmetry) is stabilized mostly
for t ′/t < 0. The first two aspects may be approached from
a weak-coupling point of view. In this respect, we report in
Fig. 4 the U = 0 Fermi surface of the model for different
values of the ratios t ′/t . Starting from an almost circular shape
at t ′ = 0, the Fermi surface evolves in a different way for
positive and negative values of t ′/t . In particular, for t ′/t �
0.3, we observe the formation of pockets around the corners
of the first Brillouin zone. These pockets are connected by
vectors that are approximately the ones corresponding to the
formation of 120◦ order. The presence of these pockets may
lead the Mott transition to be located at much lower values
of U/t for t ′/t � 0.2 than for smaller values. Note that in the
limit of |t ′| 
 t , the Fermi surface is formed by circles around
the corners of the first Brillouin zone, corresponding to the
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FIG. 4. Fermi surface at U = 0, for different values of t ′/t , in
the (kx, ky ) plane. The first Brillouin zone is denoted by black lines,
while the Fermi surface is drawn in blue.
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TABLE I. Nearest-neighbor spin-spin correlations 〈Sz
i Sz

j〉 be-
tween sites at positions Ri and R j that are connected by the
nearest-neighbor vectors a1, a2, and a3. Data are computed within
the spin-liquid phase at U/t = 20 and t ′/t = −0.3. Within the error
bar, results are the same on four lattice sizes: 6×6, 10×10, 14×14,
and 18×18.

R j 〈Sz
i Sz

j〉
Ri + a1 0.16(1)
Ri + a2 −0.40(1)
Ri + a3 −0.40(1)

limit of a triangular lattice defined on NNN bonds with a unit
cell that is three times larger than the original one.

Regarding the previous point (ii), a clear outcome of our
variational approach is that for t ′/t > 0 charge fluctuations
favor the 120◦ magnetic order over the stripe one, as ob-
tained for t ′/t = +0.4. Here, while for large values of U/t
the collinear order has the lowest variational energy, for 6.5 �
U/t � 14.5 the best wave function is instead the one with
coplanar order, see Fig. 3. Indeed, also from Fig. 1, which
reports the case with a slightly smaller ratio t ′/t = +0.3, it
is evident that the collinear order is never competitive with
the coplanar one, close to the Mott transition. The situation
is rather different in the opposite side of the phase diagram,
where the wave function with collinear magnetic order per-
forms much better and gives the lowest variational energy in
a wide region. Indeed, for t ′/t � −0.25, it can be stabilized
down to the metal-insulator transition, which takes place for
Uc/t ≈ 12.

Most importantly, a quite large spin-liquid region exists for
a sufficiently large electron-electron repulsion and t ′/t < 0
(while it is confined to much larger values of U/t for positive
ratios of the hopping parameters). We should stress the fact
that the nature of this spin-liquid state is different from the
one found by a similar variational approach in the frustrated
Heisenberg model [20]. In the Hubbard model, hopping and
pairing terms break the rotational symmetry, see Eqs. (4)
and (5), thus leading to a nematic state; this feature is char-
acterized by a convenient order parameter, which can be
constructed from the nearest-neighbor spin-spin correlations
along “weak” and “strong” bonds, see Table I. Indeed, the
bond a1, along which pairing and hopping in the variational
state are suppressed, is characterized by spin-spin correla-
tions that are markedly different from the ones along a2 and
a3, along which pairing and hopping are finite. Instead, in
the Heisenberg model, the optimal variational wave function
contains only hopping with a 2×1 unit cell to accommodate
a π flux through upward (or downward) triangles. The ne-
matic d-wave state can be also stabilized, but it has a slightly
higher variational energy compared to the best π -flux ansatz.
It should be mentioned that the latter wave function does
not break translational and rotational symmetries only when
limited in the subspace without double occupations (suitable
for the Heisenberg model). Within the Hubbard model (i.e., in
the presence of charge fluctuations), breaking the translational
symmetry gives rise to a sizable energy loss. Our present
results suggest that charge fluctuations will favor the nematic

 0
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FIG. 5. Static spin-spin structure factor S(q), divided by |q|, over
the optimal wave function at t ′/t = −0.3, U/t = 10 (red empty cir-
cles) and at t ′/t = −0.3, U/t = 20 (red empty squares), shown along
the line connecting � = (0, 0) to M = (π, π√

3
). S(q)/|q| is also

shown on the frustrated square lattice at U/t = 16 from � = (0, 0)
to M = (π, π ). All data are presented on a L = 18×18 lattice size.
Error bars are smaller than the symbol size.

d-wave state, thus limiting the π -flux state to exceedingly
large values of U/t , i.e., much larger than the ones that have
been considered here. An aspect that is shared between these
two spin liquids is the existence of gapless excitations, which
can be assessed from the small-q behavior of the spin-spin
structure factor, see Fig. 5. Even though the value of S(q/|q|)
for |q| → 0 shown in the spin-liquid phase (at U/t = 20) is
much smaller than the one obtained in the metallic regime
(at U/t = 10), the extrapolation is still compatible with a
finite value, not much different from the one obtained in
the frustrated square lattice, where a gapless spin liquid was
found [45].

Finally, we would like to mention that metallic, magnetic,
and spin-liquid wave functions have similar energy variances
σ 2

H = 1/L(〈H2〉 − 〈H〉2), this quantity testifying the accuracy
of the variational calculation. In fact, σ 2

H is always positive and
vanishes only when the variational state is an exact eigenstate
of the Hamiltonian, e.g., the ground state. For example, we
find that σ 2

H ≈ 0.1 in the metal for t ′/t = +0.3 and U/t = 4;
σ 2

H ≈ 0.1 in the 120◦ magnetic phase for t ′/t = +0.3 and
U/t = 20; σ 2

H ≈ 0.2 in the spin-liquid regime for t ′/t = −0.3
and U/t = 20; σ 2

H ≈ 0.1 in the collinear antiferromagnet for
t ′/t = −0.3 and U/t = 12. These results suggest that the
phase diagram should not be much affected by the (slightly)
different accuracy of the variational wave functions. Further-
more, the larger variance of the spin-liquid state with respect
to the other states would indicate that its actual stability region
could be broader than what obtained in Fig. 3.

IV. CONCLUSIONS

We have presented the VMC phase diagram of the t-t ′
Hubbard model on the isotropic triangular lattice, as sum-
marized in Fig. 3, which may be relevant for the physics
of the transition metal dichalcogenide 1T-TaS2. We found
that for t ′/t ≈ −0.3 a spin-liquid phase is present down to
intermediate values of U/t . This phase is nematic and pre-
sumably gapless and is not directly connected to the metallic
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state, from which it is separated by a magnetic insulator with
collinear order. On the contrary, for positive values of t ′/t the
coplanar magnetic state with 120◦ order dominates the phase
diagram. Our calculations do not show any evidence for a
weak-Mott insulating phase, intruding between the metallic
and the antiferromagnetic phases, in contrast with other nu-
merical approaches. We surmise that the high correlation of
electrons at short/medium distances in the metal close to the
metal-insulator transition may lead to the misconceived con-
clusion of the existence of an intermediate spin-liquid phase.

Our results bring a twofold message: On one side the
degree of frustration (t ′/t )2, already considered in the Heisen-
berg model, drives the appearance of the spin-liquid phases,
since no spin liquid is observed for t ′ = 0 (e.g., charge fluctu-
ations are not able to destroy the magnetic long-range order).

On the other side, the sign of t ′/t , which cannot be detected
within the Heisenberg model, is crucial to stabilize a spin
liquid down to intermediate values of the electron-electron
repulsion. In addition, also the nature of the magnetically
ordered phases (i.e., their periodicity) strongly depends upon
the sign of the next-nearest-neighbor hopping.
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